
ICWE 2015 Rapid Mashup Challenge:
Introduction

Florian Daniel1 and Cesare Pautasso2

1 University of Trento, Via Sommarive 9, 38123 Povo (TN), Italy
daniel@disi.unitn.it

2 Faculty of Informatics, University of Lugano (USI), Switzerland
{name.surname}@usi.ch

Abstract. The ICWE 2015 Rapid Mashup Challenge is the first in-
stallment of a series of challenges that aim to engage researchers and
practitioners in a competition for the best mashup approach. This paper
introduces the reader to the general context of the Challenge, its objec-
tives and motivation. It summarizes its structure into phases and the
requirements contributions were asked to satisfy, so as to be eligible for
participation. A brief summary of the contributions that were selected
for presentation provides an overview of the content of the remainder of
this volume.

Keywords: Mashups, Mashup tools, Challenge, Benchmarking

1 Context and Objective

By now, it’s more or less a decade that the scientific community and industry
use the term “mashup” in the context of Web engineering to refer to a type of
Web application that heavily relies on the reuse of third-party constituent ele-
ments in their development. In fact, we usually define a mashup as “a composite
application developed starting from reusable data, application logic and/or user
interfaces typically, but not mandatorily, sourced from the Web” [1]. Mashups
have been associated with their situational nature and the serendipitous reuse of
components not necessarily originally intended for the purpose of the mashup.
That is, the term mashup refers more to the way applications are developed and
less to a specific type of application as perceived by its users – in the end we are
always talking about a Web application.

The ICWE 2015 Rapid Mashup Challenge (the Challenge, http://mashup.
inf.usi.ch/challenge/2015) acknowledges this peculiarity of mashups
and puts its focus on the techniques, approaches, libraries, and tools that re-
searchers and practitioners have come up with so far to aid the development
of mashups. This perspective is different from the perspectives of similar chal-
lenges known from other contexts or communities. For instance, the Semantic
Web Challenge (http://challenge.semanticweb.org/) focuses on the
application of Semantic Web [2] technologies in the development of software
with commercial potential, large user bases, or functionality that is useful and

http://mashup.inf.usi.ch/challenge/2015
http://mashup.inf.usi.ch/challenge/2015
http://challenge.semanticweb.org/


of societal value. The AI Mashup Challenge (http://aimashup.org/), in-
stead, more specifically focuses on mashups that use AI (Artificial Intelligence)
technology (e.g., machine learning and data mining, machine vision, natural
language processing, reasoning, ontologies) and intelligence to mashup existing
resources. The ICWE 2015 Rapid Mashup Challenge does not limit its focus to
any specific technology and rather aims to compare how mashups are developed,
independently of how their internals look like.

The maturity and sophistication of mashup tools/approaches has been grow-
ing over the past decade. Many research projects and industry tools have been
dedicated to design and develop tools for the composition of Web services, Web
data sources and Web widgets. Given their diversity, comparing and evaluating
mashup approaches has been very challenging. Doing so from a practice-oriented
point of view is the goal of the Challenge, of course, while still keeping also an eye
on the quality and usefulness of the mashups developed during the Challenge.
The only constraints we introduced concerned the required use of a set of repre-
sentative Web APIs and the strict time limit of 10 minutes for the construction
of the mashup itself.

In the following, we describe all the pre-challenge aspects, such as the Call
for Participation, the requirements candidate approaches had to satisfy, the or-
ganization of the Challenge itself, as well as the set of selected competitors. The
following articles in this volume describe each of the contributions individually
and report on the mashups developed live during the Challenge using these tools.
The last article in this volume then provides insight into the voting procedure
and tool and the outcomes of the Challenge, including the winner.

2 Participation Requirements and Organization

2.1 Call for Participation and Requirements

In line with the above goals of the Challenge, this year’s call for participation
started as follows:

The ICWE 2015 Rapid Mashup Challenge launches a competition
between mashup approaches/tools with special attention to their expres-
siveness and speed. We invite developers and researchers working on
mashups, mashup tools and assisting technologies to compete in the cre-
ation of the most interesting and/or complex mashup they can develop
within a given time boundary, using a given set of source components.
The goal of the Challenge is to allow everybody working on mashups and
composite Web applications to showcase their ideas and solutions and to
establish an event that is both challenging and fun.

We are interested in all kinds of mashup composition tools and ap-
proaches: from programming languages, domain-specific languages to nat-
ural language, from visual modeling tools to textual ones, etc. Submis-
sions will be screened based on relevance, originality and maturity. Ad-
mitted contributions will be evaluated as follows: Points will be given by

http://aimashup.org/


a jury for the complexity of the resulting mashup, the elegance of its con-
struction and the features of the mashup tool/approach that have been
used to build it. The public will also be able to give feedback and partici-
pate in the challenge evaluation process.

The call highlights the three key aspects of the evaluation:

– Complexity of mashup: The key criterion of any development environment
is of course the quality of the output it is able to generate. In the case of
mashup tools/approaches, this output are the mashups. During the Chal-
lenge, participants were therefore asked to showcase live the development of
a mashup using their own tool/approach, whose complexity and quality as
application was assessed.

– Elegance of construction: Talking about aiding the development of software,
it is important to look at how this aid is implemented. The elegance of con-
struction, in this respect, refers to how easy the proposed mashup tool/ap-
proach is perceived, how efficient the jury and audience think the tool is
compared to the state of the art, and which benefits it provides to its users.

– Features of mashup approach: Finally, since a single mashup may not be able
to showcase all the features of a proposed tool/approach, it is also good to
have a look at which exact development features it provides. For instance,
a tool that is oriented toward professional programmers is fundamentally
different from one that instead targets end-users.

As for the kind of mashup tool/approach that was considered eligible to par-
ticipate, the Challenge was very open, and all kinds of mashup composition tools
and approaches were allowed: from programming languages, domain-specific lan-
guages to natural language and visual modeling tools. The limitation was only
the imagination and creativity of the participants. The complexity of mashups
and the features of the mashup tool/approach were self-declared by the authors
using a dedicated feature checklist (see Section 3) and assessed by the jury and
the audience during the Challenge.

2.2 Structure of Challenge

The Challenge was organized into four phases:

1. Admission: Submission of application. The application should include a brief
description of the proposed tool/approach and a filled feature checklist.

2. Preparation: If a proposal was accepted to the challenge, the authors received
a list of Web APIs that are allowed to be used to compose the demo mashup
during the competition. This preparation phase gave the authors about one
month to prepare for the event.

3. Competition: During the ICWE conference, participants had to give a live
demonstration of how you build their own mashup within at most 10 minutes
of time, preceded by a 10-15 minutes presentation of their approach and
preparation for the Challenge. The time limits made the challenge more
challenging.



4. Post-challenge: Preparation of post-challenge paper explaining the proposed
solution and giving technical details about the approach and how it was used
to rapidly build the mashup.

The goal of this structure was to have authors focus more on the practical
aspects before the Challenge (the preparation of their demonstration), while
asking them to concentrate on the conceptual and scientific aspects afterwards
(with the writing of the paper to be included in the proceedings). Submitted
applications for participation were evaluated by the organizers of the Challenge
based on the relevance and maturity of the proposed approach.

3 Feature Checklist

In order to facilitate the comparison of approaches, authors were required to
accompany their submission with a filled feature checklist that describes the two
key parts of the evaluation, i.e., the nature of the mashups that their tool/ap-
proach allows one to develop and the development features of the proposed tool.
Figure 1 graphically summarizes the features identified as relevant for the Chal-
lenge, while the following subsections describe the features in more detail.

3.1 Mashup Features

In order to be able to compare the mashups produced by the different approaches
during the Challenge, the mashup features proposed by Daniel and Matera [1]
were taken as reference:

– Mashup type: The mashup type expresses the positioning of the mashup
at one or more of the three layers of the typical application stack (data,
logic, presentation), depending on where the mashup’s integration logic is
positioned. Data mashups operate at the data layer, integrate data sources,
and are typically published again as data sources (e.g., RSS feeds or RESTful
Web services). Logic mashups integrate components at the application logic
layer, reuse data and application logic (e.g., Web services), and are typically
published as Web services. User Interface (UI) mashups are located at the
presentation layer, integrate UI components/widgets, and are published as
Web applications that users can interact with via the Web browser. Finally,
hybrid mashups span multiple layers of the application stack.

– Component types: The types of mashups introduced above strongly relate
to the types of the components they integrate. Data components comprise
RSS and Atom feeds, XML JSON, CSV and similar data resources, web data
extractions, micro-formats, but also SOAP or RESTful web services that are
used as data services only. Logic components comprise SOAP and RESTful
web services, JavaScript APIs and libraries, device APIs, and API extrac-
tions. UI components comprise code snippets and JavaScript UI libraries,
Java portlets, widgets and gadgets, web clips and extracted UI components.



Mashup 
tool

Targeted 
end-user

Automation 
degree

Interaction 
technique

Level 1 (mockup)

Local developers 

Expert programmers

Progr. by demonstration
Spreadsheets

Form-based

Level 2 (manual deployment)

Editable example

Level 3 (autom. deployment)
Level 3 (live deployment)

Non-programmers

Liveness level

Online user 
community Public

None
Private

Full automation

Manual
Semi-automation

Visual lang. (wiring, implicit CF)
Visual lang. (wiring, explicit CF)

Visual lang. (iconic)
Textual DSL

Natural language
WYSIWYG

Mashup

Mashup type

Component 
types

Integration 
logic

Client-side only

Logic mashups

Choreography
Orchestration

Server-side only

UI-based integration

Client-server

Data mashups

Runtime 
location

Instantiation 
lifecycle Long-living

Stateless
Short-living

Data components

UI components
Logic components

UI mashups
Hybrid mashups

Fig. 1: The feature checklist used to compare and position mashup approaches.

– Runtime location: There are generally a variety of possible architectural
configurations that may be adopted for the development of mashups, compat-
ibly with the requirements of the chosen components. Client-side mashups
are executed in the client browser. Server-side mashups are executed in the
server. Client-server mashups are distributed over client and server, and
both parts interact the one with the other at runtime.

– Integration logic: The integration logic tells how integration happens, that
is, how components are used to form a composite application and how they



are enabled to communicate with each other (if at all). UI-based integration
applies exclusively to UI components and uses the graphical layout of the
mashup’s user interface to render UI components in parallel next to each
other inside one or more web pages. Orchestrated integration applies to all
kinds of components and consists in a centralized composition logic. Chore-
ographed integration is for all those types of components that are able to
comply with a given convention (oftentimes also called a contract or proto-
col), so as to manage integration without a central coordinator.

– Instantiation lifecycle: The last aspect of mashups considered is how long
an instantiated mashup is running. Stateless mashups do not require keeping
any internal state for their execution and end after processing. Short-living
mashups are mashups that last the time of a user session, i.e., as long as a
user is interacting with the mashup in the client browser, and terminate with
the closing of the client browser. Long-living mashups may last longer than
a user session, that is, they survive even after the user closes the browser
with the rendered mashup or after the first invocation of the mashup.

These five features allow one to easily classify mashups and to assess their
internal complexity. Of course, this is not an exhaustive list of characteristics
and many other distinguishing features could be examined [1]. Yet, for the sake
of assessing the suitability and interestingness of approaches in this first version
of the Challenge we considered these five features as enough.

3.2 Mashup Tool Features

The comparison of the features of the mashup tools/approaches was instead
based on the work by Aghaee et al. [3].

– Targeted end-user: Determining which group of users is targeted by a
mashup tool/approach is a strategic design issue decided on by the develop-
ers. Non-programmers do not have programming skills. Yet, they may be in-
terested in creating mashups as long as it does not require them to learn and
use a programming language. Local developers are those non-programmers
who usually have advanced knowledge in computer tools. Expert program-
mers have adequate programming skills and experience to develop mashups
using programming and scripting languages (e.g., JavaScript and PHP).

– Automation degree: The automation degree of a mashup tool refers to how
much of the development process can be undertaken by the tool on behalf
of its users. Full automation of mashup development eliminates the need
for direct involvement of users in the development process. Semi-automatic
tools partially automate mashup development by providing guidance and
assistance. Manual approaches do not provide any automated support during
development; typically, these approaches come in the form of programming
libraries or runtime middlewares.

– Liveness level: Tanimoto proposed the concept of liveness [4], according to
which four levels of liveness can be distinguished. At Level 1 (non-executable



prototype mockup), a tool is just used to create prototype mashups that are
not directly connected to any kind of run-time system. Level 2 (explicit
compilation and deployment steps) of liveness is characterized by mashup
design blueprints that carry sufficient details to give them an executable
semantics. Level 3 (automatic compilation and deployment) tools support
rapid deployment into operation, e.g., triggered by each edit-change or by
an explicit action executed by the developer. Level 4 (dynamic modification
of running mashup) of mashup liveness is obtained by the tools that support
live modification of the mashup code, while it is being executed.

– Interaction technique: There have been a number of interaction tech-
niques through the use of which the barriers of programming can be lifted to
its developers [5]. Editable examples let users modify and change the behav-
ior of existing examples, instead of programming from scratch. In form-based
interaction, users are asked to fill out a form to create a new or change the
behavior of an existing object. Programming by demonstration suggests to
teach a computer by example how to accomplish a particular task. Spread-
sheets are one of the most popular and widely used end-user programming
approaches to store, manipulate, and display complex data. Textual DSLs
are languages targeted to address specific problems in a particular domain;
they have a textual syntax that may or may not resemble an existing general-
purpose programming language. A visual language (iconic), as opposed to a
textual programming language, is any programming language that uses vi-
sual symbols, syntax, and semantics. Some visual languages support wiring
with implicit control flow, where the control flow of the mashup is derived
from its data flow graph. Other visual languages support wiring with ex-
plicit control flow, where the control flow is explicitly defined, for instance,
by adding directed arrows connecting the boxes, or putting the boxes in a
specific order (e.g., from left to right). WYSIWYG (What You See Is What
You Get) enables users to create and modify a mashup on a graphical user
interface that is similar to the one that will appear when the mashup runs.
Natural language allows developers to express their mashup via a restricted,
controlled set of natural language constructs (e.g., a subset of English) that
can be interpreted unequivocally by a runtime environment.

– Online user community: Online communities are an important resource
in assisting developers, especially end-users, to program [6]. If a tool does
not support any online community (none), it is harder to leverage on the
experience of others. In public communities, the content is accessible to any
user on the Web who wishes to join the community (with or without reg-
istration). In private communities, the authority to join the community is
granted on the basis of compliance with some operator-specified criteria.

Like for the mashup features, also in the case of the mashup tools/approaches
many other characteristics could be considered (e.g., collaboration). The features
selected for the Challenge, however, already provide good insight into the phi-
losophy behind each approach, and we preferred to keep the list concise.



4 Participants

The purpose of the above feature checklist with its 10 features is threefold: firstly,
it allows interested participants to understand what kind of contributions the
Challenge is interested in; secondly, it allows the organizers of the Challenge to
pre-screen contributions and select submissions for inclusion in the Challenge
and proceedings; and, thirdly, it allows the participants to better position their
contributions and the jury and audience to better compare the contributions.
The first two steps led to the following list of participants to the ICWE 2015
Rapid Mashup Challenge (we postpone the discussion of the jury/audience as-
sessment to the concluding article of this volume):

– FlexMash: Extended Techniques for Flexible Modeling and Execution of
Data Mashups, by Pascal Hirmer and Bernhard Mitschang. FlexMash is a
visual mashup tool for the development of data mashups that targets non-
programmers. The tools pays particular attention to flexibility and exten-
sibility to enable the integration of heterogeneous data sources as well as
the dynamic (un-)tethering of data sources. The authors participate with a
prototypical implementation of their tool.

– UI-Oriented Computing: Interactive, Live Mashup Development through
UI-Oriented Computing, by Anis Nouri and Florian Daniel. UI-oriented com-
puting is less an individual mashup tool and more a novel idea of program-
ming paradigm that looks at the Surface Web as at a programming environ-
ment and aims to support interactive and live mashup development inside
the Web browser, without requiring users to program any line of code. The
authors participate in the Challenge with a prototype implementation of a
Web browser extensions that extends the browser with UI-oriented comput-
ing capabilities.

– SmartComposition: Extending Web Applications to Multi-Screen Mash-
ups, by Michael Krug, Fabian Wiedemann and Martin Gaedke. SmartCom-
position takes mashups to a different level by proposing an environment
based on Web components that supports the development of multi-screen
mashups, that is, mashups that are naturally distributed over multiple de-
vices. Web sockets allow the environment to synchronize components across
screens. The authors participate with a prototype environment with support
for dynamic runtime modifications.

– EFESTO: A platform for the End-User Development of Interactive Work-
spaces for Data Exploration, by Giuseppe Desolda, Carmelo Ardito and
Maristella Matera. EFESTO is a platform for the creation of interactive
workspaces supporting end-users in the exploration and seamless composi-
tion of heterogeneous data sources. Internally, it makes use of Linked Open
Data, so as to provide its users with advanced data integration features al-
most for free. The authors showcase their current implementation of develop-
ment environment in the form of a workspace for integrating UI components
and data sources.



– WebMakeup: Empowering Users to Mod Websites, by Oscar Diaz, Iñigo
Aldalur, Cristobal Arellano, Haritz Medina and Sergio Firmenich. Also Web-
Makeup proposes an original perspective on the problem of mashup develop-
ment: instead of proposing an own, new development environment, it lever-
ages on the Web browser and the applications running therein as natural
environment for the modding (client-side extension) of existing applications
(e.g., by adding widgets that fetch data from other applications). The au-
thors participate with their publicly available Chrome extension.

– WLS: Mashup Development with Web Liquid Streams, by Masiar Babazadeh,
Andrea Gallidabino and Cesare Pautasso. Finally, Web Liquid Streams (WLS)
delves into one peculiar aspects of modern mashups, i.e., streaming data. The
approach enables the development of mashups with streaming operators that
support the live, runtime integration of data streams. The authors showcase
the use of their dynamic streaming framework that takes advantage of stan-
dard Web protocols and targets expert programmers.

Table 1 summarizes the characteristics of the selected approaches as declared
by the authors. Compared to the emergence of mashups, the approaches repre-
sent well the recent focus of the mashup community on the user interface side of
mashups. In fact, UI mashups are widely considered most suitable for end-users
without programming skills, and end-users have been in the mind of mashup
tool developers from the very beginning on. Thanks to the availability of stable
JavaScript communication technologies, such as AJAX, it is also evident, that
more and more approaches enable the development of full-fledged, client-server
mashups whose resource consumption can strategically be distributed over client
(e.g., for UI synchronization) and server (e.g., for data integration). Interestingly,
most of the proposed approaches feature mashups with a short-lived lifecycle,
that is, mashups that run inside the Web browser as long as the browser is open.

On the development support side, a preference for dynamic, live development
approaches (level 4) is evident – again, in line with the latest trends in end-user
development. The paradigms proposed to approach development (the interac-
tion techniques) are, instead, very heterogeneous and led to a very varied and
diversified live demo session during the Challenge. The degree of automation is
mostly that of semi-automation, while only one tool (WebMakeup) already has
an own online user community. This last result is strictly related with the early
stage of development (prototypes) of most of the proposed approaches.

We believe the selected mashup approaches represent a vivid and cutting-
edge picture of the state of the art in research on mashups development and are
confident the reader will enjoy discovering how each tool was able to compete in
the challenge, as described in the next chapters.

References

1. Daniel, F., Matera, M.: Mashups: Concepts, Models and Architectures. Springer
(2014)



Table 1: Overview of the mashup and mashup tool features declared by the
approaches that participated in the ICWE 2015 Rapid Mashup Challenge.

F
le
x
M

a
sh

U
I-
O
ri
e
n
te
d

C
o
m
p
u
ti
n
g

S
m
a
rt
-

C
o
m
p
o
si
ti
o
n

E
F
E
S
T
O

W
e
b
M

a
k
e
u
p

W
L
S

M
a
s
h
u
p

Mashup

type

Data mashups 3

Logic mashups 3

UI mashups 3 3

Hybrid mashups 3 3 3

Component

types

Data components 3 3 3

Logic components 3 3 3

UI components 3 3 3 3

Runtime

location

Client-side only 3 3 3

Server-side only

Client-server 3 3 3 3

Integration

logic

UI-based integr. 3 3 3

Orchestration 3 3

Choreography 3 3

Instantiation

lifecycle

Stateless 3

Short-living 3 3 3 3 3

Long-living 3

M
a
s
h
u
p

t
o
o
l

Target

end-user

Local developers 3

Non-programmers 3 3 3 3

Expert programmers 3 3

Automation

degree

Full automation

Semi-automation 3 3 3 3 3

Manual 3 3

Liveness

level

Level 1 (mockup)

Level 2 (manual)

Level 3 (automatic) 3 3

Level 4 (dynamic) 3 3 3 3

Interaction

technique

Editable examples 3

Form-based

Progr. by demonstration 3

Spreadsheets

Textual DSL 3 3

Visual (iconic) 3

Visual (wiring, implicit) 3

Visual (wiring, explicit)

WYSIWYG 3 3

Natural language

Online user

community

None 3 3 3 3 3

Private 3

Public



2. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American
(May 2001) 34–43

3. Aghaee, S., Nowak, M., Pautasso, C.: Reusable decision space for mashup tool
design. In Barbosa, S.D.J., Campos, J.C., Kazman, R., Palanque, P.A., Harrison,
M.D., Reeves, S., eds.: EICS, ACM (2012) 211–220

4. Tanimoto, S.L.: Viva: A visual language for image processing. Journal of Visual
Languages & Computing 1(2) (1990) 127–139

5. Myers, B.A., Ko, A.J., Burnett, M.M.: Invited research overview: end-user pro-
gramming. In: CHI’06 extended abstracts on Human factors in computing systems,
ACM (2006) 75–80

6. Nardi, B.A.: A small matter of programming: perspectives on end user computing.
MIT press (1993)


