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Abstract

This paper discusses the thermal buckling analysis of composite plates and sandwich panels by means

of a Ritz-based variable-kinematic formulation. Main feature of the proposed formulation consists in

the representation of the structure by means of sublaminates, i.e. arbitrary groups of plies composing

the panel. Each sublaminate is associated with an independent, arbitrary kinematic description, so that

the use of refined, high-order theories can be restricted to specific regions, such as the core of sandwich

panels. Monolithic plates can be studied as a special case where the structure is modeled using only one

sublaminate. Presented are the critical temperatures, with and without accounting for the pre-buckling

effects, for a set of monolithic and sandwich configurations. When pre-buckling effects are neglected,

the problem is solved as a standard eigenvalue problem. On the other hand, the introduction of pre-

buckling effects leads to a nonlinear eigenvalue problem, which is solved with an iterative procedure. The

results are validated against 3D solutions, and highlight the importance of accounting for pre-buckling

deformations, especially in the case of sandwich panels. As demonstrated, high-fidelity predictions are

obtained while keeping at minimum the amount of degrees of freedom.
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1 Introduction

Thermal loads play an important role in several fields of engineering. Aeronautical and space applications are

a well-known example, where the structures commonly experience severe aerodynamic heating and drastic

changes of thermal environments. For instance, the launch and the re-entry of space vehicles is typically

associated with severe temperature variations. Similarly, thermal loads are developed in supersonic and

hypersonic aircrafts as the result of restrained thermal expansion [1].

These aspects, in conjunction with the typical thin-walled architecture of light-weight structures, have made

thermal buckling the subject of several investigations in the past. Early works are based on classical lami-

nation theory (CLT) and first order shear deformation theory (FSDT). Reviews of analytical solutions using

classical CLT and FSDT are available on several textbooks [2, 3], while a comprehensive overview of the

topic is proposed by Jones [4] with regard to fiber-reinforced composite plates, where CLT is applied and the

equivalent mechanical loading concept is discussed. Within the context of CLT, Nemeth [5] investigated the

thermal buckling response of infinitely long plates, introducing stiffness-weighted thermal-expansion param-

eters as a useful mean to obtain design charts, whose validity extends to a wide range of laminates. Recently,

the effects of non-uniform temperature distribution on thermal buckling have been assessed by Li et al. [6]

using CLT in the context of an energy-based formulation. The work was successively extended to account

for random system properties [7]. Still in the context of CLT, variable stiffness plates have been optimized

with regard to thermal buckling requirements using finite elements in Ref. [8].

While CLT can be successfully applied to analyze a wide class of thin-plate problems, different strategies are

needed to analyze more general plate configurations, where transverse shear deformation effects cannot be

neglected. In this sense, a relatively vast amount of research efforts has regarded the development of more

refined approaches, FSDT being the simplest one. An early work by Tauchert [9] discusses the derivation of

closed-form solutions for anti-symmetric angle-ply plates based on FSDT, while mixed FSDT finite-elements

are adopted by Noor and Peters [10] to address the sensitivity of thermal buckling loads to lamination and

material properties. Recently, FSDT has been applied also to analyze the thermal buckling of FGM shells

[11].

High-order shear deformation theories were employed in Refs. [12, 13] and closed-form solutions obtained

for simply-supported plates subjected to a uniform temperature rise. Erroneous assumptions on the plate

constitutive law of Ref. [12] were successively pointed out by Rohwer [14], and results corrected accordingly.

Other refined techniques for the analysis of laminated plates included the high-order mixed formulation and

the global/local higher order theory proposed in Refs. [15, 16], respectively, while layerwise approaches have

been carried out with finite elements in Refs. [17, 18].

Despite the vast amount of research papers dealing with composite plates, less studies are available on the

thermal buckling response of sandwich plates. A simplified analytical study is proposed in Ref. [19], based

on the Ritz method and Libove-Batdorf sandwich theory [20]. A higher-order plate finite element is used
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in Refs.[21, 22] to address the thermal buckling response of sandwich panels, including skew configurations.

An analytical approach is developed by Frostig [23] for the thermal buckling and post-buckling based on a

high-order approach incorporating the effects of the core flexibility. Equivalent single layer models are dis-

cussed by Pradeep et al. [24], and Matsunaga with regard to plates with cross-ply and angle-ply face-sheets

[25–27]. These latter studies include a simplified treatment of the pre-buckling deformations on the thermal

buckling load, demonstrating their role on the critical temperature prediction.

Three dimensional solutions were developed by Noor and co-workers [28–30] for both laminated and sandwich

panels. In these pioneering works, the relevance of pre-buckling deformations was illustrated by providing

results for temperature-independent [28] and temperature-dependent [29] properties. Despite their usefulness

for deriving benchmark results, three dimensional solution procedures are usually too costly to be used for

common design purposes, and more efficient approaches are needed.

In this sense, a powerful strategy for including several theories into one single formulation is given by the

unified formulation proposed by Carrera, often denoted with the acronym CUF [31, 32]. This kind of variable-

kinematic approach has been adopted to analyze the mechanical response of sandwich panels in several works

[33–37], while the prediction of their critical temperatures is discussed in Refs. [38, 39]. Within the same

framework, the thermal stability of functionally graded sandwich has been recently assessed [40].

The importance of retaining the transverse normal deformation in the presence of thermal loading and the

influence of the actual temperature distribution across the plate thickness was pointed out by Carrera in

Refs. [41, 42].

In recent works by the authors, the Generalized Unified Formulation proposed by Demasi [43–45] was ex-

tended to include a sublaminate approach [36, 37] for the bending analysis of sandwich plates with the aim

of optimizing the accuracy-to-cost ratio. The resulting approach was indicated as Sublaminate Generalized

Unified Formulation (S-GUF).

In the present paper, the S-GUF is developed in the context of a Ritz-based approach [46–48] and its for-

mulation is extended to address the thermal buckling response of laminated plates and sandwich panels.

As opposed to the vast majority of previous studies, the initial stress produced by a uniform thermal loading

is considered and the effect of the pre-buckling transverse normal deformation is assessed. This technique,

suggested by Noor and Burton [28], introduces the deformed pre-buckling state into the classical eigenvalue

problem for determining the critical temperature, which is then solved iteratively.

A more accurate identification of the initial stress state, that accounts for a refined representation of the ther-

mal loading profile, the actual boundary conditions of the plate and, where necessary, temperature-dependent

material properties, would require the solution of a more complex non-linear problem and remains out of

the scope of this paper.

The results illustrate the excellent accuracy of the predictions in relation with the relatively low number of

degrees of freedom. Novel results are finally proposed as a benchmark for future studies.
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2 Formulation

The formulation is developed for the thermal buckling analysis of composite plates in the framework of the

Sublaminate-Generalized Unified Formulation (S-GUF). Linear and nonlinear pre-buckling deformations are

taken into account. The panels are flat and can be either monolithic or sandwich. A sketch of the panel

is provided in Figure 1, where the reference system together with the typical dimensions of the panel are

reported. In particular, a and b denote the length and the width of the panel, respectively, while h is the

total thickness. For generality purposes, the sketch refers to a sandwich configuration, where the quantity

hf is reported and refers to the thickness of the single face-sheet. In the case of monolithic composite plates

the panel thickness is simply denoted with h, while hf becomes meaningless.

The panel is subjected to a uniform temperature increase, although the formulation could be, in principle,

extended to consider nonuniform distributions. The initial heating of the panels – which constitutes the pre-

buckling condition – happens by assuming fully restrained boundary conditions, where immovable edges are

considered. The buckling boundary conditions, as discussed next, can be any sort of combination involving

the vanishing or non-vanishing of the three-inplane displacement components.

The formulation is thus characterized by two distinct steps, consisting in the solution of the pre-buckling

and buckling condition. When the nonlinear pre-buckling effects are accounted for, the equations are in the

form of a nonlinear eigenvalue problem, which is solved iteratively. On the contrary, the classical approach

based on a linear pre-buckling analysis leads to the solution of a standard eigenvalue problem.

The Sublaminate-Generalized Unified Formulation is an axiomatic approach for the analysis of composite

structures based on the idealization of the structure as an assembly of Nk sublaminates. The fundamental

ideas of the approach are here reviewed, while a deeper discussion is available in [36, 37]. Each sublaminate

is a cluster of Nk
p plies, arbitrarily chosen by the user, where an arbitrary kinematic theory is chosen for

describing the displacement field. A fully displacement-based approach is adopted. By collecting the three

displacement components of the generic ply p belonging to the sublaminate k, the 3 × 1 vector up,k is defined

as:

up,k =
{
up,kx up,ky up,kz

}T

(1)

where up,kr denotes the displacement component along the generic coordinate direction r = x, y, z. The

Generalized Unified Formulation (GUF) proposed by Demasi [43–45] is adopted as underlying kinematic

description for approximating the displacement components of Eq. (1). In particular, following the notation

of GUF, the components of Eq. (1) are expressed as:
up,kx (x, y, zp) = Fαux (zp)u

p,k
xαux

(x, y) αux = 0, 1, . . . , Nk
ux

up,ky (x, y, zp) = Fαuy (zp)u
p,k
yαuy

(x, y) αuy = 0, 1, . . . , Nk
uy

up,kz (x, y, zp) = Fαuz (zp)u
p,k
zαuz

(x, y) αuz = 0, 1, . . . , Nk
uz

(2)
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where separation of variables is assumed between the thickness-wise and in-plane directions. In particular,

Fαur denotes the thickness function, while up,krαur are the generalized displacement components associated

with the kinematic assumptions. Note that Nk
ur denotes the order of the expansions, thus a different number

of terms can be used for representing the displacement field along the three directions. This means that,

for instance, the in-plane displacement components of a generic sublaminate could be described with an

equivalent single layer theory of order 4, and the out-of-plane displacement with an similar theory of order

2. In this case, the sublaminate theory would be labeled as ED442. At laminate level, the kinematic

theory is specified as a string reporting the approaches adopted for the various sublaminates. For instance,

ED332/ED554/ED332 denotes a three-sublaminate subdivision, where the first and the third sublaminates are

modeled using ED332, while ED554 is adopted for the second one. It is also remarked that each sublaminate

can be modeled by assuming, independently, an equivalent single layer or a layerwise description for each

displacement component.

Strain-displacement relations

As far as the formulation is developed within a displacement-based approach, it is necessary to introduce

the relation between the strain and the displacement components. With the aim of treating the thermal

buckling problem, the Green-Lagrange strain tensor is introduced as:

εij = εij + ηij (3)

where distinction is made between the linear and the nonlinear parts εij and ηij , whose components are:

εij =
1

2

(
ui,j + uj,i

)
(4)

and

ηij =
1

2
ur,iur,j (5)

Following the standard CUF formalism, the components of Eqs. (4) and (5) are organized in vectors where

the in-plane and the normal components are conveniently separated. Considering, for now, the linear part

of the strain tensor, it is possible to write:

εp,kΩ = DΩup,k εp,kn = Dnup,k + Dzu
p,k (6)

where the subscripts Ω and n are introduced to denote the in-plane and the normal components, respectively.

The two vectors of Eq. (6) read:

εp,kΩ =
{
εp,kxx εp,kyy γp,kxy

}T

εp,kn =
{
γp,kyz γp,kxz εp,kzz

}T

(7)
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and the differential matrices of Eq. (6) are defined as as:

DΩ =


∂
∂x 0 0

0 ∂
∂y 0

∂
∂y

∂
∂x 0

 Dn =


0 0 ∂

∂x

0 0 ∂
∂y

0 0 0

 Dz =


∂
∂z 0 0

0 ∂
∂z 0

0 0 ∂
∂z

 (8)

In a similar fashion, the nonlinear terms of the strain tensor ηij expressed by Eq. (5) are organized as:

ηp,kΩ =

{
1

2

(
up,k

2

x,x + up,k
2

y,x + up,k
2

z,x

) 1

2

(
up,k

2

x,y + up,k
2

y,y + up,k
2

z,y

)
up,kx,xu

p,k
x,y + up,ky,xu

p,k
y,y + up,kz,xu

p,k
z,y

}T

ηp,kn =
{
up,kx,yu

p,k
x,z + up,ky,yu

p,k
y,z + up,kz,yu

p,k
z,z up,kx,xu

p,k
x,z + up,ky,xu

p,k
y,z + up,kz,xu

p,k
z,z up,kx,zu

p,k
x,z + up,ky,zu

p,k
y,z + up,kz,zu

p,k
z,z

}T

(9)

where, consistently with Eq. (6), distinction is made between the in-plane and the normal components.

Hooke’s law

The same partitioning into in-plane and normal components of Eq. (6) is adopted, and linear hyperelastic

orthotropic behaviour is assumed. After rotating the components into a common laminate reference system,

the 3D constitutive law of the generic ply p of the sublaminate k can be written as:

σp,kΩ = C̃
p,k

ΩΩε
p,k
Ω + C̃

p,k

Ωnε
p,k
n σp,kn = C̃

p,k

nΩε
p,k
Ω + C̃

p,k

nn ε
p,k
n (10)

where:

C̃
p,k

ΩΩ =


C̃p,k11 C̃p,k12 C̃p,k16

C̃p,k12 C̃p,k22 C̃p,k26

C̃p,k16 C̃p,k26 C̃p,k66

 C̃
p,k

Ωn =


0 0 C̃p,k13

0 0 C̃p,k23

0 0 C̃p,k36

 C̃
p,k

nn =


C̃p,k44 C̃p,k45 0

C̃p,k45 C̃p,k55 0

0 0 C̃p,k33

 (11)

Thermal deformations, which are of concern for the the pre-buckling analysis, are introduced as [2, 49]:

tε
p,k
Ω = −αp,kΩ ∆T tε

p,k
n = −αp,kn ∆T (12)

where ∆T denotes the temperature increase with respect to a reference value, while the vectors collecting

the coefficients of thermal expansion are defined as:

αp,kΩ =
{
αp,kxx αp,kyy 2αp,kxy

}T

αp,kn =
{

0 0 αp,kzz

}T

(13)

2.1 Pre-buckling state

Following Noor and Burton [28], the pre-buckling analysis is performed by assuming uniform heating and

boundary conditions of immovable edges. More specifically, the panel is constrained such that the normal

in-plane displacement components are prevented along the four edges. On the other hand, the out-of-plane
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displacement is constrained in correspondence of the midsurface, so that the panel is free to expand or

contract along the thickness-wise direction. It follows that the deformed pre-buckling deformed pattern is

given by: 0ux(x, y, z) = 0uy(x, y, z) = 0

0uz(x, y, z) = 0uz(z)
(14)

where the subscript 0 is introduced to specify the pre-buckling condition. The internal stress distribution

arising from the displacement field given by Eq. (14) is:0σyz(x, y, z) = 0σxz(x, y, z) = 0

0σαβ(x, y, z) = 0σαβ(z) with α, β = x, y
(15)

meaning that the only not-null pre-buckling stress components are those relative to the panel membrane

behaviour. It is worth highlighting that the terms 0σαβ are functions of z and are, in general, different from

ply to ply.

For the pre-buckling condition specified by Eqs. (14) and (15), the evaluation of the normal displacement

0uz and the in-plane stress components can be performed in a closed-form manner. After noticing that the

only not null pre-buckling strain component is 0ε
p,k
zz , the internal stresses are available from the thermoelastic

constitutive relation:

0σ
p,k
Ω = −C̃

p,k

ΩΩα
p,k
Ω ∆T + C̃

p,k

Ωn

(
0ε
p,k
n −αp,kn ∆T

)
0σ

p,k
n = −C̃

p,k

nΩα
p,k
Ω ∆T + C̃

p,k

nn

(
0ε
p,k
n −αp,kn ∆T

) (16)

where:

0ε
p,k
n =

{
0 0 0ε

p,k
zz

}T

(17)

The value of 0ε
p,k
zz can be determined after imposing the vanishing of the normal stress σp,kzz , viz. considering

plane stress conditions. More specifically, the condition σp,kzz = 0 can be substituted in Eq. (16), and the

pre-buckling strain is obtained as function of the temperature variation as:

0ε
p,k
zz = 0ε

p,k
33 =

(
C̃p,k13

C̃p,k33

αp,kxx +
C̃p,k23

C̃p,k33

αp,kyy + 2
C̃p,k36

C̃p,k33

αp,kxy + αp,kzz

)
∆T (18)

and the corresponding in-plane stress components are retrieved by making use of Eq. (16), so:

0σ
p,k
Ω = −Ĉ

p,k
αp,kΩ ∆T

0σ
p,k
n = 0

(19)

where

Ĉ
p,k

=


Ĉp,k11 Ĉp,k12 Ĉp,k16

Ĉp,k12 Ĉp,k22 Ĉp,k26

Ĉp,k16 Ĉp,k26 Ĉp,k66

 (20)
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and

Ĉij = C̃p,kij −
C̃p,ki3 C̃p,k3j

C̃p,k33

i, j = 1, 2, 6 (21)

If the effect of pre-buckling deformations is neglected – as it is done in standard linear buckling eigenvalue

analysis – no additional results are needed, and the solution given by Eq. (19) suffices for performing the

subsequent buckling analysis.

On the other hand, an additional step is needed if the analysis is aimed at accounting for the effect of

pre-buckling deformations. In particular, the additional quantity to be evaluated is the first derivative of

the pre-buckling displacement 0uz,z, which is easily obtained after recalling the nonlinear expression of the

Green-Lagrange strain tensor of Eq. (3) and the solution of the pre-buckling problem of Eq. (14) as:

0u
p,k
z,z = −1 +

√
1 + 20ε

p,k
zz (22)

Note that the solution of Eq. (22), despite its simplicity, accounts for the nonlinearity contained in the

Green-Lagrange strain tensor. It is also worth observing the presence of the term 0ε
p,k
zz in Eq. (22), which

makes it necessary the adoption of a theory of order higher than zero with respect to the uz component.

2.2 Buckling condition

The buckling equations are derived in the context of a variational framework, starting from the expression

of the total potential energy of the panel, which is:

Π =
1

2

∫
V

ε : σ dV (23)

where the potential of the external loads is, in the present investigation, identically null as no mechanical loads

are prescribed. The strain tensor ε is intended as the contribution restricted to the mechanical deformations,

as no strain energy is associated with the thermal deformations.

The first variation of the potential energy allows to derive the nonlinear pre-buckling equilibrium equations,

whose closed-form solution is available from Eqs. (16) and (22). The buckling condition can be found referring

to the Trefftz criterion [3]:

δ(δ2Π) = 0 (24)

According to the stability criterion of Eq. (24), the buckling condition is readily found by recalling Eqs. (3)

and (23), and is expressed as:

δ(δ2Π) =

∫
V

(δe : σ + λδη : 0σ) dV = 0 (25)

where 0σ is the pre-buckling stress tensor, λ is the buckling multiplier, while e is:

e = ε+ ε̂ (26)
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The components of the tensors ε and η are available from Eqs. (4) and (5), while the term ε̂ is the linear

part of the incremental Green-Lagrange strain tensor and its components read:

ε̂ij =
1

2

(
0ur,iur,k + 0ur,kur,i

)
(27)

It is highlighted that the components ε̂ij are identically null whenever pre-buckling deformations are null or

negligible. In this case the variational statement of Eq. (25) reduces to the well-known form:

δ(δ2Π) =

∫
V

(δε : σ + λδη : 0σ) dV = 0 (28)

The more general case of non negligible pre-buckling deformations is now considered. Introducing the S-

GUF approximation, and recalling the pre-buckling condition expressed by Eq. (19), the buckling condition

of Eq. (25) can be re-written as:

Nk∑
k=1

Nkp∑
p=1

∫
Ω

∫ ztopp

zbotp

[(
δεp,k

T

+ δε̂p,k
T
)
σp,k + λδηp,k

T

Ω 0σ
p,k
Ω

]
dz dΩ = 0 (29)

where, according to the pre-buckling solution given by Eq. (16), the components of ε̂p,k are:

ε̂p,kΩ = {0 0 0}T

ε̂p,kn =
{
γ̂p,kyz γ̂p,kxz ε̂p,kzz

}T

=
{

0u
p,k
z,zu

p,k
z,y 0u

p,k
z,zu

p,k
z,x 0u

p,k
z,zu

p,k
z,z

}T

(30)

Substituting now Eq. (30) into the variational principle of Eq. (29) leads to:

Nk∑
k=1

Nkp∑
p=1

∫
Ω

∫ ztopp

zbotp

[
δεp,k

T

Ω σp,kΩ +
(
δεp,kn + δε̂p,kn

)T

σp,kn + λδηp,k
T

Ω 0σ
p,k
Ω

]
dz dΩ = 0 (31)

which is the variational statement expressing the buckling condition in the presence of nonlinear pre-buckling

deformations. In the context of a displacement-based formulation, the various terms of Eq. (31) need to be

expressed as function of the displacement components. This is done by recalling Eq. (6) and assuming that

the constitutive relation can be written in the form:

σp,kΩ = C̃
p,k

ΩΩep,kΩ + C̃
p,k

Ωnep,kn σp,kn = C̃
p,k

nΩep,kΩ + C̃
p,k

nn ep,kn (32)

In addition, the relation between the strains ε̂p,kn and the displacement components can be organized by

separating the derivatives with respect to the in-plane and the normal components as:

ε̂p,kn = 0u
p,k
z,z

(
D̂nup,k + D̂zu

p,k
)

(33)

where the differential matrices D̂n and D̂z are defined as :

D̂n =


0 0 (·),y
0 0 (·),z
0 0 0

 D̂z =


0 0 0

0 0 0

0 0 (·),z

 (34)
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Substituting now Eqs. (32) and (33) in Eq. (31), it is possible to express the buckling condition as function

of the displacement unknowns up,k. In particular, the three contributions reported in Eq. (31) are written

as:

δεp,k
T

Ω σp,kΩ = δ
(
DΩup,k

)T
{

C̃
p,k

ΩΩDΩup,k + C̃
p,k

Ωn

[
Dnup,k + Dzu

p,k + 0u
p,k
z,z

(
D̂nup,k + D̂zu

p,k
)]}

(35)

(
δεp,kn + δε̂p,kn

)T

σp,kn = δ

[
Dnup,k + Dzu

p,k + 0u
p,k
z,z

(
D̂nup,kD̂zu

p,k
)]T{

C̃
p,k

nΩDΩup,k+

+ C̃
p,k

nn

[
Dnup,k + Dzu

p,k + 0u
p,k
z,z

(
D̂nup,k + D̂zu

p,k
)]} (36)

δηp,k
T

Ω 0σ
p,k
Ω =

(
Dnlδu

p,k
)T

0Σp,kDnlu
p,k (37)

It is noted that all the terms of Eqs. (35) and (36) multiplied with 0u
p,k
z,z are those associated with the

nonlinear pre-buckling contributions, while the remaining ones are the standard terms contributing to the

stiffness matrix of the undeformed configuration.

The contribution of Eq. (37) is written after introducing the pre-stress matrix 0Σp,k as:

0Σp,k =


0ς
p,k 0 0

0 0ς
p,k 0

0 0 0ς
p,k

 (38)

with

0ς
p,k =

 0σ
p,k
xx 0σ

p,k
xy

0σ
p,k
xy 0σ

p,k
yy

 (39)

The pre-buckling stress components collected in Eq. (39) are available from Eq. (19) and, in general, are

different from ply to ply depending on their thermoelastic properties.

The differential operator Dnl relative to the nonlinear part of the strain tensor is:

Dnl =



(·),x 0 0

(·),y 0 0

0 (·),x 0

0 (·),y 0

0 0 (·),x
0 0 (·),y


(40)

Integration along the thickness of Eq. (31) can be performed by recalling the GUF expansion of the displace-

ment unknowns of Eq. (2), which depends upon the theory adopted. In general, the thickness integrals can
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be written in the form:

Z
pαurβus
urus =

∫ ztopp

zbot
p

FαurFβusdz Z
pαurβus
∂urus

=

∫ ztopp

zbot
p

Fαur ,zFβusdz

Z
pαurβus
ur∂us

=

∫ ztopp

zbot
p

FαurFβus ,zdz Z
pαurβus
∂ur∂us

=

∫ ztopp

zbot
p

Fαur ,zFβus ,zdz

(41)

In the present Ritz-based approach, the in-plane integration of Eq. (31) is performed after approximating

the in-plane behaviour by means of properly chosen shape functions.

3 Ritz approximate solution

The exact solution of the buckling equations expressed by Eq. (31) can be found for special sets of stacking

sequences, loading and boundary conditions. An approximate solution is here sought not to restrict the class

of problems to be analyzed, thus making it possible to study different sets of boundary conditions and lay-

ups. The solution procedure relies upon a Ritz approximation of the generalized displacement components

introduced by Eq. (2) (see also [37, 46, 48]), which are expressed as:
up,kxαux (x, y) = Nuxi(x, y)up,kxαux i

up,kyαuy (x, y) = Nuyi(x, y)up,kyαuy i

up,kzαuz (x, y) = Nuzi(x, y)up,kzαuz i

i = 1, 2, . . . ,M (42)

where different sets of global shape functions are adopted to approximate the three components up,krαur (x, y).

A map is introduced between the physical and the computational domain (ξ, η) defined in the interval

[−1 1]× [−1 1], where the generic shape function can be expressed as:

Nuri(ξ, η) = φurm(ξ)ψurn(η) m = 1, . . . , R n = 1, . . . , S (43)

and the number of functions R and S along the directions ξ and η can be, in general, different. The relation

between the generic i-th function and the m-th and n-th one-dimensional functions is given by:

i = S(m− 1) + n (44)

The functions φurm(ξ) and ψurn(η) of Eq. (43) are, in turn, expressed as the product between sets of complete

functions pr and proper boundary functions, chosen depending on the constraints applied at the panel edges:

φurm(ξ) = fur (ξ)pm(ξ)

ψurn(η) = gur (η)pn(η)
(45)

In the present implementation, Legendre orthogonal polynomials are adopted as global functions, thus:

p0 = 1; p1 = ζ; pl+1 =
(2l + 1)ζpl − lpl−1

l + 1
with l = m,n (46)

11



while the boundary functions are the polynomial expressions reported in Ref. [46].

In addition to Legendre polynomials, a second set of Ritz functions is considered. In particular, the set

consists of the trigonometric functions defined as:

Nuxi(ξ, η) = cos
mπ

2
(ξ + 1) sin

nπ

2
(η + 1)

Nuyi(ξ, η) = sin
mπ

2
(ξ + 1) cos

nπ

2
(η + 1)

Nuzi(ξ, η) = sin
mπ

2
(ξ + 1) sin

nπ

2
(η + 1)

(47)

It should be highlighted that the functions of Eq. (47) are suitable for analyzing simply-supported boundary

conditions, while they cannot be employed to analyze other set of boundary conditions.

Independently on the choice for the Ritz functions, the approximation of Eq. (43) can be substituted into

the expression of Eq. (31) and, after evaluating the surface integrals and assembling the contributions at ply

and sublaminate level [36, 37], the governing equations are obtained in the form:

δuT

[(
K + K0

)
+ λKG

]
u = 0 ∀ δu (48)

where K is the stiffness matrix, K0 is the contribution due the pre-buckling deformations and KG is the

geometric stiffness. The vector of unknowns is given by:

u = {u1 · · ·uRS}T (49)

and the i-th contribution appearing in Eq. (49) is the set of unknown amplitudes associated with the i-th

shape function, partitioned into the x, y and z-wise contributions as:

ui =
{
uxi uyi uzi

}T
(50)

The expression of the stiffness matrix K is already available in Ref. [37] but, for completeness, its expression

is summarized in the Appendix.

The stiffness contribution associated with the pre-buckling deformations is obtained as:

K0 = K0
uxuz + K0T

uxuz + K0
uyuz + K0T

uyuz + K0
uzuz (51)

where the single terms of Eq. (51) are organized to highlight the work-conjugacy dependence over the different

displacement components ur. The formulation is developed by keeping separate the thickness-wise and the

in-plane response, as clear from Eq. (2). It follows that the various terms composing the stiffness matrices can

be obtained by composing two distinct contributions: those relative to the integration along the thickness,

and those relative to in-plane integration of Eq. (31). Referring to Eq. (51), the three distinct contributions

are obtained by composing the assembled thickness integrals Z0
(∂)ur∂(∂)usRS

, whose expression is reported in

12



the Appendix, and the in-plane integrals as:

K0
uxuz = III0100

uxuz ⊗ Z0
ux∂uz36 + III0010

uxuz ⊗ Z0
∂uxuz55 + III1000

uxuz ⊗ Z0
ux∂uz13 + III0001

uxuz ⊗ Z0
∂uxuz45

K0
uyuz = III0010

uyuz ⊗ Z0
∂uyuz45 + III0100

uyuz ⊗ Z0
uy∂uz23 + III0001

uyuz ⊗ Z0
∂uyuz44 + III1000

uyuz ⊗ Z0
uy∂uz36

K0
uzuz = III0101

uzuz ⊗ Z0
uzuz44 + III0000

uzuz ⊗ Z0
∂uz∂uz33 +

(
III0110
uzuz + III1001

uzuz

)
⊗ Z0

uzuz45 + III1010
uzuz ⊗ Z0

uzuz55

(52)

where ⊗ denotes the Kronecker product and IIIdefgurus are the matrices collecting the integrals of the Ritz

functions according to the following notation:(
IIIdefgurus

)
ij

=

∫ 1

−1

∫ 1

−1

∂d+eNuri
∂ξd∂ηe

∂f+gNusj
∂ξf∂ηg

dηdξ (d, e, f, g = 0, 1) (53)

In a similar fashion, the geometric stiffness matrix is obtained as:

KG = KG
uxux + KG

uyuy + KG
uzuz (54)

where:

KG
uxux = III1010

uxux ⊗ ZGuxux11 + III0101
uxux ⊗ ZGuxux22 +

(
III1001
uxux + III0110

uxux

)
⊗ ZGuxux12

KG
uyuy = III1010

uyuy ⊗ ZGuyuy11 + III0101
uyuy ⊗ ZGuyuy22 +

(
III1001
uyuy + III0110

uyuy

)
⊗ ZGuyuy12

KG
uzuz = III1010

uzuz ⊗ ZGuzuz11 + III0101
uzuz ⊗ ZGuzuz22 +

(
III1001
uzuz + III0110

uzuz

)
⊗ ZGuzuz12

(55)

and the generic contribution ZG
urusRS

is reported in the appendix.

The solution of the buckling problem of Eq. (48) is performed by implementing an iterative procedure.

Firstly, the eigenvalue problem is solved by neglecting the pre-buckling deformations, i.e. setting K0 to a

zero matrix, thus reducing to the standard form of the buckling eigenvalue problem. Then, the pre-buckling

state is updated by using Eqs. (18), (19) and (22), and, accordingly, the matrices K0 and KG of Eqs. (51)

and (54) are re-computed. The eigenvalue problem of Eq. (48) is then solved again, and the procedure is

repeated until convergence between two successive iterations is reached. Classical buckling solutions are

obtained by neglecting the pre-buckling deformations, i.e. arresting the procedure at the first iteration.

4 Results

This section presents the thermal buckling results obtained for monolithic and sandwich plates, derived with

and without accounting for the effects of nonlinear pre-buckling deformations. It is highlighted that one

single sublaminate is adopted for analyzing monolithic plates and, in that case, the kinematic models reduce

to those formulated by the standard GUF approach.

Comparisons are discussed against reference solutions available in the literature, and additional results are

provided for future comparison purposes.

The thermoelastic properties of the materials considered throughout the study are summarized in Table 1.
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The labels M1 to M3 refer to typical fibrous composite materials.

For sandwich panels, the face-sheets are assumed to be made of material M3, while the core is labeled as

C1. The properties of the material C1 are taken from Ref. [26] and, for convenience, are summarized here

below:

• E11/E22,M3 = 3.2e-5; E22/E22,M3 = 2.9e-5; E33/E22,M3 = 0.4

• G12/E22,M3 = 2.4e-3; G13/E22,M3 = 7.9e-2; G23/E22,M3 = 6.6e-2

• ν12 = 0.99; ν13 = ν23 = 3.0e-5;

• α11/α0 = α22/α0 = α33/α0 = 1.36

where E22,M3 denotes the transverse elastic modulus of the material M3.

It is worth noting that the critical temperatures will be presented, in most cases, in nondimensional form

as function of α0Tcr. As such, the results do not depend on E22 and α0, whose values can be arbitrarily

fixed; the remaining thermoelastic properties are then recovered by making use of the nondimensional ratios

of Table 1 and those of material C1. On the contrary, the dimensional critical temperature Tcr depends

on the value of α0. This latter will be provided in the next sections whenever the results are presented in

dimensional form.

4.1 Monolithic plates

Convergence analysis

A preliminary convergence analysis is presented to illustrate properties of different shape functions, both in

terms of type and number, and to motivate their choice throughout the study. The analysis regards a set

of square, anti-symmetrically layered plates, characterized by a length-to-thickness ratio equal to 10. The

plates are obtained by the stacking of 10 plies, oriented at [±θ]5, and each layer is made of the material M1

of Table 1. Simply-supported conditions are imposed at the four edges.

The convergence analysis is performed by considering one single sublaminate and an equivalent single layer

theory ED554. Note that models with Nuz = Nuα − 1 and (α = x, y) yield a consistent polynomial approxi-

mation of the transverse shear strain γαz of order Nuz . This approximation is justified by the fact that the

investigated composite plates all show a bending-dominated buckling mode, for which the transverse shear

strains are known to have a certain relevance.

Both Legendre polynomials and trigonometric functions are used to approximate the generalized displace-

ment components according to Eqs. (46) and (47). The results are computed by varying the number of

Ritz functions from 2 × 2 until 30 × 30. The nondimensional critical temperatures α0Tcr are summarized

in Table 2. Here and henceforth, the acronyms L and NL denote the results of the linear and nonlinear
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buckling analysis, respectively. The comparison against the 3D approximate solutions derived by Noor and

Burton [28] is reported to illustrate the accuracy of the solutions here obtained.

The results of Table 2 demonstrate the superior convergence properties of the Legendre polynomials over

the trigonometric functions. This conclusion holds both for the linear and nonlinear predictions. The only

exception is given by the plates with θ equal to 0, for which the trigonometric Ritz functions are capable of

representing the exact solution of the problem (or, alternatively, a Navier-type solution of this configuration

can be obtained). It follows that two functions suffice for capturing the exact solution, and clearly no im-

provements are obtained as the number of degrees of freedom is increased. On the other hand, poor-quality

predictions are obtained if the same number of functions is taken by considering Legendre polynomials. In

any case, it can be observed that convergence to the exact solution is quickly achieved up to four digits when

10 Legendre polynomials are taken along the two directions.

In all the other cases, Legendre functions guarantee faster convergence. In particular, for θ 6= 0, the buck-

led pattern is affected by the elastic coupling arising from the anti-symmetry of the laminate. The three

displacement components of the first buckling mode are reported in Figure 2 for θ equal to 45. While the

out-of-plane displacement is characterized by a square half-wave, the skewness of the two in-plane displace-

ment components can be clearly observed. As it turns out, this buckled pattern is not properly captured

using few trigonometric functions, and, for this reason, more terms are needed to reach convergence. On the

contrary, Legendre polynomials guarantee a far better approximation and convergence is achieved with 15

terms.

From Table 2 it is clear that, for all the configurations, no improvements are achieved when the number

of Legendre functions is increased beyond 15. On the contrary, the critical temperatures obtained with

trigonometric functions, excluding the special case of θ=0, have not reached convergence of the fourth digit

even when 30 functions are adopted.

The comparison against the solutions reported by Noor and Burton demonstrates the accuracy of the present

formulation. In some cases, the results here obtained are smaller in comparison to Ref. [28]. These latter

are obtained by a 3D, yet approximate, solution procedure.

It is worth noting that the orthogonality properties of the Legendre functions guarantee a higher degree of

sparsity of the resulting matrices with respect to the trigonometric case. It follows that, for the same num-

ber of Ritz functions, the computational effort to solve the eigenvalue problem is much smaller. It is finally

remarked that the authors did not experience any sort of numerical issue, both in the case of Legendre as

well as trigonometric functions, by increasing the number of shape functions, even much beyond the values

indicated in Table 2.
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Example 1

A comprehensive set of results, useful for benchmarking purposes, is available in Ref. [28]. The test case

consists in a set of angle-ply laminates and one isotropic configuration, characterized by different nondimen-

sional values of a/h. The composite panels are made of material M1 and the lay-up is [±θ]5; the isotropic

configurations have a Poisson’s coefficient ν=0.3 and αii/α0=1 (no summation is implied for the index i).

Boundary conditions of simply supported edges are assumed at the four edges of the plate. The results are

summarized in Table 3 by adopting 20 × 20 Legendre functions and four different kinematic theories.

Note that a few configurations of thick panels with a/h equal to 10/3, 4 and 5 and ply angles θ equal to 30

and 45 are not reported in the table as no reference results are available.

The excellent agreement between the results obtained using the present Ritz formulation can be seen from

Table 3. As expected, the critical temperatures diminish as the equivalent single layer description is enriched

from ED332 to ED554. Similarly, a reduction of the buckling multiplier is observed by refining the layerwise

theory from LD111 to LD222. Note that the critical temperatures obtained using LD111 (33 DOF) are, in

general, sensibly higher than those predicted by the LD222 model (63 DOF) and, in many cases, by the

ED554 model (17 DOF). The reason is attributed to the Poisson locking problem that comes along a linear

assumption for the transverse deflection and the associated constant transverse normal strain, see also [50].

It is interesting to note that the critical temperatures obtained using LD111 are, in general, higher in com-

parison to those obtained with ED554 despite the higher number of theory-related degrees of freedom.

As seen from Table 3, the gain in terms of accuracy is modest if the theory is refined from ED332 to the more

expensive LD222, even for studying thick panels. Very accurate results are available already from theory

ED332, both in terms of linear and nonlinear predictions.

In agreement with Noor and Burton, the ratio between the linear and the nonlinear critical temperature

diminishes as the ratio a/h increases, and, for thin plates, these two values are almost identical. On the

contrary, a noticeable difference can be observed between the linear and nonlinear predictions, especially for

thick configurations, with a difference between the values that increases with the anisotropy of the lay-up.

Isotropic plates are, in all the cases, those characterized by the closer values between linear and nonlinear

results, whilst laminates with θ equal to 45 are those exhibiting the highest differences.

A plot of the nondimensional parameter a/h versus the critical temperature ratio is provided in Figure 3.

This latest quantity is defined as the ratio between the linear buckling prediction and the nonlinear one,

thus providing a measure of the effects due to the pre-buckling deformations. The close agreement with the

results extracted from Ref. [28] can be seen even in this case.

Example 2

Another test case is taken from Ref. [39]. Relatively thin plates with a/h equal to 50 are considered.

The plates are made of material M2 and obtained by the stacking of four plies oriented at [±θ]s. Simply-
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supported boundary conditions are imposed at the plate edges. The results are summarized in Table 4 in

terms of dimensional critical temperatures, obtained by taking E11/E22=11.292, and α0 = 27 10−6/K.

The results taken from Refs. [39] are obtained using the CUF-based ED222 theory in conjunction with a Ritz

approach employing 12 × 12 trigonometric shape functions. For consistency, present results are reported

in the adjacent column and denoted ED222a, which are obtained using the same model and Ritz function

as in Ref. [39]: as expected, the results are identical. The remaining set of results are obtained with 20

× 20 Legendre functions. The results obtained using ED222 highlight, as already discussed, the superior

performances of the Legendre polynomials. In particular, the critical temperature for θ equal to 45 is

3% smaller than the corresponding value obtained in Ref. [39] using trigonometric functions. Again, the

difference reduces with the degree of anisotropy of the panel, and small deviations are seen for θ equal to 15.

No significant improvements are achieved when ED554 and LD222 theories are considered, which is consistent

with the relatively thin configuration under investigation. Similarly, the critical temperature obtained by

accounting for the nonlinear pre-buckling effects are very close to the linear ones, with a maximum difference

of approximately 1%. Note also that the linear prediction is always conservative, thus on the safe side.

Additional novel results are reported in Table 5 by considering the same material, lay-ups and boundary

conditions of the previous example. The investigation is now extended to various length-to-width ratios.

Nondimensional critical temperatures are reported for three distinct kinematic theories, with and without

accounting for the effect of pre-buckling deformations. These results could prove to be useful as an additional

benchmark for future investigations.

To further investigate the thermal buckling response of the panels analyzed in Table 4, the width-to-thickness

ratio is plotted against the critical temperature ratio in Figures 4 to 6. The effects due to ply angles, material

orthotropy ratio and boundary conditions are addressed and, to the best of the authors’ knowledge, no

previous investigations have covered these aspects.

The plates here considered are made of material M2 and are obtained by the stacking of four plies with

different angles of orientations. Orthotropic plates, where all the plies are oriented at 0, are considered in

Figure 4, while angle-ply configurations with ply angles at 22.5 and 45 are assumed for the plots of Figures 5

and 6. As done in the previous analyses, the computations are performed by considering 20 functions along

both the directions, while theory ED554 is assumed. In agreement with the results of Ref. [28], a reduction

of the critical temperature ratio is observed for increasing values of h/a and θ. In addition, the effect of

the boundary condition can be clearly noticed from the plots, where SSSS, SCSC and CCCC conditions are

considered. The critical temperature ratio is seen to decrease when constraints are added to the plate. So,

the simply-supported condition represents the upper bound case, while the fully clamped is the lower bound.

Also it can be argued from Figures 4 to 6 that highest amounts of the material orthotropy ratios have the

effect of reducing the critical temperature ratio.
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Example 3

To illustrate the generality of the proposed implementation, the results are now presented for a set of skew

composite plates subjected to arbitrary boundary conditions. The panels are characterized by the geometric

ratios a/b=1, a/h=10 and skew angle Ψ; the thermoelastic properties are those of material M1. The

comparison is presented between the results obtained with different theories and the critical temperatures

obtained by Kant and Babu [22] using HSDT finite elements. The results are summarized in Table 6 for two

different sets of boundary condition, CSCS and CCCC. The first and the third entries refer to the constraints

of the oblique sides of the panels, which are clamped in both cases. Very close agreement can be noticed

between the present results and those of Ref. [22].

4.2 Sandwich plates

Example 4

Results are now presented for sandwich configurations. The first assessment regards the cross-ply configu-

ration discussed in Refs. [30, 39]. It consists of a square sandwich panel with ten-layer face-sheets made of

material M3 with stacking sequence [0/90]5s. The 0 plies are at the outer top and bottom surface, guaran-

teeing the symmetry of the panel stacking sequence. The core properties are those of material C1. The panel

is simply-supported along its four edges. Two nondimensional parameters are made vary in the analyses,

namely the length-to-thickness ratio a/h, and the ratio between the face-sheet thickness versus the panel

thickness hf/h.

It is well known that the need for refined theories becomes increasingly relevant as the values of a/h diminish

and those of hf/h increase. In fact, a refined transverse response is more important when the plate becomes

thick and the stress gradients become more abrupt, which occurs when the stiff faces increase their thickness

in comparison with the soft core. The results are summarized in Table 7, and are obtained by considering

different theories and different shape functions. In particular, the first set of results is obtained by consider-

ing the layerwise LD222 theory in conjunction with a trigonometric expansion. Calculations are performed

by forcing the buckling mode to be of global type, i.e. assuming a deflected pattern characterized by one

single half-wave along the two orthogonal directions x and y. Under this assumption, local instabilities are

prevented and close matching with the reference results is achieved. This combination of kinematic theory

and shape functions is the same proposed by Fazzolari and Carrera in [39] and, in fact, perfect matching

is obtained with the results obtained by the authors. Good agreement is also observed with the 3D results

of Ref. [30]. Again, it is worth highlighting that the exact solution of this problem is characterized by a

trigonometric displacement field, thus one single trigonometric function can capture the exact shape of one of

the buckling modes. The remaining results in the table are calculated by adopting a sublaminate description

of the panel, where the face-sheets are modeled with FSDT theory, and the core with ED332. In this case,
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the number of theory-related degrees of freedom is equal to 15, against the 189 required by LD222. As seen

form Table 7, the accuracy of the predictions is not affected by the drastic reduction of the problem size,

and the results are identical to those computed with LD222. The advantage of a sublaminate representation

against a purely layerwise is thus clear. In the last two columns, Legendre-type functions are adopted, with

5 and 50 terms along the two directions. The results obtained with 5 functions are in good agreement with

those obtained with 1 trigonometric function. The predicted buckling modes are still of global type, and the

corresponding eigenvalues resemble those previously obtained. However, local buckling modes are detected

– they are labeled with an asterisk in Table 7 – when the number of functions is raised up to 50. These

modes are observed for the thickest configurations and were not reported in past studies due, presumably,

to the premature truncation of the series to approximate the unknown fields. The results here reported are

those obtained using 50 functions, but the authors cannot exclude that lower eigenvalues can be found if the

expansion is further enriched. Given the size of the problem and the computational costs associated with a

larger number of functions, ad-hoc analysis tools would be needed.

Example 5

The critical temperatures of angle-ply sandwich configurations are presented in Table 8, where the comparison

is presented against the results obtained by Matsunaga [26]. The face-sheets have lay-up [±θ]5, and are

realized with material M3, with the plies oriented at +θ on the external faces. The core is made of material

C1. Simply-supported boundary conditions are assumed. The results are obtained by considering a purely

layerwise approach LD222, and a sublaminate description FSDT/ED332/FSDT. For consistency with Ref. [26],

a first set of results is derived by considering 2 × 1 trigonometric functions. The two remaining set of analyses

are performed with Legendre polynomials and 5 × 5 and 50 × 50 functions.

The results demonstrate relatively good agreement with Matsunaga, as the present predictions are slightly

smaller. The reason for this discrepancy is believed to be related with the higher refinement of the theories

here considered, both in the case of the layerwise approach and the sublaminate one, in contrast to the

equivalent single layer description of Ref. [26]. Also for this case, the results demonstrate the excellent

accuracy versus computational cost of the sublaminate models. As a matter of fact, the critical temperatures

are as accurate as those determined with a layerwise approach, while requiring less than one tenth of the

theory-related degrees of freedom. As seen from Table 8, local buckling modes are detected when increasing

the number of functions up to 50 for two of the configurations analyzed, i.e. a thick plate (a/h=5) and θ

equal to 30.

Example 6

Further results are proposed in Figure 7, where the nondimensional critical temperatures are reported for

sandwich plates with same materials and lay-ups as in the previous example, and a geometric ratio a/h
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fixed at 20. The results for simply-supported conditions are presented in Figure 7(a), while those of a

fully clamped panel in Figure 7(b). The comparison is reported against the results obtained by Babu and

Kant [21] that utilized HOST9 isoparametric finite elements, based on third-order description of the in-plane

displacement components, and a zero order representation of the out-of-plane displacement component. For

consistency, the results are firstly computed with ED330 theory, and a number of 20 × 20 functions. The

results reveal good correspondence with Babu and Kant, and the effects of the ply orientation and the

face-to-thickness ratio on the panel critical temperature are correctly captured. Also the effect of different

boundary conditions is in agreement with Ref. [21]. With the aim of providing additional results to be used

for future benchmarking, the plots obtained using a sublaminate theory ED332/ED332/ED332 are presented

in Figure 8. In addition, the results are summarized in tabular form in Table 9.

Example 7

Finally, an investigation over the effect of the pre-buckling deformations is discussed with regard to sandwich

plates. In particular, the critical temperature ratio is calculated for angle-ply configurations with face-sheets

of material M3 at [±θ]5 and core of material C1. The results are obtained by means of a sublaminate

ED332/ED332/ED332 description of the panel, chosen to guarantee high accuracy of the results.

The charts relative to a ply angle θ of 22.5 are reported in Figure 9, where two distinct values of hf/h are

assumed. In particular, they are taken equal to 0.05 in Figure 9(a) and 0.10 in Figure 9(b). Similarly, the

case of θ equal to 45 is considered in Figure 10.

The results demonstrate the same trends observed for the monolithic plates. However, the effect of pre-

buckling deformations is much more relevant in the case of sandwich panels. The critical temperature ratio

diminishes for increasing values of θ and h/a, thus thick configurations are those associated with more

relevant pre-buckling effects. The same role is played by the introduction of constraints, and fully clamped

panels are those characterized by the lowest temperature ratios. As seen from the four charts on Figures 9

and 10, higher ratios hf/h have the effect of reducing the relevance of the pre-buckling effects. For facilitating

future benchmarking, the results of Figures 9 and 10 are summarized in Table 10.

5 Conclusions

A variable-kinematics model based on the Sublaminate Generalized Unified Formulation has been presented

with regard to the thermal buckling analysis. The solution procedure is based on the Ritz method, where

both Legendre polynomials and trigonometric shape functions were considered for approximating the dis-

placement field. The results illustrate the advantages offered by Legendre polynomials in terms of rapidity of

convergence. Exceptions are clearly represented by those case for which the exact solution is trigonometric.

Main advantage of the proposed approach consists in the flexibility offered to the analyst to select different
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kinematic theories for different clusters of plies. This possibility can be exploited for optimizing the accuracy

versus the number of theory-related degrees of freedom, with consequent beneficial effects on the time for

the analysis. The accuracy of the results has been demonstrated by comparison against reference solutions,

including three-dimensional results, both for monolithic and sandwich plates. In this second case, a proper

choice of the sublaminate theories allowed to derive critical temperatures with accuracy comparable to the

layerwise predictions, but demanding for much less degrees of freedom.

The excellent accuracy of the results is not restricted to the linear eigenvalue predictions, but includes the

nonlinear results obtained by considering the pre-buckling deformations. With this regard, and in light of

the few results available in the literature, novel reference solutions were presented with and without account-

ing for the pre-buckling effects. The role played by the lay-up anisotropy, boundary conditions, orthotropy

and length-to-thickness ratios was illustrated. The results here obtained do not account for temperature-

dependent properties, which may have a relevant impact on the cases here considered, and which is subject

of future investigations.
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Table 1: Elastic properties and coefficients of thermal expansion of the materials used in the present study.

M1 (Ref. [28]) M2 (Ref. [39]) M3 (Ref. [26])

E11/E22 15 variable 19

E33/E22 1 1 1

G12/E22 0.5 0.5310 0.52

G13/E22 0.5 0.5310 0.52

G23/E22 0.3356 0.1593 0.338

ν12 0.3 0.3 0.32

ν13 0.3 0.3 0.32

ν23 0.49 0.36 0.49

α11/α0 0.015 -0.0333 0.001

α22/α0 1 1 1

α33/α0 1 1 1
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Table 2: Convergence analysis and comparison of critical temperatures α0Tcr for square composite SSSS

plate of material M1, lay-up [±θ]5, a/h=10 and theory ED554.

θ 0 15 30 45 0 15 30 45

Analysis type R Trigonometric functions Legendre functions

L

2 0.5782−1 0.8020−1 0.1128 0.1231 0.8782−1 0.9969−1 0.1210 0.1305

5 0.5782−1 0.7968−1 0.1124 0.1226 0.5797−1 0.7909−1 0.1111 0.1211

10 0.5782−1 0.7948−1 0.1119 0.1221 0.5782−1 0.7878−1 0.1106 0.1204

15 0.5782−1 0.7939−1 0.1117 0.1218 0.5782−1 0.7877−1 0.1105 0.1202

20 0.5782−1 0.7934−1 0.1116 0.1216 0.5782−1 0.7876−1 0.1105 0.1202

25 0.5782−1 0.7930−1 0.1114 0.1214 0.5782−1 0.7876−1 0.1105 0.1202

30 0.5782−1 0.7927−1 0.1114 0.1213 0.5782−1 0.7876−1 0.1105 0.1202

3D, Ref. [28] 0.5782−1 0.7904−1 0.1100 0.1194 0.5782−1 0.7904−1 0.1100 0.1194

NL

2 0.6944−1 0.1043 0.1688 0.1936 1.1852−1 0.1411 0.1882 0.2121

5 0.6944−1 0.1035 0.1679 0.1924 0.6966−1 0.1025 0.1651 0.1887

10 0.6944−1 0.1031 0.1669 0.1910 0.6944−1 0.1019 0.1639 0.1868

15 0.6944−1 0.1030 0.1664 0.1903 0.6944−1 0.1019 0.1637 0.1864

20 0.6944−1 0.1029 0.1661 0.1898 0.6944−1 0.1019 0.1637 0.1864

25 0.6944−1 0.1028 0.1659 0.1894 0.6944−1 0.1019 0.1637 0.1864

30 0.6944−1 0.1028 0.1657 0.1892 0.6944−1 0.1019 0.1637 0.1864

3D, Ref. [28] 0.6950−1 0.1027 0.1633 0.1849 0.6950−1 0.1027 0.1633 0.1849
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Table 4: Comparison of critical temperatures Tcr (K) for square SSSS plates with a/h=50, material M2 and

lay-up [±θ]s.
Note: a using 12× 12 trigonometric functions.

θ Ref.[39] EDa
222 ED222 ED554 LD222

L L NL L NL L NL

0 118.128 118.128 118.129 119.150 117.906 118.923 117.907 118.924

15 156.394 156.394 155.164 156.945 154.236 155.996 154.142 155.900

22.5 206.605 206.605 203.690 206.769 201.734 204.754 201.488 204.501

30 245.693 245.693 240.702 245.018 238.145 242.369 237.803 242.015

45 266.242 266.242 258.546 263.531 254.937 259.783 254.432 259.259
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Table 5: Critical temperatures α0Tcr for square SSSS plates of material M2, lay-up [±θ]s.

a/h θ ED222 ED554 LD222

L NL L NL L NL

10

0 6.1954−2 7.3979−2 5.9843−2 7.1025−2 5.9853−2 7.1038−2

15 7.8070−2 9.8009−2 7.2937−2 9.0149−2 7.2546−2 8.9560−2

22.5 9.8920−2 1.3321−1 8.9711−2 1.1697−1 8.8757−2 1.1539−1

30 1.2905−1 1.9305−1 1.1406−1 1.6198−1 1.1230−1 1.5856−1

45 1.3802−1 2.1579−1 1.2231−1 1.7965−1 1.2045−1 1.7576−1

20

0 1.8735−2 1.9726−2 1.8531−2 1.9500−2 1.8532−2 1.9501−2

15 2.4313−2 2.6004−2 2.3697−2 2.5302−2 2.3644−2 2.5241−2

22.5 3.1597−2 3.4502−2 3.0377−2 3.3055−2 3.0238−2 3.2891−2

30 3.8460−2 4.2858−2 3.6946−2 4.0990−2 3.6761−2 4.0764−2

45 4.1176−2 4.6303−2 3.9138−2 4.3697−2 3.8874−2 4.3370−2

50

0 3.1895−3 3.2171−3 3.1835−3 3.2109−3 3.1835−3 3.2109−3

15 4.1894−3 4.2375−3 4.1644−3 4.2119−3 4.1618−3 4.2093−3

22.5 5.4996−3 5.5828−3 5.4468−3 5.5284−3 5.4402−3 5.5215−3

30 6.4990−3 6.6155−3 6.4299−3 6.5440−3 6.4207−3 6.5344−3

45 6.9807−3 7.1153−3 6.8833−3 7.0141−3 6.8697−3 7.0000−3

100

0 8.0479−4 8.0655−4 8.0441−4 8.0616−4 8.0441−4 8.0617−4

15 1.0593−3 1.0623−3 1.0571−3 1.0601−3 1.0569−3 1.0599−3

22.5 1.3928−3 1.3980−3 1.3882−3 1.3934−3 1.3875−3 1.3928−3

30 1.6382−3 1.6455−3 1.6318−3 1.6390−3 1.6309−3 1.6381−3

45 1.7607−3 1.7691−3 1.7515−3 1.7598−3 1.7502−3 1.7585−3
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Table 6: Comparison of critical temperatures α0Tcr for skew plates made of material M1, a/b=1 and a/h=10.

CSCS CCCC

Lay-up Ψ Ref. [22] ED332 ED554 LD222 Ref. [22] ED332 ED554 LD222

[0/90]s

0 0.1305 0.1317 0.1306 0.1302 0.1601 0.1616 0.1603 0.1597

15 0.1340 0.1354 0.1341 0.1337 0.1618 0.1634 0.1620 0.1615

30 0.1447 0.1456 0.1451 0.1446 0.1690 0.1710 0.1693 0.1687

45 0.1523 0.1538 0.1526 0.1521 0.1893 0.1926 0.1896 0.1889

[±45]s

0 0.1360 0.1364 0.1321 0.1309 0.1609 0.1623 0.1573 0.1561

15 0.1427 0.1433 0.1386 0.1372 0.1678 0.1693 0.1639 0.1625

30 0.1625 0.1635 0.1576 0.1561 0.1886 0.1905 0.1838 0.1822

45 0.1950 0.1972 0.1893 0.1875 0.2249 0.2275 0.2185 0.2165

[±45]2s

0 0.1534 0.1539 0.1535 0.1498 0.1809 0.1819 0.1816 0.1779

15 0.1611 0.1616 0.1611 0.1571 0.1887 0.1897 0.1894 0.1854

30 0.1835 0.1842 0.1835 0.1786 0.2121 0.2133 0.2130 0.2080

45 0.2199 0.2208 0.2199 0.2134 0.2526 0.2543 0.2537 0.2468
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Table 7: Comparison of critical temperatures α0Tcr for square SSSS sandwich plates with face-sheet of

material M1, core C1 and lay-up [0/90]5/core/[90/0]5. Note: a using trigonometric functions, ∗ local modes.

a/h hf/h Ref. [30] Ref. [39] Present

3D LD222 LD222 FSDT/ED332/FSDT

1×1a 1×1a 5×5 50×50

5 0.025 0.8512 0.8415 0.8411 0.8411 0.8393 0.1116∗

0.050 0.6096 0.6018 0.6014 0.6014 0.6000 0.1188∗

0.075 0.4692 / 0.4662 0.4662 0.4655 0.1267∗

0.100 0.3820 0.3819 0.3816 0.3816 0.3814 0.1358∗

0.150 0.2805 0.2850 0.2849 0.2849 0.2855 0.1582∗

10 0.025 0.3220 0.3191 0.3190 0.3190 0.3188 0.2148∗

0.050 0.2737 0.2705 0.2705 0.2705 0.2702 0.2216∗

0.075 0.2358 / 0.2335 0.2335 0.2333 0.2285

0.100 0.2072 0.2052 0.2051 0.2051 0.2050 0.2050

0.150 0.1632 0.1654 0.1653 0.1653 0.1654 0.1654

20 0.025 0.0929 0.0924 0.0924 0.0924 0.0924 0.0924

0.050 0.0855 0.0853 0.0853 0.0853 0.0853 0.0853

0.075 0.0791 / 0.0786 0.0786 0.0786 0.0786

0.100 0.0726 0.0727 0.0727 0.0727 0.0727 0.0727

0.150 0.0623 0.0627 0.0627 0.0627 0.0627 0.0627
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Table 8: Comparison of critical temperatures α0Tcr for square SSSS sandwich plates with face-sheet of

material M1, core C1 and lay-up [±θ]5/core/[∓θ]5. Note: a using trigonometric functions, ∗ local modes.

a/h hf/h θ Ref. [26] LD222 FSDT/ED332/FSDT

2×1a 2×1a 5×5 50×50

5 0.15 0 0.1837 0.1757 0.1739 0.1741 0.1582∗

15 0.2109 0.2037 0.2024 0.2023 0.1582∗

30 0.2702 0.2610 0.2609 0.2608 0.1582∗

45 0.3311 0.3216 0.3228 0.3225 0.1581∗

10 0.15 0 0.09938 0.0960 0.0955 0.0957 0.0955

15 0.1285 0.1258 0.1254 0.1254 0.1252

30 0.1916 0.1874 0.1873 0.1873 0.1871

45 0.2201 0.2174 0.2178 0.2176 0.2175

20 0.15 0 0.03820 0.0373 0.0373 0.0374 0.0373

15 0.05530 0.0551 0.0551 0.0551 0.0550

30 0.08845 0.0893 0.0894 0.0894 0.0893

45 0.09679 0.0977 0.0978 0.0978 0.0977
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Table 9: Nondimensional critical temperatures 102 α0Tcr obtained with ED332/ED332/ED332 for sandwich

plates with a/h=20, lay-up [±θ]5/core/[∓θ]5.

hf/h

θ 0.10 0.075 0.05 0.025

SSSS 0 4.3453 4.7196 5.1514 5.6427

15 6.5230 7.1710 7.9427 8.8509

30 10.5539 11.5789 12.7781 14.1329

45 11.5973 12.7675 14.1507 15.7346

60 10.3761 11.4151 12.6426 14.0480

75 6.3944 7.0472 7.8342 8.7758

90 4.2727 4.6508 5.0922 5.6024

CCCC 0 7.5896 8.5643 9.8306 11.4972

15 9.2393 10.5055 12.2680 14.8725

30 14.8500 17.0741 20.1931 24.8912

45 18.1054 20.5678 23.8258 28.2761

60 14.6330 16.7751 19.8024 24.4604

75 8.9355 10.1530 11.8755 14.5345

90 7.3373 8.2830 9.5915 11.3277

34



Table 10: Critical temperature ratios TL
cr/T

NL
cr for sandwich plates with [±θ]5/core/[∓θ]5.

θ h/a hf/h = 0.05 hf/h = 0.10

SSSS SCSC CCCC SSSS SCSC CCCC

22.5 1/20 0.7057 0.6827 0.6053 0.7600 0.7383 0.6979

1/40 0.9154 0.9072 0.8565 0.9247 0.9181 0.8803

1/60 0.9614 0.9572 0.9304 0.9652 0.9616 0.9395

1/80 0.9781 0.9756 0.9594 0.9802 0.9780 0.9641

1/100 0.9859 0.9843 0.9735 0.9872 0.9858 0.9764

45 1/20 0.6197 0.4870 0.3815 0.6856 0.5952 0.5155

1/40 0.8921 0.8386 0.7956 0.9052 0.8607 0.8253

1/60 0.9509 0.9248 0.9035 0.9559 0.9333 0.9149

1/80 0.9721 0.9568 0.9441 0.9748 0.9613 0.9501

1/100 0.9821 0.9721 0.9638 0.9838 0.9749 0.9675
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Figure 1: Plate dimensions and reference system.
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Figure 2: Plot of the buckling mode of a SSSS square plate of material M1, lay-up [±θ]5, a/h=10 and theory

ED554: (a) ux component, (b) uy component, (c) uz component.
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Figure 4: Critical temperature ratio versus thickness-to-width ratio for plates with lay-up [0]4: (a)

E11/E22=10, (b) E11/E22=15, (c) E11/E22=20.
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M2: (a) E11/E22=10, (b) E11/E22=15, (c) E11/E22=20.
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Figure 6: Critical temperature ratio versus thickness-to-width ratio for plates with lay-up [±45]s, Material

M2: (a) E11/E22=10, (b) E11/E22=15, (c) E11/E22=20.
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Figure 7: Comparison of critical temperatures for angle-ply sandwich plates with a/h=20, lay-up

[±θ]5/core/[∓θ]5 and different boundary conditions: (a) SSSS, (b) CCCC.
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Figure 8: Critical temperatures obtained with ED332/ED332/ED332 for sandwich plates with a/h=20, lay-up

[±θ]5/core/[∓θ]5 and different boundary conditions: (a) SSSS, (b) CCCC.
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Figure 9: Critical temperature ratios for sandwich plates with [±22.5]5/core/[∓22.5]5, and different face-

sheet ratios: hf/h=0.05, (b) hf/h=0.10.
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Figure 10: Critical temperature ratios for sandwich plates with [±45]5/core/[∓45]5, and different face-sheet

ratios: hf/h=0.05, (b) hf/h=0.10.

45



6 Appendix

Through-the-thickness integrals

Denote the assembly procedure of the thickness integrals with the following notation:

< · >=
Nk

A
k

Nkp

A
p
· (56)

where the assembly is performed twice, at ply and at sublaminate level. The resulting expressions of the

thicknesswise contributions are:

Z0
ux∂uz13 =< αp,kC̃p,k13 Zp,kux∂uz > Z0

ux∂uz36 =< αp,kC̃p,k36 Zp,kux∂uz >

Z0
∂uxuz45 =< αp,kC̃p,k45 Zp,k∂uxuz > Z0

∂uxuz55 =< αp,kC̃p,k55 Zp,k∂uxuz >

Z0
∂uyuz44 =< αp,kC̃p,k44 Zp,k∂uyuz > Z0

∂uyuz45 =< αp,kC̃p,k45 Zp,k∂uyuz >

Z0
uy∂uz23 =< αp,kC̃p,k23 Zp,kuy∂uz > Z0

uy∂uz36 =< αp,kC̃p,k36 Zp,kuy∂uz >

Z0
uzuz44 =< βp,kC̃p,k44 Zp,kuzuz > Z0

uzuz45 =< βp,kC̃p,k45 Zp,kuzuz >

Z0
uzuz55 =< βp,kC̃p,k55 Zp,kuzuz > Z0

∂uz∂uz33 =< βp,kC̃p,k33 Zp,k∂uz∂uz >

(57)

where:

αp,k = 0u
p,k
z,z βp,k = 2 0u

p,k
z,z + (0u

p,k
z,z)2 (58)

ZGuxux11 =< 0σ
p,k
xx Zp,kuxux > ZGuxux22 =< 0σ

p,k
yy Zp,kuxux > ZGuxux12 =< 0σ

p,k
xy Zp,kuxux >

ZGuyuy11 =< 0σ
p,k
xx Zp,kuyuy > ZGuyuy22 =< 0σ

p,k
yy Zp,kuyuy > ZGuyuy12 =< 0σ

p,k
xy Zp,kuyuy >

ZGuzuz11 =< 0σ
p,k
xx Zp,kuzuz > ZGuzuz22 =< 0σ

p,k
yy Zp,kuzuz > ZGuzuz12 =< 0σ

p,k
xy Zp,kuzuz >

(59)

Stiffness matrix

Kuxux =III1010
uxux ⊗ Zuxux11 + (III1001

uxux + III0110
uxux)⊗ Zuxux16 + III0101

uxux ⊗ Zuxux66 + III0000
uxux ⊗ Z∂ux∂ux55

Kuxuy =III1001
uxuy ⊗ Zuxuy12 + III1010

uxuy ⊗ Zuxuy16 + III0101
uxuy ⊗ Zuxuy26 + III0110

uxuy ⊗ Zuxuy66 + III0000
uxuy ⊗ Z∂ux∂uy45

Kuxuz =III0010
uxuz ⊗ Z∂uxuz55 + III0001

uxuz ⊗ Z∂uxuz45 + III1000
uxuz ⊗ Zux∂uz13 + III0100

uxuz ⊗ Zux∂uz36

Kuyuy =III0101
uyuy ⊗ Zuyuy22 + (III0110

uyuy + III1001
uyuy )⊗ Zuyuy26 + III1010

uyuy ⊗ Zuyuy66 + III0000
uyuy ⊗ Z∂uy∂uy44

Kuyuz =III0010
uyuz ⊗ Z∂uyuz45 + III0001

uyuz ⊗ Z∂uyuz44 + III0100
uyuz ⊗ Zuy∂uz23 + III1000

uyuz ⊗ Zuy∂uz36

Kuzuz =III1010
uzuz ⊗ Zuzuz55 + (III1001

uzuz + III0110
uzuz )⊗ Zuzuz45 + III0101

uzuz ⊗ Zuzuz44 + III0000
uzuz ⊗ Z∂uz∂uz33

(60)

where the generic thickness integral is

Z(∂)ur(∂)usRS =< C̃p,kRSZp,kuzuz > (61)
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