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Abstract—This paper addresses the problems of determining
the H2 norm and the RMS gain of continuous-time switched
linear systems. A novel class of Lyapunov functions is proposed
for reaching this goal, called homogeneous rational Lyapunov
functions (HRLFs). It is shown that sufficient conditions for es-
tablishing upper bounds of the sought performance indexes in the
case of arbitrary switching can be given in terms of linear matrix
inequality (LMI) feasibility tests by searching for an HRLF of
chosen degree. Moreover, it is shown that these conditions are
also necessary by searching for an HRLF of degree sufficiently
large. It is worth mentioning that necessary and sufficient LMI
conditions have not been proposed yet in the literature for the
considered problems. Hence, the paper continues by considering
the case of switching with dwell time constraints, showing that
analogous LMI conditions can be obtained for this case by
searching for a family of HRLFs mutually constrained by the
dwell time specification. Some numerical examples illustrate the
proposed methodology and highlight the advantages with respect
to the existing works.

Index Terms—Switched system,H2 norm, RMS gain, LMI.

I. I NTRODUCTION

It is well known that switched systems play a key role
in automatic control. These are dynamical systems whose
mathematical models are allowed to change with the time in
a finite family as effect of a signal called switching policy.
Switched systems naturally arise in a number of applications,
and in general whenever some coefficients can vary in an
admissible finite set. In this paper, the switching rule is
assumed to be an exogenous deterministic signal.

Switched systems are generally classified into two main
classes: switched systems with arbitrary switching and
switched systems with dwell time constraints. In the former
class, the changes among the mathematical models can occur
arbitrarily fast. In the latter class, these changes can occur only
after a minimum time, called dwell time.

A fundamental problem in automatic control consists of
establishing asymptotical stability. This problem has been
investigated in numerous works for switched linear systems,
see for instance the books [1], [21] and the survey [23] for
general results. Other works include [3], [11], [12], [17],[20],
[22], [28]. The control synthesis of these systems has been
studied in works such as [14], [19], [25], [27].

Another fundamental problem in automatic control consists
of determining performance indexes, in particular theH2
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norm and the root mean square (RMS) gain (also known
as L2 gain or H∞ norm), see for instance [2], [10], [29]
for their definitions and calculations in the context of linear
time-invariant (LTI) systems. In the context of switched linear
systems, theH2 norm is defined as the maximum over all the
admissible switching policies of the square root of the sum of
the energies of the impulsive responses of each scalar input,
and the RMS gain is defined as the maximum over all the
admissible switching policies and over all the inputs of the
ratio between the square roots of the energies of the output
and of the input of the system for null initial conditions. These
indexes have been studied for switched linear systems in [15],
[16], [23], [24] through techniques such as variational princi-
ples and worst-case control. In [13], linear matrix inequality
(LMI) conditions have been proposed in order to determine
upper bounds through convex optimization based on the use
of common and piece-wise quadratic Lyapunov functions.

Unfortunately, the existing conditions for determining per-
formance indexes in switched linear systems through convex
optimization are sufficient only. Indeed, the existing LMI con-
ditions provide upper bounds of the sought indexes based on
the use of quadratic Lyapunov functions, which are generally
conservative. In this regard, it should be observed that nec-
essary and sufficient LMI conditions have been proposed for
establishing asymptotical stability of switched linear systems
based on the use of non-quadratic Lyapunov functions. In
particular, necessary and sufficient LMI conditions have been
proposed for establishing asymptotical stability of switched
linear systems based on the use of homogeneous polynomial
Lyapunov functions in [5], [9] for the case of arbitrary
switching, and in [8] for the case of switching with dwell
time constraints.

Hence, a question arises: is it possible to exploit non-
quadratic Lyapunov functions in order to derive LMI con-
ditions that are not only sufficient but also necessary for
determining performance indexes of switched linear systems?
This paper aims at providing a positive answer to this question.
And, interestingly, this cannot be achieved using the homoge-
neous polynomial Lyapunov functions that have been exploited
in the literature for establishing asymptotical stabilityof
switched linear systems, but requires the introduction of a
novel class of Lyapunov functions.

Specifically, the paper addresses the problems of deter-
mining theH2 norm and the RMS gain of continuous-time
switched linear systems. A novel class of Lyapunov functions
is proposed for reaching this goal, called homogeneous rational
Lyapunov functions (HRLFs). It is shown that sufficient condi-
tions for establishing upper bounds of the sought performance
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indexes in the case of arbitrary switching can be given in terms
of LMI feasibility tests by searching for an HRLF of chosen
degree. Moreover, it is shown that these conditions are also
necessary by searching for an HRLF of degree sufficiently
large. Hence, the paper continues by considering the case of
switching with dwell time constraints, showing that analogous
LMI conditions can be obtained for this case by searching for
a family of HRLFs mutually constrained by the dwell time
specification. Some numerical examples illustrate the proposed
methodology and highlight the advantages with respect to the
existing works.

The paper is organized as follows. Section II introduces
the preliminaries. Section III addresses the determination
of the sought performance indexes in the case of arbitrary
switching. Section IV investigates these indexes in the case of
switching with dwell time constraints. Section V presents the
examples. Lastly, Section VI concludes the paper with some
final remarks. This paper extends our preliminary conference
papers [6], [7] by including the case of switching with dwell
time constraints.

II. PRELIMINARIES

A. Notation

N, R, C: sets of non-negative integers, real numbers, and
complex numbers.0n, 0n×m: n× 1 andn×m null matrices.
In, I: identity matrices of sizen × n and size specified
by the context.A′, trace(A), det(A): transpose, trace, and
determinant ofA. he(A): A + A′. diag(A1, A2, . . .): block
diagonal matrix with blocksA1, A2, . . . starting from the
top-left corner.A ⊗ B: Kronecker’s product betweenA and
B. A⊗n: n-th Kronecker power.A ≥ 0 (respectively,A > 0):
symmetric positive semidefinite (respectively, definite) matrix
A. ‖a‖p: p-norm of a. ab: ab11 a

b2
2 · · · . ⋆: corresponding block

in a symmetric matrix. s.t.: subject to.(a)i, (A)i,j : i-th entry
of a and (i, j)-th entry ofA. Unless specified otherwise,xi
denotes thei-th entry of x, and Xi,j denotes the(i, j)-th
entry of X . A function v : Rn → R is said to be positive
semidefinite (respectively, definite) ifv(0n) = 0 andv(x) ≥ 0
(respectively,v(x) > 0) for all x 6= 0n.

B. Formulation of the Problems

Let us consider the switched system










ẋ(t) = Aσ(t)x(t) +Bσ(t)w(t)

y(t) = Cσ(t)x(t) +Dσ(t)w(t)

σ ∈ D
(1)

wheret ∈ R is the time,x(t) ∈ R
n is the state,w(t) ∈ R

m

is the input,y(t) ∈ Rp is the output,σ : R → {1, . . . , N}
is the switching policy, andD is a set of switching policies
of interest that will be specified in the sequel. The matrices
Ai ∈ Rn×n, Bi ∈ Rn×m, Ci ∈ Rp×n and Di ∈ Rp×m,
i = 1, . . . , N , are given. We say that the switched system
(1) obtained forσ(t) = i is the i-th subsystem of (1). It is
assumed that all the subsystems of (1) are reachable and
observable minimal state space realizations.

Let us denote theL2-norm of a vector signal with the
notation‖ · ‖L2

, i.e.,

‖w‖L2
=

√

∫ ∞

0

‖w(t)‖22dt. (2)

The first performance index considered in this paper is the
H2 norm, which is defined as follows.

Definition 1: TheH2 norm of (1) is

γH2
=

√

√

√

√ sup
σ(·)∈D

m
∑

j=1

‖Yj‖2L2

(3)

whereYj(t) is the response of (1) due to an impulse applied to
the j-th channel, i.e., the solutiony(t) in (1) for x(0−) = 0n
andw(t) given by

w(t) = δ(t)Om,j (4)

whereδ(t) ∈ R is the Dirac function andOm,j ∈ Rm is the
j-th column ofIm. �

The second performance index considered in this paper is
the RMS gain, which is defined as follows.

Definition 2: The RMS gain of (1) is

γRMS = sup
σ(·)∈D,w(·)

‖y‖L2

‖w‖L2

(5)

wherey(t) is the solution in (1) forx(0−) = 0n. �

The first problem addressed in this paper is as follows.

Problem 1: Determine theH2 norm and the RMS gain of
(1) in the case of arbitrary switching, i.e., the indexesγH2

and
γRMS in (3) and (5) forD = Darb, where

Darb = {σ : R → {1, . . . , N}} (6)

is the set of switching policies with arbitrary switching.�

The second problem addressed in this paper is as follows.

Problem 2: Determine theH2 norm and the RMS gain of
(1) in the case of switching with dwell time constraints, i.e.,
the indexesγH2

andγRMS in (3) and (5) forD = DT , where

DT = {σ : R → {1, . . . , N}, σ(t) = constant

∀t ∈ [ti, ti+1), i ∈ N, ti+1 − ti ≥ T } (7)

is the set of switching policies with dwell timeT > 0. �

The dependence ont of the various signals will be omitted
in the sequel for ease of notation unless specified otherwise.
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C. Representation of Polynomials

Definition 3: The functionu : Rn → R is said to be a
homogeneous polynomialof degreed ∈ N if

u(x) =
∑

k∈N
n

k1+...+kn=d

akx
k (8)

for someak ∈ R. The set of such functions is denoted by

Pd = {u : Rn → R : (8) holds} . (9)

�

Let us denote withb (x, d) a vector base forPd. For
instance,b (x, d) can be chosen as a vector whose entries are
all the monomials inx ∈ Rn of degreed ∈ N with unitary
coefficient without repetitions. Such a vector can be obtained
according to the recursive rule

b (x, d) =



















1 if d = 0






x1b (X1, d− 1)
...

xnb (Xn, d− 1)






if d > 0

(10)

where

Xi =







xi
...
xn






. (11)

The length ofb (x, d) is given by

c(n, d) =
(n+ d− 1)!

(n− 1)!d!
. (12)

For reasons that will become clear in the sequel, we also define
b (x, d) for negative values ofd as follows:

b (x, d) = 0 ∀d < 0. (13)

By usingb (x, d), a homogeneous polynomialv(x) of degree
2d can be expressed as

v(x) = b (x, d)
′
V b (x, d) (14)

for someV ∈ Rc(n,d)×c(n,d), V = V ′. The representation
(14) is known as Gram matrix method or square matricial
representation (SMR), see for instance the survey [4].

III. A RBITRARY SWITCHING

This section addresses Problem 1, i.e., the determination
of the sought performance indexes in the case of arbitrary
switching. In particular, Section III-A introduces the novel
class of Lyapunov functions, Section III-B presents the
conditions for establishing upper bounds on theH2 norm,
and Section III-C presents the conditions for establishing
upper bounds on the RMS gain.

A. HRLFs

Definition 4: The functionv : Rn → R is said to be a
homogeneous rational functionof total degreer ∈ N and
relative degrees ∈ N, with r ≥ s, if















v(x) =
φ(x)

ψ(x)

φ ∈ Pr

ψ ∈ Pr−s.

(15)

The set of such functions is denoted by

Qr,s = {v : Rn → R, (15) holds} . (16)

�

The novel class of Lyapunov functions introduced in this
paper is defined as follows.

Definition 5: The functionv : Rn → R is said to be a
homogeneous rational Lyapunov function (HRLF)for (1) (with
null input w) if:

1) v ∈ Qr,s wherer ands are even and such thatr ≥ s ≥
2;

2) v(x) can be expressed as in (15) withφ(x) positive
definite andψ(x) positive for allx 6= 0n;

3) v̇(x) is negative definite for allσ, where

v̇(x) = ∇v(x)Aσx. (17)

In particular, such a functionv(x) is said to be an HRLF of
total degreer and relative degrees. �

It is useful to observe that, ifv(x) is an HRLF, then:
1) the numeratorφ(x) is a positive definite homogeneous

polynomial of even degreer, wherer ≥ 2. This also
implies thatφ(x) cannot be a constant;

2) the denominatorψ(x) is a homogeneous polynomial of
even degreer−s, where0 ≤ r−s ≤ r−2. In particular,
ψ(x) is a:

a) positive constant ifr = s;
b) positive definite homogeneous polynomial ifr > s;

3) v(x) is homogeneous of degrees, i.e.,

v(αx) = αsv(x) ∀α ∈ R (18)

since the numerator and denominator ofv(x) are homo-
geneous polynomials of degreer andr − s;

4) v(x) is radially unbounded, continuous and positive
definite. Indeed,v(x) is radially unbounded since the
relative degrees is positive. Moreover,v(x) is con-
tinuous and positive definite because it is the ratio of
polynomials that are positive for allx 6= 0n and because

lim
x→0n

v(x) = lim
α→0

αsv(x̃) = 0 (19)

wherex̃ 6= 0n is arbitrary;
5) v(x) is continuously differentiable. Indeed, one has

∇v(x) = ψ(x)∇φ(x) − φ(x)∇ψ(x)
ψ(x)2

(20)
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which is continuous becauseφ(x) andψ(x) are contin-
uous,ψ(x) is positive for allx 6= 0n, and

lim
x→0n

∇v(x) = lim
α→0

αs−1∇v(x̃) = 0n (21)

wherex̃ 6= 0n is arbitrary.

Throughout the paper we will aim at searching for HRLFs
of total degree2d, d ∈ N with d ≥ 1, and relative degree2,
i.e., in the setQ2d,2.

Let us observe that any HRLFv(x) in the setQ2d,2 can be
bounded from above and below by quadratic functions over
compact sets, i.e., for all compact setsS ⊂ Rn there exist
Q1 > 0 andQ2 > 0 such that

x′Q1x ≤ v(x) ≤ x′Q2x ∀x ∈ R
n. (22)

For instance, one can select















Q1 = ρ1In, ρ1 = min
x∈S

v(x)

‖x‖22
Q2 = ρ2In, ρ2 = max

x∈S

v(x)

‖x‖22

(23)

whereρ1 and ρ2 are positive and finite sinceS is compact
and v(x)

‖x‖2

2

is a homogeneous rational function where the
numerator and denominator are positive definite homogeneous
polynomials of the same degree.

Also, let us observe that HRLFs in the setQ2d,2 contain
quadratic Lyapunov functions as a special case. Indeed, the
numerator and denominator ofv ∈ Q2d,2 are a homogeneous
polynomial of degree2d and a homogeneous polynomial
of degree2d − 2. Hence, ford = 1, HRLFs are quadratic
Lyapunov functions since the numerator and denominator of
v ∈ Q2,2 are a quadratic function and a constant.

Let v(x) be an HRLF candidate in the setQ2d,2. By
exploiting the representation introduced in Section II-C,v(x)
can be expressed as



















v(x) =
φ(x)

ψ(x)

φ(x) = b (x, d)
′
Φb (x, d)

ψ(x) = b (x, d− 1)
′
Ψb (x, d− 1)

(24)

where Φ ∈ Rc(n,d)×c(n,d), Φ = Φ′, and
Ψ ∈ Rc(n,d−1)×c(n,d−1), Ψ = Ψ′.

Hereafter we describe the proposed methodology in the
case of arbitrary switching. In particular, a Lyapunov function
common to all the subsystems of (1) is searched for. In
this respect, it is useful to observe that common Lyapunov
functions are guaranteed to exist for asymptotically stable
switched systems in the case of arbitrary switching, see for
instance [1].

B. Arbitrary Switching:H2 Norm

In this section we show how HRLFs can be used to deter-
mine theH2 norm of (1) in the case of arbitrary switching.
Let us observe that a necessary condition for theH2 norm to
be finite is that (1) is strictly proper, i.e.,

Di = 0 ∀i = 1, . . . , N. (25)

For s = 0, 1, let Ai,s be the matrix satisfying

db (x, d− s)

dx
Aix = Ai,sb (x, d− s) . (26)

For Φ andΨ as in (24), let us define










Ei,1(Φ) = J ′
1 (he (ΦAi,0)⊗Ψ)J1

Ei,2(Φ) = J ′
1 (Φ⊗ he (ΨAi,1))J1

Ei,3 = J ′
2

(

Ψ⊗2 ⊗ C′
iCi

)

J2

(27)

whereJ1 andJ2 are the matrices satisfying
{

b (x, d)⊗ b (x, d− 1) = J1b (x, 2d− 1)

b (x, d− 1)
⊗2 ⊗ x = J2b (x, 2d− 1) .

(28)

Let us define

Ei(Φ) = Ei,1(Φ)− Ei,2(Φ) + Ei,3. (29)

Let us expressBi as

Bi = (Bi,1, . . . , Bi,m) (30)

whereBi,1, . . . , Bi,m ∈ Rn, and let us define

gi(Φ) =

m
∑

j=1

b (Bi,j , d)
′ Φb (Bi,j , d)

b (Bi,j , d− 1)
′
Ψb (Bi,j , d− 1)

. (31)

Lastly, letM1(Θ) be a linear parametrization of the set

M1 =
{

M =M ′ : b (x, 2d− 1)
′
Mb (x, 2d− 1) = 0

}

(32)
whereΘ is a free vector. The following result provides an
LMI condition for establishing upper bounds ofγH2

in the
caseD = Darb.

Theorem 1:Consider the case of arbitrary switching, i.e.,
D = Darb. Let d ≥ 1 andΨ > 0 be chosen. Suppose that
there existξ, Φ andΘi, i = 1, . . . , N , satisfying the system
of LMIs











0 < Φ

0 > Ei(Φ) +M1(Θi) ∀i = 1, . . . , N

0 < ξ − gi(Φ) ∀i = 1, . . . , N.

(33)

Then,v(x) in (24) is an HRLF for (1), and one has

γH2
<
√

ξ. (34)

Proof. Suppose that the system of LMIs (33) holds. From the
definition of b (x, d) it follows that

b (x, d) 6= 0 ∀x 6= 0n.



5

Hence, from (24), the first inequality in (33) and the fact that
Ψ > 0, one has

∀x 6= 0n

{

φ(x) > 0

ψ(x) > 0

sinced is arbitrary. By pre- and post-multiplying the second
inequality in (33) timesb (x, 2d− 1)′ and b (x, 2d− 1), it
follows that

0 > b (x, 2d− 1)
′
(Ei(Φ) +M1(Θi)) b (x, 2d− 1)

∀x 6= 0n.

SinceM1(θ) is a linear parametrization of the setM1 in (32),
one has

b (x, 2d− 1)
′
M1(Θi)b (x, 2d− 1) = 0

and, hence,

0 > b (x, 2d− 1)
′
(Ei,1(Φ)− Ei,2(Φ) + Ei,3) b (x, 2d− 1)

∀x 6= 0n.

Let us observe that

b (x, 2d− 1)
′
Ei,1(Φ)b (x, 2d− 1)

= b (x, 2d− 1)′ J ′
1 (he (ΦAi,0)⊗Ψ)J1b (x, 2d− 1)

= (b (x, d) ⊗ b (x, d− 1))
′
(he (ΦAi,0)⊗Ψ)

· (b (x, d)⊗ b (x, d− 1))

=
(

b (x, d)
′
he (ΦAi,0) b (x, d)

)

⊗
(

b (x, d− 1)′ Ψb (x, d− 1)
)

= ψ(x)∇φ(x)Aix.

Proceeding with similar calculations, one gets

0 > ψ(x)∇φ(x)Aix− φ(x)∇ψ(x)Aix+ ψ(x)2 ‖Cix‖22
∀x 6= 0n

which, dividing byψ(x)2, implies

0 > ∇v(x)Aix+ ‖Cix‖22 ∀x 6= 0n.

Hence,v(x) is an HRLF. By replacingi with σ in the last
inequality, and integrating both sides of this inequality with
respect tot from 0 to ∞, one gets

0 > v(x(∞)) − v(x(0)) +

∫ ∞

0

‖Cσx‖22 dt

that, given the nonnegativity ofv(x(∞)), implies

v(x(0)) > ‖Cσx‖2L2
.

At this point, let us suppose that the inputw is chosen as in
(4). It follows that

x(0) = Bσ(0)Om,j.

Moreover, in such a case, the response of (1) is

y = Cσx = Yj

whereYj is the impulse response in Definition 1. Hence,

v
(

Bσ(0)Om,j

)

> ‖Yj‖2L2

.

Summing up overj = 1, . . . ,m and taking into account that
σ(0) is arbitrary, the result follows. �

The LMI condition provided by Theorem 1 allows one to
establish upper bounds of theH2 norm of (1) in the case of
arbitrary switching. This condition is sufficient for any a priori
chosen positive integerd (which defines the total degree of
the HRLF, equal to2d) and positive definite matrixΨ (which
defines the denominator of the HRLF, according to (24)).

The matrices used to define the LMI condition (33) can be
easily built, see the Appendix for details. Let us observe that
the setM1 may contain only the null matrix (this happens
whend = 1). In such a case, the linear parametrizationM1(·)
is the null matrix itself, and the vectorsΘi in Theorem 1 are
empty vectors (i.e., do not need to be introduced).

The best upper bound provided by Theorem 1 for chosen
d andΨ can be found by minimizingξ subject to the LMIs
(33), and is equal to

γ̂H2
=
√

ξH2
(35)

whereξH2
is the solution of the semidefinite program (SDP)

ξH2
= inf

ξ,Φ,Θi

ξ

s.t. (33) holds.
(36)

Indeed, from Theorem 1 it follows that

γH2
≤ γ̂H2

. (37)

The following algorithm summarizes the computation of the
upper bound̂γH2

of theH2 norm of (1):

1) choose an integerd ≥ 1 and a matrixΨ > 0;
2) compute the matricesAi,0, Ai,1, J1 andJ2;
3) compute the matrix functionsEi(Φ), M1(Θi) and

gi(Φ);
4) solve the SDP (36);
5) get the upper bound̂γH2

from (35).

The following result states that the LMI condition provided
by Theorem 1 is not only sufficient but also necessary by
using sufficiently large values ofd.

Theorem 2:Consider the case of arbitrary switching, i.e.,
D = Darb. Suppose without loss of generality thatγH2

<∞.
Then, for all ε > 0 there existsd such that (33) holds for
someξ, Φ andΘi, with Ψ satisfying

{

Ψ > 0

ψ(x) = ‖x‖2d−2
2

(38)

and
γH2

<
√

ξ ≤ γH2
+ ε. (39)

Proof. Let us start by observing that one can suppose without
loss of generality thatγH2

< ∞ because, ifγH2
= ∞, then

the only possible upper bound ofγH2
provided by Theorem

1 in (34) is
√
ξ = ∞, i.e., the upper bound coincides with the

soughtH2 norm.
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Hence, let us supposeγH2
< ∞. Let ε > 0 andξ be such

that (39) holds. Letz : Rn → R be any Lyapunov function
proving that theH2 norm of (1) is smaller than

√
ξ, i.e.,

∀x 6= 0n

∀i = 1, . . . , N























0 < z(x)

0 > ∇z(x)Aix+ ‖Cix‖22

0 < ξ −
m
∑

j=1

z(Bi,j).

This Lyapunov function can be constructed based on the worst
solution of theH2 differential Lyapunov equation, see for
details [13], [18], [24] adapted to theH2 case. Since (1) is
linear, without loss of generality one can suppose thatz(x) is
homogeneous of degree2, i.e.,

z(αx) = α2z(x) ∀α ∈ R.

Let us define the hyper-sphere of dimensionn with center in
the origin and radius one as

B = {x ∈ R
n : ‖x‖2 = 1} .

SinceB is compact andz(x) is continuous overB, z(x) can be
approximated arbitrarily well overB by polynomial functions.
This means that, for allε1 > 0, there exists a polynomialz1(x)
such that

|z(x)− z1(x)| ≤ ε1 ∀x ∈ B.

Without loss of generality, one can assume thatz1(x) is
homogeneous of degree2d1 with d1 ∈ N, d1 ≥ 1. Since
‖x‖2 = 1 overB, the previous condition can be rewritten as

∣

∣

∣

∣

z(x)− z1(x)

z2(x)

∣

∣

∣

∣

≤ ε1 ∀x ∈ B

where
z2(x) = ‖x‖2(d1−1)

2 .

Sinceε1 is arbitrary, one can choose it sufficiently small to
ensure that

∀x 6= 0n

∀i = 1, . . . , N























0 < z3(x)

0 > ∇z3(x)Aix+ ‖Cix‖22

0 < ξ −
m
∑

j=1

z3(Bi,j)

where

z3(x) =
z1(x)z4(x)

z2(x)z4(x)

and z4(x) is a function that can be arbitrarily chosen. This
means that

∀x 6= 0n

∀i = 1, . . . , N











































0 < z1(x)z4(x)

0 > z4(x)
2((z2(x)∇z1(x)

−z1(x)∇z2(x))Aix

+z2(x)
2 ‖C′

ix‖
2
2)

0 < ξ −
m
∑

j=1

z1(Bi,j)z4(Bi,j)

z2(Bi,j)z4(Bi,j)
.

Sincez4(x) is arbitrary, it can be chosen of the form‖x‖2d̃2
with d̃ ∈ N in order to ensure that the right hand sides of

the inequalities in the previous condition, with the secondone
changed in sign, admit positive definite Gram matrices, see for
instance [4]. This implies that there existsΦ > 0 satisfying
(24) for

φ(x) = z1(x)‖x‖2d̃2
which is a homogeneous polynomial of degree2d with

d = d1 + d̃.

Moreover, there existsΨ satisfying (38) since such a matrix
can be simply chosen diagonal with positive entries on the
diagonal. At this point, the proof proceeds by reverting the
proof of Theorem 1 and observing that the existence of
Θ1, . . . ,ΘN satisfying (33) is ensured byz4(x). �

Theorem 2 states that the LMI condition provided by
Theorem 1 can be used to approximate arbitrarily well theH2

norm of (1) in the case of arbitrary switching by increasing
d. This means that, for allε > 0, there existsd such that the
upper bound̂γH2

in (35) satisfies

γH2
≤ γ̂H2

≤ γH2
+ ε (40)

at least whenΨ is chosen according to (38).

C. Arbitrary Switching: RMS Gain

In this section we show how HRLFs can be used to deter-
mine the RMS gain of (1) in the case of arbitrary switching.
For d ∈ N let us define

q(x, d, w) = b (x, d− 1)⊗ w. (41)

For s = 0, 1, let Bi,s be the matrix satisfying

db (x, d− s)

dx
Biw = Bi,sq(x, d− s, w). (42)

Let Ai,s be as in (26) and, forΦ and Ψ as in (24), let us
define







































Fi,1(Φ) = J ′
1 (ΦBi,0 ⊗Ψ)J3

Fi,2(Φ) = J ′
1 (Φ⊗ΨBi,1)J4

Fi,3 = J ′
5

(

Ψ⊗2 ⊗ Im
)

J5

Gi,1 = J ′
2

(

Ψ⊗2 ⊗ C′
iCi

)

J2

Gi,2 = J ′
2

(

Ψ⊗2 ⊗ C′
iDi

)

J5

Gi,3 = J ′
5

(

Ψ⊗2 ⊗D′
iDi

)

J5

(43)

whereJ1, J2 are given by (28), andJ3, J4, J5 are the matrices
satisfying










b (x, d− 1)⊗ w ⊗ b (x, d− 1) = J3q(x, 2d− 1, w)

b (x, d)⊗ b (x, d− 2)⊗ w = J4q(x, 2d− 1, w)

b (x, d− 1)
⊗2 ⊗ w = J5q(x, 2d− 1, w).

(44)
For ξ ∈ R, let us define

Fi(Φ, ξ) =

(

Ei,1(Φ)− Ei,2(Φ) Fi,1(Φ)− Fi,2(Φ)
⋆ −ξFi,3

)

(45)
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and

Gi =

(

Gi,1 Gi,2

⋆ Gi,3

)

. (46)

Lastly, let us define

r(x, d, w) =

(

b (x, 2d− 1)
b (x, 2d− 2)⊗ w

)

(47)

and letM2(Θ) be a linear parametrization of the set

M2 = {M =M ′ : r(x, d, w)′Mr(x, d, w) = 0} (48)

whereΘ is a free vector. The following result provides an
LMI condition for establishing upper bounds ofγRMS in the
caseD = Darb.

Theorem 3:Consider the case of arbitrary switching, i.e.,
D = Darb. Let d ≥ 1 andΨ > 0 be chosen. Suppose that
there existξ, Φ andΘi, i = 1, . . . , N , satisfying the system
of LMIs
{

0 < Φ

0 > Fi(Φ, ξ) +Gi +M2(Θi) ∀i = 1, . . . , N.
(49)

Then,v(x) in (24) is an HRLF for (1) and

γRMS <
√

ξ. (50)

Proof. Suppose that the system of LMIs (49) holds. Analo-
gously to the proof of Theorem 1, one has

∀x 6= 0n











b (x, d) 6= 0

φ(x) > 0

ψ(x) > 0.

Similarly, from (47) it follows that

r(x, d, w) 6= 0 ∀x 6= 0n.

Hence, by pre- and post-multiplying the second inequality in
(49) timesr(x, d, w)′ andr(x, d, w), it follows that

0 > r(x, d, w)′ (Fi(Φ, ξ) +Gi +M2(Θi)) r(x, d, w)

∀x 6= 0n.

SinceM2(θ) is a linear parametrization of the setM2 in (48),
it follows that

r(x, d, w)′M2(Θi)r(x, d, w) = 0

and, hence,

0 > b (x, 2d− 1)
′
(Ei,1(Φ)− Ei,2(Φ) +Gi,1) b (x, 2d− 1)

+2b (x, 2d− 1)
′
(Fi,1(Φ)− Fi,2(Φ) +Gi,2) q(x, 2d− 1, w)

+q(x, 2d− 1, w)′ (Gi,3 − ξFi,3) q(x, 2d− 1, w) ∀x 6= 0n.

Analogously to the proof of Theorem 1, one has

b (x, 2d− 1)
′
Ei,1(Φ)b (x, 2d− 1) = ∇φ(x)Aixψ(x).

Proceeding with similar calculations, one gets

0 > ∇φ(x)(Aix+Biw)ψ(x) −∇ψ(x)(Aix+Biw)φ(x)

+ ‖Cix+Diw‖22 ψ(x)2 − ξ‖w‖22 ∀x 6= 0n

which, dividing byψ(x)2, implies

0 > ∇v(x)(Aix+Biw) + ‖Cix+Diw‖22 − ξ‖w‖22
∀x 6= 0n.

Hence,v(x) is an HRLF. By replacingi with σ in the last
inequality, and integrating both sides of this inequality with
respect tot from 0 to ∞ with the initial conditionx(0) = 0n,
one gets

0 > v(x(∞)) +

∫ ∞

0

(

‖y‖22 − ξ‖w‖22
)

dt.

Sincev(x(∞)) is non-negative, it follows that (50) holds.�

Theorem 3 provides a sufficient LMI condition for estab-
lishing upper bounds of the RMS gain of (1) in the case
of arbitrary switching. The matrices used to define the LMI
condition (49) can be easily built, see the Appendix for details.

The best upper bound provided by Theorem 3 for chosen
d andΨ can be found by minimizingξ subject to the LMIs
(49), and is equal to

γ̂RMS =
√

ξRMS (51)

whereξRMS is the solution of the SDP

ξRMS = inf
ξ,Φ,Θi

ξ

s.t. (49) holds.
(52)

Indeed, from Theorem 3 it follows that

γRMS ≤ γ̂RMS . (53)

The following result states that the LMI condition provided
by Theorem 3 is not only sufficient but also necessary by
using sufficiently large values ofd.

Theorem 4:Consider the case of arbitrary switching, i.e.,
D = Darb. Suppose without loss of generality thatγRMS <

∞. Then, for allε > 0 there existsd such that (49) holds for
someξ, Φ andΘi, with Ψ satisfying (38), and

γRMS <
√

ξ ≤ γRMS + ε. (54)

Proof. Let us start by observing that one can suppose without
loss of generality thatγRMS < ∞ because, ifγRMS = ∞,
then the only possible upper bound ofγRMS provided by
Theorem 3 in (50) is

√
ξ = ∞, i.e., the upper bound coincides

with the sought RMS gain.
Hence, let us supposeγRMS <∞. Let ε > 0 andξ be such

that (54) holds. Letz : Rn → R be any Lyapunov function
proving that the RMS gain of (1) is smaller than

√
ξ, i.e.,

∀x 6= 0n











0 < z(x)

0 > ∇z(x)(Aix+Biw) + ‖Cix+Diw‖22
−ξ‖w‖22 ∀i = 1, . . . , N.

This Lyapunov function can be constructed based on the
solution of theH∞ differential Riccati equation, see [13],
[18], [24] for details. Analogously to the proof of Theorem
2, z(x) can be assumed homogeneous of degree2 without
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loss of generality. Moreover, for allε1 > 0, there exists a
homogeneous polynomialz1(x) of degree2d1 with d1 ∈ N,
d1 ≥ 1, such that

∣

∣

∣

∣

z(x)− z1(x)

z2(x)

∣

∣

∣

∣

≤ ε1 ∀x ∈ B

whereB the hyper-sphere of dimensionn with center in the
origin and radius one, and

z2(x) = ‖x‖2(d1−1)
2 .

Sinceε1 is arbitrary, one can choose it sufficiently small to
ensure that

∀x 6= 0n











0 < z3(x)

0 > ∇z3(x)(Aix+Biw) + ‖Cix+Diw‖22
−ξ‖w‖22 ∀i = 1, . . . , N

where

z3(x) =
z1(x)z4(x)

z2(x)z4(x)

and z4(x) is a function that can be arbitrarily chosen. This
means that

∀x 6= 0n























0 < z1(x)z4(x)

0 > z4(x)
2 ((z2(x)∇z1(x)− z1(x)∇z2(x))

·(Aix+ Biw) + z2(x)
2
(

‖Cix+Diw‖22
−ξ‖w‖22

))

∀i = 1, . . . , N.

Sincez4(x) is arbitrary, it can be chosen of the form‖x‖2d̃2
with d̃ ∈ N in order to ensure that the right hand sides of
the inequalities in the previous condition, with the secondone
changed in sign, admit positive definite Gram matrices, see for
instance [4]. This implies that there existsΦ > 0 satisfying
(24) for

φ(x) = z1(x)‖x‖2d̃2

which is a homogeneous polynomial of degree2d with

d = d1 + d̃.

Moreover, there existsΨ satisfying (38) since such a matrix
can be simply chosen diagonal with positive entries on the
diagonal. At this point, the proof proceeds by reverting the
proof of Theorem 3 and observing that the existence of
Θ1, . . . ,ΘN satisfying (49) is ensured byz4(x). �

Theorem 4 states that the LMI condition provided by The-
orem 3 can be used to approximate arbitrarily well the RMS
gain of (1) in the case of arbitrary switching by increasing
d. This means that, for allε > 0 there existsd such that the
upper bound̂γRMS in (51) satisfies

γRMS ≤ γ̂RMS ≤ γRMS + ε (55)

at least whenΨ is chosen according to (38).

IV. SWITCHING WITH DWELL TIME CONSTRAINTS

This section addresses Problem 2, i.e., the determination
of the sought performance indexes in the case of switching
with dwell time constraints. Contrary to the case of arbitrary
switching presented in the previous section where a Lyapunov
function common to all the subsystems of (1) is searched for,
here the idea is to exploit a family of Lyapunov functions
mutually constrained by the dwell time specification. In this
respect, it is useful to observe that such a family of Lyapunov
functions is guaranteed to exist for asymptotically stable
switched systems with dwell time constraints, see for instance
[28].

Let us start by considering the determination of theH2 norm
in the case of switching with dwell time constraints. We want
to search for a family of HRLFsvi(x), i = 1, . . . , N , of total
degree2d and relative degree2, with common denominator.
These HRLF candidates can be expressed analogously to (24)
as



















vi(x) =
φi(x)

ψ(x)

φi(x) = b (x, d)′ Φib (x, d)

ψ(x) = b (x, d− 1)
′
Ψb (x, d− 1)

(56)

where Φi ∈ Rc(n,d)×c(n,d), Φi = Φ′
i, and Ψ ∈

Rc(n,d−1)×c(n,d−1), Ψ = Ψ′. For s = 0, 1, let Ui,s be the
matrix satisfying

b
(

eAiTx, d− s
)

= Ui,sb (x, d− s) . (57)

For Φi andΨ as in (56), let us define










Qi,1(Φj) = J ′
1

((

U ′
i,0ΦjUi,0

)

⊗Ψ
)

J1

Qi,2(Φi) = J ′
1

(

Φi ⊗
(

U ′
i,1ΨUi,1

))

J1

Qi,3 = J ′
2

(

Ψ⊗
(

U ′
i,1ΨUi,1

)

⊗∆i

)

J2

(58)

where

∆i =

∫ T

0

eA
′

itC′
iCie

Aitdt. (59)

Let us define

Qi(Φi,Φj) = Qi,1(Φj)−Qi,2(Φi) +Qi,3. (60)

Theorem 5:Consider the case of switching with dwell time
constraints, i.e.,D = DT . Let d ≥ 1 andΨ > 0 be chosen.
Suppose that there existξ, Φi, Θi andΩi,j , i, j = 1, . . . , N ,
i 6= j, satisfying the system of LMIs


















0 < Φi ∀i = 1, . . . , N

0 > Ei(Φi) +M1(Θi) ∀i = 1, . . . , N

0 < ξ − gi(Φi) ∀i = 1, . . . , N

0 > Qi(Φi,Φj) +M1(Ωi,j) ∀i, j = 1, . . . , N, i 6= j.
(61)

Then,vi(x) in (56) is an HRLF for thei-th subsystem of (1),
and

γH2
<
√

ξ. (62)

Proof. Suppose that the system of LMIs (61) holds. Let us
observe that the first three LMIs in this system are the LMI
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condition (33) provided by Theorem 1 for the case of arbitrary
switching, with the difference thatN HRLFs of the form (56)
are searched for instead of an HRLFv(x) of the form (24).
This means that

√
ξ is an upper bound of theH2 norm of

each subsystem of (1). In order to show that (62) holds for
all switching policies inDT , let us suppose thatσ presents a
jump at a generic time instant, i.e.,











σ(t̃−) = j

σ(t) = i ∀t ∈ [t̃, t̃+ T )

t̃ ∈ [0,∞), i, j ∈ {1, . . . , N}, i 6= j.

The fourth LMI in (61) implies that

vi(x) > vj
(

eAiTx
)

+ x′∆ix

∀x 6= 0n ∀i, j = 1, . . . , N, i 6= j.

Hence, each HRLF evaluated at a statex at the time instant
t = t̃− is greater than any other HRLF evaluated at the state
obtained fromx after a timeT , i.e.,eAiTx at the time instant
t = t̃− + T , plus the energy during this time starting fromx,
i.e., x′∆ix. This implies that

√
ξ is an upper bound of the

H2 norm for all switching policies inDT . �

Theorem 5 provides a sufficient LMI condition for estab-
lishing upper bounds of theH2 norm of (1) in the case of
switching with dwell time constraints. The matrices used to
define the LMI condition (61) can be easily built, see the
Appendix for details.

The best upper bound provided by Theorem 5 for chosen
d andΨ can be found by minimizingξ subject to the LMIs
(61), and is equal to

γ̂H2
=
√

ξH2
(63)

whereξH2
is the solution of the SDP

ξH2
= inf

ξ,Φi,Θi,Ωi,j

ξ

s.t. (61) holds.
(64)

The LMI condition provided by Theorem 5 is not only
sufficient but also necessary by using sufficiently large
values of d. This result is a direct extension of Theorem
2 for the case of arbitrary switching and is omitted for brevity.

Next, let us consider the determination of the RMS gain
in the case of switching with dwell time constraints. Let us
expressφi(x) in (56) as

φi(x) = x′Y (x,Φi)x (65)

whereY (x,Φi) is a symmetric matrix homogeneous polyno-
mial of degree2d− 2 depending onΦi. Let us introduce the
set

Z = {Z(x) = Z(x)′ : Z(x) is a matrix homogeneous

polynomial of degree2d− 2 such that

x′Z(x)x = 0 for all x}
(66)

and letZ(x,Υ) be a linear parametrization ofZ whereΥ is
a free vector. Let us define

Ξ(x,Φi,Υi) = Y (x,Φi) + Z(x,Υi) (67)

whereΥi is a free vector. Let us define

Vi(x,Λ1,Λ2) =
(

eH
′

iTΛ2ψ(x)e
HiT − Λ1ψ(e

HiTx) +Riψ(x)ψ(e
HiTx)

⋆

eH
′

iT (Λ2ψ(x)− Piψ(x)ψ(e
HiTx))

Λ2ψ(x) − (Pi + g2S−1
i )ψ(x)ψ(eHiTx)

)

(68)
whereΛ1,Λ2 are symmetric matrices,g ∈ R, Pi is the solution
of the algebraic Riccati equation (ARE)

0 = A′
iPi + PiAi + C′

iCi + (PiBi + C′
iD)

·
(

g2I −D′
iDi

)−1
(PiBi + C′

iD)′,
(69)

and


























Ri = Pi − eH
′

iTPie
HiT

Si =

∫ ∞

0

eHitBi

(

I − g−2D′
iDi

)−1
B′

ie
H′

itdt

Hi = Ai +BiLi

Li =
(

g2I −D′
iDi

)−1
(PiBi + C′

iD)′.
(70)

It is useful to remark that the ARE (69) admits a unique
positive definite solutionPi whenever the pair(Ai, Bi) is
reachable, the pair(Ai, Ci) is observable, andg is greater than
the RMS gain of thei-th subsystem of (1), see for instance [10]
for details. Let us expressVi(x,Ξ(x,Φi,Υi),Ξ(x,Φj ,Υj)) as

Vi(x,Ξ(x,Φi,Υi),Ξ(x,Φj ,Υj)) = (b (x, 2d− 2)⊗ I)′

·Wi(Φi,Φj ,Υi,Υj) (b (x, 2d− 2)⊗ I)
(71)

for a symmetric matrixWi(Φi,Φj ,Υi,Υj). Let M3(·) be a
linear parametrization of the set

M3 = {M =M ′ : (b (x, 2d− 2)⊗ I)
′
M

· (b (x, 2d− 2)⊗ I) = 0 ∀x}.
(72)

Theorem 6:Consider the case of switching with dwell time
constraints, i.e.,D = DT . Let d ≥ 1, Ψ > 0 and g > 0 be
chosen. Suppose that there existΦi, Θi, Ωi,j andΥi, i, j =
1, . . . , N , i 6= j, satisfying the system of LMIs


















0 < Φi ∀i = 1, . . . , N

0 > Fi(Φi, g
2) +Gi +M2(Θi) ∀i = 1, . . . , N

0 > Wi(Φi,Φj ,Υi,Υj) +M3(Ωi,j)

∀i, j = 1, . . . , N, i 6= j.
(73)

Then,vi(x) in (56) is an HRLF for thei-th subsystem of (1),
and

γRMS < g. (74)

Proof. Suppose that the system of LMIs (73) holds. Let us
observe that the first two LMIs in this system are the LMI
condition (49) provided by Theorem 3 for the case of arbitrary
switching, with the difference thatξ is replaced byg2, andN
HRLFs of the form (56) are searched for instead of an HRLF
v(x) of the form (24). This means thatg is an upper bound
of the RMS gain of each subsystem of (1). In order to show



10

that (74) holds for all switching policies inDT , let us suppose
that σ presents a jump at a generic time instant, i.e.,











σ(t̃−) = j

σ(t) = i ∀t ∈ [t̃, t̃+ T )

t̃ ∈ [0,∞), i, j ∈ {1, . . . , N}, i 6= j.

The third LMI in (73) implies that

Vi(x,Ξ(x,Φi,Υi),Ξ(x,Φj ,Υj)) < 0

∀x 6= 0n ∀i, j = 1, . . . , N, i 6= j.

Proceeding analogously to [13], one obtains that

vi(x) > sup
w(·)

(

vj
(

eAiTx
)

+

∫ t̃+T

t̃

(

‖y‖22 − g2‖w‖22
)

dt

)

∀x 6= 0n ∀i, j = 1, . . . , N, i 6= j.

Hence, each HRLF evaluated at a statex at the time instant
t = t̃− is greater than the worst case, over all possible inputs
w, of any other HRLF evaluated at the state obtained fromx
after a timeT , i.e., eAiTx at the time instantt = t̃− + T ,
plus the dissipated energy during this time starting fromx,
i.e., the integral betweeñt and t̃+ T of ‖y‖22 − g2‖w‖22. This
implies thatg is an upper bound of the RMS gain for all
switching policies inDT . �

Theorem 6 provides a sufficient LMI condition for estab-
lishing upper bounds of the RMS gain of (1) in the case of
switching with dwell time constraints. The matrices used to
define the LMI condition (73) can be easily built, see the
Appendix for details.

The best upper bound provided by Theorem 6 for chosen
d andΨ can be found by minimizingg subject to the LMIs
(73), and is equal to

γ̂RMS = inf
g,Φi,Θi,Ωi,j ,Υi

g

s.t. (73) holds.
(75)

Contrary to the upper bounds introduced in the previous
sections,̂γRMS in (75) cannot be found by solving an SDP.
Indeed, the LMIs (73) are nonlinear ing. Nevertheless, one can
solve (75) through a bisection search ong where the feasibility
of these LMIs is tested at each step.

Also, contrary to the LMI conditions provided by Theorems
1, 3 and 5, which are not only sufficient but also necessary, the
LMI condition provided by Theorem 5 could be sufficient only.
Nevertheless, this LMI condition is not more conservative than
the existing LMI conditions based on quadratic Lyapunov
functions, which are recovered by Theorem 5 withd = 1.
Moreover, as shown by Example 4 in the next section, the LMI
condition provided by Theorem 5 can significantly improve the
results obtained by the existing LMI conditions.

V. EXAMPLES

In this section we present some numerical examples.
The LMI feasibility tests and the SDPs are solved with the
toolbox SeDuMi [26] for Matlab on a personal computer with
Windows 10, Intel Core i7, 3.4 GHz, 8 GB RAM. The vector
b (x, d) is chosen according to (10). The matrixΨ is chosen

as the diagonal matrix that satisfies (38) (unless specified
otherwise).

A. Example 1

Let us consider (1) withN = 2 and



































A1 =

(

0 1
−2 −1

)

, A2 =

(

0 1
−2− ζ −1

)

B1 =

(

0
1

)

, B2 =

(

0
1

)

C1 =
(

1 0
)

, C2 =
(

1 0
)

D1 = 0, D2 = 0

whereζ ∈ R is a parameter. The problem is to determine the
H2 norm in the case of arbitrary switching, i.e., the index
γH2

in (3) for D = Darb.

We start by considering the caseζ = 3. By usingd = 1 (in
this case HRLFs are quadratic Lyapunov functions), the upper
bound in (35) is

γ̂H2
= 0.953.

The SDP (36) has4 LMI scalar variables, and its computa-
tional time is less than one second. The found HRLF is as in
(24) with

{

φ(x) = 3.278x21 + 1.074x1x2 + 0.909x22
ψ(x) = 1.

Some of the matrices in the SDP (36) are as follows:











A1,0 = A1, A2,0 = A2, A1,1 = 0, A2,1 = 0

Ψ = 1, b (x, d) = x, M1(θ) = 02×2

J1 = I2, J2 = I2.

By usingd = 2, the upper bound in (35) is

γ̂H2
= 0.689.

The SDP (36) has13 LMI scalar variables, and its computa-
tional time is less than one second. The found HRLF is as in
(24) with











φ(x) = 1.624x41 + 0.502x31x2 + 2.353x21x
2
2

+0.669x1x
3
2 + 0.474x42

ψ(x) = x21 + x22.
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Some of the matrices in the SDP (36) are as follows:


































































































































A1,0 =





0 2 0
−2 −1 1
0 −4 −2



 , A2,0 =





0 2 0
−5 −1 1
0 −10 −2





A1,1 = A1, A2,1 = A2, Ψ = I2, b (x, d) =





x21
x1x2
x22





M1(θ) =









0 0 −θ1 −θ2
⋆ 2θ1 θ2 −θ3
⋆ ⋆ 2θ3 0
⋆ ⋆ ⋆ 0









.

J1 =

















1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1

















, J2 =

























1 0 0 0
0 1 0 0
0 1 0 0
0 0 1 0
0 1 0 0
0 0 1 0
0 0 1 0
0 0 0 1

























.

Lastly, by usingd = 3, the upper bound in (35) is

γ̂H2
= 0.631.

The SDP (36) has31 LMI scalar variables, and its computa-
tional time is less than one second. The found HRLF is as in
(24) with










φ(x) = 1.397x61 + 0.502x51x2 + 3.384x41x
2
2 + 0.898x31x

3
2

+2.404x21x
4
2 + 0.625x1x

5
2 + 0.398x62

ψ(x) = (x21 + x22)
2.

It is interesting to observe that, though non-conservatismis
ensured by Theorem 2 for sufficiently large values ofd with
Ψ satisfying (38), the results obtained for fixed values ofd

might be improved by using different choices ofΨ. Indeed,
by using ford = 3 the choice

Ψ = diag(4, 7, 1)

we obtain the new upper bound

γ̂H2
= 0.608.

Next, we repeat the previous computations for different
values ofζ (with Ψ satisfying (38)). Fig. 1 shows the found
upper bounds.

B. Example 2

Let us consider (1) withN = 2 and


































































A1 =





1 3 1
−1 −2 −1
−1 −2 −2



 , A2 =





2 3 2
−2 −2 −1
−2 −2 −2





B1 =





1
0
0



 , B2 =





0
−1
0





C1 =

(

1 0 0
0 1 0

)

, C2 =

(

1 0 0
0 1 0

)

D1 =

(

1
0

)

, D2 =

(

1
0

)

.

0 1 2 3 4 5 6
0

0.5

1

1.5

2

2.5

3

3.5

4

ζ

γ̂
H

2

Fig. 1. Example 1. Upper bound̂γH2
for d = 1 (dashed black curve),d = 2

(dashdot red curve) andd = 3 (dotted blue curve) versusζ. The vertical lines
show the largest value ofζ for which the upper bound is finite.

The problem is to determine the RMS gain in the case of
arbitrary switching, i.e., the indexγRMS in (5) for D = Darb.

By usingd = 1, 2, 3, the upper bound in (51) is as follows:










d = 1 =⇒ γ̂RMS = 12.333

d = 2 =⇒ γ̂RMS = 6.971

d = 3 =⇒ γ̂RMS = 6.726.

The numbers of LMI scalar variables in the SDP (52) are,
respectively, 7, 166 and 1056. The computational times
required for solving the SDP are, respectively,0.5, 0.6 and
4.7 seconds. The upper bound̂γRMS found with d = 1
coincides with the upper bound provided by [13].

C. Example 3

Let us consider (1) withN = 3 and






























































A1 =

(

0 1
−2 −1

)

, A2 =

(

0 1
−12 −1

)

B1 =

(

0
1

)

, B2 =

(

0
1

)

C1 =
(

1 0
)

, C2 =
(

0 1
)

.

D1 = 0, D2 = 0

A3 =

(

0 1
−2 −0.1

)

, B3 =

(

0
−1

)

C3 =
(

0 1
)

, D3 = 0.

The problem is to determine theH2 norm in the case of
switching with dwell time constraints, i.e., the indexγH2

in
(3) for D = DT .

We start by considering the caseT = 1.6. By usingd = 1,
the upper bound in (63) is

γ̂H2
= 4.208.
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The SDP (64) has10 LMI scalar variables, and its computa-
tional time is less than one second. The found HRLF is as in
(24) with

{

φ(x) = 36.716x21 + 0.377x1x2 + 17.710x22
ψ(x) = 1.

By usingd = 2, the upper bound in (63) is

γ̂H2
= 3.073.

The SDP (64) has46 LMI scalar variables, and its computa-
tional time is less than one second. The found HRLF is as in
(24) with











φ(x) = 19.517x41 + 0.013x31x2 + 29.389x21x
2
2

+0.144x1x
3
2 + 9.445x42

ψ(x) = x21 + x22.

Lastly, by usingd = 3, the upper bound in (63) is

γ̂H2
= 2.114.

The SDP (64) has121 LMI scalar variables, and its compu-
tational time is less than one second. The found HRLF is as
in (24) with











φ(x) = 15.252x61 + 0.04x51x2 + 38.12x41x
2
2 − 0.192x31x

3
2

+30.584x21x
4
2 + 0.062x1x

5
2 + 7.425x62

ψ(x) = (x21 + x22)
2.

Next, we repeat the previous computations for different
values ofT . Fig. 2 shows the found upper bounds.

1 1.5 2 2.5 3
2

2.5

3

3.5

4

4.5

5

T

γ̂
H

2

Fig. 2. Example 3. Upper bound̂γH2
for d = 1 (dashed black curve),d = 2

(dashdot red curve) andd = 3 (dotted blue curve) versusT . The vertical lines
show the smallest value ofT for which the upper bound is finite.

D. Example 4

Let us consider (1) withN = 2 and


































A1 =

(

0 1
−10 −1

)

, A2 =

(

0 1
−0.1 −0.5

)

B1 =

(

0
1

)

, B2 =

(

0
1

)

C1 =
(

0.8715 0
)

, C2 =
(

0 0.3350
)

D1 = −0.8715, D2 = 0.3350.

This system has been considered in [13]. Here we consider
the problem to determine the RMS gain in the case of
switching with dwell time constraints, i.e., the indexγRMS

in (5) for D = DT andT = 3.

By usingd = 1, 2, 3, the upper bound in (75) is as follows:










d = 1 =⇒ γ̂RMS = 12.473

d = 2 =⇒ γ̂RMS = 9.769

d = 3 =⇒ γ̂RMS = 8.767.

The numbers of LMI scalar variables in the LMI condition
(73) are, respectively,7, 96 and349. The computational times
required for solving the SDP are less than1 second. The upper
boundγ̂RMS found withd = 1 coincides with the upper bound
provided by [13].

VI. CONCLUSIONS

This paper has addressed the problems of determining two
key performance indexes of continuous-time switched linear
systems, specifically theH2 norm and the RMS gain. A
novel class of Lyapunov functions has been proposed for
reaching this goal, called HRLFs. It has been shown that
sufficient conditions for establishing upper bounds of the
sought performance indexes in the case of arbitrary switching
can be given in terms of LMI feasibility tests by searching for
an HRLF of chosen degree. Moreover, it has been shown that
these conditions are also necessary by searching for an HRLF
of degree sufficiently large. Hence, the case of switching
with dwell time constraints has been considered, showing that
analogous LMI conditions can be obtained by searching for
a family of HRLFs mutually constrained by the dwell time
specification.

Several directions can be investigated in future work. One
of these is the extension of the proposed methodology to
the case of discrete-time switched linear systems. Another
direction concerns the design of feedback controllers for
ensuring desired performance indexes.
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APPENDIX

Preliminaries:
• b (x, d) is supposed chosen according to (10);
• let K ∈ N

c(n,d)×n be the matrix whose(i, j)-th entry is
the power ofxj in the i-th entry ofb (x, d);
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• for x ∈ Rn andk ∈ N, define the functions


























ν(xk) =
n
∑

i=1

µi(k)
∑

j=ki+1

c(n− i, µi(k)− j)

µi(k) =

n
∑

j=i

kj ;

• for Q ∈ Rn×n, let vec(Q) ∈ Rn2

contain the entries of
Q, and letmat(·) satisfymat(vec(Q)) = Q;

• for Q ∈ Rn×n, Q = Q′, let vecs(Q) ∈ Rn(n+1)/2

contain the independent entries ofQ, and let mats(·)
satisfymats(vecs(Q)) = Q.

The matrixAi,s in (26) can be built as follows:

1) let Ai,s be ac(n, d− s)× c(n, d− s) null matrix;
2) for all j = 1, . . . , c(n, d− s) andk, l = 1, . . . , n

a) let a be thej-th row ofK;
b) if ak > 0

i) set ã = a, add−1 to ãk, and add1 to ãl;
ii) set f = ν(ã);
iii) add ak(Ai)k,l to (Ai,s)j,f .

The matrixBi,s in (42) can be built as follows:

1) letBi,s be ac(n, d− s)× c(n, d− s− 1)m null matrix;
2) for all j = 1, . . . , c(n, d − s), k = 1, . . . , n and l =

1, . . . ,m

a) let a be thej-th row ofK;
b) if ak > 0

i) set ã = a, and add−1 to ãk;
ii) set f = (ν(ã)− 1)m+ l;
iii) add ak(Bi)k,l to (Bi,s)j,f .

The matrixJ1 in (28) is thec(n, d)c(n, d−1)×c(n, 2d−1)
matrix whose nonzero entries are1 in the positions(i, j)















i = (q1 − 1)c(n, d− 1) + q2

j = ν
(

(b (x, d))q1 (b (x, d− 1))q2

)

q1 = 1, . . . , c(n, d), q2 = 1, . . . , c(n, d− 1).

The matrixJ2 in (28) is thec(n, d − 1)2n × c(n, 2d − 1)
matrix whose nonzero entries are1 in the positions(i, j)















i = ((q1 − 1)c(n, d− 1) + q2 − 1)n+ q3

j = ν
(

(b (x, d− 1))q1 (b (x, d− 1))q2 xq3

)

q1, q2 = 1, . . . , c(n, d− 1), q3 = 1, . . . , n.

The matrixJ3 in (44) is thec(n, d− 1)2m× c(n, 2d− 2)m
matrix whose nonzero entries are1 in the positions(i, j)














i = ((q1 − 1)m+ q2 − 1)c(n, d− 1) + q3

j =
(

ν
(

(b (x, d− 1))q1 (b (x, d− 1))q3

)

− 1
)

m+ q2

q1, q3 = 1, . . . , c(n, d− 1), q2 = 1, . . . ,m.

The matrixJ4 in (44) is thec(n, d)c(n, d−2)m×c(n, 2d−

2)m matrix whose nonzero entries are1 in the positions(i, j)






















i = ((q1 − 1)c(n, d− 2) + q2 − 1)m+ q3

j =
(

ν
(

(b (x, d))q1 (b (x, d− 2))q2

)

− 1
)

m+ q3

q1 = 1, . . . , c(n, d), q2 = 1, . . . , c(n, d− 2)

q3 = 1, . . . ,m.

The matrixJ5 in (44) is thec(n, d− 1)2m× c(n, 2d− 2)m
matrix whose nonzero entries are1 in the positions(i, j)














i = ((q1 − 1)c(n, d− 1) + q2 − 1)m+ q3

j =
(

ν
(

(b (x, d− 1))q1 (b (x, d− 1))q2

)

− 1
)

m+ q3

q1, q2 = 1, . . . , c(n, d− 1), q3 = 1, . . . ,m.

A linear parametrizationM1(Θ) of the setM1 in (32) can
be built as follows:

1) let T1 be the matrix satisfying
b (x, 2d− 1)

′
Mb (x, 2d− 1) = b̃(x)′T1vecs(M)

whereb̃(x) is a vector of distinct monomials inx;
2) let T2 be a matrix whose columns span the right null

space ofT1;
3) M1(Θ) is given bymats(T2Θ).

A linear parametrizationM2(Θ) of the setM2 in (48) can
be built as follows:

1) letT1 be the matrix satisfyingr(x, d, w)′Mr(x, d, w) =
b̃(x,w)′T1vecs(M) whereb̃(x,w) is a vector of distinct
monomials in(x′, w′)′;

2) let T2 be a matrix whose columns span the right null
space ofT1;

3) M2(Θ) is given bymats(T2Θ).

A matrix Y (x,Φi) satisfying (65) and a linear parametriza-
tion Z(x,Υ) of the setZ in (66) can be built as follows:

1) let T1 and T2 be the vectors satisfy-
ing b (x, d)

′
Φib (x, d) = b̃(x)′T1 and

x′mats(T3b (x, 2d− 2))x = b̃(x)′T2 where T3 is
a free matrix and̃b(x) is a vector of distinct monomials
in x;

2) let T4 be the matrix such thatT2 = T4vec(T3);
3) let T5 be a vector such thatT4T5 = T1;
4) let T6 be a matrix whose columns span the right null

space ofT4;
5) Y (x,Φi) is given bymats(mat(T5)b (x, 2d− 2));
6) Z(x,Υ) is given bymats(mat(T6Υ)b (x, 2d− 2)).

A matrix Wi(Φi,Φj,Υi,Υj) satisfying (71) and a linear
parametrizationM3(Θ) of the setM3 in (72) can be built as
follows:

1) let T1 be the vector satisfying
q′Vi(x,Ξ(x,Φi,Υi),Ξ(x,Φj ,Υj))q = b̃(x)′T1
and let T2 be the matrix satisfying
q′ (b (x, 2d− 2)⊗ I)

′
M (b (x, 2d− 2)⊗ I) q =

b̃(x)′T2vecs(M) whereq ∈ R2n and b̃(x) is a vector of
distinct monomials inx;

2) let T3 be a vector such thatT2T3 = T1;
3) let T4 be a matrix whose columns span the right null

space ofT2;
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4) Wi(Φi,Φj ,Υi,Υj) is given bymats(T3);
5) M3(Θ) is given bymats(T4Θ).
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