
ICWE 2016 Rapid Mashup Challenge:
Introduction

Florian Daniel1 and Martin Gaedke2

1 Politecnico di Milano, Via Ponzio 34/5, 20133 Milano, Italy
florian.daniel@polimi.it

2 Technische Universität Chemnitz, Str. der Nationen 62, 09111 Chemnitz, Germany
martin.gaedke@informatik.tu-chemnitz.de

Abstract. The ICWE 2016 Rapid Mashup Challenge is the second in-
stallment of a series of challenges that aim to engage researchers and
practitioners in showcasing and discussing their work on assisting mashup
development. This introduction provides the reader with the general con-
text of the Challenge, its objectives and motivation, and the requirements
contributions were asked to satisfy so as to be eligible for participation.
A summary of the contributions that were selected for presentation in
the 2016 edition anticipates the content of the remainder of this volume.

Keywords: Mashups, Mashup tools, Challenge, Benchmarking

1 Context and Objective

Mashups, that is “composite applications developed starting from reusable data,
application logic and/or user interfaces typically, but not mandatorily, sourced
from the Web” [1], have been the subject of research and industrial study for
several years by now. Over the same time span, we also witnessed an itera-
tive specialization of the term: while in the beginning all types of applications
developed by reusing resources from the Web were referred to as “mashups,”
today – also thanks to the pioneering efforts by the mashup community – this
kind of integration of Web-accessible resources has become common practice in
software engineering and can, hence, no longer be considered a practice that is
easy to isolate from software engineering in general. Today, the term is instead
more focused on those applications that are developed with the help from a so-
called mashup tool (possibly ranging from full-fledged integrated development
environments to dedicated programming libraries) that aims to ease mashup de-
velopment via suitable abstractions and automations. Thanks to the respective
simplified development processes, often mashups are further associated with end
users that not necessarily possess programming knowledge but that neverthe-
less may want to or be required to develop own situational applications, e.g., to
automate tasks in their everyday business.

In line with last year’s edition [2], the ICWE 2016 Rapid Mashup Challenge1

acknowledges this peculiarity of mashups and puts its focus on the techniques,

1 http://challenge.webengineering.org/

http://challenge.webengineering.org/


approaches, libraries, and tools that researchers and practitioners have come up
with so far to aid the development of mashups – to all types of users and/or
programmers. This perspective is different from the perspectives of similar chal-
lenges known from other contexts or communities. For instance, the Semantic
Web Challenge2 focuses on the application of Semantic Web [3] technologies in
the development of software with commercial potential, large user bases, or func-
tionality that is useful and of societal value. The AI Mashup Challenge3, instead,
more specifically focuses on mashups that use AI (Artificial Intelligence) technol-
ogy (e.g., machine learning and data mining, machine vision, natural language
processing, reasoning, ontologies) and intelligence to mashup existing resources.
The Rapid Mashup Challenge, instead, does not limit its focus to any specific
technology and rather aims to understand how mashups can be developed, in-
dependently of how their internals look like.

The purpose of the Challenge is further that of comparing the proposed de-
velopment approaches with each other, so as to stimulate the interchange of ideas
among researchers and practitioners and to cross-fertilize them. Yet, objectively
comparing approaches that are as diverse as mashup approaches is a hard en-
deavor. In fact, while last year we used (i) an explicit feature checklist to be filled
by authors to assess the expressive power of the proposed approaches and (ii) a
common mashup development scenario to assess the elegance and ease of devel-
opment, this year we decided to leave proponents more freedom in showcasing
their approach and did not impose any specific development scenario. The reason
for this choice is that the proposals we received this year4 were characterized by
very diverse levels of maturity, ranging from production-ready instruments to
proof-of-concept prototypes. Requiring all of them to support one and a same
development scenario would have meant precluding the less mature approaches
from participating, as they simply would not have been able to provide the neces-
sary development support to implement a full-fledged mashup. Since we however
felt that also the less mature works proposed ideas and solutions that had merits
and deserved presentation, we opted for a less rigorous comparison in favor of
more variety and a better representation of the latest state of the art in mashup
development assistance.

In the following, we summarize the structure of the Challenge and the feature
checklist. Then we briefly introduce the approaches that were selected for pre-
sentation in the 2016 edition of the Challenge, while the papers in the remainder
of this volume (extensions of the initial participation proposals) explain each of
the approaches in more detail and describe the respective demonstrations given
live during the Challenge.

2 Structure of Challenge

The Challenge was again organized into four phases:

2 http://challenge.semanticweb.org/
3 http://aimashup.org/
4 http://challenge.webengineering.org/program/

http://challenge.semanticweb.org/
http://aimashup.org/
http://challenge.webengineering.org/program/


1. Admission: Submission of applications. Each application had to include a
brief description of the proposed tool/approach and a filled feature checklist,
so as to allow the organizers to pre-select proposals based on topic and
interestingness.

2. Preparation: If a proposal was accepted to the challenge, the authors could
use the time from the notification till the Challenge to prepare an as effective
as possible demonstration of their approach. This preparation phase gave the
authors almost six weeks to prepare for the event.

3. Competition: During the Challenge, participants had to give both a pre-
sentation and a live demonstration of how to build a mashup – both within
a maximum of 20 minutes. Last year, we strictly limited the time of the live
demonstration to 10 minutes, giving all participants the same time for the
development of a same mashup. Since this year we did without the reference
mashup, we allowed participants to use their time as best as they felt.

4. Post-challenge: Preparation of post-challenge paper explaining the pro-
posed solution and giving technical details about the approach and how it
was used to rapidly build their demonstration mashup.

The goal of this structure is to have authors focus more on the practical
aspects before the Challenge (the preparation of their demonstration), while
asking them to concentrate on the conceptual and scientific aspects afterwards
(with the writing of the paper to be included in this volume).

3 Feature Checklist

In order to facilitate the comparison of approaches, authors were required to
accompany their submission with a filled feature checklist that describes the two
key parts of the evaluation, i.e., the nature of the mashups that their tool/ap-
proach allows one to develop and the development features of the proposed tool.
The following subsections describe the features in more detail.

3.1 Mashup Features

In order to be able to compare the mashups produced by the different approaches
during the Challenge, the mashup features proposed by Daniel and Matera [1]
were taken as reference:

– Mashup type: The mashup type expresses the positioning of the mashup
at one or more of the three layers of the typical application stack (data,
logic, presentation), depending on where the mashup’s integration logic is
positioned. Data mashups operate at the data layer, integrate data sources,
and are typically published again as data sources (e.g., RSS feeds or RESTful
Web services). Logic mashups integrate components at the application logic
layer, reuse data and application logic (e.g., Web services), and are typically
published as Web services. User Interface (UI) mashups are located at the



presentation layer, integrate UI components/widgets, and are published as
Web applications that users can interact with via the Web browser. Finally,
hybrid mashups span multiple layers of the application stack.

– Component types: The types of mashups introduced above strongly relate
to the types of the components they integrate. Data components comprise
RSS and Atom feeds, XML, JSON, CSV and similar data resources, web data
extractions, micro-formats, but also SOAP or RESTful web services that are
used as data services only. Logic components comprise SOAP and RESTful
web services, JavaScript APIs and libraries, device APIs, and API extrac-
tions. UI components comprise code snippets and JavaScript UI libraries,
Java portlets, widgets and gadgets, web clips and extracted UI components.

– Runtime location: There are generally a variety of possible architectural
configurations that may be adopted for the development of mashups, compat-
ibly with the requirements of the chosen components. Client-side mashups
are executed in the client browser. Server-side mashups are executed in the
server. Client-server mashups are distributed over client and server, and
both parts interact the one with the other at runtime.

– Integration logic: The integration logic tells how integration happens, that
is, how components are used to form a composite application and how they
are enabled to communicate with each other (if at all). UI-based integration
applies exclusively to UI components and uses the graphical layout of the
mashup’s user interface to render UI components in parallel next to each
other inside one or more web pages. Orchestrated integration applies to all
kinds of components and consists in a centralized composition logic. Chore-
ographed integration is for all those types of components that are able to
comply with a given convention (oftentimes also called a contract or proto-
col), so as to manage integration without a central coordinator.

– Instantiation lifecycle: The last aspect of mashups considered is how long
an instantiated mashup is running. Stateless mashups do not require keeping
any internal state for their execution and end after processing. Short-living
mashups are mashups that last the time of a user session, i.e., as long as a
user is interacting with the mashup in the client browser, and terminate with
the closing of the client browser. Long-living mashups may last longer than
a user session, that is, they survive even after the user closes the browser
with the rendered mashup or after the first invocation of the mashup.

These five features allow one to easily classify mashups and to assess their
internal complexity. Of course, this is not an exhaustive list of characteristics
and many other distinguishing features could be examined [1]. Yet, for the sake
of assessing the suitability and interestingness of approaches we considered these
five features as enough.

3.2 Mashup Tool Features

The comparison of the features of the mashup tools/approaches was instead
based on the work by Aghaee et al. [4].



– Targeted end-user: Determining which group of users is targeted by a
mashup tool/approach is a strategic design issue decided by the developers.
Non-programmers do not have programming skills. Yet, they may be inter-
ested in creating mashups as long as it does not require them to learn and
use a programming language. Local developers are those non-programmers
who usually have advanced knowledge in computer tools. Expert program-
mers have adequate programming skills and experience to develop mashups
using programming and scripting languages (e.g., JavaScript and PHP).

– Automation degree: The automation degree of a mashup tool refers to how
much of the development process can be undertaken by the tool on behalf
of its users. Full automation of mashup development eliminates the need
for direct involvement of users in the development process. Semi-automatic
tools partially automate mashup development by providing guidance and
assistance. Manual approaches do not provide any automated support during
development; typically, these approaches come in the form of programming
libraries or runtime middlewares.

– Liveness level: Tanimoto proposed the concept of liveness [5], according to
which four levels of liveness can be distinguished. At Level 1 (non-executable
prototype mockup), a tool is just used to create prototype mashups that are
not directly connected to any kind of run-time system. Level 2 (explicit
compilation and deployment steps) of liveness is characterized by mashup
design blueprints that carry sufficient details to give them an executable
semantics. Level 3 (automatic compilation and deployment) tools support
rapid deployment into operation, e.g., triggered by each edit-change or by
an explicit action executed by the developer. Level 4 (dynamic modification
of running mashup) of mashup liveness is obtained by the tools that support
live modification of the mashup code, while it is being executed.

– Interaction technique: There have been a number of interaction tech-
niques through the use of which the barriers of programming can be lifted to
its developers [6]. Editable examples let users modify and change the behav-
ior of existing examples, instead of programming from scratch. In form-based
interaction, users are asked to fill out a form to create a new or change the
behavior of an existing object. Programming by demonstration suggests to
teach a computer by example how to accomplish a particular task. Spread-
sheets are one of the most popular and widely used end-user programming
approaches to store, manipulate, and display complex data. Textual DSLs
are languages targeted to address specific problems in a particular domain;
they have a textual syntax that may or may not resemble an existing general-
purpose programming language. A visual language (iconic), as opposed to a
textual programming language, is any programming language that uses vi-
sual symbols, syntax, and semantics. Some visual languages support wiring
with implicit control flow, where the control flow of the mashup is derived
from its data flow graph. Other visual languages support wiring with ex-
plicit control flow, where the control flow is explicitly defined, for instance,
by adding directed arrows connecting the boxes, or putting the boxes in a
specific order (e.g., from left to right). WYSIWYG (What You See Is What



You Get) enables users to create and modify a mashup on a graphical user
interface that is similar to the one that will appear when the mashup runs.
Natural language allows developers to express their mashup via a restricted,
controlled set of natural language constructs (e.g., a subset of English) that
can be interpreted unequivocally by a runtime environment.

– Online user community: Online communities are an important resource
in assisting developers, especially end-users, to program [7]. If a tool does
not support any online community (none), it is harder to leverage on the
experience of others. In public communities, the content is accessible to any
user on the Web who wishes to join the community (with or without reg-
istration). In private communities, the authority to join the community is
granted on the basis of compliance with some operator-specified criteria.

Like for the mashup features, also in the case of the mashup tools/approaches
many other characteristics could be considered (e.g., collaboration). The features
selected for the Challenge, however, already provide good insight into the phi-
losophy behind each approach, and we preferred to keep the list concise.

4 Participants

The following contributions were selected for participation in the Challenge5:

– FlexMash 2.0 – Flexible Modeling and Execution of Data Mashups by Pascal
Hirmer and Michael Behringer: FlexMash is a data mashup tool that aims at
facilitating the integration and processing of heterogeneous, dynamic data
sources. It targets domain experts, features a graphical pipes and filter mod-
eling paradigm, and supports the enforcement of non-functional requirements
like security and robustness. The first version of the tool was presented during
the 2015 edition of the Challenge; the new version comes with cloud-based
execution and human interaction during runtime.

– The SmartComposition Approach for Creating Environment-Aware Multi-
Screen Mashups by Michael Krug, Fabian Wiedemann, Markus Ast and
Martin Gaedke: The SmartComposition approach is a UI mashup framework
that supports local developers (non-experts) in creating environment-aware
multi-screen mashups by leveraging on HTML markup only. Supported Web
components can range from data sources to components that provide access
to the Web of Things, e.g., to control actuators and access sensors. Mashup
execution across multiple screens is enabled using a messaging service based
on WebSockets.

– Linked Widgets Platform for Rapid Collaborative Semantic Mashup Devel-
opment by Tuan-Dat Trinh, Ba-Lam Do, Peter Wetz, Peb Ruswono Aryan,

5 We would like to thank Michael Luggen and Eduard Daoud for participating in the
Challenge with their presentations of, respectively, the Uduvudu Editor and search-
based mashup development. It’s a pity that, due to time constraints, we were not
able to include a long version of their proposals in these post-challenge proceedings.



Elmar Kiesling and A Min Tjoa: The Linked Widgets platforms is a mashup
platform that combines the Semantic Web and mashups to help users inte-
grate data and make informed decisions in decision making processes. The
tool is based on a semantic model of mashup components that enables the
automation of some typical data integration tasks, such as overcoming data
heterogeneity and data exploration. In addition, the Linked Widgets plat-
form supports a live, collaborative mashup development and execution model
able to easily bring together multiple stakeholders.

– End-User Development for the Internet of Things: EFESTO and the 5Ws
composition paradigm by Giuseppe Desolda, Carmelo Ardito and Maristella
Matera: EFESTO is another tool that was presented as well in 2015. This
new version comes with a novel rule-based composition paradigm (exhibiting
similarities with the well-known IFTTT) that provides also for the compo-
sition of so-called smart objects, i.e., components that encapsulate sensors
and/or actuators accessible via the Internet of Things. The described work
targets end-users via a dedicated visual rule composition notation.

– Toolet: an editor for Web-based tool appropriation by hobby programmers by
Jeremı́as P. Contell and Oscar Dı́az: Toolet is an editor for Web appropri-
ation, that is, for the ad-hoc adaptation of third-party Web applications to
the needs of users performed by the users themselves. The level of abstrac-
tion to enable users to integrate and manipulate data proposed by Toolet is
an original one based on Google Spreadsheets. The adaptation of Web appli-
cations is then based on Web augmentation techniques, which also cater for
hobby programmers. Toolet is one of the early prototypes included in this
volume.

– On the Role of Context in the Design of Mobile Mashups by Valerio Cassani,
Stefano Gianelli, Maristella Matera, Riccardo Medana, Elisa Quintarelli,
Letizia Tanca and Vittorio Zaccaria: This contribution introduced CAMUS,
a design methodology and an accompanying platform for the design and
fast development of Context-Aware Mobile mashUpS. The approach revolves
around the concept of context to effectively cater to situational needs of
users, while the target mashups are mobile applications. Internally the plat-
form makes use of adaptable model-driven engineering techniques. The pre-
sented tool is an early prototype of the envisioned platform.

Table 1 summarizes the characteristics of the selected approaches as declared
by the authors. Compared to last year, it is evident that the Internet of Things
has percolated into the presented approaches, and most of the proposals aim
at supporting hybrid mashups, featuring integration logics stemming from the
data, logic and UI layers. The strong focus on end-users without significant
programming skills is confirmed also this year, as is – in line with this observation
– the focus on graphical development paradigms (ranging from editable examples
to iconic and WYSIWYG paradigms) and dynamic, live (level 4) and automatic
(level 3) development approaches.

Together, this selection of mashup approaches provides an intriguing snap-
shot of the current state of the art in research on mashup development aids.



Table 1: Overview of the mashup and mashup tool features declared by the
approaches that participated in the ICWE 2016 Rapid Mashup Challenge.

F
le
x
M

a
sh

2
.0

S
m
a
rt
C
o
m
p
o
si
ti
o
n

L
in
k
e
d

W
id
g
e
ts

T
o
o
le
t

E
F
E
S
T
O

C
A
M

U
S

M
a
s
h
u
p

Mashup

type

Data mashups 3 3 3

Logic mashups

UI mashups 3

Hybrid mashups 3 3 3

Component

types

Data components 3 3 3 3 3 3

Logic components 3 3 3 3 3

UI components 3 3 3 3

Runtime

location

Client-side only 3

Server-side only 3

Client-server 3 3 3 3

Integration

logic

UI-based integr.

Orchestration 3 3 3 3 3

Choreography 3 3

Instantiation

lifecycle

Stateless 3

Short-living 3 3

Long-living 3 3 3 3

M
a
s
h
u
p

t
o
o
l

Target

end-user

Local developers 3 3 3

Non-programmers 3 3

Expert programmers 3

Automation

degree

Full automation 3 3

Semi-automation 3 3 3 3

Manual 3 3

Liveness

level

Level 1 (mockup)

Level 2 (manual) 3

Level 3 (automatic) 3 3 3

Level 4 (dynamic) 3 3

Interaction

technique

Editable examples 3

Form-based 3

Progr. by demonstration

Spreadsheets 3

Textual DSL

Visual (iconic) 3 3 3

Visual (wiring, implicit) 3

Visual (wiring, explicit) 3

WYSIWYG 3

Natural language

Online user

community

None 3 3 3 3 3

Private

Public 3



Some proposals are already very mature and close to production systems (e.g.,
FlexMash 2.0, SmartComposition, Linked Widgets, search-based mashups, and
EFESTO), while others are still in an early stage of development (e.g., Toolet
and CAMUS). Yet, they all provide good insight into the research questions and
technological trends researchers are intrigued by right now and that still ask for
good questions before we can say that mashup development is properly assisted
for all kinds of target developers.

We are confident that the reader will find the remainder of this volume, which
provides detailed insight into the introduced approaches, as intriguing as we do.

References

1. Daniel, F., Matera, M.: Mashups: Concepts, Models and Architectures. Springer
(2014)

2. Daniel, F., Pautasso, C., eds.: Rapid Mashup Development Tools - First Interna-
tional Rapid Mashup Challenge, RMC 2015, Rotterdam, The Netherlands, June 23,
2015, Revised Selected Papers. Volume 591 of Communications in Computer and
Information Science., Springer (2016)

3. Berners-Lee, T., Hendler, J., Lassila, O.: The semantic web. Scientific American
(May 2001) 34–43

4. Aghaee, S., Nowak, M., Pautasso, C.: Reusable decision space for mashup tool
design. In Barbosa, S.D.J., Campos, J.C., Kazman, R., Palanque, P.A., Harrison,
M.D., Reeves, S., eds.: EICS, ACM (2012) 211–220

5. Tanimoto, S.L.: Viva: A visual language for image processing. Journal of Visual
Languages & Computing 1(2) (1990) 127–139

6. Myers, B.A., Ko, A.J., Burnett, M.M.: Invited research overview: end-user pro-
gramming. In: CHI’06 extended abstracts on Human factors in computing systems,
ACM (2006) 75–80

7. Nardi, B.A.: A small matter of programming: perspectives on end user computing.
MIT press (1993)


