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Abstract—This paper addresses the problems of determining norm and the root mean square (RMS) gain (also known
the H2 norm and the RMS gain of continuous-time switched gas £, gain or H., norm), see for instance [2], [10], [29]
linear systems. A novel class of Lyapunov functions is proed ¢ thejr definitions and calculations in the context of kne
for reaching this goal, called homogeneous rational Lyapuov time-i iant (LTI t In th text of switchea
functions (HRLFs). It is shown that sufficient conditions fa es- ime-invariant (LTI) sy_s ems_. n the contex _O switc ar
tablishing upper bounds of the sought performance indexesiithe ~ Systems, thé{, norm is defined as the maximum over all the
case of arbitrary switching can be given in terms of linear marix ~ admissible switching policies of the square root of the sdim o
inequality (LMI) feasibility tests by searching for an HRLF of the energies of the impulsive responses of each scalar,input
chosen degree. Moreover, it is shown that these conditiongea and the RMS gain is defined as the maximum over all the
also necessary by searching for an HRLF of degree sufficientl . 2 L .
large. It is worth mentioning that necessary and sufficient IMI ad_m'ss'ble switching policies and over all th_e inputs of the
conditions have not been proposed vet in the literature for e ratio between the square roots of the energies of the output
considered problems. Hence, the paper continues by consiileg ~ and of the input of the system for null initial conditions.éde
the case of switching with dwell time constraints, showinghat jndexes have been studied for switched linear systems i [15
analogous LMI conditions can be obtained for this case by [16], [23], [24] through techniques such as variationahpri

searching for a family of HRLFs mutually constrained by the | d t trol. In 1131, i trix inedval
dwell time specification. Some numerical examples illusti@ the ples and worst-case control. In [13], linear matrix inedya

proposed methodology and highlight the advantages with reect  (LMI) conditions have been proposed in order to determine
to the existing works. upper bounds through convex optimization based on the use

of common and piece-wise quadratic Lyapunov functions.
Unfortunately, the existing conditions for determining-pe
formance indexes in switched linear systems through convex
) i optimization are sufficient only. Indeed, the existing LMine
~ Itis well known that switched systems play a key rolgjions provide upper bounds of the sought indexes based on
in automqtlc control. These are dynamical systems _WhOﬂ;% use of quadratic Lyapunov functions, which are generall
mathematical models are allowed to change with the time iyservative. In this regard, it should be observed that nec
a finite family as effect of a signal called switching policyessary and sufficient LMI conditions have been proposed for
Switched systems naturally arise in a number of applicafion,giaplishing asymptotical stability of switched lineasteyns
and in general whenever some coefficients can vary in Bised on the use of non-quadratic Lyapunov functions. In
admissible finite set. In this paper, the switching rule isaricular, necessary and sufficient LMI conditions haverbe
assumed to be an exogenous deterministic signal. proposed for establishing asymptotical stability of stvitd
Switched systems are generally classified into two MajResr systems based on the use of homogeneous polynomial
classes: switched systems with arbitrary switching ari_?/apunov functions in [5], [9] for the case of arbitrary

switched systems with dwell time constraints. In the form%‘i/vitching and in [8] for the case of switching with dwell
class, the changes among the mathematical models can oggHg conétraints.

arbitrarily fast. In the latter class, these changes canramuly

Index Terms—Switched system,H, norm, RMS gain, LMI.

|. INTRODUCTION

e _ - Hence, a question arises: is it possible to exploit non-
after a minimum time, called dwell time. , uadratic Lyapunov functions in order to derive LMI con-
A fundamental problem in automatic control consists Cgitions that are not only sufficient but also necessary for
establishing asymptotical stability. This problem has rbeetermining performance indexes of switched linear system
mveshgqted in numerous works for switched linear syste is paper aims at providing a positive answer to this qaesti
see for instance the books [1], [21] and the survey [23] fQ(,q ‘interestingly, this cannot be achieved using the hanog
general results. Other works include [3], [11], [12], [1[A0], neous polynomial Lyapunov functions that have been exgdoit
[22], [28]. The control synthesis of these systems has begn e jiterature for establishing asymptotical stabilioy

studied in works such as [14], [19], [25], [27]. _ switched linear systems, but requires the introduction of a
Another fundamental problem in automatic control consiss, | class of Lyapunov functions.

of determining performance indexes, in particular te  gpecifically, the paper addresses the problems of deter-
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indexes in the case of arbitrary switching can be givenimger Let us denote thel,-norm of a vector signal with the
of LMI feasibility tests by searching for an HRLF of chosemotation|| - ||z,, i.e.,
degree. Moreover, it is shown that these conditions are also
necessary by searching for an HRLF of degree sufficiently oo
large. Hence, the paper continues by considering the case of [w]lz, = / l[w(t)||3dt. )
switching with dwell time constraints, showing that analog 0
LMI conditions can be obtained for this case by searching for the first performance index considered in this paper is the
a family of HRLFs mutually constrained by the dwell timey, norm, which is defined as follows.
specification. Some numerical examples illustrate the gseg
methodology and highlight the advantages with respectéo th pafinition 1: The #, norm of (1) is
existing works.

The paper is organized as follows. Section Il introduces m
the preliminaries. Section Il addresses the determinatio Y, = | Sup Z IIYjHi2 3
of the sought performance indexes in the case of arbitrary o()ED 5
switching. Section IV investigates these indexes in the cds
switching with dwell time constraints. Section V preseiis t whereY(¢) is the response of (1) due to an impulse applied to
examples. Lastly, Section VI concludes the paper with sonttee j-th channel, i.e., the solution(t) in (1) for z(0_) = 0,,
final remarks. This paper extends our preliminary confegenandw(t) given by
papers [6], [7] by including the case of switching with dwell

time constraints. w(t) = 6(t)Om,; 4)
Il. PRELIMINARIES whered(t) € R is the Dirac function and,,, ; € R™ is the
A. Notation j-th column of 7,,,. O

N, R, C: sets of non-negative integers, real numbers, and
complex numbers),,, 0,,x.»: 7 x 1 andn x m null matrices.
I, I. identity matrices of sizen x n and size specified
by the context.A’, trace(A), det(A): transpose, trace, and o ) )
determinant ofA. he(A): A + A’. diag(Ay, As,...): block ~ Definition 2: The RMS gain of (1) is

The second performance index considered in this paper is
the RMS gain, which is defined as follows.

diagonal matrix with blocksA4,, A,, ... starting from the lyll

top-left corner.A ® B: Kronecker's product betweeA and YRMS =  Sup ] = (5)
B. A®™: n-th Kronecker powerA > 0 (respectively,A > 0): o()eDw() WLz

symmetric positive semidefinite (respectively, definitegtrix . L o

A. |la||p: p-norm of a. a’: ab'ak? - - -. x: corresponding block wherey(t) s the solution in (1) forx(0~) = 0y. =

in @ symmetric matrix. s.t.: subject t¢z);, (A4); ;: i-th entry
of a and (4, j)-th entry of A. Unless specified otherwise;
denotes thei-th entry of x, and X; ; denotes the(i, j)-th
entry of X. A functionv : R" — R is said to be positive
semidefinite (respectively, definite)df0,,) = 0 andv(z) > 0
(respectivelyp(z) > 0) for all « # 0,,.

The first problem addressed in this paper is as follows.

Problem 1: Determine the{s norm and the RMS gain of
(1) in the case of arbitrary switching, i.e., the indexgs and
vrms in (3) and (5) forD = D, Where

Doy ={0:R—={1,...,N}} (6)
B. Formulation of the Problems

Let us consider the switched system
i(t) = Agma(t) + Bypw(t) The second problem addressed in this paper is as follows.

y(ﬁ) = Co(t)x(t)—"_Do(t)w(t) 1)
o € D

is the set of switching policies with arbitrary switching.(J

Problem 2: Determine theH, norm and the RMS gain of
(1) in the case of switching with dwell time constraints,,i.e
wheret € R is the time,z(t) € R" is the statew(t) € R™ the indexesyy, andyras in (3) and (5) forD = Dr, where
is the input,y(t) € R? is the outputo : R — {1,..., N}
is the switching policy, and is a set of switching policies DPr = {o:R —={l1,...,N}, o(t) = constant
of interest that will be specified in the sequel. The matrices Vit € [tiytiv1), 1 €N, tiyr —t; > T}
A; € R B, € R*™™ (C; € RP*™ and D; € RP*™,

i = 1,...,N, are given. We say that the switched systeiis the set of switching policies with dwell timg > 0. 0

(1) obtained foro(t) = i is the i-th subsystem of (1). It is

assumed that all the subsystems of (1) are reachable andhe dependence anof the various signals will be omitted
observable minimal state space realizations. in the sequel for ease of notation unless specified otherwise

()



C. Representation of Polynomials A. HRLFs
Definition 3: The functionu : R” — R is said to be a  Definition 4: The functionv : R" — R is said to be a

homogeneous polynomiaf degreed € N if homogeneous rational functioof total degreer € N and

relative degrees € N, with r > s, if

u(z) = Z apx” (8) ()
keN" v(z) =

ki+..+kn=d 1/)(55) (15)

for someay, € R. The set of such functions is denoted by SZ g 77;"

Pa={u:R" —R: (8) holdg . (9) The set of such functions is denoted by

Q,s={v:R" =R, (15) holdg . (16)

O

O
Let us denote withb (z,d) a vector base forP;. For

instancep (z, d) can be Ch?fen as a vector whose entries arérne noyel class of Lyapunov functions introduced in this
all th_e_monqmlals e € R of degreed € N with umtary. paper is defined as follows.
coefficient without repetitions. Such a vector can be olein

according to the recursive rule Definition 5: The functionv : R® — R is said to be a
1 if d=0 holrlnpger:eou.?- rational Lyapunov function (HRE®1) (1) (with
21b(X1,d—1) null input w) if:
b(z,d) = ) (10) 1) v € Q, s wherer ands are even and such that> s >
: if d>0 9- '
b (Xp,d—1) 2) v(x) can be expressed as in (15) witi{«) positive
h definite andy (x) positive for allx # 0,,;
where . 3) o(x) is negative definite for all-, where
X, = : . (11) 0(x) = Vou(x)Ayz. 17)
T In particular, such a function(z) is said to be an HRLF of
o total degree- and relative degree. O
The length ofb (x,d) is given by
v It is useful to observe that, if(x) is an HRLF, then:
(n+d—1)!
c(n,d) = - Dldl i (12) 1) the numerator(x) is a positive definite homogeneous

polynomial of even degree, wherer > 2. This also
For reasons that will become clear in the sequel, we alsoelefin  implies that¢(x) cannot be a constant;

b(z,d) for negative values of as follows: 2) the denominatoy(z) is a homogeneous polynomial of
even degree — s, where0 < r—s < r—2. In particular,
b(x,d) =0 Vd<0. (13) w(:C) is a:

a) positive constant if = s;
b) positive definite homogeneous polynomiat it s;

3) v(zx) is homogeneous of degreei.e.,

v(ax) = a’v(z) Ya eR (18)

By usingb (z, d), a homogeneous polynomia(z) of degree
2d can be expressed as

v(x) =b(x,d) Vb (x,d) (14)

for someV € Retmdxelnd) '/ — V7 The representation
(14) is known as Gram matrix method or square matricial
representation (SMR), see for instance the survey [4]. 4)

since the numerator and denominatow¢f,) are homo-
geneous polynomials of degreeandr — s;

v(x) is radially unbounded, continuous and positive
definite. Indeedp(z) is radially unbounded since the
I1l. ARBITRARY SWITCHING relative degrees is positive. Moreoverp(z) is con-

) ) . o tinuous and positive definite because it is the ratio of

of the sought performance indexes in the case of arbitrary )

switching. In particular, Section IlI-A introduces the mbv Jim v(z) = lim ov(z) =0 (19)
class of Lyapunov functions, Section IlI-B presents the

conditions for establishing upper bounds on tHg norm,
and Section IlI-C presents the conditions for establishing
upper bounds on the RMS gain.

wherez # 0,, is arbitrary;
5) v(zx) is continuously differentiable. Indeed, one has
P(@)Vo(x) — ¢(x)Vip(x)

Vou(z) = L (20)




which is continuous becausgx) and« () are contin- B. Arbitrary Switching:#> Norm

uous,¢(x) is positive for all 7 0,,, and In this section we show how HRLFs can be used to deter-

lim V i Iy (F) — 21 mine the?#> norm of (1) in the case of arbitrary switching.
Jim Vo(r) = lim o™ Vo(#) =0, (21) | ¢ ys observe that a necessary condition forhenorm to

be finite is that (1) is strictly proper, i.e.,
wherez # 0,, is arbitrary.

Throughout the paper we will aim at searching for HRLFs Di=0Vi=1,...,N. (25)

of total degree2d, d € N with d > 1, and relative degree, Fors = 0,1, let A; , be the matrix satisfying
i.e., in the setQs 2. '
db(z,d —s)
Let us observe that any HRL#z) in the setQ,, » can be dx
bounded from above and below by quadratic functions ovepr & and ¥ as in (24), let us define

compact sets, i.e., for all compact s&lsC R" there exist

Ajx = A sb(x,d—s). (26)

Q1 > 0 and Q- > 0 such that Eii(®) = Ji(he(®PAip) ®V)Sy
2'Qiz < v(z) < 2'Qex Yz €R™. (22) Eiz = Jy(U92®CIC;) J
For instance, one can select where J; and.J, are the matrices satisfying
_o(x) b(z,d)@b(x,d—1) = Jib(z,2d—1)
= pil,, = — 28
Qu=piln, pr=mig e (23) { br,d— 1)@ = Job(z,2d—1). (28)
Q2 = paln, p2 = max v(:r)2 Let us define
wes ||zll3
E;(®)=FE;1(®) — E; 2(®) + E; 5. 29
wherefl and p, are positive and finite sincé is compact (®) 1(®) 2(2) + Eis (29)
and ﬁ is a homogeneous rational function where theet us express3; as
numerator and denominator are positive definite homogeneou
polynomials of the same degree. Bi= (B, Bim) (30)
) . whereB;1,...,B;,, € R, and let us define
Also, let us observe that HRLFs in the s@tq 2 contain
qguadratic Lyapunov functions as a special case. Indeed, the - b(B; j,d) ®b(B;;,d)
numerator and denominator ofc Q.4 are a homogeneous 9:(®) = Z b(B;;.d—1) Wb(B;j,d—1) (31)

polynomial of degree2d and a homogeneous polynomial 7=t
of degree2d — 2. Hence, ford = 1, HRLFs are quadratic Lastly, let M (0) be a linear parametrization of the set
Lyapunov functions since the numerator and denominator of ) ,
v € Q5 are a quadratic function and a constant. My ={M=M": b(x,2d 1) Mb(z,2d — 1) = 0}
(32)
Let v(z) be an HRLF candidate in the sa,,,. By Where© is a free vector. The following result provides an
exploiting the representation introduced in Section Ilg;) LM! condition for establishing upper bounds of,, in the

can be expressed as caseD = Dars-
 d() Theorem 1:Consider the case of arbitrary switching, i.e.,
v(z) = () D = Dyrp. Letd > 1 and ¥ > 0 be chosen. Suppose that
6(x) = b(z,d) Bb(z,d) (24)  there exist¢, ® and©;, i = 1,..., N, satisfying the system
’ ’ of LMIs
Y(x) = b(z,d—1)Vb(z,d—1)
0 < &

where & ¢  Remdxce(nd) ¢ = & and 0 > Ei(®)+M(©;) Vi=1,...,N (33)

= Rc(n,d—l)xc(n,d—l), U= . 0 < € B gZ(CI)) Vi — . N
Hereafter we describe the proposed methodology in tA&en,v(z) in (24) is an HRLF for (1), and one has

case of arbitrary switching. In particular, a Lyapunov ftioie

common to all the subsystems of (1) is searched for. In T < \/E

this respect, it is useful to observe that common Lyapunov

functions are guaranteed to exist for asymptotically &abboof Suppose that the system of LMIs (33) holds. From the

switched systems in the case of arbitrary switching, see f@&finition of b(z,d) it follows that

instance [1].

(34)

b(xz,d) #0 Yz #0,.



Hence, from (24), the first inequality in (33) and the facttth&bumming up overj = 1,...,m and taking into account that

¥ > 0, one has a(0) is arbitrary, the result follows. O
Yz # 0, d(@) > 0 The LMI condition provided by Theorem 1 allows one to
Y(z) > 0 establish upper bounds of th, norm of (1) in the case of

&\rbitrary switching. This condition is sufficient for any aqi
chosen positive integed (which defines the total degree of
the HRLF, equal t®d) and positive definite matri¥ (which
defines the denominator of the HRLF, according to (24)).
0> b(z,2d — 1) (Ei(®) + M1(0;)) b(x,2d — 1) The matrices used to define the LMI condition (33) can be
Vo # 0,. easily built, see the Appendix for details. Let us obsena th

. - L ) the setM; may contain only the null matrix (this happens
SinceM; (0) is a linear parametrization of the s&t; in (32), \\hend — 1). In such a case, the linear parametrizatid(-)

sinced is arbitrary. By pre- and post-multiplying the secon
inequality in (33) timesb (x,2d — 1) and b (x,2d — 1), it
follows that

one has is the null matrix itself, and the vectof3; in Theorem 1 are
b(x,2d — 1)'M1(®,-)b(x 2d—1) =0 empty vectors (i.e., do not need to be introduced).
’ ’ The best upper bound provided by Theorem 1 for chosen
and, hence, d and ¥ can be found by minimizing subject to the LMIs
0> b(z,2d — 1) (Bir () — Eyo(®) + Byg)b(x,2d — 1)  (33) andis equal to
Va #0,. Yo = VEHs, (35)
Let us observe that whereéy, is the solution of the semidefinite program (SDP)
b(z,2d — 1) E;1(®)b(x,2d — 1) Ey, = Egl% 13

2,0 36
— b(w,2d— 1) J| (he (®4,0) @ W) J1b (2,2d — 1) ot (33) holds. (36)

= (b(z,d) @b(z,d 1)) (he (PA;9) @ V)

Indeed, from Theorem 1 it follows that
(b(lE,d) ®b(l‘,d* 1))

= (b(z,d) he (PAio)b(z,d)) VHa < Vi 37)
® (b (z,d — 1)’ b (z,d — 1)) The following algorithm summarizes the computation of the
= Y(2)Ve(z)Aiz. upper boundyy, pf the Hs norm of (1): .
) o ) 1) choose an integet > 1 and a matrix¥ > 0,
Proceeding with similar calculations, one gets 2) compute the matriced, o, A; 1, J1 and Jo;
0> P(2) V() A — ¢p(z)Vi(z) Az + (x)? IICixllg 3) ;o(g)p.ute the matrix function€;(®), M;(6;) and
vz # On 4) solve the SDP (36);
which, dividing by« ()2, implies 5) get the upper boungh,, from (35).

0> Vo(z) Az + ||Ciz||3 Yz # 0,
The following result states that the LMI condition provided

by Theorem 1 is not only sufficient but also necessary by
using sufficiently large values af.

Hence,v(x) is an HRLF. By replacing with & in the last
inequality, and integrating both sides of this inequalitithw
respect tat from 0 to co, one gets

0> v(z(c0)) — v(z(0)) +/ HCUJJI@ dt Theorem 2:Conside_r the case of arbitra_ry switching, i.e.,
D = D,rp. Suppose without loss of generality that, < oco.
Then, for alle > 0 there existsd such that (33) holds for

that, given the nonnegativity af , implies . S
g g y of((oc)) P some¢, ¢ and ©;, with ¥ satisfying

0(x(0) > | Cozlz, v o> 0
At this point, let us suppose that the inputis chosen as in { Y(z) = ||Z|‘§d*2 (38)
(4). 1t follows that
and
2(0) = By (0)Om,j- Yz < VE S H, tE (39)

Moreover, in such a case, the response of (1) is
Proof. Let us start by observing that one can suppose without
y=Cox =Y; loss of generality that;,, < co because, ifyy, = oo, then
whereY; is the impulse response in Definition 1. Hence, the only possible upper bound of,, provided by Theorem
1in (34) is\/€ = oo, i.e., the upper bound coincides with the
v (By(0)Omj) > Y512, - soughtH, norm.



Hence, let us supposg,, < co. Lete > 0 and¢ be such the inequalities in the previous condition, with the second
that (39) holds. Let: : R™ — R be any Lyapunov function changed in sign, admit positive definite Gram matrices, see f
proving that theH, norm of (1) is smaller thar/, i.e., instance [4]. This implies that there exists > 0 satisfying

0 < z(z)

Va # 0, 0 > Vz(z)dix+|Cixll;

(24) for i
$(x) = z1(x)||2||3

which is a homogeneous polynomial of degfekwith

Vi=1,...,N i
T 0 < 5—22(3 .
— d=dy +d.

This Lyapunov function can be constructed based on the wokgéreover, there exist@ satisfying (38) since such a matrix
solution of the?, differential Lyapunov equation, see forcan be simply chosen diagonal with positive entries on the
details [13], [18], [24] adapted to th®/, case. Since (1) is diagonal. At this point, the proof proceeds by reverting the
linear, without loss of generality one can suppose Hfa) is proof of Theorem 1 and observing that the existence of
homogeneous of degreg i.e., ©1,...,0y satisfying (33) is ensured by, (z). O
2
#lox) = a’z(x) Va €R. Theorem 2 states that the LMI condition provided by
Let us define the hyper-sphere of dimensiomwith center in Theorem 1 can be used to approximate arbitrarily well#he
the origin and radius one as norm of (1) in the case of arbitrary switching by increasing
n d. This means that, for alt > 0, there existsi such that the
B={z eR": |al2=1}. upper boundy,, in (35) satisfies
SinceB is compact and(z) is continuous oveB, z(x) can be .
approximated arbitrarily( V\)/ell ovel by polynomial(flznctions. THa S VHa S VHz T E (40)
This means that, for all; > 0, there exists a polynomial (z) at least when? is chosen according to (38).
such that
|z(x) — z1(z)| < &1 Vx € B.

Without loss of generality, one can assume thatz) is C. Arbitrary Switching: RMS Gain
homogeneous of degrexi; with d; € N, d; > 1. Since

. " ) In this section we show how HRLFs can be used to deter-
|z]l2 = 1 over B, the previous condition can be rewritten as

mine the RMS gain of (1) in the case of arbitrary switching.

F I fi
‘z(m)—zlgxg <o VreB ord € N let us define
“AE q(z,d,w) =b(x,d—1) @ w. (41)
where
20(z) = ||z 2BV, Fors = 0,1, let B; , be the matrix satisfying
Sincee, is arbitrary, one can choose it sufficiently small to d(z.d=5)p _p (@ d— s, w). (42)
ensure that dx ' h ’
0 < z(x) Let A; ; be as in (26) and, fod and ¥ as in (24), let us
define
Va # 0, 0 > Vaz(@)Adw+ | Cil;
_ m Fii(®) = J(PBio@V¥)J3
Vi=1,...,N
0 < &-) =(B Fin(®) = Ji (@@ UB,) s
- Fis = JL(W®2&1,)Js
where ’ (43)
ay() = L@ @) Gin = J3 (Y@ CiGi) Jo
ST (@) 2 () Giz = J,(¥2?2®C[D;) Js
and z4(x) is a function that can be arbitrarily chosen. This Giz = J3(99°® DiD;) Js
means that where J;, J» are given by (28), ands, J4, Js are the matrices
0 < z(z)z(x) satisfying
z4(2)?((22(2) Va1 (2) b(z,d—1)@w®b(z,d—1) = Jsq(x,2d — 1, w)
Vx # 0, —21(2)Vaa(z))Aiz b(z,d)@b(x,d—2)@w = Jyq(x,2d—1,w)
2
Vi=1,...,N +22(2)? [|Cixll3) bz, d - 1) @w = Jsq(x,2d —1,w).
B - Zl(BL,j)Z4(Bi,]) ) 44)
0 < ¢ 2 2(Biy)a(Biy) For ¢ € R, let us define
_ o g = ((Ba®) = Ba(®) Fa(@) - Fa@)
Since z4(x) is arbitrary, it can be chosen of the forju||3 WSS = * —£F; 5

with d € N in order to ensure that the right hand sides of (45)



and which, dividing by (x)?, implies

. Gi,l Gi,Q
G = ( x  Gia > | “0) 0> Vu(@) Az + Bw) + |Ciw + Dy — €|lwll3
Lastly, let us define vz # On.
b(z,2d — 1) Hence,v(x) is an HRLF. By replacing with ¢ in the last
r(z,d,w) = < b(x 2,d— 2) @ w ) (47) inequality, and integrating both sides of this inequalitighw
' respect tar from 0 to co with the initial conditionz(0) = 0,,,
and letM;(O©) be a linear parametrization of the set one gets
My = (M =Mz r(e,d wy Mr(e,d w) =0} (48) 0> ule(oo) + [ (Iyl— ) d
0

where © is a free vector. The following result provides an ) o
LMI condition for establishing upper bounds o5 in the Sincev(z(co)) is non-negative, it follows that (50) holds]

caseD = D,.p.
Theorem 3 provides a sufficient LMI condition for estab-

Theorem 3:Consider the case of arbitrary switching, i.eliShing upper bounds of the RMS gain of (1) in the case
D = Dy Letd > 1 and ¥ > 0 be chosen. Suppose thaff arbitrary switching. The matrices used to define the LMI
there existt, ® and @,,i=1,...,N, satisfying the system condition (49) can be easily built, see the Appendix for deta

of LMIs The best upper bound provided by Theorem 3 for chosen
d and ¥ can be found by minimizing subject to the LMIs
0 < @ (49) (49). and is equal to
0 > Ft(q),f)-i-Gt-i-Mg(@L) Vi=1,...,N.

YrMS = VERMS (51)

whereérars is the solution of the SDP

YRMS < \/E (50) s = inf €
£2,0; (52)
s.t. (49) holds.

Then,v(z) in (24) is an HRLF for (1) and

Proof. Suppose that the system of LMIs (49) holds. Analo-

gously to the proof of Theorem 1, one has Indeed, from Theorem 3 it follows that
b(z,d) # 0 YrMS < YRMS- (53)
Vo 7 On ¢(x) > 0 The following result states that the LMI condition provided
P(z) > 0. by Theorem 3 is not only sufficient but also necessary by

Similarly, from (47) it follows that using sufficiently large values af.
r(z,d,w) #0 Vo #0,. Theorem 4:Consider the case of arbitrary switching, i.e.,

L . . D = Dgp. Suppose without loss of generality thaty s <
Hence, by pre- and post-multiplying the second inequality L., Then for alle > 0 there exists! such that (49) holds for

(49) timesr(x, d, w)" andr(x,d,w), it follows that some¢, ® and©,, with W satisfying (38), and

0 >r(x,d,w)' (Ft(q)ag)+GL+M2(@Z))T(m)daw) YRMS < \/ESVRMS'FE- (54)

Vo # Op.
SinceM;(0) is a linear parametrization of the s&t in (48),  proof. Let us start by observing that one can suppose without
it follows that loss of generality thatzars < oo because, ifyrirs = oo,
“d, w) My(O; dw) =0 then the only possible upper bound ©fas provided by
ri@,d,w) Ma(O:)r(, d,w) Theorem 3 in (50) is/€ = oo, i.e., the upper bound coincides

and, hence, with the sought RMS gain.

N o _ B Hence, let us supposgys < co. Lete > 0 and¢ be such
0> b(z,2d 1,) (Bix(®) = Ein(®) + Gin) b(2,2d = 1) (54) holds. Let: : R® — R be any Lyapunov function
+2b (2,2d — 1) (Fi,1(®) = Fi2(®) + Gi2) q(2,2d — 1,w)  proving that the RMS gain of (1) is smaller thaf€, i.e.,

+q(z,2d — 1,w) (Giz — EFi3) q(x,2d — 1, w) Yo # 0.

0 < z(z)
Analogously to the proof of Theorem 1, one has Va % 0, 0 > Va(a)(Aw + Bw) + |Ciz + Dﬂﬂllg
b(z,2d — 1) E;1(®)b(x,2d — 1) = Vo(z) Aizy(x). —¢||w|} Vi=1,...,N.
Proceeding with similar calculations, one gets This Lyapunov function can be constructed based on the

solution of the#., differential Riccati equation, see [13],
0 > Vo(x)(Air + Biw)p(x) — V() (Aix + Biw)d(x) [18], [24] for details. Analogously to the proof of Theorem
+ | Ciz + Dyl ¢p(2)? — E|w||3 Va #0, 2, z(z) can be assumed homogeneous of degreeithout



loss of generality. Moreover, for al; > 0, there exists a V. SWITCHING WITH DWELL TIME CONSTRAINTS

homogeneous polynomial () of degree2d, with d, € N, This section addresses Problem 2, i.e., the determination
dy = 1, such that of the sought performance indexes in the case of switching
21 () with dwell time constraints. Contrary to the case of arljtra
z(z) — (@) <e VzEB switching presented in the previous section where a Lyapuno

function common to all the subsystems of (1) is searched for,
where B the hyper-sphere of dimensionwith center in the here the idea is to exploit a family of Lyapunov functions

origin and radius one, and mutually constrained by the dwell time specification. Insthi
respect, it is useful to observe that such a family of Lyapuno
20(z) = ||z 2BV, functions is guaranteed to exist for asymptotically stable

switched systems with dwell time constraints, see for imsta
Sincee, is arbitrary, one can choose it sufficiently small tgog].

ensure that
Let us start by considering the determination of thenorm

5 in the case of switching with dwell time constraints. We want
Ve # 00 ¢ 0 > Vz(x)(Aiw + Biw) + [|Ciz + Diwll; 1o search for a family of HRLFs; (z), i = 1,..., N, of total

0 < z3(x)

—&||w|Z Vi=1,...,N degree2d and relative degre@, with common denominator.
where These HRLF candidates can be expressed analogously to (24)
as
21\ )24\ T .
2a(z) = 2@)2l@) wiw) - 4@
z9(x)z4 () V() (56)
I
and z4(z) is a function that can be arbitrarily chosen. This ¢i(z) = b(z,d) ®ib(z,d)
means that Y(x) = b(r,d—1)Vb(z,d—1)
0 < z1(2)za(x) where ®; ¢ Re(mdxetnd) o, = @/ and ¥ €

0 > 2u(2)? ((22(2)Ver(2) — 21(2)Vza(2)) Re(md=1)xe(nd=1) "y — ', Fors = 0,1, let U, , be the

Yo #£ 0, matrix satisfying
7 (Aiz + Biw) + 23(x)? (HCZ-:chDZ-ng
) _ b(eTa,d—s) =Uisb(z,d—s). (57)
—¢|w|3)) Vi=1,...,N. _ _
~ For®; and V¥ as in (56), let us define

Since z4(x) is arbitrary, it can be chosen of the forju||3¢ @Y = (U DU o) J
with d € N in order to ensure that the right hand sides of @ir(®5) }(( “0™J 11’0) SV) A
the inequalities in the previous condition, with the secone Qi2(®;) = Ji (i@ (U] PUi1)) J1 (58)
changed in sign, admit positive definite Gram matrices, see f Qiz = J5 (P& (U, WUi1) @A) Jy
instance [4]. This implies that there exists > 0 satisfying h
(24) for where

T
; A; = At Oyefit . 59
o(z) = 21 (@) ]2 / it 9)

Let us define
Qi(2:,®;) = Qi1 (D)) — Qi2(D;) + Qi 3. (60)

Theorem 5:Consider the case of switching with dwell time
Moreover, there exist® satisfying (38) since such a matrixconstraints, i.e.D = Dy. Letd > 1 and¥ > 0 be chosen.
can be simply chosen diagonal with positive entries on tf®ippose that there exigt ®;, ©; and(; ;, i,j =1,..., N,
diagonal. At this point, the proof proceeds by reverting the+£ j, satisfying the system of LMIs
proof of Theorem 3 and observing that the existence o c B Viel N

O4,...,0y satisfying (49) is ensured by, (x). O
Ei(®;) + M(©;) Vi=1,...,N

>
Theorem 4 states that the LMI condition provided by The} 0 < & —g;(®;) Vi=1,...,N
orem 3 can be used to approximate arbitrarily well the RM$ o -~ Qi(®;, ®;) + My () Vi, j=1,...,N, i #j.
gain of (1) in the case of arbitrary switching by increasing (61)
d. This means that, for alt > 0 there exists] such that the Then,v;(x) in (56) is an HRLF for the-th subsystem of (1),
upper boundyzass in (51) satisfies and

which is a homogeneous polynomial of deggekwith

d=d; +d.

o O

Y < VE (62)

Yrms < AYrms < Yrms + € (55)

at least whenb is chosen according to (38). Proof. Suppose that the system of LMIs (61) holds. Let us
observe that the first three LMIs in this system are the LMI



condition (33) provided by Theorem 1 for the case of arbjtramvhereY; is a free vector. Let us define
switching, with the difference thaV HRLFs of the form (56)

. Vi(z, A1, As) =
are searched for instead of an HRFz) of the form (24). ) (2, A1, A2)
This means that/¢ is an upper bound of thé{, norm of eTiT Agyp(z)e™i T — Ayp(eTi T ) + Ryp(a)p(eiT )
each subsystem of (1). In order to show that (62) holds fo *
all switching policies inDp, let us suppose that presents a T 0T
jump at a generic time instant, i.e., e (Aatplz) — Hl/)l(:v)w(e z))
Sy Aoip(x) — (P + g*S; () (e )
ot™)=3j (68)
o(t)=ivtet,t+T) whereA;, A, are symmetric matriceg, € R, P; is the solution
te[0,00), i,j €{1,...,N}, i #j. of the algebraic Riccati equation (ARE)
The fourth LMI in (61) implies that 0 = AP+ PA;+CIC;+ (P,B; + C/D) (69)
vi(z) > v; (eAiTx) + 2’ Az . (gQI - DgDi)fl (P;B; + C!D)',
Vx#OnVi,jil,...,N,i#j. and
Hence, each HRLF evaluated at a statat the time instant R, = P, —eHliTpeiT
t =t~ is greater than any other HRLF evaluated at the state 0o . )
obtained fromz after a timeT, i.e.,e””z at the time instant S, = / "B (I — g 2DiD;)" Ble"idt

t =1t~ + T, plus the energy during this time starting fram 0
i.e., 2’A;x. This implies thaty/€ is an upper bound of the H; = Ai+BiL
‘H> norm for all switching policies irDr. O Li = (¢°1- D;Di)_1 (P;B; + C!DY'.

N

N

(70)
Theorem 5 provides a sufficient LMI condition for estabK is useful to remark that the ARE (69) admits a unique
lishing upper bounds of thé{, norm of (1) in the case of positive definite solutionP, whenever the pai(A;, B;) is
switching with dwell time constraints. The matrices used teachable, the pai;, C;) is observable, and is greater than
define the LMI condition (61) can be easily built, see ththe RMS gain of thé-th subsystem of (1), see for instance [10]
Appendix for details. for details. Let us expred§ (z, Z(z, ®;,Y;), =(z, ®;,Y;)) as
The best upper bound provided by Theorem 5 for chosen _ _ ,
d and ¥ can be found by minimizing subject to the LMis  V¢(% =@, ®3, T4), E(x, &5, 7)) = (b(w,2d — 2) @ 1)

(61), and is equal to Wi, @5, 75, Y;5) (b(x,2d —2) ® 1) 1)
Yo = VEH (63) for a symmetric matrixiV; (®;, ®;, T4, T;). Let M(-) be a
where&y,, is the solution of the SDP linear parametrization of the set
En, = quigfﬂug Mg = {(M=M": (b(z,2d-2)I)M (72)
3,092 5 (64) (b(z,2d —2)® 1) =0 Va}.

s.t. (61) holds. ) o . .
" . . Theorem 6:Consider the case of switching with dwell time
The LMI condition provided by Theorem 5 is not Onlyconstraints i.eD =Dy Letd > 1, U > 0 andg > 0 be

sufficient but also necessary by using sufficiently largg, can Suppose that there exist O, O, ; and T, i,/ —
values of d. This result is a direct extension of Theorem i # j, satisfying the system“of ZLJMls "

2 for the case of arbitrary switching and is omitted for btgvi
0 < & Vi=1,...,N

Next, let us consider the determination of the RMS gain | 0 > Fj(®;,¢%) +Gi+ My(0;) Vi=1,...,N
in the case of switching with dwell time constraints. Let us 0 > Wi(®:,®;,Ys,T;) + Ms(Qj)
expressp;(z) in (56) as le ;’1” ZiN Ji 2 "
¢i(z) = 2'Y (2, ®;)z (65) (73)

. . . Then,v;(x) in (56) is an HRLF for the-th subsystem of (1),
whereY (x, ®;) is a symmetric matrix homogeneous polyno;—ind

mial of degree2d — 2 depending onb;. Let us introduce the
set

Z = {Z(x)=Z(x) : Z(z)is a matrix homogeneous
polynomial of degre@d — 2 such that
' Z(x)x =0 for all 2}

YrMS < G- (74)

Proof. Suppose that the system of LMIs (73) holds. Let us
observe that the first two LMIs in this system are the LMI
condition (49) provided by Theorem 3 for the case of arbjtrar
switching, with the difference thatis replaced by?, and N
HRLFs of the form (56) are searched for instead of an HRLF
v(x) of the form (24). This means thgtis an upper bound
Bz, ®;, ;) =Y(x,®;) + Z(x,T;) (67) of the RMS gain of each subsystem of (1). In order to show

(66)
and letZ(z,T) be a linear parametrization & whereY is
a free vector. Let us define
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that (74) holds for all switching policies i, let us suppose as the diagonal matrix that satisfies (38) (unless specified
that o presents a jump at a generic time instant, i.e., otherwise).

o(t™)=j
ot)=iVte[t,t+T)
t€0,00), i,j€{l,...,N}, i #j.
The third LMI in (73) implies that A. Example 1
Vi(z, Z(z, ®;,Y;), 2(zx, ®;,T;)) <0
Vo #£0, Vi,j=1,...,N, i #].

Let us consider (1) withV = 2 and

Proceeding analogously to [13], one obtains that A — ( 0 1 ) Ay = < 0 1 )
o -2 -1 ) 2-¢ —1
v;(x) > sup <v]- (eAiTa:) Jr[ (lyll3 = g*llwli3) dt) _( 0 (9
() i Bl_(l)’ BQ_(l)
Ve #£0, Vi,j=1,...,N, i #j. 01:(1 O), 02:(1 O)
Hence, each HRLF evaluated at a statat the time instant Dy =0, Dy=0

t =t~ is greater than the worst case, over all possible inputs
w, of any other HRLF evaluated at the state obtained from ) . .
after a timeT, i.e., eATz at the time instant = i~ + T, where( € R is a parameter. 'I_'he probl_em_ls to_determlr_1e the
plus the dissipated energy during this time starting from Ho norm in the case of arbitrary switching, i.e., the index
i.e., the integral betweehand? + T of ||y||2 — g?|lw||2. This 7%= N (3) for D = Dayy,.
implies thatg is an upper bound of the RMS gain for all
switching policies inDr. 0 We start by considering the cage= 3. By usingd = 1 (in
this case HRLFs are quadratic Lyapunov functions), the uppe
Theorem 6 provides a sufficient LMI condition for estabbound in (35) is
lishing upper bounds of the RMS gain of (1) in the case of

switching with dwell time constraints. The matrices used to YH, = 0.953.
define the LMI condition (73) can be easily built, see the
Appendix for details. The SDP (36) hag LMI scalar variables, and its computa-

The best upper bound provided by Theorem 6 for chosgg,) time is less than one second. The found HRLF is as in
d and ¥ can be found by minimizing subject to the LMIs (24) with

(73), and is equal to

s.t. (73) holds. W(z) = 1.

Contrary to the upper bounds introduced in the previous

sectionsyrars in (75) cannot be found by solving an SDPSome of the matrices in the SDP (36) are as follows:

Indeed, the LMIs (73) are nonlinear jn Nevertheless, one can

solve (75) thrOl_Jgh a bisection searchg@where the feasibility Aro= A1, Asg=As, Aj1 =0, Agy =0

of these LMIs is tested at each step.
Also, contrary to the LMI conditions provided by Theorems V=1, b(z,d) =z, Mi(0) = 02x2

1, 3 and 5, which are not only sufficient but also necessagy, th Ji =1, Jo = I>.

LMI condition provided by Theorem 5 could be sufficient only.

Nevertheless, this LMI condition is not more conservatiamt

the existing LMI conditions based on quadratic Lyapunov

functions, which are recovered by Theorem 5 with= 1.

Moreover, as shown by Example 4 in the next section, the LMI Y1, = 0.689.

condition provided by Theorem 5 can significantly improve th

results obtained by the existing LMI conditions.

YrMs = g,@,éfsfzi,j,ng 75) {¢(m) = 3.278z% + 1.074z 22 + 0.909z3

By usingd = 2, the upper bound in (35) is

The SDP (36) had3 LMI scalar variables, and its computa-

V. E tional time is less than one second. The found HRLF is as in
. EXAMPLES (24) with

In this section we present some numerical examples.
The LMI feasibility tests and the SDPs are solved with the B 4 3 9 5
toolbox SeDuMi [26] for Matlab on a personal computer with ¢(z) = 1624z + 2.50211332 j 2.353w12
Windows 10, Intel Core i7, 3.4 GHz, 8 GB RAM. The vector +0.669z1 25 + 0.474x;5
b(z,d) is chosen according to (10). The mattxis chosen () x? + 3.
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Some of the matrices in the SDP (36) are as follows: M "
0 2 0 0 2 0 35|
Aio=[-2 -1 1 |, Aso=|(—-5 -1 1 i
0 -4 =2 0 —-10 -2 3r i
zf 25+ ."
A=Ay, Ay =A3, V=15, b(x,d) = | z122 !
m% 2ot !
0 0 —6 —6 <
_ * 291 92 795 151
My(6) = * x 205 0
* * 0 ir
1 0 0 0 05
1 0 0 O 01 0 0
01 0 0 01 0 0 0 \ \
J = 01 0 0 J, — 00 1 0 0 1 2 3 4 5 6
'“loo1o0 " [0100 ¢
0 0 10 00 1 0 Fig. 1. Example 1. Upper bounf,, for d = 1 (dashed black curve), = 2
0O 0 0 1 0O 0 1 0 (dashdot red curve) antél= 3 (dotted blue curve) versus The vertical lines
00 0 1 show the largest value @f for which the upper bound is finite.
Lastly, by usingd = 3, the upper bound in (35) is
A0, = 0.631. The problem is to determine the RMS gain in the case of

arbitrary switching, i.e., the ind in () forD =D,,.
The SDP (36) hag1 LMI scalar variables, and its computa- Y g eKanes In (5) ’

tional time is less than one second. The found HRLF is as inBy usingd = 1,2, 3, the upper bound in (51) is as follows:
(24) with T

=1 = Arus=12.
¢(x) = 1.39725 + 0.50225x2 + 3.384a4a2 + 0.898x3x3 d Trms = 12.333
2.4 5 6 d=2 = Apus =06.971
+2.404z7x5 + 0.6252125 + 0.398x5
d=3 = Arms = 6.726.

U(x) = (2] +23)°. _ _

It is interesting to observe that, though non-conservaiism ' "€ numbers of LMI scalar variables in the SDP (52) are,
respectively, 7, 166 and 1056. The computational times

¢ required for solving the SDP are, respectively, 0.6 and

=1

ensured by Theorem 2 for sufficiently large valuesiofith
U satisfying (38), the results obtained for fixed valuesdo

might be improved by using different choices Wt Indeed, 47 Seconds. The upper bounikss found with d
by using ford = 3 the choice coincides with the upper bound provided by [13].

U = diag(4,7,1)

we obtain the new upper bound C. Example 3
A1, = 0.608. Let us consider (1) withV = 3 and
Next, we repeat the previous computations for different A = < 0 1 > Ay = < 0 1 >
values of¢ (with ¥ satisfying (38)). Fig. 1 shows the found -2 -1 ) 12 -1
upper bounds.
” ae () me(Y)
1 1
B. Example 2 Ci=(10), Co=(0 1).
. : Dy =0, Dy =0
Let us consider (1) withV = 2 and )
1 3 1 2 3 2 A3:(02 01), 33:(01)
A= -1 =2 -1 ], Ay=| -2 -2 -1
-1 -2 -2 —2 -2 -2 Cy=(0 1), D3 =0
1 0 The problem is to determine th&, norm in the case of
Bi=1| 0 |, By=| -1 switching with dwell time constraints, i.e., the index, in
0 0 (3) for D = Dy.
100 100 o .
Cr = < 01 0 ) ) Co = ( 01 0 ) We start by considering the cage= 1.6. By usingd = 1,
the upper bound in (63) is
Dy = 1 Dy = 1
7\o ) 2= lo ) Aa, = 4.208.
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The SDP (64) had0 LMI scalar variables, and its computa-D. Example 4
tional time is less than one second. The found HRLF is as in| et ys consider (1) withV = 2 and
(24) with

0 1 0 1
A=l 1) A= ton —os
é(r) = 36.7162% + 0.377x122 + 17.71023 N N e
0 0
b)) = 1 Blz(l), 32:(1)
By usingd = 2, the upper bound in (63) is Cr=(08715 0), Cy=(0 03350 )
Dy = —0.8715, Ds = 0.3350.
Y, = 3.073. This system has been considered in [13]. Here we consider

_ _ the problem to determine the RMS gain in the case of
The SDP (64) had6 LMI scalar variables, and its computa-switching with dwell time constraints, i.e., the indexas
tional time is less than one second. The found HRLF is asiif (5) for D = Dy andT = 3.

(24) with
By usingd = 1, 2, 3, the upper bound in (75) is as follows:
¢(xr) = 19.517z7 + 0.013x322 + 29.38923 23 .
3 " d=1 — YRMS = 12.473
+0.144x1 23 + 9.445x3 K
1/)(1) . :C2+a:2 d=2 - YRMS = 9.769
- 1 2 d=3 — ’A)/R]\/[S = 8.767.
Lastly, by usingd = 3, the upper bound in (63) is The numbers of LMI scalar variables in the LMI condition
(73) are, respectively, 96 and349. The computational times
A0, = 2.114. required for solving the SDP are less thiasecond. The upper

boundyrss found withd = 1 coincides with the upper bound
The SDP (64) hag21 LMI scalar variables, and its compu-Provided by [13].
tational time is less than one second. The found HRLF is as
in (24) with VI. CONCLUSIONS
This paper has addressed the problems of determining two
¢(x) = 15.25229 + 0.04z7xs + 38.1221235 — 0.1922725  key performance indexes of continuous-time switched linea
+30.5842%x3 + 0.0622 125 + 7.42525 systems, specifically thé{, norm and the RMS gain. A

b(z) = (22 +22)2. novel_class_ of Lyapunov functions has been proposed for
reaching this goal, called HRLFs. It has been shown that
ﬁyﬁicient conditions for establishing upper bounds of the
sought performance indexes in the case of arbitrary switchi
can be given in terms of LMI feasibility tests by searching fo
an HRLF of chosen degree. Moreover, it has been shown that
these conditions are also necessary by searching for an HRLF
of degree sufficiently large. Hence, the case of switching
with dwell time constraints has been considered, showiag th
analogous LMI conditions can be obtained by searching for
a family of HRLFs mutually constrained by the dwell time
specification.

Several directions can be investigated in future work. One
of these is the extension of the proposed methodology to
the case of discrete-time switched linear systems. Another
direction concerns the design of feedback controllers for
ensuring desired performance indexes.

Next, we repeat the previous computations for differe
values ofT'. Fig. 2 shows the found upper bounds.
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2.5 3
T APPENDIX

Fig. 2. Example 3. Upper bouri,, for d = 1 (dashed black curve), = 2 Preliminaries:
(dashdot red curve) anéi= 3 (dotted blue curve) versug. The vertical lines o b (x,d) is supposed chosen according to (10);
show the smallest value @ for which the upper bound is finite. e let K € Ne(mdxn pa the matrix whoséi, j)-th entry is

the power ofz; in the i-th entry ofb (z, d);




o for x € R™ andk € N, define the functions

n Ml(k)

vat) = 33 eln— k) - j)
1=1 j=k;+1

pik) = > kj;
j=t

o for Q € R™ ", let vec(Q)
@, and letmat(-) satisfymat(vec(Q)) = Q;

o for Q € R™", Q = @, let vecy(Q) € R™M+1/2
contain the independent entries @f and letmatg(+)
satisfy mats(vecs(Q)) = Q.

The matrixA4; , in (26) can be built as follows:
1) let A, ; be ac(n,d — s) x ¢(n,d — s) null matrix;

2) forallj=1,...,¢c(n,d—s) andk,l=1,...,n
a) leta be thej-th row of K;
b) if ax >0
i) seta = a, add—1 to a, and addl to a;;
i) setf=vwv(a);

iii) add ar(Ai)r,; to (A;s)j, -
The matrixB; s in (42) can be built as follows:
1) let B; s be ac(n,d —s) x ¢(n,d —

2) foralj =1,...,¢(n,d—s), k=1,...,nandl =
1,....m
a) leta be thej-th row of K;
b) if ax >0

i) seta = a, and add—1 to ay;
i) setf=(v(a)—1)m+1;
III) add ak(Bi)k,l to (Bi,s)j,f-

The matrix.J; in (28) is thec(n, d)c(n,d—1) x ¢(n,2d —1)
matrix whose nonzero entries ardan the positions(z, j)

i= (@ —1)e(n,d—1)+q
j=v (0@ ad), ®ed-1),)

¢ =1,...,¢(n,d), 2=1,...,¢(n,d—1).

The matrixJy in (28) is thec(n,d — 1)?n x ¢(n,2d — 1)
matrix whose nonzero entries ardan the positions(z, j)

= (@1 = De(n,d—=1) + g2 — 1)n + g3

j=v(@@d=1), Gd-1), )

Q17Q2:17---a0(n7d_1)a q3:17"'an

The matrix.J; in (44) is thec(n,d —1)?m x ¢(n, 2d — 2)m
matrix whose nonzero entries ardan the positions(z, j)
= (@ = )m+ g2 — ec(n,d - 1) + a3
j:(y((b(m,d— oy (b(@.d q>—1)m+q2

ql;q3:15"'7c( 1)) g2 = -., M.

The matrix.Jy in (44) is thec(n, d)c(n, d—2)m x c(n, 2d —

€ R™ contain the entries of

s — 1)m null matrix;
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2)m matrix whose nonzero entries aren the positiong, j)

i=(q—De(n,d—2)+q —1)m+qs

i=(v(e@a), @@d-2),)-1)m+e
¢ =1,...;¢(n,d), g2=1,...,¢(n,d—2)
qg3=1,...,m.

The matrix.Js in (44) is thec(n,d — 1)*m x c(n, 2d — 2)m
matrix whose nonzero entries aten the positions(i, j)

i= (g —De(n,d—1)+ g2 — 1)m + g3
i=(v(e@d-1), G@d-1),)-1)m+ae

q1,492 = 1)"'7C(nad_ 1)) qs = 17"'am
A linear parametrizatiod/; (©) of the setM; in (32) can
be built as follows:

1) let T be the matrix satisfying
b(z,2d—1) Mb(2,2d—1) = b(x) Tivecs(M)
whereb(z) is a vector of distinct monomials in;

2) let T5 be a matrix whose columns span the right null
space ofTy;

3) M;(0) is given bymats(720).

A linear parametrizatiod/,(©) of the setMs in (48) can

be built as follows:

1) letT be the matrix satisfying(z, d, w) Mr(z,d, w) =
b(z, w) Tyvecs(M) whereb(z, w) is a vector of distinct
monomials in(z’, w’)’;

2) let T be a matrix whose columns span the right null
space ofTy;

3) M,(©) is given bymats(7>0).

A matrix Y (z, ®;) satisfying (65) and a linear parametriza-
tion Z(z,T) of the setZ in (66) can be built as follows:

1) let 73 and T, be the vectors satisfy-
ing  b(x,d) ®b(z,d) = b(z)T;  and
a'maty(Tsb (z,2d — 2))z = b(x)T, where Ty is

a free matrix and(z) is a vector of distinct monomials
in x;
2) letTy be the matrix such thaf, = Tyvec(T3);
3) letT5 be a vector such that, 75 = T1;
4) let Tg be a matrix whose columns span the right null
space ofTy;
5) Y (z, ®;) is given bymats(mat(75)b (x,2d — 2));
6) Z(z,Y) is given bymats(mat(7sY)b (z,2d — 2)).
A matrix W;(®,;,®;,Y;,T;) satisfying (71) and a linear
parametrizatiom/s5(©) of the setMs5 in (72) can be built as
follows:

1) let T, be the vector satisfying
¢ Vi(z,E(x, ®;, 1), E(x, D5, 7)) = b(x)'Ty
and let Ty be the matrix  satisfying

¢ (b(x,2d—2)RI) M (b(2,2d—2)®1)q =
b(z)' Tyvecs(M) whereq € R?" andb(z) is a vector of
distinct monomials inz;

2) let T3 be a vector such that, 75 = T7;

3) let Ty be a matrix whose columns span the right null
space ofly;
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4) W;(®;,®,,Y;,T;) is given bymats(T3); [27] M. Wicks and R. A. DeCarlo. Solution of coupled Lyapuneguations
5) Ms (@) is given bymatS(T4@). for the stabilization of multimodal linear systems. American Control
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