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STRATEGIES TO SCAN PICTURES WITH AUTOMATA
BASED ON WANG TILES ∗

Violetta Lonati1 andMatteo Pradella2

Abstract. Wang automata are devices for picture language recognition re-
cently introduced by us, which characterize the class REC of recognizable pic-
ture languages. Thus, Wang automata are equivalent to tiling systems or online
tessellation acceptors, and are based like Wang systems on labeled Wang tiles.
The present work focus on scanning strategies, to prove that the ones Wang
automata are based on are those following four kinds of movements: boustro-
phedonic, “L-like”, “U-like”, and spirals.

Keywords: picture languages, 2D languages, Wang systems, 2D automata,
scanning strategies

Introduction

Recent years saw a growing interest towards picture languages, and especially tile-
based models. Picture languages are a generalization to two dimensions of classical
string languages, where a picture is an array of symbols taken from a finite alphabet.
Tiling problems have appeared in many branches of physics and mathematics like group
theory, topology, quasicrystals, symbolic dynamics. More recently Winfree et al. [10]
have demonstrated the feasibility of creating tiles made from folded DNA molecules that
can act as Wang tiles [19]. As pointed out by Brun [7], such models are self-assembling,
like many biological systems, highly distributed, and parallel; they may be implemented
using molecules, or a large computer network such as the Internet, thus opening several
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new perspectives. This idea is exploited in [8], where an approach to the design of self-
adaptive service-oriented applications based on a tile-based model is presented.

Among the various classes of languages defined by tile-based models, probably the
most successful, as far as theoretical characterizations are concerned, is the class of tiling
recognizable languages, also known as REC [12]. REC is a robust class, and coincides
with the class of languages generated by various kinds of devices, such as online tessella-
tion acceptors [13], tiling systems [11], and Wang systems [9].

Wang automata is a more recent kind of device characterizing REC, introduced by
us in [17], and based on the labeled variant of Wang tiles used in Wang systems [9]. We
originally introduced Wang automata to study the concept of determinism in REC. Indeed,
Wang systems are implicitly nondeterministic: REC is not closed under complement, and
the membership problem is NP-complete [14]. The concept of determinism for picture
languages is not as straightforward as in string languages: the literature contains several
different deterministic subclasses of REC, starting from deterministic online tessellation
acceptors [13], and going to the more recent [1, 3, 4, 15]. Wang automata use a scanning
strategy to move the input head: this allows us to introduce a natural and decidable notion
of determinism, yielding a proper subclass of REC, called Scan-DREC, closed under
complement, rotation and mirror operations. We refer the interested reader to [16], where
different subclasses of Scan-DREC determined by different scanning strategies, and their
relation to unambiguity, are presented and studied.

In the present work, we focus on studying scanning strategies of Wang automata. In
fact, we prove that polite scanning strategies, the ones Wang automata are based on, are
essentially only those following four kinds of movements, and their rotations and symmet-
rical: boustrophedonic, where the head proceeds row-by-row, in a “snake”-like fashion;
“L-like”, where the head scans a row, a column, and then goes back; “U-like”, where the
head scans a column, a row, then another column, and goes back; and spirals. This result
is interesting in two ways. First, it is now easier to study the properties of deterministic
Wang automata, because we only need to focus on those few strategies. Second, the def-
inition of Wang automata is now greatly simplified, because it does no more need all the
theoretical scaffolding supporting generic kind of scanning strategies.

The paper is structured as follows. The first section introduces some notation and tiling
recognizable languages. Section 2 defines Wang automata and their scanning strategies.
Section 3 presents the main results on polite scanning strategies. Finally, the last two
sections consider the related works and then draw the conclusions.

1. Preliminaries

The following notation and definitions are partially adapted from [12]. Let Σ be a
finite alphabet. A two-dimensional array of elements of Σ is a picture over Σ. The set of
all pictures over Σ is Σ++; a picture language is a subset of Σ++. For n,m ≥ 1, Σn,m denotes
the set of pictures of size (n,m), i.e. having n rows and m columns. The support of a
picture of size (n,m) is the set n × m = {1, 2, . . . , n} × {1, 2, . . . ,m}. A pixel is an element
p(i, j) of p. We call (i, j) the position in p of the pixel.



TITLE WILL BE SET BY THE PUBLISHER 3

We will sometimes consider the 90o clockwise rotation, the horizontal mirror, and

the vertical mirror of a picture p. E.g. if p =
a b
c d

, then
c a
d b

,
c d
a b

, and
b a
d c

are its rotation, horizontal mirror and vertical mirror, respectively. Naturally, the same
operations can be applied to languages, and classes of languages, too.

An important class of two-dimensional languages is REC, i.e., the class of tiling-
recognizable languages, originally defined in terms of tiling systems [11]. Here we define
this class by using the equivalent notation introduced in [9], which is based on a variant
of Wang tiles.

Let Σ be a finite alphabet and K be a set of colors, containing the special color #
representing borders. A labeled Wang tile (or tile for short) is a unitary square with
colored edges and a label in Σ. Formally, a tile is an element A = (a, t, l, r, b) ∈ Σ ×

K4, where t, b, r, l represent the colors at top, bottom, right and left edges. For better
readability, we represent labeled Wang tiles as

A =

t
l a r

b
. (1)

Dirs is the set of four directions→, ↓,←, ↑. For any direction d ∈ Dirs, Ad is the color
of the edge of A towards direction d. We also use −d for referring to the direction opposite
to d. Also, λ(A) refers to the label of tile A. For example, in the case of A given by (1),
A↓ = b and λ(A) = a. The set of tiles with labels in Σ and colors in K is Σ4K .

We also consider partial tiles, where some colors may be undefined: the set of partial
tiles is denoted by ΣK . The domain of a tile A is the set ∆A of directions where A is
defined. Given two partial tiles A, B, we say that B extends A if Bd = Ad for every d ∈ ∆A.
When we need to emphasize the fact that a tile is not partial, we will call it complete.

Labeled Wang tiles in Σ4K can be used to build pictures over Σ, by using colors to
check compatibility: two tiles may be adjacent only if the color of the touching edges is
the same. A picture P ∈ Σ++

4K is called a Wang picture if all borders are colored with # and

P(i, j)↓ = P(i + 1, j)↑ for every 1 ≤ i < n,

P(i, j)→ = P(i, j + 1)← for every 1 ≤ j < m,

where (n,m) is the size of P. We call W(P) the set of Wang tiles contained in a Wang
picture P. The label of a Wang picture P over Σ4K is the picture p = λ(P) ∈ Σ++ having
for pixels the labels of pixels of P, i.e., p(i, j) = λ(P(i, j)). Next (on the left), the reader
may find the example of a Wang picture of size (2, 2) with its label (in the middle). For
better readability, we represent Wang pictures by writing each common color only once,
as in the figure on the right.



4 TITLE WILL BE SET BY THE PUBLISHER

P =

#
# a 4

1

#
4 b #

3
1

# b 2
#

3
2 a #

#

, λ(P) =
a b
b a

,

# #
# a 4 a #

1 3
# b 2 a #

# #

.

A Wang system is a triple ω = 〈Σ,K,Θ〉, where Σ is a finite alphabet, K is a set of
colors, Θ is a subset of Σ4K . The language generated by ω is the language L(ω) ⊆ Σ++ of
the labels of all Wang pictures in Θ++. REC is the class of picture languages generated by
Wang systems.

Example 1.1. Consider the language Lhalf ⊂ Σ++ of pictures of size (n,m), n ≥ m ≥ 4,
with the first row like w · w̄, where w̄ is the reverse of w. Then Lhalf is recognized by the
Wang system 〈Σ,K,Θ〉 where K = Σ ∪ {•, #} and

Θ =



#
# x •

x
,

x
# y •

x
,

x
# y x

#
,

•

x y x
#

,

x
x y #

#
,

x
• y #

x
,

#
• x #

x
,

#
• x •

x
,

x
• y •

x
,

x
• y x
•

,

•

x y x
•

,

x
x y •
•

x, y ∈ Σ


.

The colors are used to connect each letter in w to the corresponding letter in w̄, along
nested paths following a U-like form. Next (on the left), we show an example of picture
p ∈ Lhalf, together with the corresponding Wang picture P over Θ (on the right). The
actual colors in P are used in the figure only to emphasize the U-like form of the resulting
paths.

a b c c b a

b a b a a c

b a b c a a

c a b a a a

b b c b a c

a b b a b c

# # # # # #
# a • b • c • c • b • a #

a b c c b a
# b • a • b • a • a • c #

a b c c b a
# b • a • b • c • a • a #

a b c c b a
# c • a • b c a • a • a #

a b • • b a
# b • b b c b b b a • c #

a • • • • a
# a a b a b a a a b a c #

# # # # # #
�
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2. Wang automata

2.1. Two-dimensional scanning strategies

Here we recall the notion of 2D scanning strategies as introduced in [17] and in par-
ticular the definition of blind scanning strategy. Scanning strategies are defined in terms
of partial functions; for a partial function f , if the value of f at t is not defined, then we
write f (t) =⊥.

Definition 2.1. A scanning strategy is a family µ = {µn×m : {1, 2, . . .} → n × m}n,m where
each µn×m is a partial function such that µn×m(t) ,⊥ for some t implies µn×m(s) ,⊥ for
every 1 ≤ s < t; µn×m is called the scanning function over support n × m. A scanning
strategy is said to be continuous if, for every t, n, and m, µn×m(t + 1) is adjacent to µn×m(t),
provided they are both defined; it is said to be one-pass if each scanning function µn×m

restricted to {1, 2, . . . , nm} is a bijection and µn×m(t) =⊥ for every t > nm.

Intuitively, a scanning strategy provides a method to visit positions in any picture sup-
port: µn×m(t) is the position visited in n × m at time t. One-pass strategies are those that
visit each position in each support exactly once.

In particular, we are interested in scanning strategies that satisfy some further prop-
erties: uniformity with respect to the picture support (for instance, we reject scanning
strategies that are defined only for square pictures), no memory about how the scanning
strategy visited the past positions, and independence with respect to the actual contents of
the picture. The notion of blindness of a scanning strategy was introduced in [17] to this
aim. Basically, our idea of blind strategy is based on local properties on the “shape” of
visited positions of the input picture. To recall such notion we shall need some notations.

Given a position y, Edges(y) denotes the set of 4 edges adjacent to y. For d ∈ Dirs, the
edge of y in direction d is denoted by yd, and the position adjacent to y in direction d is
denoted by y�d. The top-leftmost, top-rightmost, bottom-rightmost, and bottom-leftmost
corners of any picture domain are denoted by 1, 2, 3, 4, respectively.

A next-position function is a partial function η : 2Dirs × Dirs → Dirs such that
η(D, d) =⊥ if −d < D. Informally, η is used to chose where to go next: for a given
position, we have a set of already considered edges, given by the set D of directions, and
d, the direction from the “last considered” edge; then η(D, d) is the direction towards the
position to visit next. Clearly, if |D| = 1, then d is the unique element of D; if |D| = 3,
then d′ is uniquely determined.

Now fix any next-position function η, any starting corner cs ∈ {1, 2, 3, 4} and any
starting direction ds ∈ Dirs. Then, for every support n×m, consider the following scanning
function µn×m over n × m.

• The starting position is

µn×m(1) =


(1, 1) if cs = 1
(1,m) if cs = 2
(n, 1) if cs = 4
(n,m) if cs = 3
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moreover we define E1 as the set of outer edges (i.e. those adjacent to borders)
of the picture support n × m, and we set d1 = ds.

• The inductive definition1 of µn×m(t + 1) for t ≥ 1 is given by:

Dt = {d ∈ Dirs : (µn×m(t))d ∈ Et}

Et+1 = Et ∪ Edges(µn×m(t))
dt+1 = η(Dt, dt)

µn×m(t + 1) = µn×m(t) � dt+1

Notice that µn×m(1)d1 must be in E1 for η(D1, d1) to be defined.
We say that µ = {µn×m}n,m is the scanning strategy induced by the triple 〈η, cs, ds〉. A pair
(D, d) is reachable by µ if −d ∈ D and there exist n,m such that (D, d) = (Dt, dt) for some
t.

Definition 2.2. A scanning strategy is blind if it is induced by a triple 〈η, cs, ds〉, where η
is a next-position function, cs a starting corner, and ds a starting direction.

Notice that, in general, a blind scanning strategy is not one-pass. However, it is contin-
uous and satisfies the other requirements we need. First, all scanning functions are defined
by the same triple 〈η, cs, ds〉 for every picture support; second, the next position to visit
always depends only on this information: which neighboring positions have already been
visited, and which direction we are moving from. This yields the following definition.

Definition 2.3. A scanning strategy is called polite if it is blind and one-pass.

Example 2.4. Some one-pass scanning strategies are illustrated in Figure 1. Actually
they are not fully defined: only the function µ3×4 is depicted whereas the other functions
should be defined analogously; each position y in 3 × 4 contains the number t such that
y = µ3×4(t).

1 6 7 12

2 5 8 11

3 4 9 10

1 10 11 12

2 9 8 7

3 4 5 6

1 12 9 8

2 11 10 7

3 4 5 6

1 10 9 8

2 11 12 7

3 4 5 6
(a) snake (S) (b) L-like (J) (c) U-like (U) (d) spiral (C)

1 2 11 10

4 3 12 9

5 6 7 8

1 2 3 4

5 6 7 8

9 10 11 12

4 3 2 1

5 8 9 12

6 7 10 11
(e) mixed (f) row by row (g) snake with bootstrap

Figure 1. Some one-pass scanning strategies: the number in each pixel
denotes its scanning order.

1In the definition, also dt ,Dt , and Et depend on n and m. For better readability, this dependence is not
explicit. We also agree that the value of any expression containing ⊥ is still ⊥.
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We denote strategies from (a) to (d) as S, J, U, C, respectively: S has a boustrophedonic
(snake-like) behavior, J draws nested L-like path, U draws nested U-like paths, C has a
spiral behavior. They are all polite and turn out to be the basic ones (see Theorem 4.5).

Strategy (e) combines the behavior of a rotation of S in the first half of the picture and
C in the second one; it is not blind, since it exploits the knowledge of the width of picture,
to change direction when reaching its half. Strategy (f) visits one row after the other, from
left to right and from top to bottom. Also (f) is not blind, since it is not continuous and
uses the knowledge of picture’s width, after reaching the end of a row, to “jump” back to
the beginning of the next row. The blind strategy (g) is like (a), but for a “bootstrap”, i.e.
a row scan going from corner 2 to corner 1. �

For better readability, we introduce a concise and intuitive notation for the next-position
function η(D, d) = d′, where a set of directions (i.e. D) is graphically depicted as a
partially outlined rectangle, the incoming direction d is shown as an arrow entering the
rectangle, and d′ is put inside the rectangle. For instance, to represent η({←, ↓},→) =↑

we will use: → ↑ . We will also call such writings configurations of the next-position
function.

Example 2.5. U is induced by the triple 〈ηU, 1,→〉, where the next-position function ηU
is given by the following set of possible configurations:

→ ↓ ,
↓

↓ ,
↓

→ , → → , → ↑ , ↑

↑
, ←

↑
, ↓ ← ,

↓

↓ ,
↓

← ,

← ← , ↑ ← , ↑

↑
, →

↑
, → ↓ , ↓ ← , → → ,

↓

↓ , ← ← , ↑

↑


The last six configurations are used to scan the pixels in the last column or row to visit,
because in all these cases three borders have already been visited. �

Example 2.6. The scanning strategy depicted in Figure 1(g) is induced by the triple
〈η, 2,←〉, where η is given by the following set of possible configurations:

← ← , ↓ ← ,
↓

↓ ,
↓

→ , → ↑ , ↑

↑
, →

↑
, → ↓ ,

→ ↓ ,
↓

↓ , → ↑ , ↑

↑
, → → , ← ←


As in the previous example, the last six configurations are used to scan the pixels in the
last column or row. �

2.2. Definition and semantics ofWang automata

In this section we formally define Wang automata and briefly illustrate them through a
simple example.

Definition 2.7. A µ-directed Wang automaton (µ-WA) is a tuple 〈Σ,K, δ, µ, F〉 where:
• Σ is a finite input alphabet,
• K is a finite set of colors
• F ⊂ Σ4K ,
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• δ : ΣK ×Dirs→ 2Σ4K is a partial function such that each tile in δ(A, d) extends A,
• µ is a polite scanning strategy induced by some 〈η, cs, ds〉 such that δ(A, d) , ∅

implies η(∆A, d) ,⊥.

A Wang automaton can be seen as having a head that visits a picture, by moving from a
position to an adjacent one, and coloring at each step the edges of the position it is visiting
(in a sense, the elements of ΣK ×Dirs are the states of the automaton). For each accepting
computation, the automaton produces a Wang picture whose label is equal to the input
picture. The movements of the head are lead by the scanning strategy µ, whereas the
coloring operations the automaton performs are determined by a finite control formalized
by function δ. Since the scanning strategy µ is polite and hence blind, the automaton visits
the picture positions independently of the input symbols, and only the choice of colors to
assign to edges is nondeterministic.

More precisely, the behavior of a µ-directed Wang automaton A = 〈Σ,K, δ, µ, F〉 over
an input picture p ∈ Σm,n can be described as follows.
Configuration of the WA: 〈cf , dr, ps〉, where

cf ∈ Σ
m,n
K , dr ∈ Dirs, ps = (i, j), with 1 ≤ i ≤ m, 1 ≤ j ≤ n.

Initial configuration: 〈cfs, ds, cs〉, where cfs ∈ Σ
m,n
K is such that λ(cfs) = p, with coloring

totally undefined, except for the borders. Note that µ is induced by 〈η, cs, ds〉.
Transition: 〈cf , dr, ps〉 `A 〈cf ′, dr′, ps′〉 is such that

dr′ = η(∆cf (ps), dr),
ps′ = ps � dr′,

cf ′(ps) ∈ δ(cf (ps), dr),
cf ′(ps � u)−u = cf ′(ps)u, ∀u ∈ Dirs \ ∆cf (ps).

Final configuration: 〈cfF, dF , psF〉, where cfF ∈ Σ
m,n
4K , and cfF(psF) ∈ F.

Informally, at the beginning the head of the automaton points at the position in the
starting corner cs and the current direction is set to ds. When the current direction is dr,
the head is placed at position ps, the pixel and the colors of borders of p at position ps
are summarized by cf (ps), then let dr′ = η(∆cf (ps), dr) and A′ ∈ δ(cf (ps), dr). Hence the
automaton may execute this move: color the borders at position ps according to A′, set
the current direction to dr′, move to position ps � dr′, and extend cf to the Wang picture
cf ′ with cf ′(ps) = A′.

If no move is possible, the automaton halts. The input picture p is accepted if there is
a computation such that the borders of the final position are colored according to some
Wang tile in F.

Example 2.8. Consider the language Lhalf presented in Example 1.1. Starting from the
Wang system sketched in the same example, one can define an equivalent C-WA as de-
scribed in Table 1. Note that δ(A, d) has at most one element, for any A, d (i.e. it is
deterministic), so in the table these are not represented as sets. For better readability, the
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table also presents the next-position function η. The accepting tiles are of the form

x
• y •

x
with x ∈ K. It is interesting to note that the set of complete tiles coincides with tile-set Θ

of Example 1.1. �

A, d
#

# x →

x
# y ↓

x
# y

#
↓ x y

#
→ x y #

#
→

δ, η

#
# x •

x
↓

x
# y •

x
↓

x
# y x

#
→

•

x y x
#

→

x
x y #

#
↑

A, d y #
x

↑

#
x #
x

↑

#
x • ←

#
• x • ←

x
• y ↓

x
• y
•

↓

δ, η

x
• y #

x
↑

#
• x #

x
←

#
• x •

x
←

#
• x •

x
↓

x
• y •

x
↓

x
• y x
•

→

A, d x y
•

→ x y •
•

→ y •
x

↑

x
y •
x

↑

x
y • ←

x
• y • ←

δ, η

•

x y x
•

→

x
x y •
•

↑

x
• y •

x
↑

x
• y •

x
←

x
• y •

x
←

x
• y •

x
↓

Table 1. C-WA for Lhalf: δ and η stand respectively for δ(A, d) and
η(∆A, d); x, y ∈ Σ, K = Σ ∪ {•, #}.

For nondeterministic Wang automata the choice of the scanning strategy (as long as it
is polite) is not relevant from the point of view of the recognizing power of the device:
for every polite scanning strategy µ, the class of picture languages recognized by µ-WA
equals REC [17, Theorem 1]. This is no longer true when determinism is concerned.
It is therefore useful to study the actual behavior of polite scanning strategies, because
depending on it we obtain different deterministic subclasses of REC - some of them are
presented in [16].

3. A concise representation of polite scanning strategies

From now on, let µ induced by 〈η, cs, ds〉 be a blind scanning strategy. To better present
the main issues related to polite scanning strategies, we need to introduce some notation.
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First of all, we need to extend the original concept of corner introduced in Section 2.1. We
will call a corner position, or simply a corner, a position of the picture where only one
other adjacent position is yet to be visited. For instance, if we arrive from left to the top-
rightmost position of a picture, the only visitable adjacent position is the one immediately
below. We distinguish four kinds of corners: 1, 2, 3, 4, corresponding respectively to the
top-leftmost, top-rightmost, bottom-rightmost, and bottom-leftmost corners. Note that
these are corners of the part of the picture which is yet to be visited, so they correspond to
actual corners of the picture only at the beginning of the scanning procedure; moreover,
this definition does not take into account configurations found when scanning the last row
or column, where this condition holds in every position. This is not a problem, because
we intend to study the general behavior of the strategy, while the scan of the last positions
is always constrained.

We will distinguish horizontal and vertical kind of directions of movement of the strat-
egy, that will be denoted by the symbols h, and v, respectively. Quite naturally,→,← are
of kind h, while ↑, ↓ are of kind v. h is called the dual movement of v and vice versa; we
will also write h = v or v = h.

We also write c ∼m c if a corner of kind c′ can be reached from a corner of kind c by a
movement of kind m, i.e. 1 ∼h 2, 3 ∼h 4, 1 ∼v 4 and 2 ∼v 3.

3.1. Polite configurations of the next-position function

Lemma 3.1. If for some d, η({d,−d}, d) is defined and ({d,−d}, d) is reachable, then η
induces a blind scanning strategy which is not one-pass.

Proof. W.l.o.g assume to start from the top-left position of the picture, let d =↓, and

consider the configuration
↓

← . This configuration being reachable, the input head

followed a path from the top-left position to a non-corner position at the bottom of the
picture. This means that we are partitioning the picture in two sections, and the right-most
one cannot be reached without crossing an already considered position. Hence, η is not
one-pass. �

Lemma 3.2. If for some d, η({−d}, d) is defined and ({−d}, d) is reachable, then η induces
a blind scanning strategy which is not one-pass.

Proof. W.l.o.g let d =↓ and assume to start from the top-left position of the picture, with

configuration
↓

→ (note that configuration → → would force us to proceed towards
the right border, being η a function). To reach a configuration with d =↓, we must now
go down, i.e. the next configuration must be: → ↓ . At the next step, either we turn left
↓

← , or right
↓

→ , or we proceed straight ahead
↓

↓ .
If we turn left, the scanning proceeds in a two-step snake-like fashion, considering two

positions in the same row, then going down. In this case, η is not one-pass, because, if the
picture has an even number of rows, the last position considered is that at the bottom-left,
thus leaving untouched all the rest of the picture.

If we turn right, either we go down, i.e. → ↓ thus proceeding in diagonal towards
the lower-right part of the picture, or we go up, i.e. → ↑ . In this last case, it is easy to
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see that we are following a two-step snake-like strategy analogous to the one considered
before, so the same arguments apply.

For all the other configurations, we proceed towards either the left border of the picture,
or the bottom border. Here applies Lemma 3.1. �

As a consequence of the previous lemmata, configurations like
↓

↓ ,
↓

← , or
↓

←

are useless for polite scanning strategies. Therefore, by considering in an exhaustive
manner all the other possible configurations, we have the following result.

Proposition 3.3. Any next-position function inducing a polite scanning strategy can be
described using only configurations

L0 = → → L1 = → ↓ U0 =
↓

↓ U1 = → ↓

and all their rotations and symmetrical configurations.

Given a configuration S ∈ {L0, L1,U0,U1}, any configuration which is a rotation or
symmetrical of S is called S -shaped. Notice that subscript 1 represents the presence of a
direction change, whereas letter L or U represents the shape of borders (i.e., D).

U1-shaped configurations are used when we reach a corner, L1-shaped configurations
always follow a U1-shaped configuration at the end of a row (or column), L0-shaped
configurations are used repeatedly when visiting a whole row (or column), U0-shaped
configurations are used only when visiting the last-unvisited row (or column). Hence the
previous proposition means that a polite configuration visits whole rows (and columns)
without changing direction halfway.

U0-shaped configurations are used only to scan the pixels in the last row (or column)
and are not relevant for our discussion, so from now on we consider only the other con-
figurations. Every configuration can be uniquely identified by its shape, the movement
(horizontal or vertical) of its incoming direction and the corner it involves. More pre-
cisely, the corner involved by a Lx-shaped configuration is the corresponding D, whereas
the corner involved by U1-shaped configurations is given by D \ {d} (for instance → ↓

is used when we reach a corner of kind 2). This leads to the following definition.

Definition 3.4. Given S ∈ {L0, L1,U1}, m ∈ {h, v}, and c ∈ {1, 2, 3, 4}, notation S [m, c]
denotes the S -shaped configuration involving corner c and whose incoming direction has
m as kind of movement.

The following remarks are easy consequences of the previous definition and the fact that
η is a function.

Remark 3.5. A polite scanning strategy cannot admit both configurations L0 [m, c] and
L1 [m, c] for some movement m and corner c.

Remark 3.6. When applying a polite scanning strategy to some picture support, except
when there is only one row or column left to visit, configuration L1 [m, c] is always fol-
lowed by L0

[
m, c

]
. Similarly, configuration U1 [m, c] is always followed by the same con-

figuration, which is either L0
[
m, c

]
or L1

[
m, c

]
, according to the definition of the strategy.
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Example 3.7. The first configurations defining scanning strategy U (see Example 2.5)
can be rewritten as follows:

L1 [h, 1] , L0 [v, 1] , U1 [v, 4] , L0 [h, 4] , U1 [h, 3] , L0 [v, 3] , U1 [v, 2] ,
L1 [h, 2] , L0 [v, 2] , U1 [v, 3] , L0 [h, 3] , U1 [h, 4] , L0 [v, 4] , U1 [v, 1] .

The configurations are listed in the order they appear when applying U to any (big enough)
picture support, and such order respects Remark 3.6. For instance, after visiting the

leftmost unvisited column downwards with L0 [v, 1] =
↓

↓ , one gets in configuration

U1 [v, 4] =
↓

→ ; at this point, since η admits configuration L0 [h, 4] = → → , then the

strategy prescribes to turn and scan the downmost unvisited row rightwards. After visiting
the rightmost unvisited column upwards with L0 [v, 3] = ↑

↑
, configuration U1 [v, 2] =

←

↑
is reached; this time, since η admits configuration L1 [h, 2] = ↓ ← , the strategy

prescribes to go back and scan the rightmost unvisited column downwards. �

Example 3.8. The first configurations defining scanning strategy µ of Example 2.6, and
depicted in Figure 1(g), can be rewritten as follows:

L0 [h, 2] , U1 [h, 1] ,
L0 [v, 1] , U1 [v, 4] , L1 [h, 4] , L0 [v, 4] , U1 [v, 1] , L1 [h, 1] .

The configurations are listed in the order they appear when applying µ to any (big enough)
picture support, and such order respects Remark 3.6: the first two configurations are used
to scan the first row leftwards, whereas the other ones are used cyclically to scan the rest
of the picture, column by column, in a boustrophedonic way. �

By the previous remarks and examples, it should be clear that any polite scanning
strategy behaves as follows: it starts from a corner in some Lx-shaped configuration,
visits one whole row (resp. column) staying in some L0-shaped configuration, reaches a
corner with a U1-shaped configuration, then can either turn the corner and visit the whole
adjacent unvisited column (resp. row) with a repeated L0-shaped configuration, or go
back visiting entirely the next unvisited row (resp. column) passing through a L1-shaped
configuration followed by some repeated L0-shaped configurations; either way, it reaches
another corner with a U1-shaped configuration and so on and so forth.

3.2. Graph representation of polite scanning strategies

Given any polite scanning strategy induced by the triple 〈η, cs, ds〉, with ds of kind ms,
consider the partial function fη : {v, h} × {1, 2, 3, 4} → {v, h} defined by setting

fη(m, c) =


m if η admits U1 [m, c] and L1

[
m, c

]
m if η admits U1 [m, c] and L0

[
m, c

]
⊥ otherwise

Intuitively, fη(m, c) denotes the kind of movement to execute each time one arrives at a
corner of kind c with movement m. We will call such function the movement function
associated to η. Notice that fη is well-defined by Remark 3.5.
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Example 3.9. The following tables define the movement functions fU associated with
ηU, and f ′ associated with the scanning strategy defined in Example 2.6: the value of
fη(m, c) appears in row indexed by m and column indexed by c:

fU 1 2 3 4
h ⊥ ⊥ v v
v v v h h

f ′ 1 2 3 4
h v ⊥ ⊥ ⊥

v v ⊥ ⊥ v
�

Intuitively, the movement function associated to a next-position function η is sufficient
to describe how η works: when the head arrives in a corner position c with movement m,
then fη(m, c) = m represents a change of direction of the head (from v to h or vice versa),
meaning that in the corresponding η configurations there is a U1 followed by a L0. On the
other hand, fη(m, c) = m stands for a U1-shaped configuration followed by a L1, and then
necessarily a L0; this means that the head is “going back” - e.g. if it was scanning a row,
then it is going to scan the subsequent row in a backward direction.

The movement function fη of a polite scanning strategy can be represented by a graph
having four vertices, corresponding to the four corners, marked 1 to 4, and arcs, labeled
by h or v. There exists an arc starting from vertex c with label m if and only if fη(m, c) is
defined. In this case: if fη(m, c) = h, then such arc is horizontal (i.e. it connects vertices 1
and 2, or 3 and 4) if fη(m, c) = v, then it is vertical (i.e. it connects vertices 1 and 4, or 2
and 3). We will call such graph the movement graph associated to η. Clearly, diagonal arcs
connecting other pairs of vertices are forbidden. Moreover, fη being a (partial) function,
from each vertex cannot start more than one arc with a given label.

1

v

��

2

4

v

VV

3

1

v

��

2

4

h

VV

v
66 3

h
vv

1

v

��

2

v

��
4

h

VV

v
66 3

v
vv

h

VV 1

h
��

2vhh

4 v ((
3

h

HH

S J U C

Figure 2. Diagrams of scanning strategies S, J, U, and C.

Example 3.10. The movement graphs corresponding to S, J, U, and C are shown in
Figure 2. �

4. Characterization of polite scanning strategies

First, we note that in the movement graph associated to a scanning strategy there cannot
exist two non-parallel arcs starting from the same vertex and labeled according to their
own direction. This fact is formalized by the following proposition.

Proposition 4.1. Given a polite scanning strategy with next-position function η, for any
movement m ∈ {h, v} and kind of corner c ∈ {1, 2, 3, 4}, fη(m, c) = m implies fη(m, c) , m.
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Proof. By definition, fη(m, c) = m implies that η admits the configurations U1 [m, c],
L1

[
m, c

]
and, as a consequence of Remark 3.6, L0 [m, c]. Similarly, fη(m, c) = m implies

U1
[
m, c

]
and L1 [m, c], yielding a contradiction by Remark 3.5. �

Let µ be a polite scanning strategy having movement function f and starting from
corner c0 with direction of kind m0. Then let

m1 =


m0 if η admits L1 [m0, c0]
m0 if η admits L0 [m0, c0]
⊥ otherwise

and consider the (eventually infinite) sequence

c0 m1 c1 m2 c2 . . . (2)

where ci ∈ {1, 2, 3, 4}, mi ∈ {h, v}, mi+1 = f (mi, ci) and ci+1 ∼mi ci for every i ≥ 0.
An interesting interpretation of such sequence is the following. When applying a scan-

ning strategy to a domain support (except, as usual, for the last row or column to be
visited), one moves from corner to corner, executing horizontal or vertical movements in
between; the sequence of such alternating corners and movements is actually a prefix of
sequence (2): symbols mi represent the kind of movements executed, whereas symbols ci

represent the kind of corners reached.
In the graph representing f , such sequence (without c0) corresponds to a path starting

from corner c1 and leaving it through the arc labeled m1. Clearly, m2 correspond to the
direction of such arc, and so on.

Example 4.2. C produces the sequence 1v4h3v2h1v4h3v2h . . . which can be written as
(1v4h3v2h)ω. Similarly, S, J, and U produce the sequences (1v4v)ω, (1v4h3h4v)ω, and
(1v4h3v2v3h4v)ω, respectively. The scanning strategy of Example 2.6 produces the se-
quence 2h1v4v1v4v1v . . . which can be written as 2h(1v4v)ω.

Since the number of possible configurations of next-position functions is finite, the
sequence can always be decomposed in a starting part (or bootstrap) and a cyclic part.
The cyclic part is the most significant, because by its nature the bootstrap is always finite,
thus pertaining only to a limited part of the picture. Hence, for convenience in the rest
we will only represent the cyclic part of sequences in graphs, discarding the bootstrap.
If there is an arc a starting from a vertex c with label m, then there must be another arc
ending in c directed according to m, if we want arc a to be reachable, and therefore part
of the cycle. In this case, the cyclic part of the sequence contains factor mcm′, where
m′ = f (m, c).

Proposition 4.3. Let f be a movement function. If, for some m and c, f (m, c) = f (m, c) =

m, then the cyclic part of the corresponding sequence (2) cannot contain both the factor
mcm and the factor mcm.

Proof. Let µ be the polite scanning strategy having movement function f and starting
from corner c0 with direction of kind m0.

First, let us suppose w.l.o.g that f (h, 1) = h and f (v, 1) = h, so that there exists a
sequence m0 c0 m1 c1 m2 c2 . . . corresponding to a polite scanning strategy, and containing
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both h1h and v1h in its cyclic part. This means that, if we render f with a diagram, there
is an arc going from 1 to 2 which is marked both h and v - see Figure 3 (i). We will show
that it is impossible to build a cycle containing all these arcs. For v1h, we need a cycle
which reaches 4, but f being a (partial) function, there cannot be an arrow going from 1
to 4. Therefore our graph must be like the one in Figure 3 (ii). In fact, the arc from 4 to 1
must bear a h symbol, because we cannot have a vertical arc from 1 to 4. Now, how should
we mark the arc from 2 to 1? If it were h, then 4 would be unreachable from 1, because
this would mean going back from 2 to 1. So we mark it v and add the corresponding arc
from 3 to 2. Moreover, f being a (partial) function, the arc from 2 to 3 has to be marked
h, and to reach 4 from 2, we have to label the arc from 3 to 4 v – see Figure 3 (iii). Again,
f is a (partial) function, hence the arc from 3 to 2 has label h, but this means that there is
an arc from 4 to 3, labeled v, as in Figure 3 (iv). But this last arc is unreachable because,
by construction, we do not have the 1 to 4 arc. Hence, it is impossible to have both h1h
and v1h in the cyclic part of the sequence. �
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Figure 3. Diagrams for proof of Proposition 4.3.

Example 4.4. Let f be the movement function of the scanning strategy defined in Exam-
ple 2.6. Then we have f (h, 1) = f (v, 1) = v but, according to the previous proposition,
the cyclic part of the associated sequence contains factor v1v but not factor h1v. Actually,
the movement graph of such cycle is exactly the first one depicted in Figure 2. This is not
a coincidence, as we prove in the following theorem. �

Theorem 4.5. The movement graph of the cyclic part of any polite scanning strategy is
one of those of Figure 2, up to duality and symmetry.

Proof. By Proposition 4.3 there cannot be an arc labeled both h and v. As a consequence,
given an arc a starting from vertex c in direction m, we have only two possibilities: if a
is labeled h, then there is an horizontal arc ending in c (i.e. there is a factor hcm in the
associated sequence); else if a is labeled by v, then there is a vertical arc ending in c (i.e.
there is a factor vcm). Applying this constraint, one can verify that it is possible to build
(up to duality and symmetry) only the graphs depicted in Figure 2, or the following graph,
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which does not satisfy Proposition 4.1 for c = 1, and hence has to be ignored.
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In practice this means that, except for possibly a limited initial part, every polite scan-
ning strategy behaves like one of S, J, U, and C, up to duality and symmetry.

5. Related works

One kind of tile-based automaton, in some senses similar to Wang automata, is pre-
sented in [5]: quadrapolic automata are like Wang automata, in that both use variant of
labeled Wang tiles for working. Differently, quadrapolic automata do not read the in-
put picture by following a fixed scanning strategy. To our knowledge, no definition of
determinism for such devices is proposed in the literature.

Another model of tiled-based automaton, called tiling automaton, was proposed in [2],
with the aim to define a general computational model for recognizable languages.

As far as scanning strategies for picture languages are concerned, the two relevant
works are [2] and [6].

The approach in [2] is centered upon the concept of scanning strategy itself, which di-
rectly depends on the size of the picture to be scanned. This definition is very general, and
may exploit the size of the picture to perform “jumps”, thus allowing complex behaviors.
This freedom, together with the potential knowledge of the picture size, may be exploited
to exceed REC.

In [6], the considered strategies are “continuous”, in the sense that the next considered
position is adjacent to the current one. The actual definition of such strategies is presented
in a qualitative form. This aspect could be source of some problems, since may admit
different strategies depending on the picture size or shape (e.g. Peano-Hilbert curves
are suitable only for square pictures). Indeed, if we consider unary languages, scanning
strategies which depend on the shape or size of the input picture may be exploited to
exceed REC also in this case.

6. Conclusions

In this work we have proved that the behavior of the cyclic part of polite scanning
strategies for Wang automata follows either a boustrophedonic, or “L-like”, or “U-like”,
or spiral pattern. The set of all possible polite scanning strategies is understandably finite,
so we have also been able to mechanically check the main result through the bounded
model checker Zot [18], by expressing strategies as simple linear temporal logic formu-
lae.2

2The interested reader may find the related Zot script at http://home.dei.polimi.it/pradella/strat.lisp.
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Clearly this fact permits a simplification of the model, because the actually usable
strategies are simpler and more easily describable than the original generic ones presented
in Section 2.1.

This result is also interesting from a theoretical point of view, since different scan-
ning strategies define possibly different subclasses of REC, that we usually call µ-DREC,
where µ is the chosen strategy. For instance in [16], we proved that S-DREC and C-
DREC are incomparable. Moreover, we know from [15] that the closure w.r.t. rotations
of S-DREC is a remarkable class, because it coincides with the class of row- or column-
unambiguous subclasses of REC defined in [1]. Therefore, the interesting and still open
questions are about J-DREC, and U-DREC, and their relations with S-DREC and C-
DREC.

As far as other possible future activities are concerned, one could extend the behavior
of Wang automata by considering for instance scanning strategies which are “less blind”,
or based on a finite-state device, or permitting a bounded number of visits of the same
position (i.e. not one-pass, but “bounded pass”). Clearly, many of these natural extensions
could exceed REC, so they have to be handled with care.
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