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On the structure of quantum Markov semigroups of

weak coupling limit type
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1 Departamento de Matemáticas, UAM-Iztapalapa, Av. San Rafael Atlixco 186, Col.
Vicentina, 09340 México D.F., México
2 Dipartimento di Matematica, Politecnico di Milano, Piazza Leonardo da Vinci 32, I-20133
Milano, Italy

E-mail: jrbs@xanum.uam.mx, franco.fagnola@polimi.it

Abstract. We discuss some recent results on the structure of quantum Markov semigroups
of weak coupling limit type and their stationary states. In particular, we identify the minimal
central projection in the fixed point algebra where they act in a trivial way and show, when they
admit a single Bohr frequency, that all invariant states are convex combinations of equilibrium
states and arbitrary states supported in the above minimal central projection.

1. Introduction
Quantum Markov Semigroups (QMS) or, in the physical terminology, quantum dynamical
semigroups are the fundamental tool for mathematical modelling of open quantum systems
interacting with external environments. The increasing interest in phenomena like decoherence
[9, 10, 13, 25], coherent quantum computing and control [2], convergence to equilibrium
[12, 14, 15, 7, 19] and entropy production [11, 18, 21, 22] motivates investigation on special
features of QMSs.

The fundamental papers of Gorini-Kossakowski-Sudharshan [20] and Lindblad [24] in 1976
characterized the structure of generators uniformly continuous QMSs. Yet the emerging
structure is still general and needs further specialization if one wants to study really relevant
physical models (as, for instance, quantum harmonic oscillators [8, 15, 23] or QMS satisfying
detailed balance conditions [5, 11, 8, 16, 17]). The powerful technique of the stochastic limit
[3], allows one to deduce, from fundamental physical laws, generators of QMSs with special
structures that are rich enough to include several relevant models but not too much to fit
(almost) any Markov process (see e.g. [4]).

In [1] we began the study of invariant states of QMS of weak coupling limit type (WCLT)
trying to single out special subclasses of invariant states with properties that are rich enough to
go beyond the equilibrium situation and possibly allow explicit solutions. Following a suggestion
emerging in that work, non-equilibrium states seem to be those which are a function of the system
Hamiltonian HS . In this framework, it would be interesting to answer the following questions:

1. under what conditions invariant densities commute with HS?

2. under what conditions invariant densities are functions of HS?

3. if an invariant state is a function of HS , what function is it?

1

37th International Conference on Quantum Probability and Related Topics (QP37)                         IOP Publishing
IOP Conf. Series: Journal of Physics: Conf. Series 819 (2017) 012003         doi:10.1088/1742-6596/819/1/012003

International Conference on Recent Trends in Physics 2016 (ICRTP2016) IOP Publishing
Journal of Physics: Conference Series 755 (2016) 011001 doi:10.1088/1742-6596/755/1/011001

Content from this work may be used under the terms of the Creative Commons Attribution 3.0 licence. Any further distribution
of this work must maintain attribution to the author(s) and the title of the work, journal citation and DOI.

Published under licence by IOP Publishing Ltd

http://creativecommons.org/licenses/by/3.0


In this paper, we discuss some recent partial results on the structure of QMS of WCLT and
their stationary states. In particular, we show how to identify the minimal central projection in
the fixed point algebra where the QMS acts in trivial way. Moreover, we prove in Theorem 12,
under some technical assumptions (see (A) Section 4), that all invariant states of QMSs with
single Bohr frequency, which are a function of the system Hamiltonian, are convex combinations
of equilibrium states and arbitrary states supported in the above minimal central projection.

Example 13 shows that the same conclusion does not hold for invariant states in the
commutant of the system Hamiltonian.

2. QMSs of WCLT
Let h be a complex Hilbert space and (Tt)t≥0 be a uniformly continuous QMS acting on B(h),
the von Neumann algebra of all bounded operators on h with identity operator 1. The generator
L has the well-known Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) form

L(x) = i[H,x]− 1

2

∑
`≥1

(L∗`L`x− 2L∗`xL` + xL∗`L`)

where H = H∗ ∈ B(h) and (L`)`≥1 is sequence of operators on h such that the series
∑

`≥1 L
∗
`L`

is strongly convergent.
Generators of QMSs of WCLT (see [1, 3]) have the following further additional structure

determined by a self-adjoint operator HS , the system Hamiltonian, and an operator D ∈ B(h),
the system factor of the system - environment interaction operator. Assume that HS has purely
point spectrum and write its spectral decomposition

HS =
∑

εn∈Sp(HS)

εnPεn

where ε0 < ε1 < . . . and Pεn is the spectral projection corresponding to the eigenvalue εn. We
call Bohr frequencies all differences ω = εn − εm with εn, εm eigenvalues of HS and denote by

B+ = {ω = εn − εm > 0 | εn, εm ∈ Sp(HS) },

the set of all strictly positive Bohr frequencies. We consider a D ∈ B(h) and, with each ω ∈ B+,
we associate the operators

Dω =
∑

ω=εn−εm PεmDPεn , D∗ω =
∑

ω=εn−εm PεnD
∗Pεm

Hω = ζ−ωD
∗
ωDω + ζ+ωDωD

∗
ω, ζ−ω, ζ+ω ∈ R

where β :]0,+∞[→]0,+∞[ is a function and constants Γ−ω ≥ Γ+ω ≥ 0 given by

Γ−ω =
cω e

β(ω)ω

eβ(ω)ω − 1
, Γ+ω =

cω

eβ(ω)ω − 1
, cω ≥ 0.

Definition 1 A (HS , β)-weak coupling limit type (WCLT) Markov generator L on B(h) has
the GKSL form given by:

L(x) =
∑
ω∈B̂+

Lω(x), (1)

where B̂+ = {ω ∈ B+ | Dω 6= 0, |Γ−ω|+ |ζ−ω|+ |ζ+ω| 6= 0 } and

Lω(x) = i[Hω, x]− Γ−ω

(
1

2
{D∗ωDω, x} −D∗ωxDω

)
− Γ+ω

(
1

2
{DωD

∗
ω, x} −DωxD

∗
ω

)
.

2
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In order the above L to be the GKSL generator of a norm continuous QMS, throughout the
paper we assume that the series∑

ω∈B̂+

Γ−ωD
∗
ωDω,

∑
ω∈B̂+

Γ+ωD
∗
ωDω,

∑
ω∈B̂+

ζ−ωD
∗
ωDω,

∑
ω∈B̂+

ζ+ωD
∗
ωDω,

are strongly convergent.
Note that, for all Bohr frequency ω, it may happen that either the commutator i[Hω, · ] or

the dissipative part of Lω depending on Γ±ω are zero according to the values of the constants
cω, ζ−ω, ζ+ω but they can not be both equal to zero.

We now recall a useful property of generators of QMSs of WCLT.

Lemma 2 The linear map E on B(h) defined by

E(x) =
∑
n≥0

PεnxPεn

is a conditional expectation onto {HS}′. Moreover

L ◦ E = E ◦ L, L∗ ◦ E = E ◦ L∗

Proof. Hint (see [1, 3]): check that L ◦ E = E ◦ L ◦ E and L∗ ◦ E = E ◦ L∗ ◦ E then “dualize”

tr (σE (L(x))) = tr (L∗ (E(σ)) (x)) = tr (E (L∗ (E(σ)))x) = tr (σE (L (E(x))))

for all trace-class operator σ and all x ∈ B(h). �
In this paper we are concerned with the case where

(i) the system Hamiltonian HS has a lowest energy state, also called ground state, which we
will denote by ε0,

(ii) the eigenspace associated with each eigenvalue εn is finite dimensional.

In order to answer questions raised in the introduction we begin by a simple example inspired
by the two-photon creation and annihilation process discussed in [15]. It is reasonable to expect
that the interaction operator D plays a key role in the structure of invariant states. This example
gives a hint in this direction.

Example 3 Let h = `2(N) with canonical orthonormal basis (εn)n≥0, and

HS =
∑
n≥0

n (|ε2n〉〈ε2n|+ |ε2n+1〉〈ε2n+1|) , D =
∑
m≥1

|ε2m−2〉〈ε2m|

Suppose that there is a single Bohr frequency ω = 1 (or, in an equivalent way all ζ±hω,Γ±hω
vanish for all h ≥ 2) for and Pεn = |ε2n〉〈ε2n| + |ε2n+1〉〈ε2n+1| for all n ≥ 0 so that Dω = D.
Choosing constants Γ−ω = 2,Γ+ω = 1 and leaving ζ−ω = ζ+ω arbitrary, the QMS T generated
by (1) admits the faithful invariant state

ρ =
∑
n≥0

2−n−2Pεn .

However, it is not the unique invariant state because introducing the even and odd projections

pe =
∑
m≥0

|ε2m〉〈ε2m|, po =
∑
m≥0

|ε2m+1〉〈ε2m+1|,

3
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both commuting with HS and D, one can easily see as in [15] that any invariant state has the
form

η = σpo + (2ρ)pe

where σ is an arbitrary density matrix supported in po and 2ρ = 2ρpe (the constant 2 is needed
for normalization of the state ρ restricted to pe).

Clearly, all invariant states commute with HS but only ρ is a function of HS . It is easy to
see that the von Neumann algebra {Dω, D

∗
ω}
′′ generated by Dω and D∗ω is

Cpo ⊕ peB(h)pe

and po is the orthogonal projection onto ker(Dω)∩ ker(D∗ω). As a consequence Pεn /∈ {D,D∗}′′
for all n.

The above example undoubtedly highlights the role of subspaces of kernels of Dω and D∗ω
and eigenspaces of H. Operators supported the intersection of these subspaces turn out to be
fixed points of completely positive maps Tt and density matrices supported the intersection of
these subspaces turn out to be invariant states.

The set of fixed points F(T ) for completely positive maps Tt, on the other hand, plays an
important role in the study of invariant states; next section contains some results on its structure
that are very useful in the study of our problems.

3. The set of fixed points F(T )
The set of fixed points of T is a vector space which is norm-closed, weakly∗ closed defined as

F(T ) = {x ∈ B(h) | Tt(x) = x for all t ≥ 0} .

Clearly 1 ∈ F(T ) and a ∈ F(T ) if and only if a∗ ∈ F(T ). The set F(T ) in general is not an
algebra (see e.g. [13] Example 2.1), however we have the following

Proposition 4 If the QMS T admits a faithful normal invariant state then F(T ) is an atomic
von Neumann subalgebra of B(h).

Proof. For x ∈ F(T ), by 2-positivity of maps Tt, we have Tt(x∗x) ≥ Tt(x∗)Tt(x) = x∗x. Since
ρ is an invariant state, we have (Tt(x∗x)− x∗x) = 0. It follows that Tt(x∗x) = x∗x because ρ is
faithful and x∗x ∈ F(T ).

This shows that F(T ) is a subalgebra of B(h) which is a von Neumann subalgebra because it
is clearly weakly∗ closed. Recalling that it is the image of a normal conditional expectation by
Theorem 1.1 of [19], it follows from a result due to Tomiyama that it is an atomic von Neumann
subalgebra of B(h). �

We recall some properties of F(T ) which we will use throughout the paper, see [13].

Lemma 5 1) An orthogonal projection p ∈ B(h) belongs to F(T ) if and only if it commutes
with the operators L`, L

∗
` and H of any GKSL representation of L.

2) If F(T ) is a von Neumann subalgebra of B(h), then it coincides with the commutant of the
set of operators {L`, L∗` , H | ` ≥ 1}.

Proof. If p commutes with Ll and H then L(p) = 0 and so Tt(p) = p for all t ≥ 0. On the other
hand, if Tt(p) = p for all t ≥ 0, then L(p) = 0. Therefore

0 = p⊥L(p)p⊥ =
∑
l≥1

(pL`p
⊥)∗(pL`p

⊥)⇒ pL`p
⊥ = 0.

4
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Analogous computations with L(p⊥) = L(1 − p) = 0 give us p⊥L`p = 0. Taking the adjoints
it follows that pL∗`p

⊥ = p⊥L∗`p = 0, so p commutes with L` and L∗` . As a consequence
0 = L(p) = i[H, p] so p commutes with H as well. This proves 1).

For 2), if F(T ) is a von Neumann subalgebra of B(h), then it is contained in its commutant
since it is generated by its projections which by 1) belong to {L`, L∗` , H : ` ≥ 1}′. Conversely,
any x commuting with L`, L

∗
` and H satisfies L(x) = 0 which implies Tt(x) = x for all t ≥ 0. �

Corollary 6 Let ρ be a faithful T -invariant state and p a minimal projection in F(T ). If

tr(ρp) 6= 0 then ρp :=
pρp

tr(ρp)
is the unique faithful invariant state of the irreducible QMS T p,

i.e., the restriction of T to the algebra pB(h)p.

Proof. Since p commutes with L`, L
∗
` and H we have Tt(x) = Tt(pxp) = pTt(x)p for all

x ∈ pB(h)p and t ≥ 0. Now, ρp is a T pt -invariant state since

tr(ρpT pt (x)) =
tr(ρpTt(pxp)p)

tr(ρp)
=

tr(ρTt(x))

tr(ρp)
=

tr(ρx)

tr(ρp)
= tr(ρpx).

Since p is a minimal projection in F(T ), the QMS T p is irreducible. The faithfulness of ρp in
pB(h)p follows from the fact that if pxp ≥ 0 for x ∈ B(h) then 0 = tr(ρpx) = tr(ρpxp)/tr(ρp)
implies pxp = 0 by the faithfulness of ρ. �

Proposition 7 If T is a QMS as in Definition 1 with a faithful invariant state then:

1) The only eigenvalue of each operator D∗ω is 0;

2) The projection z0 onto

⊕
λ∈Sp(H)

(ker(H − λ1)
⋂

{ω : Γ+ω>0}

(ker(Dω) ∩ ker(D∗ω))

 (2)

belongs to the center Z(F(T )) of F(T );

3) Every rank one projection in F(T ) is a subprojection of z0.

Proof. Suppose u 6= 0 is an eigenvector of D∗ω associated with an eigenvalue λ 6= 0. Recalling
that D∗ω =

∑
n≥0 Pεn+1L

∗Pεn , we have that
∑

n≥0 Pεn+1D
∗Pεnu = λ

∑
n≥0 Pεnu. The existence

of a lowest energy level and the orthogonality of (Pεn)n≥0 implies that λPε0u = 0, so Pε0u = 0.
Proceeding inductively we get that Pεnu = 0 for all n ≥ 0, thus u = 0 which is clearly a
contradiction. We conclude that λ = 0 and 1) is proved.

The projection z0 onto the subspace (2) satisfies, by definition Hz0 = λz0 for some λ ∈ Sp(H)
and Dωz0 = D∗ωz0 = 0 for all ω such that Γ+ω > 0. Taking the adjoints it follows that
z0Dω = z0D

∗
ω = 0 for all ω such that Γ+ω > 0. Thus z0 commutes with H and all the operators

L`, L
∗
` in a GKSL representation of the generator. By Lemma 5 then z0 ∈ F(T ).

To see that z0 belongs to Z(F(T )) notice that z0 is the sum of spectral projections of

(H − λ1)2 +
∑

{ω|Γ+ω>0}

κω(D∗ωDω +DωD
∗
ω)

corresponding to the eigenvalue 0 for λ ∈ Sp(H) and some strictly positive constants κω because
the intersection of kernels in (2) is the kernel of the above positive operator. This proves 2).

For 3), let p = |u〉〈u|, u ∈ h, ‖u‖ = 1 be a projection in F(T ). By Lemma 5, p commutes with
all Dω and D∗ω such that Γ+ω > 0 which implies that Dωu = 〈u,Dωu〉u and D∗ωu = 〈u,D∗ωu〉u.
So u is an eigenvector of Dω and D∗ω; by 1) 〈u,Dωu〉 = 〈u,D∗ωu〉 = 0 and u ∈ ker(Dω)∩ker(D∗ω).
Now L(p) = i[H, |u〉〈u| ] = 0 which implies that u is an eigenvector of H and so |u〉〈u| is a
subprojection of z0. �
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4. The case of a single Bohr frequency
In this section we show, under a technical assumption, that invariant states of QMS of WCLT
with a single Bohr frequency ω, which are functions of the system Hamiltonian HS , are convex
combinations of states ρ satisfying the quantum detailed balance condition

ρDω =
Γ+ω

Γ−ω
Dωρ, [H, ρ] = 0

and arbitrary states supported in z0. Moreover (see Theorem 12), they are essentially convex
combination of the canonical equilibrium state (3) defined here below. In this way, the can be
viewed as bona fide equilibrium states for an open quantum system. The notion of detailed
balance has several different quantum versions (see e.g. [16, 17] and the references therein). We
have no room here for a thorough discussion; suffice it to mention that the above conditions are
those that best reflect the quantum detailed condition in the present framework.

We assume that Γ−ω ≥ Γ+ω > 0 and

Z :=
∑
n≥0

(
Γ+ω

Γ−ω

)n
dim(Pεn) <∞.

Under this condition, one can easily see, as in [1] Theorem 4.1, that the faithful normal state

ρe = Z−1
∑
n≥0

(
Γ+ω

Γ−ω

)n
Pεn (3)

is an invariant state and so, by Lemma 5 part 2, the fixed point algebra F(T ) coincides with
the commutant {Dω, D

∗
ω, H}′, i.e., since H = ζ−ωD

∗
ωDω + ζ+ωDωD

∗
ω, in this case, we have

F(T ) = {Dω, D
∗
ω}′.

Inspired by the analogy with classical Markov jump processes, we now introduce a version of
“communication classes” allowing us to give an explicit description of F(T ).

Definition 8 A collection (n0, n1, . . . , n2k), εnj ∈ Sp(H), k ≥ 1, is a cycle of length 2k, or a
2k-cycle, rooted in level n if

(i) n0 = n2k = n and nj 6= n for all 1 ≤ j ≤ 2k − 1.

(ii) nj+1 = nj ± 1 for all 0 ≤ j ≤ 2k − 1.

We define the 0-cycle as (n) and two 1-cycles as (n, n+ 1, n) and (n, n−1, n), all rooted in level
n.

With any 2k-cycle rooted in level n we associate the following operator acting on Pεnh:

L(n, n1, . . . , n2k−1, n) = L(n2k−1, n)L(n2k−2, n2k−1) · · ·L(n1, n2)L(n, n1),

where L(n, n± 1) =

{
Pεn+1D

∗
ωPεn , if +

Pεn−1DωPεn , if − and L(n) = Pεn .

Let An be the algebra generated by the above operators associated with all cycles rooted in
n. By construction An is canonically identified with a self-adjoint subalgebra of B(Pεnh).

The commutant of An, in B(Pεnh), will not be abelian if z0 has dimension bigger than 2 and
commutes with Pεn because it contains the factor z0B(Pεnh)z0. There are several situations,
however, in which the commutant of z⊥0 Anz⊥0 is abelian as, for instance, in Example 3. For this
reason, throughout this section we assume that:

(A) [z0, Pεn ] = 0 and the commutant in B(Pεnh) of z⊥0 Anz⊥0 is abelian for all n. (4)

6
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In this way there exists unique family {Q(n)
j }j of mutually orthogonal minimal projections in

the center of An such that its commutant in B(Pεnh) is

z0Pεnz0 ⊕ CQ(n)
j .

The maximal family of minimal An-invariant subspaces of Pεnh, denoted by {S(n, i)}i, is unique

and each Q
(n)
j is the orthogonal projection onto a certain subspace S(n, in). Notice that each

vector u ∈ S(n, in) is An-cyclic in S(n, in) (see e.g. [6] Proposition 2.3.8) otherwise Anu would
be a An-invariant subspace contained in S(n, in) for each u ∈ S(n, in), contradicting minimality.
We refer to each S(n, in) as an n-level brick.

Definition 9 Let S(n, in) and S(m, im) respectively be n-level and m-level bricks, n 6= m.

1) We write S(n ± 1, jn±1)  S(n, in), and say that S(n, in) is accesible from the (n ± 1)-
level brick S(n ± 1, in±1), if there exist un ∈ S(n, in) and vn±1 ∈ S(n ± 1, jn±1) such that
〈L(n, n± 1)un, vn±1〉 6= 0.

2) S(m, im) S(n, in), or S(n, in) is accesible from the m-level brick S(m, im), if

S(n+ l, in+l) S(n+ l + 1, in+1+l) for l = 0, 1, . . . ,m− n− 1, when n < m, or
S(n− l, in+l) S(n− l − 1, in+1+l) for l = 0, 1, . . . , n−m− 1, when m < n.

3) The bricks S(n, in) and S(m, im) are said to communicate if S(m, im)  S(n, in) and
S(n, in) S(m, im). This relation is denoted by S(n, in)! S(m, im).

Remark. The minimality of {S(n, i)}i as An invariant subspace, for every level n implies
that a brick of a given level may communicate with at most one brick of a different level.
Indeed, if S(n, i) ! S(n ± 1, j) and S(n, i) ! S(n ± 1, j′), where j 6= j′, then both
S(n ± 1, j) ! S(n ± 1, j′) contradicting the fact that S(n ± 1, j) is not accessible from
S(n ± 1, j′). As a consequence the range of the restriction of L(n, n ± 1) to S(n, i) is either
contained in {0} or, if S(n, i) ! S(n ± 1, j), contained in S(n ± 1, j). Thus it is always true

that Q
(n±1)
in±1

L(n, n± 1) = L(n, n± 1)Q
(n)
in

.
The communication relation is an equivalence relation. It is reflexive since any non-

zero u ∈ S(n, in) satisfies 〈L(n)u, u〉 6= 0. It is symmetric since 〈L(n, n ± 1)un, vn±1〉 =
〈un, L(n± 1, n)vn±1〉 implies

S(n, in) S(n± 1, in±1)⇔ S(n± 1, in±1) S(n, ii).

Transitivity follows from the definition.

Definition 10 An equivalence class C induced by ! is called a communication class. The set
of all classes will be denoted by C . For each C ∈ C let QC be the orthogonal projection onto⊕

S(n,in)∈C S(n, in). Moreover denote Qf = z0.

For a communication class C we denote by Mmin(C) (resp. Mmax(C)) the lowest (resp.
highest) level n containing a brick in C with the understanding Mmax + ∞ if there are
infinitely many levels with a brick in the class. To simplify the notation we will omit the
dependence on the class when no confusion is possible. Therefore any class can be described as

C = {S(n, in) : Mmin ≤ n ≤Mmax} and the corresponding projection is QC =
∑Mmax

n=Mmin
Q

(n)
in

.

Theorem 11 Projections QC, for C ∈ C , are minimal in F(T ). Moreover Qf +
∑
C∈C QC = 1.
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n− 2

n− 1

n

n+ 1

n+ 2

n+ 3

Figure 1. Bricks (rectangles) and communication classes (unions of rectangles joined by solid
lines), shaded regions represent subspaces of z0.

Proof. Recall that, under our assumptions F(T ) = {Dω, D
∗
ω}′ and we already know from

Proposition 7 part 2 that Qf ∈ F(T ).
We first check we that Dω and D∗ω commute with any QC . Consider a communication class

C = {S(n, in) : Mmin ≤ n ≤Mmax}. By the above remark we have

QCDω =

Mmax∑
n=Mmin

Q
(n)
in
PεnDωPεn+1 =

Mmax∑
n=Mmin

PεnDωPεn+1Q
(n±1)
in±1

= DωQC

QCD
∗
ω =

Mmax∑
n=Mmin

Q
(n±1)
in±1

Pεn+1D
∗
ωPεn =

Mmax∑
n=Mmin

Pεn+1D
∗
ωPεnQ

(n)
in

= D∗ωQC .

This proves that QC ∈ F(T ).
We finally check that each projection QC is minimal in F(T ). Let q be a projection in F(T )

such that q ≤ QC . Note that, by PεnqPεn = |qPεn |2, we have PεnqPεn = 0 if and only if qPεn 6= 0
or Pεnq 6= 0. Let N(q) be the set of indexes n for which qPεn 6= 0.

From DωD
∗
ωq = qDωD

∗
ω and D∗ωDωq = qD∗ωDω, left and right multiplying by Pεn we, find

PεnqPεnDPεn+1D
∗Pεn = PεnDPεn+1D

∗PεnqPεn , PεnqPεnD
∗Pεn−1DPεn = PεnD

∗Pεn−1DPεnqPεn

for all n. In a similar way, starting from commutations with non-commutative monomials in
Dω and D∗ω, one can see that PεnqPεn commutes with generators of An for all n and so the
self-adjoint operator PεnqPεn belongs to the commutant of An in B(Pεnh). As a consequence, all
its spectral projections belong to the same commutant. The range of these spectral projections,

however, is an An-invariant subspace of Pεnh contained in the range of some Q
(n)
i because of the

inequality PεnqPεn ≤ PεnQCPεn . It follows that, for all n ∈ N(q), PεnqPεn = PεnQCPεn = Q
(n)
in

for some in by minimality of PεnQCPεn .
Moreover, if

QC =

Mmax∑
n=Mmin

Q
(n)
in
,
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then, for all n ∈ N(q), we can not have PεnqPεn 6= 0 and Pεn+1qPεn+1 = 0, otherwise, since

QC ≤ z⊥0 , starting from Dωq = qDω and D∗ωq = qD∗ω we would find a contradiction with

Pεn+1qPεn+1D
∗
ωPεn = Pεn+1D

∗
ωPεnqPεn , PεnqPεnDωPεn+1 = PεnDωPεn+1qPεn+1 .

It follows that

QC =

Mmax∑
n=Mmin

Q
(n)
in

=

Mmax∑
n=Mmin

PεnqPεn .

However,

QC ≥ q =
∑

n∈N(q)

PεnqPεn +
∑

n,m∈N(q), n6=m

PεnqPεn = QC +
∑

n,m∈N(q), n6=m

PεnqPεn

so that the double sum in the right-hand side is a negative self-adjoint operator with zero
diagonal part and, as such, it must be zero. This proves that QC = q =

∑
n∈N(q) PεnqPεn and

shows that QC is minimal. �

Theorem 12 Let L be the generator of a QMS of WCLT as in Definition 1 with a single Bohr
frequency. Suppose that the abelianess assumption (A) holds and let ρ be an invariant state.
The following statements hold:

(i) For every communication class C ∈ C such that tr(ρQC) > 0 we have

QCρQC
tr(ρQC)

=
QCρeQC
tr(ρeQC)

where ρe is the invariant state (3),

(ii) Every invariant state ρ which is a function of HS, i.e. ρ =
∑

n≥0 ρnPεn with ρn ≥ 0,
∑

ρn=1
has the form

ρ = QfρQf +
∑
CλC∈C

λCQCρeQC

where

λC =
tr(ρQC)

tr(ρeQC)
.

Proof. (i) Follows immediately from Corollary 6 and uniqueness of invariant states of irreducible
QMSs.

(ii) Since projections Qf , QC commute with projections Pεn , the density matrix ρ commutes
with projections Qf , QC . It follows then from (i)

ρ = Qfρ+
∑
C∈C

QCρ = QfρQf +
∑
C∈C

QCρQC = QfρQf +
∑
C∈C

λCQCρeQC .

�

The above result is no longer true if we consider invariant states commuting with HS as
shows the following example.

Example 13 Let h = `2(N) with canonical orthonormal basis (εn)n≥0, and

HS =
∑
n≥0

n (|ε2n〉〈ε2n|+ |ε2n+1〉〈ε2n+1|) , D =
∑
m≥1

(|ε2m−2〉〈ε2m|+ |ε2m−1〉〈ε2m+1|)
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Suppose that there is a single Bohr frequency ω = 1 (or, in an equivalent way all ζ±hω,Γ±hω
vanish for all h ≥ 2) for and Pεn = |ε2n〉〈ε2n| + |ε2n+1〉〈ε2n+1| for all n ≥ 0 so that Dω = D.
Choose constants Γ−ω = 2,Γ+ω = 1 and leave ζ−ω = ζ+ω arbitrary. The QMS T generated by
(1) admits the following faithful invariant states

η =
∑
n≥0

2−n−1 (λ|ε2n〉〈ε2n|+ z|ε2n〉〈ε2n+1|+ z|ε2n+1〉〈ε2n|+ (1− λ)|ε2n+1〉〈ε2n+1|)

where 0 ≤ λ ≤ 1 and |z|2 ≤ λ(1−λ). Indeed, straightforward computations show that DD∗ = 1,
D∗D = 1−Pε0 , DηD∗ = 2−1η, D∗ηD = 2η(1−Pε0) and η commutes with H so that L∗(η) = 0.
Clearly, η is a function of HS if and only if λ = 1/2 and z = 0,
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