
Operator Precedence ω-languages

Federica Panella1, Matteo Pradella1, Violetta Lonati2, Dino Mandrioli1

1 DEIB - Politecnico di Milano, via Ponzio 34/5, Milano, Italy
{federica.panella, matteo.pradella, dino.mandrioli}@polimi.it

2 DI - Università degli Studi di Milano, via Comelico 39/41, Milano, Italy
lonati@di.unimi.it

Abstract. Recent literature extended the analysis of ω-languages from the reg-
ular ones to various classes of languages with “visible syntax structure”, such
as visibly pushdown languages (VPLs). Operator precedence languages (OPLs),
instead, were originally defined to support deterministic parsing and exhibit in-
teresting relations with these classes of languages: OPLs strictly include VPLs,
enjoy all relevant closure properties and have been characterized by a suitable
automata family and a logic notation. We introduce here operator precedence
ω-languages (ωOPLs), investigating various acceptance criteria and their clo-
sure properties. Whereas some properties are natural extensions of those holding
for regular languages, others require novel investigation techniques. Application-
oriented examples show the gain in expressiveness and verifiability offered by
ωOPLs w.r.t. smaller classes.

Keywords: ω-languages, Operator precedence languages, Push-down automata,
Closure properties, Infinite-state model checking.

1 Introduction

Languages of infinite strings, i.e. ω-languages, have been introduced to model nonter-
minating processes; thus they are becoming more and more relevant nowadays when
most applications are “ever-running”, often in a distributed environment. The pioneer-
ing work by Büchi and others investigated their main algebraic properties in the con-
text of finite state machines, pointing out commonalities and differences w.r.t. the finite
length counterpart [4,17].

More recent literature, mainly under the motivation of widening the application of
model checking techniques to larger language families, extended this analysis to various
classes of languages with “visible structure”, i.e., languages whose syntax structure
is immediately visible in their strings: parenthesis languages, tree languages, visibly
pushdown languages (VPLs) [1] are examples of such classes.

Operator precedence languages, instead, were defined by Floyd in the 1960s, and
still are in use [9], with the original motivation of supporting deterministic parsing,
which is trivial for visible structure languages but is crucial for general context-free
languages such as programming languages [8], where structure is often left implicit (e.g.
in arithmetic expressions). Recently, these seemingly unrelated classes of languages
have been shown to share most major features; precisely OPLs strictly include VPLs

2 Federica Panella, Matteo Pradella, Violetta Lonati, Dino Mandrioli

and enjoy all the same closure properties [7]. This observation motivated characterizing
OPLs in terms of a suitable automata family [10] and in terms of a logic notation [11],
which was missing in previous literature.

In this paper we further the investigation of OPLs properties to the case of infi-
nite strings, i.e., we introduce and study operator precedence ω-languages (ωOPLs).
We prove closure and decidability properties that are a fundamental condition enabling
infinite-state model checking. Also, we present a few simple application-oriented ex-
amples that show the considerable gain in expressiveness and verifiability offered by
ω-OPLs w.r.t. previous classes.

We follow traditional lines of research in theory onω-languages considering various
acceptance criteria, their mutual expressiveness relations, and their closure properties,
yet departing from the classical path for a number of critical and new issues. Not sur-
prisingly, some properties are natural extensions of those holding for, say, regular lan-
guages or VPLs, whereas others required different and novel investigation techniques
essentially due to the more general managing of the stack.

Due to space limitations, herein we focus on the newest and most interesting as-
pects. Also, we limit the technicalities of formal arguments to a minimum, relying in-
stead on intuition and examples. The reader can find more results and all details in
the technical report [14]. The paper is organized as follows. The next section provides
basic concepts on operator precedence languages of finite-length words and on opera-
tor precedence automata able to recognize them. Section 3 defines operator precedence
automata which can deal with infinite strings, analyzing various classical acceptance
conditions for ω-abstract machines. Section 4 proves the closure properties they enjoy
w.r.t typical operations on ω-languages and shows also that the emptiness problem is
decidable for these formalisms. Finally, Section 5 draws some conclusions.

2 Preliminaries

Operator precedence languages [7,8] have been characterized in terms of both a gener-
ative formalism (operator precedence grammars, OPGs) and an equivalent operational
one (operator precedence automata, OPAs, named Floyd automata or FAs in [10]), but
in this paper we consider the latter, as it is better suited to model and verify nontermi-
nating computations.

Let Σ be an alphabet. The empty string is denoted ε. Between the symbols of the al-
phabet three types of operator precedence (OP) binary relations can hold: yields prece-
dence, equal in precedence and takes precedence, denoted l, � and m respectively.
Notice that � is not necessarily an equivalence relation, and l and m are not necessarily
strict partial orders. We use a special symbol # not in Σ to mark the beginning and the
end of any string. This is consistent with the typical operator parsing technique that
requires the lookback and lookahead of one character to determine the next action to
perform [9]. The initial # can only yield precedence, and other symbols can only take
precedence on the ending #.

Definition 1. An operator precedence matrix (OPM) M over an alphabet Σ is a |Σ ∪
{#}| × |Σ ∪ {#}| array that with each ordered pair (a, b) associates the set Mab of OP

Operator Precedence ω-languages 3

relations holding between a and b. M is conflict-free iff ∀a, b ∈ Σ, |Mab| ≤ 1. We call
(Σ,M) an operator precedence alphabet if M is a conflict-free OPM on Σ.

Between two OPMs M1 and M2, we define set inclusion and union:
M1 ⊆ M2 if ∀a, b : (M1)ab ⊆ (M2)ab, M = M1∪M2 if ∀a, b : Mab = (M1)ab∪(M2)ab

If Mab = {◦}, with ◦ ∈ {l,�,m} ,we write a◦b. For u, v ∈ Σ∗ we write u◦ v if u = xa
and v = by with a ◦ b. Two matrices are compatible if their union is conflict-free. A
matrix is complete if it contains no empty case.

In the following we assume that M is =̇-acyclic, which means that c1 � c2 � · · · �
ck � c1 does not hold for any c1, c2, . . . , ck ∈ Σ, k ≥ 1. See [14] for a discussion on this
hypothesis. Let also (Σ,M) be an OP alphabet.

Definition 2. A nondeterministic operator precedence automaton (OPA) is a tuple A =

〈Σ,M,Q, I, F, δ〉 where:

– (Σ,M) is an operator precedence alphabet,
– Q is a set of states (disjoint from Σ),
– I ⊆ Q is a set of initial states,
– F ⊆ Q is a set of final states,
– δ : Q × (Σ ∪ Q)→ 2Q is the transition function.

The transition function can be seen as the union of two disjoint functions:

δpush : Q × Σ → 2Q δflush : Q × Q→ 2Q

An OPA can be represented by a graph with Q as the set of vertices and Σ ∪ Q as the
set of edge labels: there is an edge from state q to state p labeled by a ∈ Σ if and only if
p ∈ δpush(q, a), and there is an edge from state q to state p labeled by r ∈ Q if and only
if p ∈ δ f lush(q, r). To distinguish flush transitions from push transitions we denote the
former ones by a double arrow.

To define the semantics of the automaton, we introduce some notation. We use let-
ters p, q, pi, qi, . . . for states in Q and we set Σ′ = {a′ | a ∈ Σ}; symbols in Σ′ are called
marked symbols.

Let Γ be (Σ ∪ Σ′ ∪ {#}) × Q; we denote symbols in Γ as [a q], [a′ q], or [# q],
respectively. We set symbol([a q]) = symbol([a′ q]) = a, symbol([# q]) = #, and
state([a q]) = state([a′ q]) = state([# q]) = q. Given a string β = B1B2 . . . Bn with
Bi ∈ Γ, we set state(β) = state(Bn).

A configuration is any pair C = 〈β , w〉, where β = B1B2 . . . Bn ∈ Γ
∗, symbol(B1) =

#, and w = a1a2 . . . am ∈ Σ
∗#. A configuration represents both the contents β of the

stack and the part of input w still to process.
A computation (run) of the automaton is a finite sequence of moves C ` C1; there

are three kinds of moves, depending on the precedence relation between symbol(Bn)
and a1:
push move: if symbol(Bn) � a1 then C1 = 〈β[a1 q] , a2 . . . am〉, with q ∈ δpush(state(β), a1);
mark move: if symbol(Bn)l a1 then C1 = 〈β[a1

′ q] , a2 . . . am〉, with q ∈ δpush(state(β), a1);
flush move: if symbol(Bn) m a1 then let i the greatest index such that symbol(Bi) ∈ Σ′

(such index always exists). Then C1 = 〈B1B2 . . . Bi−2[symbol(Bi−1) q] , a1a2 . . . am〉,
with q ∈ δ f lush(state(Bn), state(Bi−1)).

4 Federica Panella, Matteo Pradella, Violetta Lonati, Dino Mandrioli

Push and mark moves both push the input symbol on the top of the stack, together
with the new state computed by δpush; such moves differ only in the marking of the
symbol on top of the stack. The flush move is more complex: the symbols on the top of
the stack are removed until the first marked symbol (included), and the state of the next
symbol below them in the stack is updated by δ f lush according to the pair of states that
delimit the portion of the stack to be removed; notice that in this move the input symbol
is not consumed and it remains available for the following move.

Finally, we say that a configuration [# qI] is starting if qI ∈ I and a configuration
[# qF] is accepting if qF ∈ F. The language accepted by the automaton is defined as:

L(A) =

{
x | 〈[# qI] , x#〉

∗
` 〈[# qF] , #〉, qI ∈ I, qF ∈ F

}
.

An OPA is deterministic when I is a singleton and δpush(q, a) and δflush(q, p) have at
most one element, for every q, p ∈ Q and a ∈ Σ.

An operator precedence transducer is defined in the natural way.

Example 1. As an introductory example, consider a language of queries on a database
expressed in relational algebra. We consider a subset of classical operators (union, in-
tersection, selection σ, projection π and natural join Z). Just like mathematical oper-
ators, the relational operators have precedences between them: unary operators σ and
π have highest priority, next highest is the “multiplicative” operator Z, lowest are the
“additive” operators ∪ and ∩. Denote as T the set of tables of the database and, for the
sake of simplicity, let E be a set of conditions for the unary operators. The OPA depicted
in Figure 1 accepts the language of queries without parentheses on the alphabet Σ = T∪
{Z,∪,∩} ∪ {σ, π} × E, where we use letters A, B,R . . . for elements in T and we write
σexpr for a pair (σ, expr) of selection with condition expr (similarly for projection πexpr).
The same figure also shows an accepting computation on input A ∪ B Z C Z πexprD.

Notice that the sentences of this language show the same structure as arithmetic
expressions with prioritized operators and without parentheses, which cannot be repre-
sented by VPAs due to the particular shape of their OPM [7].

Definition 3. A simple chain is a word a0a1a2 . . . anan+1, written as 〈a0 a1a2 . . . an
an+1〉,

such that: a0 ∈ Σ ∪ {#}, ai ∈ Σ for every i : 1 ≤ i ≤ n + 1, Ma0an+1 , ∅, and a0 l a1 �
a2 . . . an−1 � an m an+1.

A composed chain is a word a0x0a1x1a2 . . . anxnan+1, where 〈a0 a1a2 . . . an
an+1〉 is a

simple chain, and xi ∈ Σ
∗ is the empty word or is such that 〈ai xi

ai+1〉 is a chain (simple
or composed), for every i : 0 ≤ i ≤ n. Such a composed chain will be written as
〈a0 x0a1x1a2 . . . anxn

an+1〉.
A word w over (Σ,M) is compatible with M iff for each pair of consecutive letters

c, d in w Mcd , ∅, and for each factor x of #w# such that x = a0x0a1x1a2 . . . anxnan+1
where a0 l a1 � a2 . . . an−1 � an m an+1 and xi ∈ Σ

∗ is the empty word or is such that
〈ai xi

ai+1〉 is a chain (simple or composed) for every 0 ≤ i ≤ n, Ma0an+1 , ∅.

Definition 4. Let A be an operator precedence automaton. A support for the simple
chain 〈a0 a1a2 . . . an

an+1〉 is any path in A of the form

a0
−→ q0

a1
−→ q1 −→ . . . −→ qn−1

an
−→ qn

q0
=⇒ qn+1 (1)

Operator Precedence ω-languages 5

q0 q1

σexpr, πexpr

R

Z,∪,∩

q0, q1

R σexpr πexpr Z ∪ ∩ #
R m m m m

σexpr l l l m m m m
πexpr l l l m m m m
Z l l l l m m m
∪ l l l l m m m
∩ l l l l m m m
l l l =̇

〈[# q0] , A ∪ B Z C Z πexprD#〉
〈[# q0][A′ q1] , ∪ B Z C Z πexprD#〉
〈[# q1] , ∪ B Z C Z πexprD#〉
〈[# q1][∪′ q0] , B Z C Z πexprD#〉
〈[# q1][∪′ q0][B′ q1] , Z C Z πexprD#〉
〈[# q1][∪′ q1] , Z C Z πexprD#〉
〈[# q1][∪′ q1][Z′ q0] , C Z πexprD#〉
〈[# q1][∪′ q1][Z′ q0][C′ q1] , Z πexprD#〉
〈[# q1][∪′ q1][Z′ q1] , Z πexprD#〉
〈[# q1][∪′ q1][Z′ q1][Z′ q0] , πexprD#〉
〈[# q1][∪′ q1][Z′ q1][Z′ q0][πexpr

′ q0] , D#〉
〈[# q1][∪′ q1][Z′ q1][Z′ q0][πexpr

′ q0][D′ q1] , #〉
〈[# q1][∪′ q1][Z′ q1][Z′ q0][πexpr

′ q1] , #〉
〈[# q1][∪′ q1][Z′ q1][Z′ q1] , #〉
〈[# q1][∪′ q1][Z′ q1] , #〉
〈[# q1][∪′ q1] , #〉
〈[# q1] , #〉

Fig. 1: Automaton, precedence matrix and example of computation for language of Example 1.

The label of the last (and only) flush is exactly q0, i.e. the first state of the path; this
flush is executed because of relation an m an+1.
A support for the composed chain 〈a0 x0a1x1a2 . . . anxn

an+1〉 is any path in A of the form

a0
−→ q0

x0
{ q′0

a1
−→ q1

x1
{ q′1

a2
−→ . . .

an
−→ qn

xn
{ q′n

q′0
=⇒ qn+1 (2)

where, for every i : 0 ≤ i ≤ n:

– if xi , ε, then
ai
−→ qi

xi
{ q′i is a support for the chain 〈ai xi

ai+1〉, i.e., it can be

decomposed as
ai
−→ qi

xi
{ q′′i

qi
=⇒ q′i .

– if xi = ε, then q′i = qi.

Notice that the label of the last flush is q′0.

The chains fully determine the structure of the parsing of any automaton on a word
compatible with M, and hence the structure of the syntax tree of the word. Indeed, if
the automaton performs the computation 〈[a q0] , xb〉

∗
` 〈[a q] , b〉 on a factor axb,

then 〈axb〉 is necessarily a chain over (Σ,M) and there exists a support like (2) with
x = x0a1 . . . anxn and qn+1 = q.

3 Operator precedence ω-languages and automata

Traditionally, ω-automata have been classified on the basis of the acceptance condi-
tion they are equipped with. All acceptance conditions refer to the occurrence of states
which are visited in a computation of the automaton, and they generally impose con-
straints on those states that are encountered infinitely (or also finitely) often during a

6 Federica Panella, Matteo Pradella, Violetta Lonati, Dino Mandrioli

run. Classical notions of acceptance (introduced by Büchi [4], Muller [12], Rabin [15],
Streett [16]) can be naturally adapted to ω-automata for operator precedence languages
and can be characterized according to a peculiar acceptance component of the automa-
ton on ω-words. Here we focus mainly on nondeterministic Büchi-operator precedence
ω-automata with acceptance by final state; other models are briefly presented and com-
pared in Section 3.1.

As usual, we denote by Σω the set of infinite-length words over Σ. Thus, the symbol
occurs only at the beginning of an ω-word. Given a precedence alphabet (Σ,M), the
definition of an ω-word compatible with the OPM M and the notion of syntax tree of
an infinite-length word are the natural extension of these concepts for finite strings. We
also use the notation “∃ωi” as a shorthand for “there exist infinitely many i”.

Definition 5. A nondeterministic Büchi-operator precedence ω-automaton (ωOPBA)
is given by a tuple A = 〈Σ,M,Q, I, F, δ〉, where Σ,Q, I, F, δ are defined as for OPAs;
the operator precedence matrix M is restricted to be a |Σ ∪ {#}| × |Σ | array, since ω-
words are not terminated by #. Configurations and (infinite) runs are defined as for OP
automata on finite-length words.
Let S be a run of the automaton on a given word x ∈ Σω. Define In(S) = {q ∈ Q |
∃ωi 〈βi , xi〉 ∈ S with state(βi) = q} as the set of states that occur infinitely often at the
top of the stack of configurations in S. A run S of an ωOPBA on an infinite word x ∈ Σω

is successful iff there exists a state q f ∈ F such that q f ∈ In(S). A accepts x ∈ Σω iff
there is a successful run of A on x.

As in the finite-length case, the class of languages accepted by ωBVPAs (nonde-
terministic Büchi visibly pushdown ω-automata) is a proper subset of that accepted by
ωOPBAs. Indeed, classical families of automata, like Visibly Pushdown Automata [1],
imply several restrictions that hinder them from being able to deal with the concept
of precedence among symbols and make them unsuitable to model several interesting
aspects often exhibited by real-world systems in various contexts.

To mention a few examples, a natural field of application of ωOPLs is the represen-
tation of processes or tasks which are assigned a priority to fulfill their requirements,
which is a common paradigm in the area of operating systems, e.g. the processing of
interrupts from peripherals with different priorities, or in the context of Web services,
where servers provide services to users with different privileges. ωOPLs can also model
the run-time behavior of database systems, e.g. for modeling sequences of user’s trans-
actions with possible rollbacks, and revision control systems (such as subversion or git).
Examples of such systems are more extensively presented in [14].

3.1 Other automata models for operator precedence ω-languages

There are several possibilities to define other classes of OP ω-languages. We may in-
troduce a variant of ωOPBA (called ωOPBEA) which recognizes a word if the au-
tomaton traverses final states with an empty stack infinitely often, and we may as well
consider automata with acceptance conditions other than Büchi’s, as e.g. Muller op-
erator precedence ω-automata (ωOPMAs). Furthermore, deterministic ωOPA and OP
ω-transducers can be specified in the natural way as for operator precedence automata
on finite-length words.

Operator Precedence ω-languages 7

In general, the relationships among languages recognized by the different classes of
operator precedence ω-automata and visibly pushdown ω-languages are summarized in
Figure 2, where ωDOPBA and ωDOPMA denote the classes of deterministic ωOPBAs
and deterministic ωOPMAs respectively. The detailed proofs of the strict containment
relations holding among the classes in Figure 2 are presented in [13, Chapter 4]. The
proofs regarding the relationships between those classes which are not comparable are
described in [14]. In the sequel we will consider only the most expressive class of
ωOPAs, i.e. ωOPBA.

L(ωOPBA) ≡ L(ωOPMA)

L(ωOPBEA) L(ωDOPMA)

L(ωDOPBA)

L(ωBVPA)+

Fig. 2: Containment relations for ωOPLs. Solid lines denote strict inclusions; dashed lines link
classes which are not comparable.

4 Closure properties and emptiness problem

In this section we focus on the most interesting closure properties of ωOPAs, which are
summarized in Table 1, where they are compared with the properties enjoyed by VPAs
on infinite-length words. All operations are assumed to be applied to, and, when closure
subsists, to produce, languages with compatible OPMs.

L(ωDOPBA) L(ωDOPMA) L(ωOPBA)≡L(ωOPMA) L(ωBVPA)
Intersection Yes Yes Yes Yes

Union Yes Yes Yes Yes
Complement No Yes Yes Yes

L1 · L2 No No Yes Yes

Table 1: Closure properties of families of ω-languages. (L1 · L2 denotes the concatenation of a
language of finite-length words L1 and an ω-language L2).

The main family ωOPBA is closed under Boolean operations and under concatena-
tion with a language of finite words accepted by an OPA. Furthermore, the emptiness
problem is decidable for ωOPAs in polynomial time because they can be interpreted as
pushdown automata on infinite-length words: e.g. [5] shows an algorithm that decides
the alternation-free modal µ-calculus for context-free processes, with linear complexity
in the size of the system’s representation; thus the emptiness problem for the intersec-
tion of the language recognized by a pushdown process and the language of a given
property in this logic is decidable.

Closure under intersection and union hold for ωOPBAs as for classical ω-regular
languages: these closure properties, together with those enjoyed by ωDOPBAs and
ωDOPMAs, can be proved in a similar way as for classical families of ω-automata,

8 Federica Panella, Matteo Pradella, Violetta Lonati, Dino Mandrioli

and their proofs can be found in [13, Chapter 5] and [14, Section 4]. Closure under
complementation and concatenation for ωOPBAs, instead, required novel investigation
techniques.

Closure under concatenation

Unlike other families of languages, closure under concatenation has been proved for
finite-length word OPLs by using their generating grammars with some difficulty [6],
essentially due to the peculiar structure of their syntax trees. In the case of OPAs, and of
infinite-length words, difficulties are further exacerbated by the fact that an OPA relies
on the end-marker # to empty the stack before accepting a string; on the contrary, when
parsing the concatenation of two OPL strings, the stack cannot always be emptied after
reading the former one; for instance, consider a language L1 ⊆ Σ

∗ with an OPM where
a l a and b l a: a word in L1 ending with a b concatenated with aω compels the OPA
to let the stack indefinitely grow with no chance for any flush move after the reading of
the L1 word.

To overtake this difficulty we use a new approach which heavily exploits nondeter-
minism; remember in fact that, similarly to regular languages and VPLs, ωDOPBAs are
strictly less powerful than ωOPBAs (see Figure 2). The basic idea consists in guessing
the end of the first word and deciding whether it could be accepted by the original OPA
recognizing L1 without emptying the stack. This is a nontrivial job which requires stor-
ing suitable information in the stack at any mark move as it will be explained shortly.

To achieve our goal we first introduce a variant of the semantics of the transition re-
lation and of the acceptance condition for OPAs: a string x is accepted if the automaton
reaches a final state right at the end of the parsing of the whole word, and it does not
perform any flush move determined by the ending delimiter # to empty the stack; thus it
stops just after having put the last symbol of x on the stack. Precisely, the semantics of
the transition relation differs from the definition of classical OPAs in that, once a con-
figuration with the endmarker as lookahead is reached, the computation cannot evolve
in any subsequent configuration, i.e. a flush move C ` C1 with C = 〈B1B2 . . . Bn , y#〉
and symbol(Bn) m y# is performed only if y , ε. The language accepted by this variant
of the automaton (denoted as L̃) is the set of words:

L̃(A) = {x | 〈[# qI] , x#〉
∗
` 〈γ[a qF] , #〉, qI ∈ I, qF ∈ F, γ ∈ Γ∗, a ∈ Σ ∪ {#}}

We emphasize that, unlike normal acceptance by final state of a pushdown automaton,
which can perform a number of ε-moves after reaching the end of a string and accept if
just one of the visited states is final, this type of automaton cannot perform any (flush)
move after reaching the endmarker through the last look-ahead.

Nevertheless, the variant and the classical definition of OPA are equivalent: the
following lemma shows the first direction of inclusion between the two formalisms.
Statement 1 in [14], although not necessary to prove closure under concatenation of
L(ωOPBA), completes the proof of equivalence between traditional and variant OPAs.

Lemma 1. Let A1 be a nondeterministic OPA defined on an OP alphabet (Σ,M) with
s states. Then there exists a nondeterministic OPA A2 with the same precedence matrix
as A1 and O(|Σ |s2) states such that L(A1) = L̃(A2).

Operator Precedence ω-languages 9

Sketch of the proof. Consider a word of finite length w which is preceded by a delimiter
but which is not ended with such a symbol. Define a chain in a word w as maximal if
it does not belong to a larger composed chain. In a word of finite length preceded and
ended by # only the outer chain 〈#w#〉 is maximal.

The body of a chain 〈awb〉, simple or composed, is the word w. A word w which is
preceded but not ended by a delimiter # can be factored in a unique way as a sequence
of bodies of maximal chains wi and letters ai as # w = # w1a1w2a2 . . .wnan where
〈ai−1 wi

ai〉 are maximal chains and each wi can be possibly missing, with a0 = # and
∀i : 1 ≤ i ≤ n−1 ailai+1 or ai � ai+1. During the parsing of word w, the symbols of the
string are put on the stack and, whenever a chain is recognized, the letters of its body
are flushed away. Hence, after the parsing of #w the stack contains only the symbols
a1 a2 . . . an, which we call pending letters, and is structured as a sequence

l ai1 = a1 � a2 � . . . l ai2 � ai2+1 � . . . l ai3 � ai3+1 � . . . l aik � aik+1 � . . . � an

of k open chains, i.e., sequences of symbols b0 l b1 � b2 � . . . � bm, for m ≥ 1. At
the end of the computation a classical OPA performs a series of flush moves due to the
presence of the final symbol #. These moves progressively empty the stack, removing
one by one the open chains.

A nondeterministic automaton that, unlike classical OPAs, does not resort to the
last # for the recognition, guesses nondeterministically the ending point of each open
chain on the stack and guesses how, in an accepting run, the states in these points of
the stack would be updated if the final flush moves were progressively performed. The
automaton must behave as if, at the same time, it simulates two steps of the accepting
run of a classical OPA: a move during the parsing of the string and a step during the
final flush transitions which will later on empty the stack, leading to a final state. To
this aim, the states of a classical OPA are augmented with an additional component
to store the necessary information. If the forward path consisting of moves during the
parsing of the string and the backward path of flush moves guessed by the automaton
can consistently meet and be rejoined when the parsing of the input string stops, then
combined they constitute an accepting run of the classical OPA.

A variant OPA A2 equivalent to a given OPA A1 thus may be defined so that, af-
ter reading each prefix of a word, it reaches a final state whenever, if the word were
completed in that point with #, A1 could reach an accepting state with a sequence of
flush moves. In this way, A2 can guess in advance which words may eventually lead
to an accepting state of A1, without having to wait until reading the delimiter # and to
perform final flush moves. To illustrate, we use the following example.

Example 2. Consider Figure 1. If we take the input word of this computation without
the ending marker #, then the sequence of pending letters on the stack, after the au-
tomaton puts on the stack the last symbol D, is # l ∪ l Z l Z l πexpr l D. There
are five open chains with starting symbols ∪, Z, Z, πexpr,D, hence the computation
ends with five consecutive flush moves determined by the delimiter #. The following
figure shows the configuration just before looking ahead at the symbol #. The states
(depicted within boxes) at the end of the open chains are those placeholders that an
equivalent variant OPA should guess in order to find in advance the last flush moves
q1 = q1

q0
=⇒ q1

q0
=⇒ q1

q1
=⇒ q1

q1
=⇒ q1

q1
=⇒ q1 ∈ F1 of the accepting run.

10 Federica Panella, Matteo Pradella, Violetta Lonati, Dino Mandrioli

〈[# q1] [∪’ q1] [Z’ q1] [Z’ q0] [πexpr’ q0] [D’ q1] , #〉

q1 ∈ F1 q1 q1 q1 q1 q1

The corresponding configuration of the variant OPA, with the augmented states, would be:

〈[# q1, q1] [∪’ q1, q1] [Z’ q1, q1] [Z’ q0, q1] [πexpr’ q0, q1] [D’ q1, q1] , #〉

The formal definition of the variant automaton and the proof of its equivalence with a
classical OPA are presented in [14].

We are now ready for the main result.

Theorem 1. Let L1 ⊆ Σ∗ be a language of finite words recognized by an OPA with
OPM M1 and s1 states. Let L2 ⊆ Σ

ω be anω-language recognized by a nondeterministic
ωOPBA with OPM M2 compatible with M1 and s2 states. Then the concatenation L1 ·L2
is also recognized by a ωOPBA with OPM M3 ⊇ M1 ∪ M2 and O(|Σ |(s2

1 + s2
2)) states.

Sketch of the proof. Intuitively, a nondeterministic ωOPBA recognizing L1 · L2 first
simulates the variant automaton recognizing L1, guesses the end of the L1 word, and
leaves a suitable “marker” on top of the stack before beginning the simulation of the
second ωOPBA. In this process, the only nontrivial technical aspect is the fact that the
second phase cannot leave unaffected the part of the stack that is left as a “legacy” by
the first phase; thus, some flush moves must “invade” the lower part of the stack and the
two phases cannot be completely independent, somewhat mimicking the construction
of the OP grammar generating the concatenation of two OPLs [7]. ut

Closure under complementation

Theorem 2. Let M be a conflict-free precedence matrix on an alphabet Σ. Denote by
LM ⊆ Σ

ω the ω-language comprising all infinite words x ∈ Σω compatible with M.
Let L be anω-language on Σ that can be recognized by a nondeterministicωOPBA with
precedence matrix M and s states. Then the complement of L w.r.t LM is recognized by
an ωOPBA with the same precedence matrix M and 2O(s2) states.

Sketch of the proof. The proof follows to some extent the structure of the correspond-
ing proof for Büchi VPAs [1], but it exhibits some relevant technical aspects which
distinctly characterize it; in particular, we need to introduce an ad-hoc factorization of
ω-words due to the more complex management of the stack performed by ωOPAs.

Let A = 〈Σ,M,Q, I, F, δ〉 be a nondeterministic ωOPBA with |Q| = s. Without loss
of generality A can be considered complete with respect to the transition function δ, i.e.
such that there is a run of A on every ω-word on Σ compatible with M.

In general, a sentence on Σω can be factored in a unique way so as to distinguish
the subfactors of the string that can be recognized without resorting to the stack of the
automaton and those subwords for which the use of the stack is necessary.
More precisely, an ω-word w ∈ Σω can be factored as a sequence of chains and pending
letters w = w1w2w3 . . . where either wi = ai ∈ Σ is a pending letter or wi = ai1ai2 . . . ain

Operator Precedence ω-languages 11

is a finite sequence of letters such that 〈li wi
f irsti+1〉 is a chain, where li denotes the last

pending letter preceding wi in the word and f irsti+1 denotes the first letter of word wi+1.
Let also, by convention, a0 = # be the first pending letter.

Notice that such factorization is not unique, since a string wi can be nested into
a larger chain having the same preceding pending letter. The factorization is unique,
however, if we additionally require that wi has no prefix which is a chain.

As an example, for the word w = la l c m︸ ︷︷ ︸ b lam︸︷︷︸ dm︸︷︷︸ b . . ., with precedence
relations in the OPM a m b and b l d, the unique factorization is w = w1bw3w4b . . .,
where b is a pending letter and 〈#acb〉, 〈bad〉, 〈bdb〉 are chains.

Define a semisupport for a chain 〈a0 xan+1〉 (simple or composed) as any path in A

which is a support for the chain (Equations 1 and 2), where however the initial state of
the path is not restricted to be the state reached after reading symbol a0.

Let x ∈ Σ∗ be such that 〈axb〉 is a chain for some a, b and let T (x) be the set of all
triples (q, p, f) ∈ Q × Q × {0, 1} such that there exists a semisupport q

x
{ p in A, and

f = 1 iff the semisupport contains a state in F. Also let T be the set of all such T (x), i.e.,
T contains set of triples identifying all semisupports for some chain, and set PR = Σ∪T.
The pseudorun for w in A is the ω-word w′ = y1y2y3 . . . ∈ PRω where yi = ai if wi = ai,
otherwise yi = T (wi). For the example above, then, w′ = T (ac) b T (a) T (d) b

Deferring to [14] further details of our proof, which from this point on resembles [1]
with the necessary adaptions, we can define a nondeterministic Büchi finite-state au-
tomaton AR over alphabet PR which has O(s) states and accepts a pseudorun iff the
corresponding words on Σ belong to L(A). Consider then a deterministic Streett au-
tomaton BR that accepts the complement of L(AR) on the alphabet PR and, receiv-
ing pseudoruns as input words, accepts only words in LM\L(A). The automaton BR

has 2O(s log s) states and O(s) accepting constraints [17]. We can build a nondeterminis-
tic transducer ωOPBA B that on reading w generates online the pseudorun w′, which
will be given as input to BR. The final automaton, that recognizes the complement
of L = L(A) w.r.t LM , is the ωOPBA representing the product of BR (converted to a
Büchi automaton), which has 2O(s log s) states, and B, with 2O(s2) states; thus it has 2O(s2)

states. ut

5 Conclusions and further research

We presented a formalism for infinite-state model checking based on operator prece-
dence languages, continuing to explore the paths in the lode of operator precedence
languages started up by Robert Floyd a long time ago. We introduced various classes
of automata able to recognize operator precedence languages of infinite-length words
whose expressive power outperforms classical models for infinite-state systems as Vis-
ibly Pushdown ω-languages, allowing to represent more complex systems in several
practical contexts. We proved the closure properties of ωOPLs under Boolean opera-
tions that, along with the decidability of the emptiness problem, are fundamental for the
application of such formalism to model checking.

Our results open further directions of research. A first interesting topic deals with
the characterization of ωOPLs in terms of suitable monadic second order logical for-
mulas, that has already been studied for operator precedence languages of finite-length

12 Federica Panella, Matteo Pradella, Violetta Lonati, Dino Mandrioli

strings [11]. This would further strengthen applicability of model checking techniques.
The next step of investigation will regard the actual design and study of complexity
issues of algorithms for model checking of expressive logics on these pushdown mod-
els. We expect that the peculiar features of Floyd languages, as their “locality princi-
ple” which makes them suitable for parallel and incremental parsing [2,3] and their
expressivity, might be interestingly exploited to devise efficient and attractive software
model-checking procedures and approaches.

References

1. Alur, R., Madhusudan, P.: Adding nesting structure to words. Journ. ACM 56(3) (2009)
2. Barenghi, A., Crespi Reghizzi, S., Mandrioli, D., Pradella, M.: Parallel pars-

ing of operator precedence grammars. Information Processing Letters (2013),
DOI:10.1016/j.ipl.2013.01.008

3. Barenghi, A., Viviani, E., Crespi Reghizzi, S., Mandrioli, D., Pradella, M.: PAPAGENO: a
parallel parser generator for operator precedence grammars. In: 5th International Conference
on Software Language Engineering (SLE) (2012)

4. Büchi, J.R.: Weak Second-Order Arithmetic and Finite Automata. Mathematical Logic Quar-
terly 6(1-6), 66–92 (1960)

5. Burkart, O., Steffen, B.: Model checking for context-free processes. In: CONCUR ’92,
LNCS, vol. 630, pp. 123–137 (1992)

6. Crespi Reghizzi, S., Mandrioli, D.: Operator Precedence and the Visibly Pushdown Property.
In: LATA. pp. 214–226 (2010)

7. Crespi Reghizzi, S., Mandrioli, D.: Operator Precedence and the Visibly Pushdown Property.
Journal of Computer and System Science 78(6), 1837–1867 (2012)

8. Floyd, R.W.: Syntactic Analysis and Operator Precedence. Journ. ACM 10(3), 316–333
(1963)

9. Grune, D., Jacobs, C.J.: Parsing techniques: a practical guide. Springer, New York (2008)
10. Lonati, V., Mandrioli, D., Pradella, M.: Precedence Automata and Languages. In: 6th Int.

Computer Science Symposium in Russia (CSR), LNCS, vol. 6651, pp. 291–304 (2011)
11. Lonati, V., Mandrioli, D., Pradella, M.: Logic Characterization of Invisibly Structured Lan-

guages: the Case of Floyd Languages. In: 39th Int. Conf. on Current Trends in Theory and
Practice of Computer Science (SOFSEM), LNCS, vol. 7741, pp. 307–318. Springer (2013)

12. Muller, D.E.: Infinite sequences and finite machines. In: Proceedings of the Fourth Annual
Symposium on Switching Circuit Theory and Logical Design. pp. 3–16. SWCT ’63, IEEE
Computer Society, Washington, DC, USA (1963)

13. Panella, F.: Floyd languages for infinite words. Master’s thesis, Politecnico di Milano (2011),
http://home.dei.polimi.it/panella

14. Panella, F., Pradella, M., Lonati, V., Mandrioli, D.: Operator precedence ω-languages. CoRR
abs/1301.2476 (2013), http://arxiv.org/abs/1301.2476

15. Rabin, M.: Automata on infinite objects and Church’s problem. Regional conference series
in mathematics, Published for the Conference Board of the Mathematical Sciences by the
American Mathematical Society (1972)

16. Streett, R.S.: Propositional dynamic logic of looping and converse is elementarily decidable.
Information and Control 54(1-2), 121 – 141 (1982)

17. Thomas, W.: Handbook of theoretical computer science (vol. B). chap. Automata on infinite
objects, pp. 133–191. MIT Press, Cambridge, MA, USA (1990)

