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ABSTRACT

Despite the emergence of mashup tools like Yahoo! Pipes or
JackBe Presto Wires, developing mashups is still non-trivial
and requires intimate knowledge about the functionality of
web APIs and services, their interfaces, parameter settings,
data mappings, and so on. We aim to assist the mashup pro-
cess and to turn it into an interactive co-creation process,
in which one part of the solution comes from the developer
and the other part from reusable composition knowledge that
has proven successful in the past. We harvest composition
knowledge from a repository of existing mashup models by
mining a set of reusable composition patterns, which we then
use to interactively provide composition recommendations to
developers while they model their own mashup. Upon ac-
ceptance of a recommendation, the purposeful design of the
respective pattern types allows us to automatically weave
the chosen pattern into a partial mashup model, in practice
performing a set of modeling actions on behalf of the devel-
oper. The experimental evaluation of our prototype imple-
mentation demonstrates that it is indeed possible to harvest
meaningful, reusable knowledge from existing mashups and
that — if sensibly structured — even complex recommenda-
tions can be efficiently queried and weaved also inside the
client browser.
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1. INTRODUCTION

Mashup tools, such as Yahoo! Pipes (http://pipes.
yahoo.com/pipes/) or JackBe Presto Wires (http://wuw.
jackbe.com), generally promise easy development tools and
lightweight runtime environments, both typically running
inside the client browser. By now, mashup tools undoubt-
edly simplified some complex composition tasks, such as the
integration of web services or user interfaces. Yet, despite
these advances in simplifying technology, mashup develop-
ment is still a complex task that can only be managed by
skilled developers.

People without the necessary programming experience may
not be able to profitably use mashup tools like Pipes — to
their dissatisfaction. For instance, we think of tech-savvy
people, who like exploring software features, authoring and
sharing own content on the Web, that would like to mash up
other contents in new ways, but that don’t have program-
ming skills. They might lack appropriate awareness of which
composable elements a tool provides, of their specific func-
tionality, of how to combine them, of how to propagate data,
and so on. In short, these are people that do not have soft-
ware development knowledge. The problem is analogous in
the context of web service composition (e.g., with BPEL) or
business process modeling (e.g., with BPMN), where mod-
elers are typically more skilled, but still may not know all
the features or typical modeling patterns of their tools.

What people (also programmers) typically do when they
don’t know how to solve a tricky modeling problem is search-
ing for help, e.g., by asking more skilled friends or by query-
ing the Web for solutions to analogous problems. In this
latter case, examples of ready mashup models are one of the
most effective pieces of information — provided that suitable
examples can be found, i.e., examples that have an anal-
ogy with the modeling situation faced by the modeler. Yet,
searching for help does not always lead to success, and re-
trieved information is only seldom immediately usable as is,
since the retrieved pieces of information are not contextual,
i.e., immediately applicable to the given modeling problem.

For instance, Figure 1 illustrates a Yahoo! Pipes model
that encodes how to plot news items on a map. Besides
showing how to connect components and fill parameters, the
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Figure 1: A typical pattern in Yahoo! Pipes

key lesson that can be learned from this pipe is that plotting
news onto a map requires first enriching the news feed with
geo-coordinates, then fetching the actual news items, and
only then handing the items over to the map. Understanding
this logic is neither trivial nor intuitive.

Driven by a user study on how end users imagine assis-
tance during mashup development [4], we aim to automati-
cally offer them help pro-actively and interactively. Specif-
ically, we are working toward the interactive, contextual
recommendation of reusable composition knowledge,
in order to assist the modeler in each step of his development
task, e.g., by suggesting a candidate next component or a
whole chain of tasks. The knowledge we want to recommend
is re-usable composition patterns, i.e., model fragments that
bear knowledge about how to compose mashups, such as the
pattern in Figure 1. Such knowledge may come from a va-
riety of possible sources. In this paper, we specifically focus
on community composition knowledge and mine recurrent
model fragments from a repository of given mashup models.

The wision is that of enabling the development of as-
sisted, web-based mashup/composition environments that
deliver composition knowledge much like Google’s Instant
feature delivers search results already while still typing key-
words into the search field.

In this paper, we approach two core challenges of this
vision, i.e., the discovery of reusable composition knowledge
from a repository of ready mashup models and the reuse
of such knowledge inside mashup tools, a feature that we
call weaving. Together with the ability to search and re-
trieve composition patterns contextually when modeling a
new mashup, a problem we approached in [10] and that we
summarize in this paper, these two features represent the
key enablers of the vision of assisted development.

We specifically provide the following contributions:

e We describe a canonical mashup model that is able
to represent in a single modeling formalism a variety
of data flow mashup languages. The goal is to mine
composition knowledge from multiple source languages
by implementing the necessary algorithms only once.

e We describe an architecture of our knowledge recom-
mender that can be used to equip any mashup envi-
ronment with interactive assistance for its developers.

e We define a set of mashup pattern types that resemble
the modeling actions of typical mashup environments.

e We develop a set of data mining algorithms that dis-
cover composition knowledge in the form of reusable
mashup patterns from a repository of mashup models.

e We develop a pattern weaving algorithm that automat-
ically applies patterns to mashup models, allowing the
developer to progress in his development task.

In the next section, we introduce the canonical mashup
model and formulate our problem statement. In Section 3
we describe the architecture of our recommendation plat-
form and characterize the patterns we are interested in. In
Sections 4, 5 and 6 we, respectively, describe the mining,
recommendation, and weaving algorithms. In Section 7 we
overview related work. Then we conclude the paper.

2. PRELIMINARIES AND PROBLEM

The development of a data mining algorithm strongly de-
pends on the data to be mined. The data in our case are the
mashup models. Since in our work we do not only aim at the
reuse of knowledge but also at the reuse of our algorithms
across different platforms, we strive for the development of
algorithms that are able to accommodate different mashup
models in input. Next, we therefore describe a canonical
mashup model that allows us to concisely express mul-
tiple mashup models and to implement mining algorithms
that intrinsically support multiple mashup platforms. The
canonical model is not meant to be executed; it rather serves
as description format.

As a first step toward generic modeling environments, in
this paper we focus on data flow based mashup models. Al-
though relatively simple, they are the basis of a significant
number of mashup environments, and the approach can eas-
ily be extended toward other mashup environments.

2.1 A Canonical Mashup Model

Let CT be a set of component types of the form ctype =
(type, IP,IN,OP,OUT,is_embedding), where type identi-
fies the type of component (e.g., RSS feed, filter, or sim-
ilar), IP is the set of input ports of the component type
(for the specification of data flows), IN is the set of in-
put parameters of the component type, OP is the set of
output ports, OUT is the set of output attributes', and
is_.embedding € {yes,no} tells whether the component type
allows the embedding of components or not (e.g., to model
a loop). We distinguish three types of components:

e Source components fetch data from the web (e.g., from
an RSS feed) or the local machine (e.g., from a spread-
sheet), or they collect user inputs at runtime. They
don’t have input ports, i.e., IP = @.

e Data processing components consume data in input
and produce processed data in output. Therefore: [P,
OP # o. Filter components, operators, and data
transformers are examples of data processing compo-
nents.

'We use the term attribute to denote data attributes pro-
duced as output by a component or flowing through a data
flow connector and the term parameter to denote input pa-
rameters of a component.



e Sink components publish the output of a mashup, e.g.,
by printing it onto the screen (e.g., a pie chart) or pro-
viding an API toward it, such as an RSS or RESTful
resource. Sinks don’t have outputs, i.e., OP = &.

Given a set of component types, we are able to instantiate
components in a modeling canvas and to compose mashups.
We express the respective canonical mashup model as a
tuple m = (name,id, src,C, GP, DF, RES), where name is
the name of the mashup in the canonical representation, id a
unique identifier, src € {“Pipes”, “Wires”, “myCocktail”,
...} keeps track of the source platform of the mashup, C
is the set of components, GP is a set of global parameters,
DF is a set of data flow connectors propagating data among
components, and RES is a set of result parameters of the
mashup. Specifically:

e GP = {gpi|lgp; = (name;,value;)} is a set of global
parameters that can be consumed by components,
name; is the name of a given parameter, value; €
(STRU NUM U {null}) is its value, with STR and
NUM representing the sets of possible string or nu-
meric values, respectively. The use of global parame-
ters inside data flow languages is not very common, yet
tools like Presto Wires or myCocktail (http://www.
ict-romulus.eu/web/mycocktail) support the design-
time definition of globally reusable variables.

e DF = {df;|df; = (srccid;, srcopj, tgtcid;, tgtip;)} is a
set of data flow connectors that, each, assign the
output port srcop; of a source component with identi-
fier srccid; to an input port tgtip; of a target compo-
nent identified by tgtcid;, such that srccid # tgtcid.
Source components don’t have connectors in input;
sink components don’t have connectors in output.

o C = {ck|ck = (namey, idk, typeg, I Py, INk, DM}, V Ay,
OPy,OUTy, Ex)} is the set of components, such that
cx = instanceO f(ctype)?, ctype € CT and namey, is
the name of the component in the mashup (e.g., its
label), idj uniquely identifies the component, typer, =
ctype.type®, IP, = ctype.IP, INy = ctype.IN, OP;, =
ctype.OP, OUTy, = ctype.OUT, and:

— DM C INk x (U;pe;p, ip-source.OUT) is the
set of data mappings that map attributes of the
input data flows of ¢ to input parameters of c¢.

— VA, CIN; x (STRUNUM UGP) is the set of
value assignments for the input parameters of
cr; values are either filled manually or taken from
global parameters.

— By = {cidri} is the set of identifiers of the em-
bedded components. If the component does not
support embedded components, Fy = &.

e RES C U, c.OUT is the set of mashup outputs
computed by the mashup.

2To keep models and algorithms simple, we opt for a self-
describing instance model for components, which presents
both type and instance properties.

3We use a dot notation to refer to sub-elements of structured
elements; ctype.type therefore refers to the type attribute of
the component type ctype.

Without loss of generality, throughout this paper we ex-
emplify our ideas and solutions in the context of Yahoo!
Pipes, which is well known and comes with a large body of
readily available mashup models that we can analyze. Pipes
is very similar to our canonical mashup model, with two key
differences: it does not have global parameters, and the out-
puts of the mashup are specified by using a dedicated Pipe
Output component (see Figure 1). Hence, GP,RES = @&
and a pipe corresponds to a restricted canonical mashup
of the form m = (name,id, “Pipes”’,C, , DF, &) with the
attributes as specified above. In general, we refer to the
generic canonical model; we explicitly state where instead
we use the restricted Pipes model.

2.2 Problem Statement

Given the above canonical mashup model, the problem we
want to solve in this paper is understanding (i) which kind
of knowledge can be extracted from canonical mashup mod-
els, (ii) how to develop mining algorithms that are able to
discover such knowledge, (iii) how to recommend discovered
patterns for reuse in concrete mashup tools, and (iv) how to
weave patterns into a partial mashup under development.

3. APPROACH

The current trend in modeling environments in general,
and in mashup tools in particular, is toward intuitive, web-
based solutions. The key principles of our work are therefore
to conceive solutions that resemble the modeling paradigm of
graphical modeling tools, to develop them so that they can
run inside the client browser, and to specifically tune their
performance so that they do not annoy the developer while
modeling. These principles affect the nature of the knowl-
edge we are interested in and the architecture and imple-
mentation of the respective recommendation infrastructure.

3.1 Composition Knowledge Patterns

Starting from the canonical mashup model, we define com-
position knowledge as reusable composition patterns for
mashups of type m, i.e., model fragments that provide in-
sight into how to solve specific modeling problems, such as
the one illustrated in Figure 1. In general, we are in the
presence of a set of composition pattern types PT, where
each pattern type is of the form ptype = (C,GP, DF, RES),
where C, GP, DF, RES are as defined for m.

The size of a pattern may vary from a single compo-
nent with a value assignment for one input parameter to
an entire, executable mashup. The most basic patterns
are those that represent a co-occurrence of two elements out
of C,GP,DF or RES. For instance, two components that
recur often together form a basic pattern; given one of the
components, we are able to recommend the other compo-
nent. Similarly, an input parameter plus its value form a
basic pattern, given the parameter, we can recommend a
possible value for it. As such, the most basic patterns are
similar to association rules, which, given one piece of infor-
mation, are able to suggest another piece of information.

Aiming, however, to help a developer refine his mashup
model step by step with as less own effort as possible, we are
able to identify a set of pattern types that allow the devel-
oper to obtain more practical and meaningful composition
knowledge. Such knowledge is represented by sensible com-
binations of basic patterns, i.e., by composite patterns.

Considering the typical modeling steps performed by a



developer (e.g., filling input fields, connecting components,
copying/pasting model fragments), we specifically identify
the following set PT of pattern types:

Parameter value pattern. The parameter value pattern
represents a set of recurrent value assignments VA for the
input fields I N of a component c:

ptypeP*” = <{C}7 GP, o, ®>;

c = (name, 0, type, @, IN, 3, @, VA, @, @)*;

GP # @ if VA also assigns global parameters to IN;

GP = @ if V A assigns only strings or numeric constants.

This pattern helps filling input fields of a component that
require explicit user input.

Connector pattern. The connector pattern represents a
recurrent connector dfyy, given two components ¢, and cy,
along with the respective data mapping DM, of the output
attributes OUT,, to the input parameters INy:

ptype®" = ({ca, ey}, D, {dfay }, D);

¢z = (namez, 0, types, &, 9, 3, &, {opz }, OUT,, &);

¢y = (namey, 1, typey, {ipy}, IN,, DM,, &, &, &, ).

This pattern helps connecting a newly placed component
to the partial mashup model in the canvas.

Connector co-occurrence pattern. The connector co-

occurrence pattern captures which connectors df., and df,.

occur together, also including their data mappings:
ptype® = <{sz Cy, CZ}v g, {dfmya dfyZ}v ®>;

¢z = (name, 0, types, S, 3, 2, 3, {ops }, OU Ty, D);

cy = (namey, 1, typey, {ipy}, INy, DMy, @,{opy},

ouT,, o)

c. = (name., 2, type.,{ip.},IN., DM, &, &, &, &).

This pattern helps connecting components. It is particu-
larly valuable in those cases where people, rather than devel-
oping their mashup model in an incremental but connected
fashion, proceed by first selecting the desired functionalities
(the components) and only then by connecting them.

Component co-occurrence pattern. Similarly, the com-
ponent co-occurrence pattern captures couples of compo-
nents that occur together. It comes with two components
¢ and ¢y as well as with their connector, global parameters,
parameter values, and c,’s data mapping logic:

pype™ = ({ca, ey}, GP, {dfuy }, @);

¢z = (nameg, 0, types, &, IN,, {ops }, OUT,, V Ay, &, D);

¢y = (namey, 1, typey, {ipy}, INy, DMy, V Ay, &, &, D).

This pattern helps developing a mashup model incremen-
tally, producing at each step a connected mashup model.

Component embedding pattern. The component embed-
ding pattern captures which component c, is typically em-
bedded into a component ¢, preceded by a component c,.
The pattern has three components, in that both the embed-
ded and the embedding component have access to the out-
puts of the preceding component. How these outputs are
jointly used is valuable information. The pattern, hence,
contains the three components with their connectors, data
mappings, global parameters, and parameter values:

4The identifier c.id = 0 does not represent recurrent in-
formation. Identifiers in patterns rather represent internal,
system-generated information that is necessary to correctly
maintain the structure of patterns. When mining patterns,
the actual identifiers are lost; when weaving patterns, they
need to be re-generated in the target mashup model.

ptype™ = ({cz, ¢y, ¢z}, GP, {dfoy, dfos, df -y}, @);

¢z = (names, 0, types, 3, &, {ops },OUT,, D, D, D);

¢y = {namey, 1, typey, {ipy}, INy, DMy, V Ay, &, &, );

¢ = (name., 2, type.,{ip.},IN., DM., VA, {op.},

OoUT., o).

This pattern helps, for instance, modeling cycles, a task
that is usually not trivial to non-experts.

Multi-component pattern. The multi-component pattern
represents recurrent model fragments that are generically
composed of multiple components. It represents more com-
plex patterns, such as the one in Figure 1, that are not yet
captured by the other pattern types. It allows us to obtain a
full model fragment, given any of its sub-elements, typically,
a set of components or connectors:

ptype™ = (C,GP,DF, RES);

C ={ci|ciid =451 =0,1,2,...}.

Besides providing significant modeling support, this pat-
tern helps understanding domain knowledge and best prac-
tices as well as keeping agreed-upon modeling conventions.

This list of pattern types is extensible, and what actually
matters is the way we specify and process them. However,
this set of pattern types, at the same time, leverages on
the interactive modeling paradigm of the mashup tools (the
patterns represent modeling actions that could also be per-
formed by the developer) and provides as much information
as possible (we do not only tell simple associations of con-
structs, but also show how these are used together in terms
of connectors, parameter values, and data mappings).

Given a set of pattern types, an actual pattern can there-
fore be seen as an #nstance of any of these types. We model
a composition pattern as cp = instanceO f(ptype), ptype €
PT, where cp = (type,src,C,GP, DF, RES, usage, date),
type e {“Par”’ HCO,',L”’ “COO”’ “CO'I’)’L”, “E‘mb”’ “Mul”}’ src
€ {“Pipes”, “Wires”, “myCockail”, ...} specifies the target
platform of the pattern, C, GP, DF, RES, src are as defined
for the pattern’s ptype, usage counts how many times the
pattern has been used (e.g., to compute rankings), and date
is the creation date of the pattern.

3.2 Architecture

Figure 2 details the internals of our knowledge discovery
and recommendation prototype. We distinguish between
client and server side, where the discovery logic is located
in the server and the recommendation and weaving logic re-
sides in the client. In the server, a model adapter imports the
native mashup models into the canonical format. The pat-
tern miner then extracts reusable composition knowledge,
which is loaded by the data transformer into a knowledge
base (KB) that is structured to maximize the performance
of pattern retrieval at runtime.

In the client, we have the interactive modeling environ-
ment, in which the developer can visually compose compo-
nents (in the modeling canvas) taken from the component
tool bar. It is here where patterns are queried for and de-
livered in response to modeling actions performed by the
modeler in the modeling canvas. In visual modeling environ-
ments, we typically have action € {“select”, “drag”, “drop”,
“connect”, “delete”, “fill”, “map”, ...}, where the action is
performed on a modeling construct in the canvas; we call
this construct the object of the action. For instance, we can
drop a component onto the canvas, or we can select a pa-
rameter to fill it with a value, we can connect a data flow
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Figure 2: Functional architecture of the composition knowledge discovery and recommendation approach

with a target component, or we can select a set of compo-
nents and connectors. Upon each interaction, the action
and its object are published on a browser-internal event
bus, which forwards them to the recommendation engine.
Given a modeling action, the object it has been applied
to, and the partial mashup model pm, the engine queries
the client-side pattern KB via the KB access API for rec-
ommendations (pattern representations). An object-action-
recommendation mapping (O AR) tells the engine which types
of recommendations are to be retrieved for each modeling ac-
tion on a given object (for example, when selecting an input
field, only recommending possible values makes sense). The
client-side KB is filled at startup by the KB loader, which
loads the available patterns into the client environment, de-
coupling the knowledge recommender from the server side.

The list of patterns retrieved from the KB (either via reg-
ular queries or by applying dedicated similarity criteria) are
then ranked by the engine and rendered in the recommenda-
tion panel, which renders the recommendations to the devel-
oper for inspection. Selecting a recommendation enacts the
pattern weaver, which queries the KB for the usage details
of the pattern (data mappings and value assignments) and
generates a set of modeling instructions that emulate user
interactions inside the modeling canvas and thereby weave
the pattern into the partial mashup model.

4. DISCOVERING PATTERNS

The first step in the information flow described in the
above architecture is the discovery of mashup patterns from
canonical mashup models. We do not simply interpret mash-
ups as graphs and apply standard graph mining algorithms
[12]. Instead, we prefer looking better into the details of
each individual pattern and implementing dedicated min-
ing algorithms for each pattern, which allow us to fine-tune
each mashup-specific characteristic (e.g., to treat threshold
values for parameter value assignments and data mappings
differently). The algorithms make use of standard statistics
and frequent itemset mining [12].

4.1 Mining algorithms

For each of the pattern types identified in Section 3.1, we
have implemented a respective pattern mining algorithm,
the details of which we provide in http://goo.gl/Dis5V.
Unfortunately — for space reasons — we are not able to dis-

cuss all algorithms here. In the following we therefore specif-
ically focus on two pattern types, i.e., connector patterns
and component co-occurrence patterns, which however al-
low us to exhaustively explain our approach and the logic of
the algorithms.

Connector pattern. A connector pattern is composed of
two components, the source component ¢, and the target
component ¢y, their data flow connector df,,, and the data
mapping DM, of the target component. Given a repository
of mashup models M = {m;} and the minimum support
levels for the data flow connectors and data mappings, the
pseudo-code in Algorithm 1 explains how we mine connector
patterns.

We start the mining task by getting the list of all recurrent
connectors in M (line 1). The respective function getRecur-
rentConnectors is explained in Algorithm 2; in essence, it
computes a recurrence distribution for all connectors and re-
turns only those that exceed the threshold minsuppgr. The
function returns a set of connector types without repetitions
and without information about the instances that generated
them. Given this set, we construct a database of concrete
instances of each connector type (using the getConnectorin-
stances function in line 5 and described in Algorithm 3) and,
for each connector type, derive a database of the data map-
pings for the connectors’ target component ¢, (lines 7-9).
We feed the so constructed database into a standard mine-
Frequentltemsets function [12], in order to obtain a set of
recurrent data mappings for each connector type. Finally,
for each identified data mapping DM,, we construct a tu-
ple (dfzy, DM,) (lines 11-12), which concisely represents the
connector pattern structure introduced in Section 3.1; the
rest of the pattern comes from the component definitions.

Component co-occurrence pattern. The component co-
occurrence pattern is an extension of the connector pattern;
in addition to the connector and data mapping, it also con-
tains the parameter value assignments of the two compo-
nents involved in the connector. As shown in Algorithm 4,
the respective mining logic is similar to the one of the con-
nector pattern, with two major differences: in lines 6-17 we
also mine the recurrent parameter value assignments of ¢,
and ¢y, and in lines 18-21 we filter out those combinations of
VA, VA, and DM, that co-occur for the given connector
and that have a support greater than minsuppgs.



Algorithm 1: mineConnectors

Algorithm 3: getConnectorInstances

Data: repository of mashup models M, minimum support of
data flow connectors (minsuppqs) and data mappings

(minsuppam)
Result: set of connectors with their corresponding data

mappings {(dfzy,'ia DMy.’i)}
F4p = getRecurrentConnectors(M, minsuppas);

[

2 DB = array(); // database of recurrent connector instances
3 Patterns = set(); // set of connector patterns
4 foreach df,, € Fy do
5 DBldfzy] = getConnectorInstances(M, dfzy);
// create database for frequent itemset mining
6 DBDM, = array():
7 foreach dfi,, € DB[df,] do
8 ¢y = target component of dfizy;
9 append(DBDM,, cy.DM);
10 FI4, = mineFrequentltemsets(DBDM,,, minsuppam);
// construct the connector patterns
11 foreach DM, € Flg, do
12 | Patterns = Patterns U {(dfzy, DMy)}

13 return Patterns;

Algorithm 2: getRecurrentConnectors

Data: repository of mashup models M, minimum support of
data flow connectors (minsuppqgy)
Result: set of recurrent connectors Fgy

1 DBdf = array(); // database of data flow connector instances
foreach m; € M do
L append(DBgf, m;.DF); ;

N

// £ill with instances

w

Fgr = set(); // set of recurrent data flow connectors
foreach df., € DBg; do
L if computeSupport(dfsy, DBas) > minsuppqs then

N o oe

| Far = Fag U{dfay};

o

return Fyy;

4.2 Implementation and Evaluation

We implemented a model adapter (see Figure 2) in Java
(1.6), which is able to convert Yahoo! Pipes’s JSON rep-
resentation into our canonical mashup model. All the min-
ing algorithms are also implemented in Java. For the fre-
quent itemset mining we used ARMiner (http://www.cs.
umb.edu/~laur/ARMiner/), which implements a set of tools
for association rule mining. The output of the algorithms is
expressed as XML documents, with a schema that is aligned
with the patterns introduced in Section 3.1 and and the pat-
tern KB.

For our experiments we used a dataset of 303 pipes defi-
nitions from the repository of Pipes. We selected pipes from
the list of “most popular” pipes, in that popular pipes are
more likely to be functional and useful. The average number
of components, connectors and input parameters are 12.7,
13.2 and 3.1, respectively, which is an indication that we are
dealing with fairly complex mashup compositions.

The results obtained from running our algorithms on the
selected dataset show that we are able to discover recurrent
practices for building mashups. Table 1 shows a summary of
the patterns discovered by the two algorithms introduced be-
fore. We used a minimum support threshold between 0.050
and 0.075 for finding patterns, but, clearly, this is a configu-
ration parameter subject to tuning. In the table, we report
the average support of the discovered patterns. For example,
given that Yahoo! Pipes is particularly strong for processing
Atom and RSS feeds, it is common for our algorithms to find

Data: repository of mashup models M, reference connector dfz,
Result: array of connector instances DBy

1 DB,y = array(); // database of data flow connector instances

2 foreach m; € M do
3 append(DBgyy], m;.DF N {dfzy}); ; // £ill with instances
of the reference connector type

4 return DBgy;

Algorithm 4: mineComponentCooccurrences

Data: repository of mashup models M, minimum support of
data flow connectors (minsuppqys), data mappings
(minsuppam ) and parameter value assignments
(minsuppua)-

Result: set of component co-occurrence patterns with their

corresponding dataflow connectors, data mappings and
parameter values {(dfzy, i, VAg,i, VAy i, DMy i)}

Fgr = getRecurrentConnectors(M, minsuppar);

o

2 DB = array(); // database of recurrent connector instances
3 Patterns = set(); // set of component co-occurrence patterns
4 foreach $df,, € F4 do
5 DB(dfzy,] = getConnectorInstances(M, df .y );
// create databases for frequent itemset mining
6 DBV A, = array();
7 DBV A, = array():
8 DBDM, = array():
9 foreach dfiy, in DB[df,] do
10 cq = source component of dfizy;
11 cy = target component of dfiz,;
12 append(DBV Ay, ¢, .V A);
13 append(DBV Ay, ¢, .V A);
14 append(DBDM,, c¢y.DM);
15 FI,, = mineFrequentltemsets(DBV A,, minsupppar);
16 FI,, = mineFrequentltemsets(DBV A,, minsupppar);
17 FI4, = mineFrequentltemsets(DBDM,,, minsupppar);

// keep only those combinations of value assignments and
data mappings that frequently occur together
18 Coo = set();

19 foreach (VA,,VA,,DM,) € Fl,, X FL,, x Flg, do
20 if computeSupport((V Ay, VA,, DMy), DB[dfzy])
> minsuppqs then
21 | Coo= CooU{(VA,,VA,, DMy)};
// construct the component co-occurrence patterns
22 foreach (VA,,VA,, DM,) € Coo do
23 L Patterns = Patterns U {{dfzy, VAz, VA,, DM,)}

24 return Patterns;

patterns of the type“use textinput, urlbuilder, fetchfeed, sort
components together, connecting them in sequence.” These
patterns are valid and make sense, yet they lack seman-
tics, mainly because the components in Yahoo! Pipes are
generic. This lack of semantics is alleviated to some extent
by discovering fragments that are as complete as possible:
instead of just telling which component types co-occur to-
gether, we also need to tell how they are connected, how
data is mapped inside components and how the parameter
values of components are filled. Among these, and in the
context of this experiment, parameter values are the most
powerful way to give semantics to mashup constructions.

S. RECOMMENDING PATTERNS

Recommending patterns is non-trivial, in that the size of
the knowledge base may be large, and the search for com-
position patterns may be complex; yet, recommendations
are to be delivered at high speed, without slowing down
the modeler’s composition pace. Recommending patterns is



Table 1: Summary of discovered patterns

Connector patterns

[Connectors] Minimum support found: 0.0759
[Connectors] Maximum support found: 0.3234
[Connectors] Number of frequent dataflow connectors: 26
[Data mappings] Minimum support found: 0.0502

[Data mappings] Maximum support found: 0.0970

[Data mappings] Number of frequent data mappings: 166

Parameter values for component co-occurence pattern
Minimum support found: 0.0769

Maximum support found: 0.2308

Number of frequent itemsets: 464

ParameterValues

ID
Component
0.1 1.N 1.N 0.1
ComponentCooccur \P/;rj‘:eter ConnectorCooccur
1D Usage ID
SourceComponent Date FirstComponent
TargetComponent SecondComponent
Usage ThirdComponent
Date
Connectors Usage
D Date

SourceComponent
TargetComponent

MultiComponent Usage
D Date
c 0.1 ‘ Embedding
DF TN D
DF' DataMapping SourceComponent
Usage D EmbeddingComponent
Date SourceAttribute EmbeddedComponent
TargetParameter Usage
Usage Date
Date

Figure 3: KB structure optimized for Pipes

platform-specific. The following explanations therefore re-
fer to the specific case of Pipes-like mashup models. In [10],
we show all the details of our approach; in the following we
summarize its key aspects.

5.1 Pattern Knowledge Base

The core of the interactive recommender is the pattern
KB. In order to enable the incremental and fast recommen-
dation of patterns, we decompose them into their constituent
parts and focus only on those aspects that are necessary to
convey the meaning of a pattern. That is, we leverage on
the observation that, in order to convey the structure of a
pattern, already its components and connectors enable the
developer to choose in an informed fashion. Data mappings
and value assignments, unless explicitly requested for by the
developer, are then delivered only during the weaving phase
upon the selection of a specific pattern by the developer.

This strategy leads us to the KB illustrated in Figure
3, whose structure enables the retrieval of each of the pat-
terns introduced in Section 3.1 with a one-shot query over
a single table. For instance, let’s focus on the component
co-occurrence pattern: to retrieve its representation, it is
enough to query the ComponentCooccur entity for the Source-
Component and the TargetComponent attributes. The query
is assembled automatically upon interactions in the model-
ing canvas and is of the form ¢ = (object, action, pm). Only
weaving the pattern into the mashup model requires query-
ing ComponentCooccur <1 Connectors > DataM apping
and ComponentCooccur <1 ParameterV alues.

5.2 Exact and Approximate Pattern Matching
The described KB supports both exact queries for the pat-

Algorithm 5: getRecommendations

Data: query q = (object, action, pm), knowledge base K B,
object-action-recommendation mapping OAR,
component similarity matrix CompSim, similarity
threshold Ts;qm, ranking threshold T).qpnk, number n of
recommendations per recommendation type

Result: recommendations R = [(cp;, rank;)]

1 R = array();

2 Patterns = set();

3 recTypeToBeGiven = getRecTypes(object, action, OAR);

4 foreach recType € recTypeToBeGiven do

5 if recType # “Mul” then

6 Patterns = PatternsU
queryPatterns(object, K B, recType) ; // exact query

7 else

8 Patterns = PatternsU getSimilarPatterns(object,

KB,CompSim, Tsim) ; // similarity search

9 foreach pat € Patterns do

10 if rank(pat.cp, pat.sim,pm) > Trqnk then
11 append (R, (pat.cp, rank(pat.cp, pat.sim,pm))) ;
// rank, threshold, remember

12 orderByRank(R);

13 groupByType(R);

14 truncateByGroup(R, n);
15 return R;

terns with pre-defined structure and approximate matching
for multi-component patterns whose structure is not known
a priori. Patterns are queried for or matched against the
object of the query, i.e., the last modeling construct manip-
ulated by the developer. Conceptually, all recommendations
could be retrieved via similarity search, but for performance
reasons we apply it only when strictly necessary.

Algorithm 5 details this strategy and summarizes the
logic implemented by the recommendation engine. In line 3,
we retrieve the types of recommendations that can be given
(getSuitable Rec Types function), given an object-action com-
bination. Then, for each recommendation type, we either
query for patterns (the gqueryPatterns function can be seen
like a traditional SQL query) or we do a similarity search
(getSimilarPatterns function). For each retrieved pattern,
we compute a rank, e.g., based on the pattern description
(e.g., containing usage and date), the computed similarity,
and the usefulness of the pattern inside the partial mashup,
order and group the recommendations by type, and filter
out the best n patterns for each recommendation type.

As for the retrieval of similar patterns, we give pref-
erence to exact matches of components and connectors in
object and allow candidate patterns to differ for the inser-
tion, deletion, or substitution of at most one component
in a given path in object. Among the non-matching compo-
nents, we give preference to functionally similar components
(e.g., it may be reasonable to allow a Yahoo! Map instead
of a Google Map); we track this similarity in a dedicated
CompSim matrix. For the detailed explanation of the ap-
proximate matching logic we refer the reader to [10].

5.3 Implementation and Evaluation

We implemented the recommendation engine, the KB ac-
cess API, and the client-side pattern KB along with the
recommendation and similarity search algorithms, in order
to perform a detailed performance analysis. The prototype
implementation is entirely written in JavaScript and has
been tested in Firefox 3.6.17 on a common MacBook. The
implementation of the client-side KB is based on Google



700
E 600
o 200
.E 400 Component Co-occurrence

@ Connector

[ par value

g‘: 300 X Multi-component
'S 200
Q
100
ol ) o O 0

10 100 1000

Number of multi-component patterns in KB

Total

Figure 4: Recommendation types and times in re-
sponse to a new component added to the canvas

Gears (http://gears.google.com), which internally uses
SQL Lite (http://www.sqlite.org) for storing data on the
client’s hard drive. We artificially generated several thou-
sands of patterns (of which 1000 multi-component patterns)
of different types and sizes and measured the recommenda-
tion retrieval times in function of varying object sizes [10].
Figure 4 illustrates the performance of Algorithm 5 in re-
sponse to the user placing a new component into the canvas,
a typical modeling situation. Based on the object-action-
recommendation mapping, the algorithm retrieves parame-
ter value, connector, component co-occurrence, and multi-
component patterns. As expected, the response times of the
simple queries can be neglected compared to the one of the
similarity search for multi-component patterns, which basi-
cally dominates the whole recommendation performance.

6. WEAVING PATTERNS

Weaving a given pattern c¢p into a partial mashup model
pm is not straightforward and requires a thorough analysis
of both pm and cp, in order to understand how to connect
the pattern to the constructs already in pm. In essence,
weaving a pattern means emulating developer interactions
inside the modeling canvas, so as to connect a pattern to
the partial mashup. The problem is not as simple as just
copying and pasting the pattern, in that new identifiers of
all constructs of c¢p need to be generated, connectors must
be rewritten based on the new identifiers, and connections
with existing constructs may be required.

We approach the problem of pattern weaving by first defin-
ing a basic weaving strategy that is independent of pm and
then deriving a contexrtual weaving strategy that instead takes
into account the structure of pm.

6.1 Basic Weaving Strategy

Given the object and the pattern cp of a recommenda-
tion, the basic weaving strategy BS provides the sequence
of mashup operations that are necessary to weave cp into
object. The basic weaving strategy does not use pm; it tells
how to expand object into cp (object being a part of cp).
This basic strategy is static for each pattern type.

In Table 2 we define a set of mashup operations that
resemble the operations a developer can typically perform
manually in the modeling canvas. Mashup operations mod-
ify the partial mashup pm and produce an updated ver-
sion pm/. All operations assume that the pm is globally
accessible. The internal logic of these operations are highly
platform-specific, in that they need to operate inside the tar-
get modeling environment; in our case, our implementation
manipulates the internal JSON representation of Pipes.

For instance, the basic weaving strategy for a component

Table 2: Pipes-like basic mashup operations

addComponent(ctype) — cid’: produces a pm’ with a new com-
ponent of type ctype added to pm; the operation returns cid’, i.e.,
the identifier of the newly created component.

deleteComponent(cid): produces pm’ with the component iden-
tified by cid and all references to it or elements thereof (e.g., con-
nectors with other components, data mappings, parameter values)
deleted from pm.

assignValues(cid, V A): produces pm’ with the value assignments
V A added to the component with identifier cid.

deleteAllValues(cid): produces pm’ with all input parameters of
the component identified by cid emptied.

deleteValue(cid, in): produces pm’ with the input parameter in
for the component identified by cid emptied.

addConnector(df;y): produces pm’ with the output port op,
of the component with identifier cid, connected to the input
port in, of the component identified by cid, (remember dfy,, =
(cidg, Opg, Cidy, iDy)).

deleteConnector(df,y): produces pm’ with data flow dfs, and
the possible data mapping defined in the target component deleted
from pm.

assignDataMappings(cid, DM): produces pm’ with the data
mapping DM added to the component identified by cid.

deleteAllDataMappings(cid): produces pm’ with all data map-
pings deleted from the component identified by cid.

deleteDataMapping(cid, in): produces pm’ with the data map-
ping for the input parameter in deleted from the component iden-
tified by cid.

embedComponent (hostid, embid): produces pm’ with the com-
ponent with identifier embid embedded in the component with iden-
tifier hostid.

co-occurrence pattern of type ptype®°™? is as follows (we
assume object = comp with comp.type = c;.type, c; being
one of the components of the pattern):

newcid®=addComponent(c,.type);
addConnector ((comp.id, c,.op, newcid, ¢y .ip));
assignDataMapping(newcid, c¢y. DM);
assignValues(comp.id, c,.V A);
assignValues(newcid, ¢,.V A);

That is, given a component, we create the other compo-
nent of the pattern and apply the respective data mappings
and value assignments. Note that, the basic strategy is not
directly applied to pm; it represents an array of basic mod-
eling operations to be further processed.

In http://goo.gl/Xk7VF we provide the basic strategies
for all the patterns introduced in Section 3.1 in the form of
a function getBasicStrategy(cp, object) — BS.

6.2 Contextual Weaving Strategy

Given an object object, a pattern cp, and a partial mashup
pm, the contextual weaving strategy W S is the sequence
of mashup operations that are necessary to weave cp into pm.
The contextual strategy takes into account the structure of
the partial mashup (the context). The contextual strategy
is derived by applying a basic strategy to a partial mashup.
Therefore, WS is dynamically built at runtime.

Applying the mashop operations in the basic strategy may

5We highlight in bold variables that cannot be resolved im-
mediately inside the basic strategy and that, hence, are kept
as is for later resolution (at the time the individual mashup
operations will be executed)



Algorithm 6: getWeavingStrategy

Data: partial mashup model pm, composition pattern cp,
object object that triggered the recommendation
Result: weaving strategy WS, i.e., a sequence of abstract
mashup operations; updated mashup model pm’

WS = array();

BS = getBasicStrategy(cp, object);

foreach instr € BS do
CtxInstr = resolveConflict(pm, instr);
pm = apply(pm, CtxInstr);
append(W S, CtxInstr);

return (WS, pm);

Qb WN

<

require the resolution of possible conflicts among the con-
structs of pm and those of ¢p. For instance, if we want to
add a new component of type ctype to pm but pm already
contains an instance of type ctype, say comp, we are in the
presence of a conflict: either we decide that we reuse comp,
which is already there, or we decide to create a new instance
of ctype. In the former case, we say we apply a soft conflict
resolution policy, in the latter case a hard policy:

Soft: substitute(“$varS=addComponent(ctype)”) with
“$var=comp.id’

Hard: substitute(“$var=addComponent(ctype)”) with
“$var=addComponent(ctype)”

In http://goo.gl/9jJtK we provide the complete soft
and hard conflict resolution policies. The policies come
in the form of a function resolveConflict(pm,instr) —
CtxlInstr, where instr is the mashup operation to be ap-
plied to pm and CtxzInstr is the set of instructions that re-
place instr. Only in the case of a conflict instr is replaced;
otherwise the function returns instr again.

In Algorithm 6 we describe how we derive the contextual
weaving strategy. The algorithm produces both the list of
contextual weaving instructions and the final mashup model
pm/. The former can be used to interactively weave cp into
pm, the latter to convert pm’ into native formats.

6.3 Implementation and Evaluation

As highlighted in Figure 2, we are still working on the
implementation of an own mashup editor; we have there-
fore implemented the above pattern weaving functionality
by tapping into Yahoo! Pipes, extracting partial mashup
models, weaving patterns, and feeding back the updated
models. The implementation runs on the same test system
described in Section 5.3 and is entirely based on JavaScript.
Both weaving strategies are encoded as JSON arrays, which
enables us to use the native eval() command for fast and
easy parsing of the weaving logic. The respective mashup
operations manipulate the native JSON format of Pipes.

To test our algorithms, we have manually developed a
set of partial mashup definitions in Pipes. In order to ac-
cess them, as well as to get the structure of the object,
we have fetched their internal JSON representations from
Pipes using Yahoo!’s YQL (http://developer.yahoo.com/
yal/console/) service. The service provides access to pipes
models via queries like "select PIPE.working from json
where url=http://pipes.yahoo.com/pipes/pipe.info?_
out=json&_id=91bcac4061c6d893b15b4b5864bf37bd", the fi-

5We use the notation $var to denote placeholders for vari-
ables, in order to keep the policy independent of variable
names, such as newcid in the above basic weaving strategy.

nal number being the id of the partial mashup composition.
In order to feed pipe models back after the weaving pro-
cess, we simply reload the model in the Pipes editor, how-
ever redirecting the respective HTTP request to our own
server by suitably setting the hosts file of our test machine.
This causes Pipes to fetch the updated model from our web
server, not from Yahoo!’s own server.

The two key Pipes-specific issues to be solved in the imple-
mentation are the management of identifiers and the layout.
Pipes assigns system-generated ids to model constructs in a
composition; in the same spirit, we have developed a unique
id generator able to produce compatible ids (e.g., sw-xxx for
components and _wx for wires). Each component has coordi-
nates to place it correctly inside the mashup canvas. As for
now, we generate random coordinates based on the average
height and width of the different component types and on
the average distance between them. In the future, we plan
to implement a more sophisticated layout logic.

7. RELATED WORK

Traditionally, recommender systems focus on the re-
trieval of information of likely interest to a given user, e.g.,
newspaper articles or books. The likelihood of interest is
typically computed based on a user profile containing the
user’s areas of interest, and retrieved results may be further
refined with collaborative filtering techniques. In our work,
as for now we focus less on the user and more on the partial
mashup under development (we will take user preferences
into account in a later stage), that is, recommendations must
match the partial mashup model and the object the user is
focusing on, not his interests. The approach is related to the
one followed by research on automatic service selection, e.g.,
in the context of QoS- or reputation-aware service selection,
or adaptive or self-healing service compositions. Yet, while
these techniques typically approach the problem of selecting
a concrete service for an abstract activity at runtime, we
aim at interactively assisting developers at design time with
domain knowledge in the form of modeling patterns.

In the context of web mashups, Carlson et al. [2], for
instance, react to a user’s selection of a component with
a recommendation for the next component to be used; the
approach is based on semantic annotations of component
descriptors and makes use of WordNet for disambiguation.
Greenshpan et al. [6] propose an auto-completion approach
that recommends components and connectors (so-called glue
patterns) in response to the user providing a set of de-
sired components; the approach computes top-k recommen-
dations out of a graph-structured knowledge base containing
components and glue patterns (the nodes) and their relation-
ships (the arcs). While in this approach the actual struc-
ture (the graph) of the knowledge base is hidden to the user,
Chen et al. [3] allow the user to mashup components by nav-
igating a graph of components and connectors; the graph is
generated in response to the user’s query in form of descrip-
tive keywords. Riabov et al. [9] also follow a keyword-based
approach to express user goals, which they use to feed an
automated planner that derives candidate mashups; accord-
ing to the authors, obtaining a plan may require several sec-
onds. Elmeleegy et al. [5] propose MashupAdvisor, a system
that, starting from a component placed by the user, recom-
mends a set of related components (based on conditional
co-occurrence probabilities and semantic matching); upon
selection of a component, MashupAdvisor uses automatic



planning to derive how to connect the selected component
with the partial mashup, a process that may also take more
than one minute. Beauche and Poizat [1] use automatic
planning in service composition. The planner generates a
candidate composition starting from a user task and a set
of user-specified services.

The business process management (BPM) community
more strongly focuses on patterns as a means of knowledge
reuse. For instance, Smirnov et al. [11] provide so-called co-
occurrence action patterns in response to action/task spec-
ifications by the user; recommendations are provided based
on label similarity, and also come with the necessary con-
trol flow logic to connect the suggested action. Hornung
et al. [8] provide users with a keyword search facility that
allows them to retrieve process models whose labels are re-
lated to the provided keywords; the algorithm applies the
traditional TF-IDF technique from information retrieval to
process models, turning the repository of process models
into a keyword vector space. Gschwind et al. [7] allow users
to use the control flow patterns introduced by Van der Aalst
et al. [13], just like other modeling elements. The system
does not provide interactive recommendations and rather
focuses on the correct insertion of patterns.

In summary, mashups and service composition either fo-
cus on single components or connectors, or they aim to au-
tomatically plan complete compositions starting from user
goals. The BPM approaches do focus on patterns, but most
of the times pattern similarity is based on label/text similar-
ity, not on structural compatibility. We assume components
have stable names and, therefore, we do not need to inter-
pret text labels in order to mine meaningful patterns.

8. CONCLUSIONS

With this paper, we aim to pave the road for assisted
development in web-based composition environments. We
represent reusable knowledge as patterns, explain how to
automatically discover patterns from existing mashup mod-
els, describe how to recommend patterns fast, and how to
weave them into partial mashup models. We therefore pro-
vide the basic technology for assisted development, demon-
strating that the solutions proposed indeed work in practice.

As for the discovery of patterns, it is important to note
that even patterns with very low support carry valuable in-
formation. Of course, they do not represent generally valid
solutions or complex best practices in a given domain, but
still they show how its constructs have been used in the past.
This property is a positive side-effect of the sensible, a-priori
design of the pattern structures we are looking for. Without
that, discovered patterns would require much higher sup-
port values, so as to provide evidence that also their pattern
structure is meaningful. Our analysis of the patterns discov-
ered by our algorithms shows that, in order to get the best
out them, domain knowledge inside the mashup models is
crucial. Domain-specific mashups, in which composition el-
ements and constructs have specific domain semantics, are a
thread of research we are already following. As a next step,
we will also extend the canonical model toward more generic
mashup languages, e.g., also featuring UI synchronization.

The results of our tests of the pattern recommendation ap-
proach even outperform our own expectations, also for large
numbers of patterns. In practice, however, the number of
really meaningful patterns in a given modeling domain will
only unlikely grow beyond several dozens or 100. The de-

scribed recommending approach will therefore work well also
in the context of other browser-based modeling tools, e.g.,
business process or service composition instruments (which
are also model-based and of similar complexity), while very
likely it will perform even better in desktop-based modeling
tools like the various Eclipse-based visual editors. Recom-
mendation retrieval times of fractions of seconds and neg-
ligible pattern weaving times will definitely allow us — and
others — to develop more sophisticated, assisted composi-
tion environments. This is, of course, our goal for the future
— next to going back to the users of our initial study and
testing the effectiveness of assisted development in practice.
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