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Abstract—This paper is concerned with a class of discrete-
time semi-Markov jump linear systems (S-MJLSs) subject to
exponentially modulated periodic (EMP) probability density
function (PDF) of sojourn time, and the problems of stability
and stabilization are addressed. Setting a relatively large period,
the considered systems are capable of approximating the general
S-MJLSs (without any requirements on sojourn time PDFs) for
which numerically testable stability and stabilization conditions
are rather difficult to obtain. Necessary and sufficient criterion
for mean square stability of the general S-MJLSs are first
derived, which involve an infinite number of conditions and as
such not checkable. However, the developments lay a foundation
to further develop the numerically testable conditions for the
systems when the PDF of sojourn time are EMP albeit the sojourn
time can tend to infinity. The derivations explicitly depend on
the PDF of sojourn time, which circumvents the difficulty in
obtaining the memory transition probabilities of SMJLSs. The
adopted Lyapunov function is sojourn-time-dependent (STD), by
which the existence conditions of STD controller are developed
as well using certain techniques that can eliminate the terms
of power of matrices in the stability conditions. Two illustrative
examples including a class of population ecological systems are
presented to show the validity and applicability of the developed
theoretical results.

Index Terms—Exponentially modulated periodic distribution;
Mean squre stability; Probability density functions; Semi-Markov
jump linear systems; Sojourn time.

I. INTRODUCTION

Stochastic switching systems are generally referred to as

those dynamic systems displaying autonomous and stochastic

variations among a finite number of system modes that are

represented by differential/difference equations. The phenom-

ena of stochastic switching can be typically found in various

electric circuit systems [1], [2], [3], multi-legged and omni-

directional mobile robots [4], [5], and biological systems [6],

[7], communication networks [8], [9], [10]. As an important

class of stochastic switching systems, Markov jump linear

systems (MJLSs) have been extensively investigated over the

past decades, and the adopted Markov process or Markov

chain can greatly facilitate the analysis and synthesis of the

MJLSs. To date, many systematic results on such systems

are available in the literature, see for example, [11], [12]. In

particular, necessary and sufficient conditions for some control
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issues of the systems have been obtained, such as stability

analysis for the cases when the transition probabilities (TPs)

are completely known [13], [14] or not [15], and H∞ analysis

and control problems [16], [17], etc. It should be emphasized

that the developed theories can be effectively applied only if

the stochastic switching can be indeed modeled by Markov

process or Markov chain where the TPs are memoryless.

To generalize the scope of stochastic switching systems, a

naturally extended research frontier is the semi-Markov jump

systems (S-MJLSs) where the TPs will be memory, i.e., the

TP at each time depends on all the history information of

elapsed switching sequences. In mathematics, the sojourn time

between the consecutive jumps in S-MJLSs is not necessarily

subject to exponential or geometry distribution (continuous-

time or discrete-time domain, respectively) like in the cases

of MJLSs. However, the generality of semi-Markov chain in

the capability of modeling stochastic switching unavoidably

lead to the considerable complexity of studying the S-MJLSs,

even the basic stability and stabilization issues. Though some

advances have been achieved so far, see for example, [18],

[19], [20] by considering special classes of probability density

functions (PDFs), quite a few key problems are still largely

open, such as the fundamental necessary and sufficient stability

criteria and numerically checkable conditions in solving stabi-

lizing controller, despite a recent attempt to take upper bounds

on the sojourn time that actually will not tend to infinity in

practice [21].

In essence, the obstacles to the above-mentioned problems

lie in that the TPs of a semi-Markov chain are memory, there-

fore the computations of such time-varying TPs will involve

infinite iterations. As a consequence, the desired necessary

and sufficient conditions have not been developed paralleling

the results for MJLSs. Also, without any approximation on

the memory TPs or any truncation on the sojourn time to be

above bounded, in general it will be rather difficult to obtain a

finite of numerically testable stability conditions for S-MJLSs.

However, a noteworthy exception is the case when the sojourn

time is subject to exponentially modulated periodic (EMP)

distribution. Notice that by setting up a relatively large period

and transforming any types of non-EMP PDFs to be EMP, the

original S-MJLSs can be approximated by the transformed

systems for which only a limited number of conditions are

required (benefited from the periodicity). It can be conjectured

that, in this setting, the designed controller for the transformed

S-MJLSs can be effective for the original systems since the

PDFs of sojourn time are completely equivalent in the first
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period.

Motivated by the aforementioned observations, this paper

focuses on the stability and stabilization problems for the

discrete-time semi-Markov jump linear systems (S-MJLSs)

with EMP PDF of sojourn time. The contributions of this paper

lie in that: (i) Necessary and sufficient stability conditions are

derived for general S-MJLSs (sojourn time is not necessarily

subject to EMP distribution) in the sense of mean square

stability (MSS). The obtained criterion lays a foundation to

further develop the numerically testable conditions for the

systems when the PDF of sojourn time are EMP (albeit

the sojourn time can tend to infinity). (ii) The derivations

explicitly depend on the PDF of sojourn time, which cir-

cumvents the difficulty in obtaining the memory transition

probabilities of S-MJLSs. (iii) The adopted Lyapunov function

is sojourn-time-dependent (STD), which is less conservative

than the sojourn-time-independent ones, and as such the STD

stabilizing controller can be designed as well while using

certain techniques to eliminate the terms of power of matrices

in the stability conditions. The remainder of this paper is

organized as follows. In Section II, the problem formulation is

presented and the purposes of the paper are stated. The detailed

derivations of the proposed results are given in Section III.

Two numerical examples are provided to verify the theoretical

findings in Section IV, and Section V concludes this paper.

Notations: In this paper, R
n and R

n×m denotes the n-

dimensional Euclidean space and the set of all n × m real

matrices, respectively; ‖·‖ refers to the Euclidean vector norm;

N and N+ denote the set of non-negative integers and the

set of positive integers, respectively; N≥s1 , N≤s1 and N[s1,s2]

denote the sets {k ∈ N+ |k ≥ s1 } , {k ∈ N+ |k ≤ s1 } and

{k ∈ N+ |s1 ≤ k ≤ s2 }, respectively, for some s1, s2 ∈ Z+ . A

real-valued scalar function α : R+ → R+ that is continuous,

strictly increasing, and has α(0) = 0 is said to be of class

K. For notation (Ψ,F ,Pr), Ψ represents the sample space,

F is the σ-algebra of subsets of the sample space, and

Pr is the probability measure on F . X ′ and E [X ] stand

for the transpose and mathematical expectation of matrix

X , respectively. The notation P ≻ 0 (� 0) means P is

real symmetric positive (semi-positive) definite. In addition,

diag{· · · } and diag(n) {X} stand for a block-diagonal matrix

and a n× n block-diagonal matrix where all diagonal entries

are X , respectively. Symbol ∗ is used as an ellipsis for the

terms that are introduced by symmetry. I and 0 represent

the identity matrix and zero matrix, respectively. Matrices, if

their dimensions are not explicitly stated, are assumed to be

compatible for algebraic operations.

II. PRELIMINARIES AND PROBLEM FORMULATION

Fix the complete probability space (Ψ,F ,Pr) and consider

the following discrete-time stochastic switching systems:

x (k + 1) = A (rk)x (k) +B (rk)u (k) (1)

where x (k) ∈ R
n, u (k) ∈ R

nu are the system state and

control input, respectively; {rk}k∈N+
is a stochastic process

and considered to be a semi-Markov chain, which takes values

in a finite set I , {1, 2, . . . ,M}, and governs the switching

among M system modes. For rk = i ∈ I, the pair of matrices

of the ith system mode is denoted by (Ai, Bi), which are real

known matrices.

To recall the formal definition of semi-Markov chain, it is

needed to first present the concept of Markov renewal chain

that involves three stochastic processes attached to {rk}k∈N+
,

(i) the stochastic process {kn}n∈N+
∈ N+, where kn

denotes the time at the nth jump of rk. It is noted that k0 = 0,

and kn increases monotonically with n.

(ii) the stochastic process {Rn}n∈N+
∈ I, where Rn is the

mode index of rk at the nth jump and R0 ∈ I is the initial

state.

(iii) the stochastic process {Sn}n∈N+
∈ N+, where Sn =

kn − kn−1, ∀n ∈ N+ denotes the sojourn time of mode Rn−1

between the (n− 1)th jump and nth jump, and S0 = 0.

Definition 1: [22] The stochastic process {(Rn, kn)}n∈N+

is said to be a discrete-time homogeneous Markov renewal

chain (MRC) if the following holds ∀i, j ∈ I, ∀τ ∈ N+ and

∀n ∈ N+ :

Pr (Rn+1 = j, Sn+1 = τ |R0, . . . , Rn = i; k0, . . . , kn)

=Pr (Rn+1 = j, Sn+1 = τ |Rn = i)

=Pr (R1 = j, S1 = τ |R0 = i) .

In addition, {Rn}n∈N+ is called the embedded Markov

chain (EMC) of MRC {(Rn, kn)}n∈N+
, and the transition

probabilities (TPs) of {Rn}n∈N+ are defined by θij ,

Pr(Rn+1 = j|Rn = i), ∀i, j ∈ I with θii = 0.

Definition 2: [22] Consider a MRC {(Rn, kn)}n∈N+
. The

stochastic process {rk}k∈N+
is said to be a semi-Markov

chain (SMC) associated with MRC {(Rn, kn)}n∈N+
, if rk =

RN(k), ∀k ∈ N+, where N (k) , max {n ∈ N+|kn ≤ k}.

Unlike Markov jump systems in which a Markov chain

governs the switching of system modes and as such the

memoryless TPs are sufficient for control issues, for a semi-

Markov jump system, it is necessary to introduce the following

definitions and related properties for later derivations.

Definition 3: [22] Given a SMC {rk}k∈N+
corresponding

to a MRC {(Rn, kn)}n∈N+
,

(i) the sojourn-time probability density function (PDF)

depending on both the current mode i and the next system

mode j is defined as

ωij (τ),Pr(Sn+1 = τ |Rn+1 = j, Rn = i)

∀j 6= i, i, j ∈ I, ∀τ ∈ N+

and ωii (τ) = 0, ∀i ∈ I, ∀τ ∈ N+.

(ii) the semi-Markov kernel Π(τ) = [πij(τ)]i,j∈I ∈ R
M×M

where πij(τ) is defined as

πij (τ),Pr (Rn+1 = j, Sn+1 = τ |Rn = i)

=θijωij (τ) , ∀j 6= i, i, j ∈ I, ∀τ ∈ N+

and πii (τ) = 0, ∀i ∈ I, ∀τ ∈ N+.

(iii) the sojourn-time PDF only depending on the current

mode i is defined as

fi (τ),Pr(Sn+1 = τ |Rn = i)

=
∑

j∈I
θijωij(τ), ∀i ∈ I, ∀τ ∈ N+
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(iv) the sojourn-time cumulative density function (CDF) in

the current system mode i is defined as

Fi (τ),Pr(Sn+1 ≤ τ |Rn = i)

=
∑τ

l=0

∑
j∈I

πij(τ)

=
∑τ

l=0

∑
j∈I

θijωij (l) , ∀i ∈ I, ∀τ ∈ N+.

It is assumed that ωij (0) = πij (0) = fi (0) = Fi (0) = 0,

∀j 6= i, i, j ∈ I without loss of generality.

(v) the TPs of {Rn} involving the currently-known sojourn

time are defined as

λii(τ),Pr(Sn+1 > τ |Rn = i, Sn+1 > τ − 1)

=
1− Fi(τ)

1− Fi(τ − 1)
, (2)

λij(τ),Pr(Rn+1 = j, Sn+1 = τ |Rn = i, Sn+1 > τ − 1)

=
πij(τ)

1− Fi(τ − 1)
=

θijωij(τ)

1− Fi(τ − 1)
, j 6= i, i, j ∈ I. (3)

(vi) the TPs of {rk} are defined as

ǫij(~k) , Pr(rk+1 = j|rk = i), i, j ∈ I

where ~k , (1, 2, · · · , k) indicates that the TPs of {rk}
are dependent on the elapsed mode evolution (i.e., the past

switching sequence). Note that we use ǫi(0), ∀i ∈ I, to denote

the initial mode probability.

The computation of the TPs defined in Definition 3(vi) is

given in Appendix A.

Remark 1: From Definition 3(vi), the counterpart of TPs

ǫij(~k) in Markov chain are memoryless, i.e., independent of

the past switching sequence, which are commonly used to

obtain the criteria for control issues in MJLSs. However, in

a SMC, ǫij(~k) cannot be obtained a priori, such that it is

rather difficult to similarly use ǫij(~k) for the developments of

the criteria. In this paper, we shall resort to the SMK πij (τ)
in Definition 3(ii), where two stochastic variables are needed,

i.e., the sojourn time of current mode and the index of next

mode, for a known index of the current mode.

Remark 2: Further to Remark 1, while using πij (τ), the

PDF ωij (τ) of sojourn time will be directly used including

the types of the distribution and the parameters. Therefore, it

will outperform fi (τ) that was used in quite a few existing

literature, since it is straightforward that different ωij (τ) may

lead to a same fi (τ) according to Definition 3(iii).

Remark 3: A natural question is about the link and differ-

ence between the Markov chain and SMC. Although details

on this issue can be seen in pure mathematics literature, e.g.,

[23], [24], [25], here we would like to present how the two

TPs λij(τ) and ǫij(~k) can be reduced to constant/memoryless

ones when the PDF of sojourn time is subject to the geometric

distribution, i.e., for the case when wij(τ) ≡ wi(τ) =
(1 − pi)

τ−1pi, pi ∈ (0, 1), i, j ∈ I. First, from (2) and (3),

it holds that

λij(τ)=
θijωij (l)

1−
∑τ−1

l=0

∑
j∈I θijωij (l)

= piθij

λii(τ)=
1−

∑τ

l=0

∑
j∈I θijωij (l)

1−
∑τ−1

l=0

∑
j∈I θijωij (l)

= 1− pi

Second, as for ǫij(~k), it can be also verified that

ǫij(~1)=ǭi(0)πij(1)/ǭi(0)

=πij(1) = θijwij(1) = piθij , j 6= i

ǫii(~1)=1−
∑

j 6=i,j∈I
ǫij(~1)

=1−
∑

j 6=i,j∈I
piθij = 1− pi

ǫjp(~2)=

∑
i6=j,i∈I ǭi(0)ǫij(1)πjp(1) + ǭj(0)πjp(2)∑

i∈I ǭi(0)ǫij(1)

=

∑
i6=j,i∈I ǭi(0)θijpiθjppj + ǭj(0)θjp(1− pj)pj∑

i6=j,i∈I ǭi(0)θijpi + ǭj(0)(1− pj)

=pjθjp

ǫjj(~2)=1−
∑

p6=j,p∈I
ǫjp(1)

=1−
∑

p6=j,p∈I
pjθjp = 1− pj

The cases for k ≥ 3 can be verified iteratively and omitted

here.

To present the purposes of this paper precisely, the following

stability definition is required.

Definition 4: Consider a discrete-time stochastic switching

system xk+1 = f (xk, rk), where rk is a certain stochastic

process governing the system switching and taking values in

I. The system is said to be mean square stable (MSS1) if, for

any initial condition x0 ∈ R
n, r0 ∈ I, the following holds:

lim
k→∞

E

[
‖x (k)‖2

]∣∣∣
x0,r0

= 0. (4)

From Definition 4, it can be observed that the random so-

journ time can be of any length (even infinity), which will lead

to untestable criteria in general if without any approximation

on the memory TPs [26] or any truncation on the sojourn time

to be above bounded [21]. However, if the PDF is periodic, it

will be likely to obtain a finite number of conditions that would

be checkable as shown in the sequel. Due to the property that

the CDF of any distribution of sojourn time will be one, i.e.,

limτ→∞ Fi (τ) = 1, the following definition on exponentially

modulated periodic (EMP) distribution will be considered in

this paper.

Definition 5: The PDF is said to be exponentially modulated

periodic (EMP) if the following property holds,

ωij(t+KT ) = ω̄ij(t+KT )µKT
ij , t ∈ [1, T ],K ∈ N

where µij is a known constant and ω̄ij(·) is a T -period

function with ωij(0) = ω̄ij(0) = 0.
An illustration on the EMP PDF can be seen in Fig. 1,

where four typical distributions are presented in Fig. 1(a), and

the corresponding EMP distributions with T = 10 are given

in Fig. 1(b).

Remark 4: By Definition 5, it can be seen that when K = 0,

ωij(t) = ω̄ij(t), t ∈ [1, T ], namely, within the first period,

the EMP PDF will be exactly the non-EMP PDFs as shown

in Fig. 1. Therefore, by setting up a relatively large period

and transforming the original non-EMP PDFs to be EMP, the

original S-MJLSs can be approximated by the transformed

1In this paper, we will slightly abuse MSS as the abbreviation of either
mean square stability or mean square stable
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(a) Four typical distributions.
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(b) The corresponding EMP distributions with T = 10.

Fig. 1: A comparison between non-EMP and EMP distributions.

systems for which only a limited number of conditions will

be required as presented in later developments. Note that in

the first period, the periodic function ω̄ij(t), t ∈ [1, T ] can be

a general PDF without any specific type as long as limτ→∞

Fi (τ) = 1.
The objectives in this paper will be to derive the testable

MSS criterion for system (1) with EMP PDF of sojourn time

ωij(Sn), and to design a mode-dependent and sojourn-time-

dependent (STD) stabilizing controller guaranteeing the MSS

of the resulting closed-loop system. The controller here is

considered to be of the following form:

u (k) = Ki(αn)x (k) , ∀rk = i ∈ I, k ∈ [kn, kn+1) (5)

where Ki(αn) is the controller gain to be determined and αn

satisfies that Sn = αn +KT , K ∈ N.

For this purpose, the stability and stabilization problems for

system (1) with general types of sojourn time ωij(Sn) will be

investigated first and the corresponding mode-dependent STD

stabilizing controller will have the form:

u (k) = Ki(Sn)x (k) , ∀rk = i ∈ I, k ∈ [kn, kn+1) (6)

where Ki(Sn) is the controller gain to be determined.

III. MAIN RESULTS

In this section, we first consider the S-MJLSs without

limitations on the PDF of sojourn time and derive the cor-

responding necessary and sufficient stability and stabilization

criteria. Then, a set of sufficient conditions will be given,

which will be applied to a special class of S-MJLSs with

EMP PDF of sojourn time such that the derived theorems are

testable. The relationships among these criteria are shown in

Fig. 7 in Appendix B.

A. Criteria for S-MJLSs with general PDF of sojourn time

The following proposition presents the necessary and suf-

ficient conditions ensuring that the S-MJLS (1) with general

PDF of sojourn time is MSS.

Proposition 1: Consider S-MJLS (1) with u (k) ≡ 0. The

system with general PDF of sojourn time is MSS if and only

if there exist a constant ǫ > 0, and a set of symmetric matrices

{Pi (n, v) ≻ 0}, i ∈ I, n ∈ N, v ∈ N such that the following

inequality holds for all i ∈ I, n ∈ N+, α ∈ N[1,∞), β ∈ N+

∑

β∈N+

∑

j∈I

η̃ij(β)(A
′
i)

βPj(n+ 1, β)Aβ
i − Pi(n, α) ≺ −ǫI (7)

where η̃ij(β) , πij(β), j 6= i, η̃ii(∞) , 1 −∑
β∈N+

∑
j 6=i∈I η̃ij(β), and η̃ii(β) , 0, β ∈ N[1,∞).

Proof. (i) Sufficiency.

Consider the following stochastic Lyapunov function can-

didate for system (1).

V (n, xk, rkn
, Sn)|rkn=i = x′

kPi (n, Sn)xk, k ∈ (kn−1, kn].

An illustration of the above Lyapunov function candidate that

is sojourn-time-dependent (STD) is given in Fig. 2.

According to (7), the following equation holds for all rkn
=

i ∈ I, n ∈ N+, Sn ∈ N[1,∞)

E
[
V
(
n+ 1, xkn+1 , rkn+1 , Sn+1

)]∣∣
xkn ,rkn ,Sn

−V (n, xkn
, rkn

, Sn)

=x′
kn

(∑
Sn+1∈N+

∑
j∈I

η̃ij(Sn+1)(A
′
i)

Sn+1

×Pj(n+ 1, Sn+1)A
Sn+1

i − Pi(n, Sn)
)
xkn

<−ǫx′
kn
xkn

.

Note that the above inequality also holds for the case n =
0(S0 = 0) since it is trivial to find Pi(0, 0) such that (7) is

satisfied. Therefore, one has

x′
kn
xkn

<−
1

ǫ

{
E
[
V
(
n+ 1, xkn+1 , rkn+1 , Sn+1

)]∣∣
xkn ,rkn ,Sn

−V (n, xkn
, rkn

, Sn)} .

Taking the sum from n = 0 to N for both sides of the above

inequality, we have

E

[∑N

n=0
x′
kn
xkn

]∣∣∣∣
xk0

,rk0 ,S0

<−
1

ǫ

{
E [V (N, xkN

, rkN
, SN )]|xk0

,rk0 ,S0

−V (0, xk0 , rk0 , S0)} . (8)
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Fig. 2: An illustration of STD stochastic Lyapunov function.

When N tends to ∞, it is straightforward from

(8) that E

[∑N
n=0 x

′
kn
xkn

]∣∣∣
xk0

,rk0

is finite, i.e.,

limn→∞ E
[
x′
kn
xkn

]∣∣
xk0

,rk0
= 0. Due to the linearity

of the system, we could find a pair of class K functions α1

and α2, and a finite h > 0 such that

α1(‖xk‖)≤α−1
1 (V (n, xk, rkn

, Sn))

≤α−1
1 (hV (n, xkn

, rkn
, Sn))

≤α2(α
−1
1 (h ‖xkn

‖)

Then, it can be inferred that limk→∞ E [x′
kxk]|xk0

,rk0
=

limn→∞ E
[
x′
kn
xkn

]∣∣
xk0

,rk0
= 0. The sufficiency is proved.

(ii) Necessity.

Assuming system (1) is MSS, then at the jumping instant

kn, for given positive definite matrices Qrkt
(t, St), t ∈ N, one

can define a sequence
{
x′
kn
P̃rkn

(n, Sn, N)xkn

}
n∈N[0,N ]

to be

x′
kn
P̃rkn

(n, Sn, N)xkn

,E

[∑N

t=n
x′
kt
Qrkt

(t, St)xkt

]∣∣∣∣
xkn ,rkn ,Sn

(9)

For xkt
6= 0, t ∈ [n,N ], as N increases,

x′
kn
P̃rkn

(n, Sn, N)xkn
> 0 is monotonically increasing

but above bounded by the definition of MSS. Thus the

following limit exists

lim
N→∞

x′
kn
P̃rkn

(n, Sn, N)xkn

= lim
N→∞

E

[∑N

t=n
x′
kt
Qrkt

(t, St)xkt

]∣∣∣∣
xkn ,rkn ,Sn

Since the above equation is valid for any xkn
6= 0, we denote

Prkn
(n, Sn) , lim

N→∞
P̃rkn

(n, Sn, N). (10)

Also, from (9), it follows that Prkn
(n, Sn) is positive definite.

Thus we have

E
[
x′
kn
Pi(n, Sn)xkn

−x′
kn+1

Prkn+1
(n+ 1, Sn+1)xkn+1

]∣∣∣
xkn ,rkn=i,Sn

=E
[
x′
kn
Qi(n, Sn)xkn

]∣∣
xkn ,rkn=i,Sn

which implies that

x′
kn
Pi(n, Sn)xkn

−E

[
x′
kn+1

Prkn+1
(n+ 1, Sn+1)xkn+1

]∣∣∣
xkn ,rkn=i,Sn

=x′
kn
Qi(n, Sn)xkn

and then

x′
kn
Pi(n, Sn)xkn

− x′
kn

(∑
Sn+1∈N+

∑
j∈I

η̃ij(Sn+1)

×(A′
i)

Sn+1Pj(n+ 1, Sn+1)A
Sn+1

i

)
xkn

=x′
kn
Qi(n, Sn)xkn

.

Since the above is valid for any xkn
6= 0, ∀n ∈ Z, we have

∑
Sn+1∈N+

∑
j∈I

[
η̃ij(Sn+1)(A

′
i)

Sn+1Pj(n+ 1, Sn+1)

×A
Sn+1

i

]
− Pi(n, Sn) = −Qi(n, Sn) ≺ −ǫI

where ǫ ≤ infi∈I,n,Sn∈N+{ιmin(Qi(n, Sn))} with ιmin(M)
denoting the minimum eigenvalue of matrix M . Thus the

necessity is proved.

In mathematics, the probability η̃ii(∞) for a switching

system cannot be zero, which means that the system can stay

within a subsystem for an infinite time. However, a practical

switching system within a control operation interval cannot

cover the case that the sojourn time is infinite. Therefore, in

what follows, it is assumed that η̃ii(∞) = 0 (which is con-

sistent to
∑

α∈N+

∑
j 6=i∈I η̃ij(α) = 1). Nevertheless, only for

the case that the sojourn time is subject to a deterministic upper

bound, the conditions are countable and as such Proposition

1 can be tested.

It should be noted that Aβ
i contained in Proposition 1, is

not linear in Ai and then is not suitable for controller design.

To overcome the difficulty caused by the power of matrices,

certain techniques will be needed and the corresponding result

is given in the following corollary.

Corollary 1: Consider S-MJLS (1) with u (k) ≡ 0. If and

only if there exist a set of symmetric matrices Oi (n, α, α) ≻
0 and a set of matrices Oi(n, α,m), i ∈ I, n ∈ N+, α ∈
N[1,∞),m < α,m ∈ N[0,∞) such that the following inequality
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holds for all i ∈ I, n ∈ N+, α, β ∈ N[1,∞),m ∈ N[0,∞)

∞∑

β=m+1

{A′
iOi(n+ 1, β,m+ 1)Ai −Oi(n+ 1, β,m)}≺0 (11)

∞∑

β=1

Oi(n+ 1, β, 0)−Oi(n, α, α)≺0 (12)

where Oi(n+1, β, β) ,
∑

j∈I πij(β)Oj(n, β, β), then system

(1) is MSS.

Proof. See Appendix C.

Then, the desired STD controller of the form (6) can be

designed based on Corollary 1.

Theorem 1: Consider S-MJLS (1) with the controller in

the form of (6). If there exist a set of symmetric matrices

Hi (n, α, α) ≻ 0, H̄i(n,m) ≻ 0, and a set of matrices

Zi, Ui(α), i ∈ I, n ∈ N+, α ∈ N[1,∞),m < α,m ∈ N[0,∞)

such that the following inequalities hold for all i ∈ I, n ∈
N+, α ∈ N[1,∞),m < α,m ∈ N[0,∞)



Φi(n+ 1,m+ 1,m+ 1) 0

∗ Φ̄i(n+ 1,m+ 1)
∗ ∗

Ǎi(α)Li(m+ 1)
AiZi +BiUi(m+ 1)

−H̄i(n+ 1,m)


≺0 (13)

H̄i(n+ 1, 0)−Hi(n, α, α)≺0 (14)

with

Φi(n+ 1,m+ 1,m+ 1),Hi(n+ 1,m+ 1,m+ 1)−Zi−Z
′
i

Φ̄i(n+ 1,m+ 1),H̄i(n+ 1,m+ 1)−Zi−Z
′
i

where Hi(n,m,m),diag{H1(n,m,m), . . . , Hi−1(n,m,m),
Hi+1(n,m,m), . . . , HM (n,m,m)}, Zi , diag {Z1, . . . ,
Zi−1, Zi+1, . . . , ZM}, Ǎi(α) , diag(M−1){AiZi +

BiUi(α)}, and Li(m) ,

[√
πi1(m)I, . . . ,

√
πi(i−1)(m)I,

√
πi(i+1)(m)I, . . . ,

√
πiM (m)I

]
, then the system is MSS.

Moreover, a feasible control gain is given as

Ki(α) = Ui(α)Z
−1
i

Proof. See Appendix D.

So far, the stability and stabilization criteria are obtained

for S-MJLSs with general PDFs of sojourn time. Without

a truncation on the sojourn time to be above bounded, the

conditions in (7) cannot be tested. However, if the PDFs of

sojourn time are EMP, the resulting criterion that will contain

only a finite number of conditions can be obtained. Towards

this purpose, the following sufficient criteria for the underlying

system with general PDFs are needed.

Theorem 2: Consider S-MJLS (1) with u (k) ≡ 0. Then

the following two statements are equivalent and the system is

MSS if one of them holds.

(i) There exists a set of symmetric matrices {Pi (n, α) ≻ 0},

i ∈ I, n ∈ N+, α ∈ N[1,∞) such that the following inequality

holds for all i ∈ I, n ∈ N+, α, β ∈ N[1,∞)

∑

j 6=i,j∈I

ηij(β)(A
′
i)

βPj(n+ 1, β)Aβ
i − Pi(n, α) ≺ 0 (15)

where ηij(β) , πij(β)/ρi(β) with ρi(β) ,
∑

j 6=i,j∈I πij(β).

(ii) There exists a set of symmetric matrices Oi(n, α,m) ≻
0, i ∈ I, n ∈ N+, α ∈ N[1,∞),m ≤ α, m ∈ N[0,∞) such that

the following inequalities hold for all i ∈ I, n ∈ N+, α, β ∈
N[1,∞), and m < β,m ∈ N[0,∞)

∑

j 6=i,j∈I

ηij(β) {A
′
iOj(n+ 1, β,m+ 1)Ai

−Oj(n+ 1, β,m)}≺0 (16)∑

j 6=i,j∈I

ηij(β)Oj(n+ 1, β, 0)−Oi(n, α, α)≺0 (17)

where ηij(β) is given in (15).

Proof. See Appendix E.

Based on Theorem 2(ii), the existence conditions of sta-

bilizing controller (6) for S-MJLS (1) are presented in the

following theorem.

Theorem 3: Consider S-MJLS (1) with u (k) ≡ 0. If there

exist a set of matrices Z , Ui(α), and a set of symmetric ma-

trices Hi(n, α,m) ≻ 0, i ∈ I, n ∈ N+, α ∈ N[1,∞),m ≤ α,

m ∈ N[0,∞) such that the following inequalities hold for all

i ∈ I, n ∈ N+, α, β ∈ N[1,∞), and m < β,m ∈ N[0,∞).

[
Φ̃i(n+ 1, β,m+ 1) Âi(α)L̃i(β)

∗ −L̃′
i(β)H̃i(n+ 1, β,m)L̃i(β)

]
≺0(18)

[
Φ̃i(n+ 1, β, 0) Z̃L̃i(β)

∗ −Hi(n, α, α)

]
≺0(19)

with

Φ̃i(n+ 1, β,m+ 1) , H̃i(n+ 1, β,m+ 1)− Z̃ − Z̃ ′

where H̃i(n+ 1, β,m),diag{H1(n+ 1, β,m),. . .,Hi−1(n+
1, β,m),Hi+1(n + 1, β,m),. . .,HM (n + 1, β,m)}, Z̃ ,

diag(M−1){Z}, Âi(α) , diag(M−1){AiZ + BiUi(α)}

and L̃i(β) ,

[√
ηi1(β)I, . . . ,

√
ηi(i−1)(β)I,

√
ηi(i+1)(β)I,

. . . ,
√
ηiM (β)I

]′
, then the system is MSS. Moreover, the

admissible controller gain for (6) is given by

Ki(α) = Ui(α)Z
−1.

Proof. See Appendix F.

Remark 5: Comparing (11), (15), and (16), one can find

that the second term of either (11) or (15) (
∑∞

β=m+1 Oi(n+
1, β,m) or Pi(n, α)) is only dependent on mode i, but

the second term of (16) (
∑

j 6=i,j∈I ηij(β)Oj(n + 1, β,m))
depends on all the modes except mode i. Therefore, if we

use Zi instead of Z in Theorem 3 to design a controller based

on (16), it will introduce terms like ZiO(n, j,m)Zi, i 6= j (not

like (11) and (15), only ZiO(n, i,m)Zi will be introduced),

which will lead to matrix equality constraints that unavoidably

bring difficulties to the solvability of the resulting conditions.

Efficient ways capable of handling such equality constraints

(not the focus of this paper) can be found in literature on the

related topic.
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B. EMP PDF of sojourn time

This subsection will be devoted to the developments of

stability and stabilization criteria for the cases when the PDF

of sojourn time is considered to be EMP.

Theorem 4: Consider the unforced S-MJLS (1) with u (k) ≡
0 and the sojourn time subject to a set of EMP distributions

with the same period T for each system mode. Then, the S-

MJLS (1) is MSS, if there exists a set of symmetric matrices

Pi (τ) ≻ 0, i ∈ I, τ ∈ N[1,T ] such that the following

inequality holds for all i, j ∈ I, ϑ, σ ∈ N[1,T ]

∑

j 6=i,j∈I

ηij(ϑ)(A
′
i)

ϑPj(ϑ)A
ϑ
i − Pi(σ) ≺ 0 (20)

where ηij(ϑ) , πij(ϑ)/ρi(ϑ) is defined in (15).

Proof. Consider the PDF of sojourn time that is subject to the

EMP distribution:

ωij(t+KT ) = ωij(t)µ
KT
ij , ∀i 6= j, i, j ∈ I. (21)

where 0 ≤ ωij(t) ≤ 1, 0 < µij < 1, t ∈ N+. Without loss of

generality, we assume that rkn
= i, rkn+1 = j, rkn+2 = p, i 6=

j, j 6= p, i, j, p ∈ I and that Sn+1 = Kn+1T + τn+1, Sn+2 =
Kn+2T + τn+2,Kn+1, Kn+2 ∈ N, τn, τn+1, τn+2 ∈ [1, T ].
Then, for n, n+ 1, it can be obtained from (15) that

∑

j 6=i,j∈I

[
θij

ρi(Sn+1)
wij(Sn+1)(A

′
i)

Sn+1Pj(n+ 1, Sn+1)

×A
Sn+1

i

]
− Pi(n, Sn) , −Qi(n, Sn) (22)

where Qi(n, Sn) ≻ 0. Due to Sn+1 = Kn+1T + τn+1, (22)

is equivalent to

∑

j 6=i,j∈I

[
θij

ρi(τn+1)
wij(τn+1)(A

′
i)

τn+1
ρi(τn+1)

ρi(Sn+1)
(µij)

Kn+1T

(A′
i)

Kn+1TPj(n+ 1, Sn+1)A
Kn+1T

i A
τn+1

i

]
− Pi(n, Sn)

=−Qi(n, Sn) (23)

Assuming that ϑ = τn+1, σ = τn, it can be obtained from

(20) that

∑

j 6=i,j∈I

θij
ρi(τn+1)

wij(τn+1)(A
′
i)

τn+1Pj(τn+1)A
τn+1

i

−Pi(τn) = −Qi(τn) (24)

Comparing (23) and (24), one can observe that if we set

Pj(n+ 1, Sn+1)

=
ρi(Sn+1)

ρi(τn+1)
(µij)

−Kn+1T (A′
i)

−Kn+1TPj(τn+1)A
−Kn+1T

i (25)

Pi(n, Sn) = Pi(τn), Qi(n, Sn) = Qi(τn), (26)

then, (23) holds if and only if (24) holds. Similarly, for n +
1, n+ 2, the following equation can be derived from (15):

∑

p6=j,p∈I

θjp
ρj(Sn+2)

wjp(Sn+2)(A
′
j)

Sn+2Pp(n+ 2, Sn+2)A
Sn+2

j

−Pj(n+ 1, Sn+1) = −Qj(n+ 1, Sn+1) (27)

Substituting (25) into (27), one has

∑

p6=j,p∈I

[
θjp

ρj(Sn+2)
wjp(Sn+2)(A

′
j)

Sn+2Pp(n+ 2, Sn+2)

×(Aj)
Sn+2

]
−

ρi(Sn+1)

ρi(τn+1)
(µij)

−Kn+1T (A′
i)

−Kn+1T

×Pj(τn+1)A
−Kn+1T

i = −Qj(n+ 1, Sn+1)

⇔
∑

p6=j,p∈I

θjp
ρj(τn+2)

wjp(τn+2)(A
′
j)

τn+2

[
ρj(τn+2)ρi(τn+1)

ρj(Sn+2)ρi(Sn+1)

×(µjp)
Kn+2T (A′

j)
−τn+2(µij)

Kn+1T (A′
i)

Kn+1T (A′
j)

Sn+2

× Pp(n+ 2, Sn+2)A
Sn+2

j A
Kn+1T

i A
−τn+2

j

]
A

τn+2

j

−Pj(τn+1) = −
ρi(τn+1)

ρi(Sn+1)
(µij)

Kn+1T (A′
i)

Kn+1T

×Qj(n+ 1, Sn+1)A
Kn+1T

i (28)

Correspondingly, let ϑ = τn+2, σ = τn+1, and one knows

from (20) that

∑

p6=j,p∈I

θjp
ρj(τn+2)

wjp(τn+2)(A
′
j)

τn+2Pp(τn+2)A
τn+2

j

−Pj(τn+1) = −Qj(τn+1). (29)

Set

Pp(n+ 2, Sn+2)

=
ρj(Sn+2)ρi(Sn+1)

ρj(τn+2)ρi(τn+1)
(µjp)

−Kn+2T (µij)
−Kn+1T (A′

j)
−Sn+2

×(A′
i)

−Kn+1T (A′
j)

τn+2Pp(τn+2)A
τn+2

j A
−Kn+1T

i A
−Sn+2

j

(30)

Qj(n+ 1, Sn+1)

=
ρi(Sn+1)

ρi(τn+1)
(µij)

−Kn+1T (A′
i)

−Kn+1TQp(τn+2)A
−Kn+1T

i (31)

Then, (28) is equivalent to (29). Iterating the above process, it

is straightforward that for any km, Sm = τm +KmT, rkm
=

q,m > n + 2 ∈ N+, τm ∈ [1, T ],Km ∈ N, q ∈ I, there

will be a set of Pq(m,Sm) and a set of Qq(m,Sm) that

can be obtained by Pq(τm) and Qq(τm). Therefore, for any

given sequence (n, i, α), one can always find a set of positive

matrices Pi(n, α) such that (15) holds if and only if (20) holds.

This completes the proof.

Derived from Theorem 2 (i), Theorem 4 gives the stability

criterion that consists of a finite number of inequalities when

the the PDF of sojourn time is considered to be EMP. In a

same vein to Theorem 2(ii), the following corollary presents

another form of stability criterion and the proof is omitted

here.

Corollary 2: Consider S-MJLS (1) with u (k) ≡ 0 and the

sojourn time being subject to a set of EMP distributions with

the same period T for each system mode. Then, system (1) is

MSS if there exists a set of symmetric matrices Oi(σ,m) ≻ 0,

i ∈ I, σ ∈ N[1,T ],m ≤ σ,m ∈ N[0,T ] such that the following

inequalities hold for all j 6= i, i, j ∈ I, σ, ϑ ∈ N[1,T ], and

m < ϑ,m ∈ N[0,T ]

∑

j 6=i,j∈I

ηij(ϑ) {A
′
iOj(ϑ,m+ 1)Ai −Oj(ϑ,m)}≺0 (32)
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Fig. 3: Illustration of the PDF subject to EMP distributions and the corresponding probabilities in Example 1.

∑

j 6=i,j∈I

ηij(ϑ)Oj(ϑ, 0)−Oi(σ, σ)≺0 (33)

where ηij(ϑ) is given in (15).

Based on Corollary 2, the stabilization criterion in form of

a set of linear matrix inequalities can be developed as follows

(the proof is also omitted here, which can be readily done by

referring to the proof for Theorem 3).

Corollary 3: Consider S-MJLS (1) with the controller in

the form of (5) and the sojourn time being subject to a set

of EMP distributions with the same period T for each system

mode. Then, system (1) is MSS if there exist a set of matrices

Z , Ui(σ), and a set of symmetric matrices Hi(σ,m) ≻ 0,

i ∈ I, σ ∈ N[1,T ],m ≤ σ, m ∈ N[0,T ] such that the following

inequalities hold for all i 6= j, i, j ∈ I, σ, ϑ ∈ N[1,T ],m < ϑ,

m ∈ N[0,T ]

[
H̃i(ϑ,m+ 1)− Z̃ − Z̃ ′ Ǎi(σ)L̃i(ϑ)

∗ −L̃′
i(ϑ)H̃i(ϑ,m)L̃i(ϑ)

]
≺0 (34)

[
H̃i(ϑ, 0)− Z̃ − Z̃ ′ L̃i(ϑ)Z

∗ −Hi(σ, σ)

]
≺0 (35)

where H̃i(ϑ,m) , diag{H1(ϑ,m), . . . , Hi−1(ϑ,m), Hi+1(ϑ,
m), . . . , HM (ϑ,m)}, Z̃ , diag(M−1) {Z}, Ǎi(σ) ,

diag(M−1) {AiZ +BiUi(σ)}, L̃i(ϑ) ,

[√
ηi1(ϑ)I, . . . ,

√
ηi(i−1)(ϑ)I,

√
ηi(i+1)(ϑ)I, . . . ,

√
ηiM (ϑ)I

]′
, and ηij(ϑ) is

defined in (15). Moreover, the admissible controller gain for

(5) is given by

Ki(σ) = Ui(σ)Z
−1.

Remark 6: According to Remark 3, one can observe that the

semi-Markov processes with geometric PDF of sojourn time

will reduce to Markov processes. However, it is worth noting

that the above-derived criteria based on the horizon of jumping

instants kn cannot directly reduce to the commonly existing

MSS stability criteria for Markov jump systems that base the

derivations on the horizon of sampling instants k due to the

benefit of memoryless TPs.

Remark 7: Another noteworthy observation is that, in either

case of general PDF of sojourn time and EMP PDF of sojourn

time, all the controller gains given by Theorem 1, Theorem 3

or Corollary 3 are STD. A direct question can be raised that in

the case of general PDF of sojourn time, via a sojourn-time-

independent (STI) Lyapunov function, one may obtain a STI

controller gain Ki as usually obtained in the context of MJLSs,

which seems to be of limited number of computations as Ki is

independent of sojourn time. However, notice that the general

PDF ωij(k) of sojourn time will still be contained in the

resulting criterion, and it remains unchanged that an infinite

number of conditions need to be checked (determined by the

memory TPs in essence). Meanwhile, such a criterion will be
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Fig. 4: 100 realizations of state responses for different random jumping sequences for α = 0.70 and α = 0.75.

rather conservative since it is derived from a stability criterion

that will be only sufficient by using a STI Lyapunov function

(with less freedom). The conservatism will be inherited in the

case of EMP PDF of sojourn time. On the contrary, the STD

Lyapunov function used in the paper yields STD controller

(i.e., offers more freedom in finding an admissible stabilizing

controller than STI method) and as such is less conservative.

IV. ILLUSTRATIVE EXAMPLES

In this section, a numerical example and an application

in a class of population ecological systems are provided to

demonstrate the validity and applicability of the obtained

theoretical results.

A. Example 1 (numerical example)

Consider a S-MJLS with three modes with system matrices

A1 = α

[
1.55 −0.85
0.50 0.15

]
, B1 =

[
−0.1
0.1

]

A2 = α

[
5.41 −4.73
4.27 −3.61

]
, B2 =

[
0.1
0.1

]

A3 = α

[
0.27 0.50

−1.31 2.03

]
, B3 =

[
0.1
−0.1

]

where α > 0 is a constant parameter that can characterize

the distance between system eigenvalues and unit circle. The

switching among the three modes is governed by a SMC,

where the PDF of sojourn time are given by the following

EMP distribution

ωij (k)=





βij(1) · µ
KT
ij , k = KT + 1,K ∈ N

βij(2) · µ
KT
ij , k = KT + 2,K ∈ N

· · ·
βij(T ) · µ

KT
ij , k = KT + T,K ∈ N

(36)

where i, j ∈ I. Considering T = 3 and defining βij ,

[βij(1) βij(2) βij(3)]
′, we set β12 = [0.70 0.84 0.91]′,

β13 = [0.36 0.39 0.33]′, β21 = [0.87 0.70 0.91]′,
β23 = [0.52 0.48 0.40]′, β31 = [0.78 0.72 0.60]′, β32 =
[0.40 0.52 0.48]′, µ12 = 0.7, µ13 = 0.3, µ21 = 0.7, µ23 = 0.4,

µ31 = 0.6, and µ32 = 0.4. The illustrations of the above EMP

distribution wij(k) are shown in Fig. 3. The TPs θij are given

as

Θ =




0 0.2262 0.7738
0.0912 0 0.9088
0.2463 0.7537 0




It can be checked that
∑

k∈N+

∑
j 6=i,j∈I θijωij(k) = 1.

First, the stability of unforced system can be testified by

Corollary 2. Given different α, Table I lists the computation

results whether a feasible solution to Corollary 2 exists,

and the simulation results (state responses of the systems

when randomly generating different switching sequences). In

the simulation, the considered initial system states satisfy

x1 ∈ [0, 5], x2 ∈ [−5, 0] and the initial system mode is subject

to Pr(r0 = 1) = 0.3, Pr(r0 = 2) = 0.3, Pr(r0 = 3) = 0.4.

The two cases α = 0.70 and α = 0.75 are given in Fig. 4,

where 100 realizations of state responses are presented. As

seen from both Table I and Fig. 4, the system is checked to

be MSS for α ≥ 0.65 based on Corollary 2, and is shown

to be stable for α = 0.70 and unstable for α = 0.75 in

the simulation. Therefore, it can be verified that, despite the

fact that only sufficient conditions are obtained, Corollary 2

is effective in judging the stability of the system.

Then, by Corollary 3, the desired mode-dependent STD

controller can be designed such that the resulting closed-loop

system is MSS. For α = 1, the corresponding controller gains

are given as below

K1(1)=[5.7333 −5.1649],K1(2)=[5.7085 −5.1431]

K1(3)=[5.6737 −5.1172],K2(1)=[−76.9445 69.7061]

K2(2)=[−78.3732 71.0986],K2(3)=[−83.1822 74.8398]

K3(1)=[−7.6986 7.1717],K3(2)=[−7.2521 6.7413]

K3(3)=[−7.5194 6.9280]

TABLE I: Verification of the validity of Corollary 2

α Corollary 2 Simulation

0.60 Feasible Stable

0.65 Feasible Stable

0.70 Infeasible Stable

0.75 Infeasible Unstable



IEEE TRANSACTIONS ON AUTOMATIC CONTROL, VOL. XX, NO. XX, XXX 201X 10

0 2 4 6 8 10 12 14 16 18 20
-40

-30

-20

-10

0

10

20

30

40

Times (k)

St
at

e 
R

es
po

ns
es

 x
(k

)

 

 

x
1
(k)

x
2
(k)

0 5 10 15 20
1

2

3

Times (k)

Sy
st

em
 M

od
e 

r(
k)

(a) First set of state responses

-30 -20 -10 0 10 20 30
-25

-20

-15

-10

-5

0

5

10

15

20

25

x
1
(k)

x 2(k
)

(b) Phase diagram for the first set of state responses

0 2 4 6 8 10 12 14 16 18 20
-50

0

50

Times (k)

St
at

e 
R

es
po

ns
es

 x
(k

)

 

 

x
1
(k)

x
2
(k)

0 5 10 15 20
1

2

3

Times (k)Sy
st

em
 M

od
e 

r(
k)

(c) Second set of state responses

-25 -20 -15 -10 -5 0 5 10 15 20 25
-25

-20

-15

-10

-5

0

5

10

15

20

25

x
1
(k)

x 2(k
)
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Fig. 5: Two sets of 100 realizations of state responses for different initial states x(k) for α = 1 with control gain Ki(σ) and the corresponding
phase diagrams.

Based on the derived controller gain Ki(σ), i ∈ I, σ ∈
[1, T ], two sets of 100 realizations of the state responses

of the closed-loop system for 100 different initial conditions

x0 = [ x1(0) x2(0) ]′ where x1(0), x2(0) ∈ [ −25 25 ]
are shown in Fig. 5. The used two switching sequences are

stochastically produced based on the same PDF distribution,

Θ, and initial system mode probabilities. It can be observed

from Fig. 5 that the controller designed by Corollary 3 is valid.

B. Example 2 (illustrative example of a class of population

ecological systems)

Consider an ecological system consisting of four types of

population P1, P2, P3, P4 and let the number of individuals

in population Pi, i = 1, 2, 3, 4 be denoted by N1, N2, N3, and

N4, respectively. Suppose the situated environment be subject

to stochastic autonomous switching among three scenarios E1,

E2, and E3. The basic mathematical principle of growth of

Ni, i = 1, 2, 3, 4 obeys the following logistic equation [27]

Ṅi = a
(σ)
i Ni

(
1−

Ni

K
(σ)
i

)
(37)

where a
(σ)
i is the maximum per-capita rate of change of Pi,

and K
(σ)
i is the carrying capacity of the population in envi-

ronment Eσ, σ = 1, 2, 3. In essence, the dynamics described

for the variation of Ni in (37) is nonlinear. Assume K
(σ)
i to be

approximately proportional to Ni, i.e., Kσ
i = (1/ρ

(σ)
i )Ni, and

include the mutual influence among four types of population

and the effect of external intervention ui (intentionally immi-

grates or hunts some individuals) on Ni [28], the equation (37)

is extended as

Ṅi = a
(σ)
i Ni(1− ρ

(σ)
i ) +

∑4

j 6=i
b
(σ)
ij Nj + c

(σ)
i ui (38)

where b
(σ)
ij is a transfer coefficient modeling the mutual

influence of Ni and Nj , and c
(σ)
i is a transfer coefficient

modeling the effect of external intervention on Ni in different

Eσ . Letting x = [N1 N2 N3 N4]
′ and u = [u1 u2 u3 u4]

′

denote the system states and control input, respectively, the

discrete-time model of (38) can be obtained by the first-order

Euler approximation approach with sampling time Ts:

x(k + 1) = A(σ)x(k) +B(σ)u(k) (39)

where

A(σ)=




â1 b
(σ)
12 b

(σ)
13 b

(σ)
14

b
(σ)
21 â2 b

(σ)
23 b

(σ)
24

b
(σ)
31 b

(σ)
32 â3 b

(σ)
34

b
(σ)
41 b

(σ)
42 b

(σ)
43 â4


Ts + I,
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Fig. 6: State responses and control inputs for the four types of population for Cases 1 and 2.

TABLE II: Parameters (a
(σ)
i , ρ

(σ)
i , b

(σ)
i , c

(σ)
i ), i = 1, 2, 3, 4 in different scenario Eσ, σ = 1, 2, 3

Eσ E1 E2 E3

i = 1 (2,0.5,[-0.1,-0.2,0.1],1) (5,0.1,[-0.2,-0.3,0.2],2) (-2,0.8,[-0.1,-0.1,0.1],2)

i = 2 (1,0.6,[0.1,0.2,0.1],1) (3,0.3,[0.2,0.4,-0.15],2) (-1,0.9,[0.1,0.2,-0.2],1)

i = 3 (1,0.4,[0.2,0.3,0.1],0) (2,0.2,[-0.15,-0.2,-0.15],1) (-1,0.6,[-0.2,-0.35,-0.15],0.5)

i = 4 (2,0.5,[-0.1,-0.3,-0.2],0.2) (4,0.2,[0.2,0.3,0.15],0) (-2,0.7,[0.3,0.5,0.2],0.3)

B(σ)=




c
(σ)
1 0 0 0

0 c
(σ)
2 0 0

0 0 c
(σ)
3 0

0 0 0 c
(σ)
4


Ts

with

âi , a
(σ)
i (1− ρ

(σ)
i ), i = 1, 2, 3, 4

where (a
(σ)
i , ρ

(σ)
i , b

(σ)
i , c

(σ)
i ), i = 1, 2, 3, 4 with b

(σ)
i ,

[b
(σ)
ij , b

(σ)
ip , b

(σ)
iq ], j, p, q ∈ {1, 2, 3, 4}, j < p < q, j 6= p 6=

q 6= i is given in Table II.

The purpose is to regulate N1, N2, N3, and N4 to the pre-set

equilibrium N∗ = [N∗
1 , N

∗
2 , N

∗
3 , N

∗
4 ]

′ against the autonomous

variation of Eσ . Two different types of PDF of sojourn time

are considered. The first one (Case 1) is the same as in

(36) in Example 1. For the second one (Case 2), we would

like to take the first three typical distributions in Fig. 1(a)

and consider an approximation with T = 3. We reset (36)

with β12(k) = 0.2(1 − 0.2)(k−1), β13(k) = 0.85(k−1)2 −
0.85k

2

, β21(k) = 0.8(k−1)2 − 0.8k
2

, β23(k) = 0.3k(1 −
0.3)(15−k)15!/((15 − k)!i!), β31(k) = 0.45(k−1)2 − 0.45k

2

,

β32(k) = 0.7k(1− 0.7)(15−k)15!/((15− k)!i!) for k = 1, 2, 3,

and the parameters µij , i, j ∈ {1, 2, 3} are the same. The TPs

θij for Case 2 are given as

Θ =




0 0.0001 0.9999
0.1546 0 0.8454
0.9883 0.0117 0


 .

We set Ts = 1 (time unit), the pre-set equilibrium N∗ =
[6000, 4500, 4800, 5000]′, and Ts = 0.1 (time unit), the pre-

set equilibrium N∗ = [500, 400, 350, 450]′ for the two cases,

respectively. Based on Corollary 3, the controller can be

designed and the control gains are omitted here for brevity.

Figure 6 shows the state responses and control inputs for

the two cases under randomly generated switching sequences

for initial conditions x(0) = [1000, 700, 1000, 2000]′ and

x(0) = [100, 100, 100, 100]′, respectively. It can be seen that

the numbers of the four types of population converge to

the pre-set equilibria against the stochastic variations of the

situated environment illustrating the validity and applicability

of the derived theoretical results.
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V. CONCLUSION

The problems of stability and stabilization for a class of

discrete-time S-MJLSs in which the sojourn time is subject

to EMP PDF were investigated. The general S-MJLSs, for

which a finite number of stability and stabilization conditions

are hardly obtained, can be approximated by the studied

systems especially when the period is relatively large. Nec-

essary and sufficient criterion for the MSS of the S-MJLSs

is first explored, but it is not checkable since an infinite

number of conditions are involved. However, the developments

lay a foundation to further develop the numerically testable

conditions for the systems when the PDF of sojourn time are

EMP although the sojourn time can tend to infinity. Instead

of using the modes TPs in S-MJLSs, which have been shown

hardly computable due to their memory characteristics, the

PDF information of sojourn time are directly invoked into the

derived conditions. A STD Lyapunov function is used such

that the STD controller is designed as well while eliminating

the terms of power of matrices in the stability conditions.

Future works include the extensions of the developed method-

ologies to the H∞ control and filtering problems for the

underlying systems.
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APPENDIX

A. Computation of ǫij(~k)

Given the initial mode probability Pr(r1 = i) = ǭi(0),
we have ǫij(~1) = Pr(r2 = j|r1 = i) = Pr(r1 =
i, r2 = j)/Pr(r1 = i) = ǭi(0)πij(1)/ǭi(0), j 6= i and

ǫii(~1) = 1 −
∑

j 6=i,j∈I ǫij(~1). Further, one can infer that

ǫjp(~2) = Pr(r3 = p|r2 = j) = (
∑

i6=j,i∈I Pr(r1 = i, r2 =
j, r3 = p) + Pr(r1 = j, r2 = j, r3 = p))/Pr(r2 =
j) = (

∑
i6=j,i∈I ǭi(0)ǫij(~1)πjp(1)+ǭj(0)πjp(2))/

∑
i∈I(ǭi(0)

×ǫij(~1)) and ǫjj(~2) = Pr(r3 = j|r2 = j) = 1 −∑
p6=j,p∈I Pr(r3 = p|r2 = j) with i 6= j, j 6= p. Similar

to the computations of ǫij(~1) and ǫjp(~2), ǫij(~k), k > 2 can be

obtained by

ǫij(~k) =
Pr(rk = i, rk+1 = j)

Pr(rk = i)

where

Pr(rk = i, rk+1 = j)

=ǭi(0)πij(k) +
∑k−1

kp=1

∑
p6=i,p∈I

ǭp(0)πpi(kp)πij(k − kp)

+
∑k−2

kp=1

∑k−1−kp

kq=1

∑
p6=i,p∈I

∑
q 6=p,q∈I

ǭp(0)πpq(kp)

×πqi(kq)πij(k − kp − kq) + · · ·

+
∑

p6=q,p∈I
. . .
∑

g 6=i,g∈I︸ ︷︷ ︸
k

ǭp(0)πpq(1) . . . πgi(1)︸ ︷︷ ︸
k

πij(1)

Pr(rk = i)

=ǭi(0)λii(k) +
∑k−1

kp=1

∑
p6=i,p∈I

ǭp(0)πpi(kp)λii(k − kp)

+
∑k−2

kp=1

∑k−1−kp

kq=1

∑
p6=i,p∈I

∑
q 6=p,q∈I

ǭp(0)πpq(kp)

×πqi(kq)λii(k − kp − kq) + · · ·

+
∑

p6=q,p∈I
. . .
∑

g 6=i,g∈I︸ ︷︷ ︸
k

ǭp(0)πpq(1) . . . πgi(1)︸ ︷︷ ︸
k

λii(1)

Note that ǫij(~k) is dependent on all the possible mode se-

quences till k.

B. Relation Graph of Theorems and Corollaries

The relationship among the proposed theorems and corol-

laries are given in Fig. 7.

Proposition 1

Corollary 1

Theorem 2

Theorem 4

Corollary 2

Theorem 1

Theorem 3

Corollary 3

MSS

Stability Criteria

Stabilization Criteria

Necessary 

& Sufficient

Sufficient

Criteria for S MJLS with EMP PDF of sojourn time

EMP

cases

Fig. 7: Relation among the obtained criteria. A solid arrow tells that
a theorem/corollary is a sufficient condition to another (the pointed
one), and a hollow arrow tells that a criterion (the pointed one) can
be derived from another.

C. Proof of Corollary 1

Proof. It follows from (11) that
∑∞

m=0
(A′

i)
m
∑∞

β=m+1
{A′

iOi(n+ 1, β,m+ 1)Ai

−Oi(n+ 1, β,m)}Am
i

=
∑∞

β=1

∑β−1

m=0

{
(A′

i)
m+1Oi(n+ 1, β,m+ 1)Am+1

i

−(A′
i)

mOi(n+ 1, β,m)Am
i }

=
∑∞

β=1

{
(A′

i)
βOi(n+ 1, β, β)Aβ

i −Oi(n+ 1, β, 0)
}

≺0

According to (12), one can further derive that
∑∞

β=1

{
(A′

i)
βOi(n+ 1, β, β)Aβ

i

}
−Oi(n, α, α)≺0(40)

By setting Pi(n, α) = Oi(n, α, α), it can be seen that (7) is

equivalent to (40).
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D. Proof of Theorem 1

Proof. Letting Ōi(n+1,m) ,
∑∞

β=m+1 Oi(n+1, β,m), (11)

and (12) can be written as, respectively,

A′
iOi(n+ 1,m+ 1,m+ 1)Ai +A′

iŌi(n+ 1,m+ 1)Ai

−Ōi(n+ 1,m) ≺ 0 (41)

Ōi(n+ 1, 0)−Oi(n, α, α) ≺ 0 (42)

From (41), by Schur complement, it yields that


−Ôi(n+ 1,m+ 1,m+ 1) 0

∗ −Ōi(n+ 1,m+ 1)
∗ ∗

Ôi(n+ 1,m+ 1,m+ 1)AiLi(m+ 1)
Ōi(n+ 1,m+ 1)Ai

−Ōi(n+ 1,m)


≺0 (43)

where Ôi(n,m,m),diag {O1(n,m,m), . . . , Oi−1(n,m,m),
Oi+1(n,m,m), . . . , OM (n,m,m)}, Ai , diag(M−1){Ai}.

Perform a congruence transformation to (43) by

diag
{
Ô−1

i (n+ 1,m+ 1,m+ 1)Vi, Ō
−1
i (n+ 1,m+ 1)Vi, I

}

with Vi , diag {V1, . . . , Vi−1, Vi+1, . . . , VM}. Since

(Ôi(n+ 1,m+ 1,m+ 1)− Vi)
′Ô−1

i (n+ 1,m+ 1,m+ 1)

×(Ôi(n+ 1,m+ 1,m+ 1)− Vi) ≻ 0

ensures

Ôi(n+ 1,m+ 1,m+ 1)− Vi − V ′
i

≻−V ′
iÔ

−1
i (n+ 1,m+ 1,m+ 1)Vi,

we can obtain

Υ̂i(n+ 1,m+ 1,m+ 1) 0

∗ Ῡi(n+ 1,m+ 1)
∗ ∗

V ′
iAiLi(m+ 1)

V ′
i Ai

−Ōi(n+ 1,m)


≺0 (44)

with

Υ̂i(n+ 1,m+ 1,m+ 1),Ôi(n+ 1,m+ 1,m+ 1)−Vi−V ′
i

Ῡi(n+ 1,m+ 1),Ōi(n+ 1,m+ 1)− Vi − V ′
i

Then, by applying the congruence transformation to (44)

by diag
{
V−1
i , V −1

i , V −1
i

}
, and setting Zi , V −1

i ,

Hi(n,m,m) , (V ′
i )

−1Oi(n,m,m)V −1
i , and H̄i(n,m) ,

(V ′
i )

−1Ōi(n,m)V −1
i , it can be obtained that



Φi(n+ 1,m+ 1,m+ 1) 0

∗ Φ̄i(n+ 1,m+ 1)
∗ ∗

ĀiLi(m+ 1)
AiZi

−H̄i(n+ 1,m)


≺0 (45)

where Φi(n + 1,m + 1,m + 1) and Φ̄i(n + 1,m + 1) are

defined in Theorem 1, Āi , diag(M−1){AiZi}. Therefore,

(45) can be ensured by (13) via replacing AiZi in (45) with

AiZi + BiUi(α). On the other hand, one can further derive

(14) from (42) by pro- and post-multiplying (V ′
i )

−1 and V −1
i .

The proof is completed.

E. Proof of Theorem 2

Proof. (i) Because η̃ii(β) = 0, (7) can be represented as

∑

β∈N+

ρi(β)
∑

j 6=i,j∈I

ηij(β)(A
′
i)

βPj(n+ 1, β)Aβ
i

−Pi(n, α) , −Qi(n, α)≺0 (46)

where ηij(β) and ρi(β) are defined in (15). Then, it is

straightforward to show that (46) is equivalent to

∑

β∈N+

ρi(β)




∑

j 6=i,j∈I

ηij(β)(A
′
i)

βPj(n+ 1, β)Aβ
i

−
1

ρ̃i(β)
Pi(n, α)

}
= −

∑

β∈N+

ρi(β)

ρ̃i(β)
Qi(n, α)≺0.

Since ρ̃i(β) ,
∑

β∈N+
ρi(β) =

∑
β∈N+

∑
j 6=i∈I πij(β) = 1

and ρi(β) ≥ 0, it can be observed that (46) can be ensured by

(15).

(ii) From (16), it can be inferred that

β−1∑

m=0

(A′
i)

m


 ∑

j 6=i,j∈I

ηij(β) {A
′
iOj(n+ 1, β,m+ 1)Ai

−Oj(n+ 1, β,m)}]Am
i ≺0

which can be rewritten as
∑

j 6=i,j∈I

ηij(β)
{
(A′

i)
βOj(n+ 1, β, β)Aβ

i

−Oj(n+ 1, β, 0)}≺0. (47)

Combined with (17) and (47), the above inequality becomes
∑

j 6=i,j∈I

ηij(β)(A
′
i)

βOj(n+ 1, β, β)Aβ
i −Oi(n, α, α) ≺ 0.

(48)

Setting Pi(n, α) = Oi(n, α, α), one knows that (48) is

equivalent to (15). This completes the proof.

F. Proof of Theorem 3

Proof. By Schur complement, (16)-(17) can be rewritten as
[
−Õi(n+ 1, β,m+ 1) Õi(n+ 1, β,m+ 1)AiL̃i(β)

∗ −L̃′
i(β)Õi(n+ 1, β,m)L̃i(β)

]
≺0

(49)[
−Õi(n+ 1, β, 0) L̃i(β)

∗ −Oi(n, α, α)

]
≺0

(50)

where Õi(n+ 1, β,m),diag{O1(n+ 1, β,m),. . ., Oi−1(n+
1, β,m), Oi+1(n + 1, β,m),. . ., OM (n + 1, β,m)}, Ai is

defined in (43). Performing the congruence transformation

diag{Õ−1
i (n+ 1, β,m+ 1)Ṽ, I} to (49) and diag{Õ−1

i (n+

1, β, 0)Ṽ, I} to (50), (49)-(50) can be ensured by the following

inequalities, respectively,
[
Υ̃i(n+ 1, β,m+ 1) Ṽ ′AiL̃i(β)

∗ −L̃′
i(β)Õi(n+ 1, β,m)L̃i(β)

]
≺0(51)
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[
Υ̃i(n+ 1, β, 0) Ṽ ′L̃i(β)

∗ −Oi(n, α, α)

]
≺0(52)

with

Υ̃i(n+ 1, β,m+ 1),Õi(n+ 1, β,m+ 1)− Ṽ − Ṽ ′

where Ṽ , diag(M−1){V }, Ai is defined in (43). Then, taking

another congruence transformation diag{Ṽ−1, V −1} to (51)

and (52), one will have
[
Φ̃i(n+ 1, β,m+ 1) ÃiL̃i(β)

∗ −L̃′
i(β)H̃i(n+ 1, β,m)L̃i(β)

]
≺0(53)

[
Φ̃i(n+ 1, β, 0) Z̃L̃i(β)

∗ −Hi(n, α, α)

]
≺0(54)

where Φ̃i(n + 1, β,m + 1) and Φ̃i(n + 1, β, 0) are defined

in Theorem 3, Hi(n, α,m) = (V ′)−1Oi(n, α,m)V −1, Z =
V −1, H̃i(n+1, β,m) , diag{H1(n+1, β,m), . . . , Hi−1(n+
1, β,m), Hi+1(n + 1, β,m), . . . , HM (n + 1, β,m)}, Z̃ ,

diag(M−1){Z}, Ãi , diag(M−1){AiZ} and L̃i(β) ,[√
ηi1(β)I,. . .,

√
ηi(i−1)(β)I,

√
ηi(i+1)(β)I,. . .,

√
ηiM (β)I

]′
.

Note that (54) is the same as (19), and (53) can be ensured

by (18) while replacing Ãi with Âi(α).
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