
PAPAGENO: a parallel parser generator
for operator precedence grammars

Alessandro Barenghi, Ermes Viviani, Stefano Crespi Reghizzi
Dino Mandrioli, and Matteo Pradella

Dipartimento di Elettronica e Informazione - Politecnico di Milano
{barenghi, viviani, crespi, mandrioli, pradella}@elet.polimi.it

Abstract. In almost all language processing applications, languages are parsed
employing classical algorithms (such as the LR(1) parsers generated by Bison),
which are sequential due to their left-to-right state-dependent nature. Although
early theoretical studies on parallel parsing algorithms delineated potential speed-
ups on abstract parallel machines using a data-parallel approach, practical devel-
opments have not materialized, except in recent experiments on ad hoc parsers
for large XML files. We describe a general-purpose practical generator (PA-
PAGENO) able to produce efficient deterministic parallel parsers, which exhibit
significant speedups when parsing large texts on modern multi-core machines,
while not penalizing sequential operation. The generated parser relies on the
properties of Floyd’s operator precedence grammars, to provide a naturally paral-
lel implementation of the parsing process. Parsing of each text portion proceeds in
parallel and independently, without communication and synchronization, until all
partial parse stacks are recombined into the final result. Since Floyd’s grammars
can express most syntaxes with little adaptation, we have performed extensive ex-
periments, on both synthetically generated texts and real JSON documents. The
effective parallel code portion in the generated parsers exceeds 80% for most of
the tested scenarios.

Keywords: Parser generation, Parallel Parsing, Floyd Operator Precedence Grammars

1 Introduction
Language parsing, also known as syntactic analysis, occurs in many situations: com-
pilation, natural language processing, document browsing, genome sequencing, pro-
gram analysis targeted at detecting malicious behaviours, and others. Although syntac-
tic analysis is less computationally demanding than semantic analysis, it is frequently
applied to very large data sets in contexts where speedups and related energy saving
are often important. The common linear-time left-to-right LR(1) and LL(1) algorithms
used for deterministic context-free (or BNF) languages are an important milestone of
algorithmic research. Since, due to their ability to recognise a wider class of formal
languages, they superseded earlier algorithms, such as the ones employing Floyd’s
operator-precedence grammars (FG), which rely on only local information to decide
parsing steps (for an introduction see e.g. [1]). The LR and LL algorithms are amenable
to efficient implementations on serial computing machines, such as the ones provided in
popular parser generators (such as Bison), but their structure hinders efficent paralleliza-
tion: early attempts at it have not been successful, and appear to be almost abandoned.

2 Authors Suppressed Due to Excessive Length

In this work we describe a general-purpose optimized parallel FG-based parser gener-
ator. As mentioned, FGs have already been used successfully to define programming
languages; they have a very fast sequential parser, which is still used by modern compi-
lation platforms (gcc for instance) to parse expressions with multiple operator prece-
dences. Recently, research on formal methods has renewed the interest for FGs, thanks
to their nice closure and decidability properties [2]. In particular, the relevant feature
distinguishing FG languages from LR and LL ones is the closure under the substring ex-
traction; this property enables independent parallel parsing of substrings. Starting from
a straightforward sequential parser, we have implemented a parser generator producing
two versions of an associative reduction scheme, and measured consistent speedups on
both synthetic benchmarks and large real JSON files. Measurements indicate good scal-
ability on different multi-core architectures, leading to significant reductions of parsing
time with respect to state-of-the-art sequential parsers.

Related research The straightforward idea of splitting a long text into chunks, to be
parsed in parallel and subsequently recombined by further parsing actions, has moti-
vated several studies in the period 1965-1990. Early theoretical studies on data-parallel
algorithms such as the ones reported in [3, 4] determined the computational complexity
that can be obtained in principle on certain abstract parallel machines by using a data-
parallel approach.
Parallel parsing requires an algorithm that, unlike a classical parser, is able to process
substrings which are not syntactically legal, although they occur in legal strings. A sub-
string parser operates on a substring without any knowledge of the outcome of parsing
left and right neighbouring substrings. Incidentally, substring parsing algorithms have
been also studied for different purposes, such as processing damaged or faulty texts.
Notable examples of substring parsing research have considered shift-reduce LR(1)
parsers, through dropping the condition that the text to the left of the chunk under exam
should have been parsed already. The first, and simpler approach due to Mickunas and
Schell [5], modifies an LR(1) parser in order to start in several possible states and to
scan the chunk as far as deterministically possible. However, a significant amount of
the computation is typically left to the chunk recombination phase as this may imply a
propagation of the changes on all the chunks preceding the one being recombined. In
other approaches, such as [6] and [7], each chunk parser carries on all possible alter-
native parses and subsequently, it recombines the parsed chunks: assuming the original
grammar to be LR(1), this chunk parsing can be done in linear time although with con-
stants greater than the ones for shift-reduce parsing.
The few people who have performed some limited experimentation on such algorithms,
have generally found that performances critically depend on the cut points between
chunks: if a chunk starts, say, with begin, the parser can recognize almost completely
a full language block. On the contrary, starting a chunk on an identifier opens too many
syntactic alternatives. As a consequence such parsers have been typically combined
with language-dependent heuristics for splitting the source text into chunks that start on
keywords announcing a splitting friendly construct.
After a long intermission, research work in the field of parallel parsing has recently
resumed with more practical goals, such as to parse XML documents on multicore ma-
chines, both servers and clients. Some published works, e.g., [8] and [9], rely explicitly
on the assumption that the parsed language is either XML or a subset of it, in order

PAPAGENO: a parallel parser generator for operator precedence grammars 3

to devise ad-hoc strategies to extract parallelism from the parsing process. In other
words, such projects no longer qualify as general-purpose parsers. Although special-
ized parsers, say, for XML, may be of interest to particular communities, our project is
the first to develop a general-purpose language-independent parallel parser generator,
and validate it with experiments on real-world benchmarks on modern architectures. In
addition to this, we provide guidelines for the implementation and optimization of the
algorithm, such as the design of a unified data structure for the abstract syntax tree and
parser stack representation, which has proved instrumental for obtaining the high code
fraction executed in parallel, reported in the experimental results.

The paper is organized as follows: Section 2 provides the background and the def-
initions regarding FGs, Section 3 proposes our parallel parsing algorithm, Section 4
delineates the implementation strategies employed and reports the results of the exper-
imental validation campaign. Finally, Section 5 draws our conclusions.

2 Definitions and background on operator precedence grammars
Since Floyd’s operator precedence Grammars (FG) and parsers are a classical tech-
nique for syntax definition and analysis, it suffices to recall the main relevant concepts
from e.g. [1]. Let Σ denote the terminal alphabet of the language. A BNF grammar in
operator form consists of a set of productions P of the form A→ α where A is a non-
terminal symbol and α, called the right-hand side (rhs) of the production, is a nonempty
string made of terminal and nonterminal symbols, such that if nonterminals occur in α,
they are separated by at least one terminal symbol. The set of nonterminals is denoted
by VN . It is well known that any BNF grammar can be recast into operator form. To
qualify as FG, an operator grammar has to satisfy a condition, known as absence of
precedence conflicts. We will now introduce informally the concept of precedence re-
lation, a partial binary relation over the terminal alphabet, which can take one of three
values:

l (yields precedence) m (takes precedence) =̇ (equal in precedence)

For a given FG, the precedence relations are easily computed and represented in the
operator precedence matrix (OPM). A grammar for simple arithmetic expressions and
the corresponding OPM are in Fig. 1. Entries like +l a and am+ indicate that, when
parsing a string containing the pattern . . . + a + . . ., the rhs a of rule F → a has to
be reduced to the nonterminal F . Similarly the pattern . . . + (E) × . . . is reduced by

rule F → (E) to . . . + F × . . . since the relations are . . . + l(
=̇

E) m × There is
no relation between terminals a and (because they never occur as adjacent or separated
by a nonterminal. A grammar is FG if for any two terminals, at most one precedence
relation holds.In sequential parsers it is customary to enclose the input string between
two special characters ⊥, such that ⊥ yields precedence to any other character and any
character takes precedence over ⊥.
Precedence relations precisely determine if a substring matching a rhs should be re-
duced to a nonterminal. This test is very efficient, based on local properties of the
text, and does not need long distance information (unlike the tests performed by LR(1)
parsers). In case the grammar includes two productions such as A → x and B → x
with the same rhs, the reduction of string x leaves the choice between A and B open.

4 Authors Suppressed Due to Excessive Length

Grammar G consists of Σ = {a,+,×, (,)}, VN = {E, T, F}, axiom = E and

P = {E → E + T | T, T → T × F | F, F → (E) | a}

Operator precedence matrix:

M2 =

a + × ()
a m m
+ l l l l m
× l l m l m
(l l l l =̇
) m m m

Fig. 1. Example of FG for arithmetic expressions.

The uncertainty could be propagated until just one choice remains open, but, to avoid
this minor complication, we assume without loss of generality, that the grammar does
not have repeated rhs’s [2].
The mentioned local properties suggest that FG are an attractive choice for data-parallel
parsing, but even for sequential parsing, they are very efficient [1]: “Operator-precedence
parsers are very easy to construct and very efficient to use, operator-precedence is the
method of choice for all parsing problems that are simple enough to allow it”. In prac-
tice, even when the language reference grammar is not a FG, small changes permit to
obtain an equivalent FG, except for languages of utmost syntactic complexity. This is
witnessed by the JSON grammar employed as our benchmark, described in Section 4.

3 PAPAGENO
3.1 Parallel Parsing Algorithm

As the parallel algorithm implemented by our generator stems directly from sequential
FG parser, we first describe the latter, providing the extension to the parallel technique
afterwards. The key idea driving Algorithm 1 is that, wherever a series of =̇ precedence
relations enclosed by a pair of l,m is found between adjacent tokens, the enclosed
symbol string is the handle of a reduction. To find handles, the parser uses the operator
precedence matrix OPM and a (pushdown) stack S to keep track of the tokens to be
reduced when the next m relation is found. As the parsing algorithm needs to recognise a
particular grammar rule (e.g. for building the Abstract Syntax Tree AST representation)
upon reduction, the list of productions P is needed to detect the actual production to be
applied. Provided that the algorithm is adapted to always shift nonterminal symbols, it
is possible to reuse it for all the stages of parallel parsing with no modifications.

In the case of a serial parsing the algorithm takes an empty stack S as a parame-
ter, and the list of input tokens as I , which can be thought as delimited by two special
symbols marking the beginning and the end of the token stream. Algorithm 1 operates
as follows: it obtains the symbol under the cursor and checks its precedence relation
with the terminal symbol occupying the highest place on the parsing stack (lines 3–4).
If the precedence relation is not m or the symbol is not a terminal, the symbol is pushed
on the top of the stack and the cursor is moved forward by one position (lines 5–7). If
the parsing algorithm meets a m precedence relation, it needs to rebuild the rhs of the

PAPAGENO: a parallel parser generator for operator precedence grammars 5

Algorithm 1: Floyd Grammar Parser
Globals: OPM : Precedence matrix of G, P : List of productions of G
Input: I: Input symbol list, S: Parsing stack
Output: S: the parsing stack after the parsing action
begin

while I 6= ∅ do
token← READ CURSOR(I);
prec← OPM(token,TOP TERMINAL(S));
if prec 6= m or IS NONTERMINAL(token) then

PUSH(S , (token, prec));
MOVE CURSOR FORWARD(I);

else
repeat

(token , prec)← POP(S) ;
PUSH(rhs rebuild , token);

until prec= l ;
if ∃ p ∈ P | RHS(p) = rhs rebuild then

SEMANTIC ACTION(LHS(p));
PUSH(S , (LHS(p),⊥));

else
return NIL;

return S
end

corresponding rule to perform the proper reduction action: this is performed through
an auxiliary stack, rhs rebuild, where the algorithm stores the elements from the top of
the stack, until it finds a l precedence relation. Upon finding the l precedence rela-
tion, the algorithm checks if the rebuilt rhs is a valid production of the grammar and
performs the reduction action if this is the case. If the rebuilt rhs is not a valid pro-
duction the algorithm terminates abnormally signalling that the input string is not valid
through returning NIL. If the serial parsing procedure terminates correctly, Algorithm 1
is expected to return a parsing stack containing only the axiom of G.

Exploiting the fact that the parser makes the decision whether to shift or to reduce
only on the basis of the precedence matrix OPM , the current token, and the top of
the stack, it is possible to divide the token stream into different chunks or substrings,
and perform a substantial amount of the parsing with different workers. The essential
quality of this algorithm is that all the parsing actions performed on a chunk are final,
i.e. no parsing work is ever undone on a substring, thus all the parsing actions performed
by the worker threads are correct and useful. To this end, the input is split into as many
chunks as the desired number of workers w, and all the workers run the aforementioned
algorithm returning their stacks at the end.

Since the splitting of the token stream is not constrained in any way, nor it depends
on the language grammar, the result returned by a worker will likely be a nonempty
stack S, since there are no warranties that an arbitrary substring of a sentence is a valid
sentence of the language. Such nonempty stack can be partitioned in two parts: one
containing only =̇ and m relations (i.e. the lower one), and one containing l and =̇ (i.e.
the upper one).

6 Authors Suppressed Due to Excessive Length

Syntax
Specification PAPAGENO

Grammar
Dependent

Parser
Portion

Grammar
Independent

Parser
Portion

C Compiler
Parser
Binary
Library

Scanner
Scanner

generator
(Flex)

Lexicon
Specification

Fig. 2. Typical usage of the PAPAGENO toolchain, starting from a grammar and lexical specifi-
cation, obtaining the parsing library. Specifications provided by the user are marked in yellow,
generated C source code is marked in green.

Therefore, we combine the results of two adjacent parsers, by considering the upper
part of the resulting stack of the left worker, and the lower part of the right one as
the parsing stack and the input stream respectively of a new instance of the parsing
algorithm. As the parsing algorithm is able to shift the nonterminal symbols on the
stack, it will be able to handle the input stream even if it is not composed by tokens
only.

3.2 The PAPAGENO Parser Generator

PAPAGENO, the parallel parser generator tool, produces a C implementation of the
parallel parsing algorithm described before, from the specification of a grammar in
operator precedence (Floyd) form. The implementation of the parser is combined with
a lexical scanner obtained from the de-facto standard scanner generator Flex, to obtain
a fully functional parser library, which can be linked with the main application being
developed. The parsing process is started by invoking the parse call, which receives
two parameters: a reference to the input character stream, and the number of workers
onto which the parsing process should be split.

As depicted in Figure 2, the typical workflow to employ PAPAGENO is analogous
to the one of common parser generators such as Yacc/Bison. The user writes two files:
a grammar specification, describing the grammar rules and any semantic actions to be
performed jointly with reductions, and a lexical specification, describing the terminals
or tokens used by the grammar. PAPAGENO can thus be employed as a drop-in re-
placement for common parser generators, provided that the user checks the form of the
language grammar, and removes the possible presence of precedence conflicts in the
rules.

PAPAGENO: a parallel parser generator for operator precedence grammars 7

For the sake of clarity, and to ease the study of the implementation and possible
modifications, the C parser implementation is split into a grammar-independent part
(support for data structures, parsing algorithm implementation) and a grammar depen-
dent part (token and productions representation), residing in different compilation units.
The choice of the C language as the target for the implementation was driven by the
need to produce highly performing parser implementations while retaining the largest
portability. To ease the adoption of PAPAGENO, the syntax of the grammar specifica-
tion file follows closely the one used by Yacc/Bison, thus requiring little or no effort
to port an existing grammar definition. In particular, semantic attributes of the termi-
nals and nonterminals may be conveniently accessed through the same syntax as Bison,
and the semantic actions to be triggered upon a reduction are specified in the same
way. To guide the user during the process of representing the grammar in Floyd form,
PAPAGENO offers diagnostic messages pinpointing any existing precedence conflicts
between terminal symbols, and it outputs a printable form of the precedence matrix.

3.3 Performance tuning strategies

It would be impossible to achieve the potential advantages of parallel parsing without a
careful choice of efficient programming techniques, of which we report here the most
significant ones. We have found that memory access represents the bottleneck of our
parsing technique, due to the computational lightweight nature of FG parsing, therefore
the parsers generated by PAPAGENO exploit various techniques to relieve as much as
possible the memory pressure on the target architecture. First, the terminal and nonter-
minal symbols are represented as integers, taking care to use the most significant bit as
a flag to separate terminals or non-. In this way, it is possible to decide whether a list
node should be shifted on the stack or not, through a simple check on the first bit of the
value, avoiding the use of a lookup table.

In addition to this, since the precedence value can only assume four different values
(namely, l, =̇,m and ⊥), we use a bit-packed representation of the OPM effectively
reducing its size by four times against a straightforward character based representation,
which allows to achieve low latency access to the table thanks to the fact that it is small
enough to fit in the processor cache memories. To prevent performance losses from
fragmented memory allocation, typical of pointer based structures such as the AST, we
manage a preallocated userspace memory pool, wrapping the common memory alloca-
tion function (malloc). This technique both increases the data locality and prevents
the workers, implemented as POSIX threads, from being serialized during the calls to
the malloc function. As far as the size of the memory pool goes, PAPAGENO preal-
locates half of the estimated size of the AST, through computing the average branching
factor from the length of the right hand sides of the grammar rules, and increases the
allocated pool size by one fifth of this quantity, whenever the parser needs more mem-
ory.

Another performance tuning technique concerns a smart representation for the rhs
of the rules, to ease the checks upon reduction. The rhs are stored in a prefix tree (trie),
thus allowing the parsing process to find the matching production in linear time w.r.t.
the length of the rhs of the productions. In order to further compress the trie, we use the
technique described by Germann et al. in [10], which represents the trie as an array, both
improving the data locality and reducing the size of the data structure, while retaining

8 Authors Suppressed Due to Excessive Length

S→ OBJECT
OBJECT→ {} | {MEMBERS}
MEMBERS→ PAIR | PAIR ,MEMBERS
PAIR→ STRING : VALUE
VALUE→ STRING | number | OBJECT | ARRAY | bool
STRING→ ′′′′ | ′′ CHARS ′′

ARRAY→ [] | [ELEMENTS]
ELEMENTS→ VALUE | VALUE ,ELEMENTS
CHARS→ CHAR | CHAR CHARS CHARS→ char | char CHARS
CHAR→ char

Fig. 3. Official JSON grammar. Uppercase symbols denote nonterminals, while lowercase ones
are tokens; the only one modified rule needed to transform the grammar in operator precedence
form is underlined.

the same cost in the lookup operations. This technique involves the representation of
the pointers of the trie structure as indexes stored in the same array as the trie values.

4 Benchmark application: the JSON language
We chose, as a case study to evaluate the performances of the generated parser, the
JavaScript Object Notation (JSON) language. JSON is a data representation language
described in the Internet Engineering Task Force document RFC4627, and widely em-
ployed in web applications as a less verbose substitute for XML. The official grammar
of JSON, listed in Fig. 3 required only a trivial change to be put into Floyd compliant
form, thus confirming the expressive power of this family of languages. The generated
parser for the JSON grammar was tested on two different x86-64 Linux hosts to evalu-
ate the achieved speedups: the first host is an Intel Core i7 920, a high end desktop CPU
endowed with Simultaneous Multi-Threading (SMT) capabilities, while the second one
is a quad-Opteron 8378, (16 physical cores in total, 4 cores per socket), a typical server
grade platform. All the hosts were running a Linux 2.6 series kernel and were equipped
with enough RAM to contain the whole AST and token list.

As a testbench, we chose real world JSON files of different sizes, in order to evalu-
ate the speedup obtainable. The set of chosen files encompasses the configuration file of
AdBlocker, a common browser plugin (80 kB), the Gospel of John (150kB), a statistic
data-bank on food consumption provided by the Italian Institute of Statistics (1.6MB),
a file containing statistics on n-grams present in English in Google Books (10MB), and
the index of all the documents available on the UK Comprehensive Knowledge Archive
Network (75MB). Figure 4(a) and 4(b) report the speedup factors over a serial parsing
process achieved on the aforementioned testbench by the 16 core and 4-core-SMT plat-
forms respectively while raising the number of workers. The tone of grey in the plot
indicates the length of the string, with the clearer grays being shorter strings. More-
over, the theoretical speedups predicted by Amdahl’s law for a parallel code portion
of 75%-80%-85% are plotted in background as a reference gauge. Already for small
string lengths (80kB) the algorithm yields a speedup higher than 2×, but the full ad-
vantages of parallel parsing become evident from strings as small as 150kB (where the
parallel execution portion reaches 75%) and are fully exploited starting from the 1.6
MB dataset. These results show that our approach is already effective and profitable for

PAPAGENO: a parallel parser generator for operator precedence grammars 9

0 5 10 15

2

4

Number of Threads
Sp

ee
du

p
Fa

ct
or

(a) Speedups w.r.t input string length - 16
Core Platform

2 4 6 8

1

2

3

4

Number of Threads

Sp
ee

du
p

Fa
ct

or

(b) Speedups w.r.t input string length - 4
Core Platform

Bison 1 2
0

0.5

1

Number of threads

N
or

m
al

iz
ed

Pa
rs

in
g

tim
e

(c) Comparison with Bison - 16 Core
Platform

Fig. 4. Speedups obtained with respect to the string length (Figures (a) and (b))and comparison
with Bison generated LALR(1) parsers (Figure (c)). Running times have been normalized taking
as unit the Bison generated parser execution time for each string length.

text sizes in the range of the average webpage (Google reports in its web metrics report
in 2010 an average page size of 320 kB [11]). We also report that, without employing
the aforementioned performance tuning techniques to optimize memory accesses and
reduce inter-worker serializations (packed structures and memory pooling), the portion
of code effectively executed in parallel by the architecture was significantly lower.

Overall, the parallel parsing strategy shows a promising exploitation of the multi-
ple cores available on modern platforms. In particular, this strategy effectively exploits
simultaneous the advantages of multi-threading enabled architectures, as raising the
number of workers beyond the one of the physical cores of the architecture (i.e. above
four in our case) still yields significant speedups. A quantitative measure of the par-
allel code portion shows that 95% of the instructions are performed in parallel on the
four cores thanks to the interleaving of the instructions from two workers on a single
core performed by the architecture. This tight instruction interleaving exploits the stalls
caused by the memory load and store actions to perform computations from another

10 Authors Suppressed Due to Excessive Length

worker push effectively effectively obtaining a parallel code portion close to the the-
oretical maximum. Finally, Figure 4(c) provides a comparison of the overall parsing
times against the ones of a serial parser generated by Bison. The depicted data show
how our approach behaves consistently better than Bison when employing at least two
workers, while showing comparable running times even when employed in serial mode.
In particular, the parsing time for the longest string (75MB in size) is effectively cut
down from 10.51s to 2.07s, a roughly five-fold improvement.

As there is no recent open literature report on the performances of a general purpose
parallel parser generator, we report the work of Lu et al. [8], who built an XML specific
parser. The authors report that, exploiting selected features of the language identified
via a preparsing phase, it is possible to obtain speedups ranging from 2.35× to 2.55×
on a quad core machine, depending on the target XML structure. To this approach we
compare favourably as we are able to achieve higher speedups without the use of a
preparsing pass or any specific knowledge about the points where the input token stream
is split.

5 Conclusion
We have presented a new parallel parser generator which exploits the properties of
operator precedence grammars, also known as Floyd grammars. Such grammars are
expressive enough to be used for many existing languages with little or no adjustment.
The tool generates automatically a C implementation of the parser given a grammar
description provided in Bison compatible syntax, and an additional parameter indicating
how many threads are desired. The experimental validation of the effectiveness of the
generated parsers, employin the grammar of JSON as a practical test case shows that
the code portion running in parallel reaches 85% on common multicore architectures
and scales well up to 16 cores.

As a future direction to enhance our tool, we foresee the development of a parallel
lexer generator. This will allow a complete parallelization of the lexing-scanning pro-
cess, thus allowing an easier distribution of the workload among different execution
units. Also we plan to extend the tool to cope with incremental parsing thanks to its
natural coupling with attribute-based semantic evaluation.

Acknowledgements We thank Brad Chen of Google Inc. for practical indications on the
benchmarks, and in particular for suggesting to use JSON. Valerio Ponte has partici-
pated to the early development of the tool.

References

1. Grune, D., Jacobs, C.J.H.: Parsing techniques a practical guide. Ellis Horwood Limited,
Chichester, England (1990)

2. Crespi Reghizzi, S., Mandrioli, D.: Operator precedence and the visibly push-down property.
JCSS, Journ. Computer and System Science to appear (2012)

3. Cohen, J., Kolodner, S.: Estimating the speedup in parallel parsing. IEEE Transactions on
Software Engineering 11(1) (January 1985) 114–124

4. Sarkar, D., Deo, N.: Estimating the speedup in parallel parsing. IEEE Trans. on Softw. Eng.
16(7) (July 1990) 677

PAPAGENO: a parallel parser generator for operator precedence grammars 11

5. Mickunas, M.D., Schell, R.M.: Parallel compilation in a multiprocessor environment (ex-
tended abstract). In: Proceedings of the 1978 annual conference. ACM ’78, New York, NY,
USA, ACM (1978) 241–246

6. Goeman, H.: On parsing and condensing substrings of LR languages in linear time. Theor.
Comput. Sci. 267 (September 2001) 61–82

7. Bates, J., Lavie, A.: Recognizing substrings of LR(k) languages in linear time. ACM Trans.
Program. Lang. Syst. 16 (May 1994) 1051–1077

8. Lu, W., Chiu, K., Pan, Y.: A parallel approach to XML parsing. In: GRID, IEEE (2006)
223–230

9. Pan, Y., Zhang, Y., Chiu, K.: Hybrid Parallelism for XML SAX Parsing. In: Web Services,
2008. ICWS ’08. IEEE International Conference on, IEEE Computer Society (sept. 2008)
505 –512

10. Germann, U., Joanis, E., Larkin, S.: Tightly packed tries: How to fit large models into
memory, and make them load fast, too. In: Workshop on Software Engineering, Testing, and
Quality Assurance for Natural Language Processing. (2009) 31–39

11. Ramachandran, S.: Web metrics: Size and number of resources. Technical report, Google
(2010)

