# W <br> CSM <br> 01 <br> 2 

Prof. Paola Antonietti, MOX-Politecnico di Milano, Italy
Dr. Matteo Bruggi, DICA-Politecnico di Milano, Italy
Prof. Simone Scacchi, DIMAT-Università di Milano, Italy
Prof. Marco Verani, MOX-Politecnico di Milano, Italy

## A numerical investigation on the use of the virtual element method for topology optimization on polygonal meshes

## Aim

Moving along the lines of the pioneering works [1,2] explore the potentiality of polygonal meshes and the virtual element method to solve topology optimization problems governed by: a) elasticity equation - b) Stokes equation

## VEM discretization

$\mathcal{T}_{h}$ : decomposition into polygonal elements $E$
$\mathbb{Q}_{a d}=\left\{\rho_{h} \in \mathcal{Q}_{a d}: \rho_{h \mid E} \in \mathbb{P}_{0}(E) \quad \forall E \in \mathcal{T}_{h}\right\} \rightarrow$ discrete controls $\mathbf{V}_{h} \subset \mathcal{V} \rightarrow$ low-order VEM space of discrete displacements [3]

- a) minimum compliance problem:

$$
\begin{cases}\min _{\rho_{h} \in \mathbb{Q}_{a d}} & \mathcal{C}\left(\rho_{h}, \mathbf{u}_{h}\right)=\mathcal{F}_{h}\left(\mathbf{u}_{h}\right) \\ \text { s.t. } & a_{h}\left(\rho_{h} ; \mathbf{u}_{h}, \mathbf{v}_{h}\right)=\mathcal{F}_{h}\left(\mathbf{v}_{\mathbf{h}}\right) \quad \forall \mathbf{v}_{\mathbf{h}} \in \mathcal{V}_{\mathbf{0}, \mathbf{h}} \\ & \frac{1}{V} \int_{\Omega} \rho_{h} d x \leq V_{f}\end{cases}
$$

- $a_{h}\left(\rho_{h} ; \mathbf{u}_{h}, \mathbf{v}_{h}\right)=\sum_{E \in \mathcal{T}_{h}} \rho_{E}^{p} a_{h}^{E}\left(\mathbf{u}_{h}, \mathbf{v}_{h}\right) \rightarrow$ discrete form
- $a_{h}^{E}\left(\mathbf{u}_{h}, \mathbf{v}_{h}\right) \simeq 2 \mu_{0} \int_{E} \epsilon(\mathbf{u}): \epsilon(\mathbf{v}) \mathbf{d x}+\lambda_{\mathbf{0}} \int_{\mathbf{E}} \operatorname{div} \mathbf{u} \operatorname{div} \mathbf{v} \mathbf{d x}$
- $\mathcal{F}_{h}\left(\mathbf{v}_{\mathbf{h}}\right) \rightarrow$ discrete load
- b) minimum dissipated energy problem

$$
\begin{cases}\min _{\rho_{h} \in \mathbb{Q}_{a d}} & a_{h}\left(\rho_{h} ; \mathbf{u}_{h}, \mathbf{u}_{h}\right) \\ \text { s.t. } & a_{h}\left(\rho_{h} ; \mathbf{u}_{h}, \mathbf{v}_{h}\right)=0 \quad \forall \mathbf{v}_{\mathbf{h}} \in \mathcal{V}_{\mathbf{0}, \mathbf{h}} \\ & \frac{1}{V} \int_{\Omega} \rho_{h} d x \leq V_{f}\end{cases}
$$

- $a_{h}\left(\rho_{h} ; \mathbf{u}_{h}, \mathbf{v}_{h}\right)=\sum_{E \in \mathcal{T}_{h}} a_{h}^{E}\left(\rho_{h} ; \mathbf{u}_{h}, \mathbf{v}_{h}\right) \rightarrow$ discrete form
- $a_{h}^{E}\left(\rho_{h} ; \mathbf{u}_{h}, \mathbf{v}_{h}\right) \simeq 2 \mu_{0} \int_{E} \epsilon(\mathbf{u}): \epsilon(\mathbf{v}) \mathbf{d x}+\lambda_{\mathbf{0}} \int_{\mathbf{E}} \operatorname{div} \mathbf{u} \operatorname{div} \mathbf{v} \mathbf{d x}+\int_{\Omega} \frac{5 \mu}{\rho^{2}} \mathbf{u v}$


Pipe with obstacle. Optimal layout on an unstructured grid with 4096 polygons $\rightarrow$ Accurate geometrical description


Clamped cantilever. Optimal layouts achieved using structured VEM grids (top - 2006 and 7990 polygonal elements) vs. FEM grids (bottom - 2048 and 8192 square elements)
$\rightarrow$ Coarse quadrilateral grids can lead to sub-optimal solutions


Four-point load specimen on unrotated / 30 ${ }^{\circ}$-rotated meshes. Optimal layouts achieved on a VEM grid (top - 2168 elements) vs. a FEM grid (bottom - 2068 four-node elements)
$\rightarrow$ Rotated quadrilateral grids can lead to unphysical optima

## References

[1] C. Talischi, G.H. Paulino, A. Pereira, I.F.M. Menezes. Polygonal nite elements for topology optimization: A unifying paradigm. Int. J. Numer. Meth. Engng., 82: 671-698, 2010.
[2] C. Talischi, A. Pereira, G.H. Paulino, I.F.M Menezes, M.S. Carvalho. Polygonal finite elements for incompressible fluid flow. Internat. J. Numer. Methods Fluids 74(2):134-151, 2014. [3] L. Beirão da Veiga, F. Brezzi, and L. D. Marini. Virtual elements for linear elasticity problems. SIAM J. Numer. Anal., 51(2):794-812, 2013

## Acknowledgements

The authors wish to thank Prof. Ole Sigmund for suggesting the adoption of a version of the density filter depending on the element volume to improve results in case of irregular meshes. Prof. Krister Svanberg is gratefully acknowledged for providing the MMA code.

