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1. Introduction 

N-hydroxyphthalimide (NHPI) is an efficient organocatalyst, capable to promote free-radical processes 

via Hydrogen Atom Transfer (HAT) reactions.  

The first catalytic use of NHPI was reported in 1977 by Grochowski and co-workers for the addition of 

ethers to diethyl azodicarboxylate and the oxidation of 2-propanol to acetone [1]. A few years later, 

Masui proposed the use of NHPI as a mediator for the electrolytic oxidation of alcohols to ketones [2]. 

In both cases, the authors suggested the formation of the phthalimide N-oxyl (PINO) radical as a key 

intermediate, being responsible of the catalytic cycle by abstracting hydrogen atoms from activated C-

H bonds. However, PINO production in the reaction medium was not experimentally proven until 1995 

when, thanks to the pioneering work of Ishii et al., a triplet signal, originating from PINO, was detected 

by Electron Spin Resonance (ESR) technique, after exposing NHPI to molecular oxygen [3]. With this 

work, regarding the oxidation of alkanes and alcohols, Ishii initiated the relatively recent history of 

oxidations catalyzed by NHPI. 

Since then, and thanks to the investigation of the reaction mechanisms involving NHPI, mainly 

conducted by Ishii and the partnership of Minisci’s and Pedulli’s groups, the potentiality of this 

organocatalyst has been significantly extended. 

In the last two decades, hundreds of papers reported the use of NHPI for promoting the homogeneous 

selective oxidation of a wide range of organic substrates (including alcohols, ketones, ethers, amines, 

amides, silanes, alkynes, alkenes, alkanes and alkyl aromatics) and the one-pot free-radical synthesis of 

complex molecules, involving directly or indirectly molecular oxygen [4]. 

In spite of the great interest that NHPI is attracting from scientific community and industrial 

companies, its concrete use for scaled productions is still limited to few examples. The reasons rely 

onto three, partially interconnected, obstacles which need to be overcome for the final launch of this 

organocatalyst. 
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i. Even if NHPI could be considered a cheap, non-toxic molecule, as it is easily produced by the 

reaction between phthalic anhydride and hydroxylamine, its cost would significantly affect the overall 

economy of the process, if the final product is not of high added value and/or the homogeneous catalyst 

is not completely recovered from the reaction medium and efficiently recycled. For this reason, till 

now, this N-hydroxy derivative has found industrial application only in small-medium scale 

productions. 

ii. The polar character of this molecule often requires the use of polar co-solvents to ensure its complete 

solubilization. This aspect not only effects the productivity and consequently, once again, the economy 

of the process, but it also raises important environmental issues. New smart-designed lipophilic 

derivatives analogous to NHPI need to be developed to solve this problem. 

iii. It has been demonstrated how PINO may undergo self-decomposition, following a first-order self-

decay under classical reaction conditions (Scheme 1) [5].  

 

Scheme 1. Self-decomposition of PINO 

This phenomenon results important when operating at temperatures higher than 80 °C, so that the 

activation of NHPI under mild conditions becomes a crucial aspect to be considered. 

 

2. Chemistry and Catalysis 

The catalytic cycle promoted by the NHPI/PINO system is reported in Scheme 2. Once generated in 

situ from NHPI (Initiation), PINO undergoes hydrogen abstraction from a generic C-H bond, forming 

once again NHPI and a carbon centered radical (path i). The latter reacts with molecular oxygen, 

leading to the corresponding peroxyl radical (path ii), which in turn is quickly trapped by NHPI to form 

the hydroperoxide and a new molecule of PINO (path iii).  
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Scheme 2. The catalytic cycle of NHPI in the aerobic oxidation of organic substrates. 

 

PINO generation being a key step of the overall process, in most cases the use of NHPI was proposed 

in combination with different co-catalysts or initiators. Several examples report the beneficial effect of 

transition metal salts and complexes for this purpose [4].  In this context, the main role of metal salts 

(including Mn, Co, Cu, V and Fe salts) is not only to accelerate the classical autoxidation reaction, by 

promoting the decomposition of the intermediate hydroperoxides (Scheme 3a), but also to bind oxygen 

(Scheme 3b), leading to the formation of PINO radical without requiring thermal treatment (Scheme 

3c). 

 

Scheme 3. Radical chain initiation by means of metal (M) salts. 
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Eco-friendly standards, including the demand for highly selective transformations, have pushed 

towards the development of metal-free NHPI-mediated protocols, especially for large scale 

productions, as in the case of the aerobic oxidation of hydrocarbons. So far, the activation of NHPI was 

obtained by means of aldehydes, quinones, nitric oxides, enzymes and by irradiation in the presence of 

organic photo-mediators [6]. 

The high efficiency of NHPI in initiating and propagating the classical free-radical autoxidation chain 

finds its explanation in the concomitant manifestation of three favorable distinct effects. This particular 

and unique behavior justifies the increased attention that NHPI has attracted in the last two decades. 

Enthalpic Effect. In 2003, Pedulli’s group determined the Bond Dissociation Enthalpy (BDE) of the 

O-H bond in NHPI by means of ESR radical equilibration technique [5]. The measured value of 88.1 

kcal/mol (in acetonitrile, MeCN), about 18 kcal/mol higher than the corresponding O-H bond in the N-

hydroxy 2,2,6,6-tetramethylpiperidine (TEMPO-H), clearly indicated that the carbonyl groups directly 

bonded to the nitrogen atom strongly increase the BDE values. In fact, the carbonyl group, with its 

electron-withdrawing character, reduces the importance of the mesomeric structure B of the nitroxyl 

radical (Scheme 4). As a consequence, the radical results to be less stabilized and the corresponding O-

H BDE increases. 
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Scheme 4. PINO resonance structures. 

 

First key point: from a thermochemical point of view, path i in Scheme 2 may be in many cases 

exothermic or only slightly endothermic. 

Polar Effect. In the same work [5], Pedulli and co-workers also measured the kH value, referred to path 

i, for a wide range of substrates, demonstrating that the HAT reaction promoted by PINO is always 

faster than the corresponding hydrogen abstraction reaction by means of generic peroxyl radicals, 

occurring in classical non-catalyzed autoxidation process. This behavior cannot be ascribed to enthalpic 

effects, as the O-H BDE values in NHPI and generic hydroperoxides are similar, but instead to a polar 

effect, due to a more pronounced electrophilic character of the PINO radical relative to the peroxyl one.  
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Second key point: PINO behaves as good catalyst for the hydrogen atom abstraction from C-H bonds 

(path i) 

Entropic Effect. To complete the rationalization of the catalytic cycle reported in Scheme 2, Peduli et 

al. also determined the kinetic constant for the hydrogen atom abstraction from NHPI by peroxyl 

radicals (kNHPI in path iii). The unexpected fairly high value obtained (kNHPI = 7.2 x 103 M-1s-1) [5] 

revealed the potential of the NHPI/PINO system. PINO shows high catalytic efficiency in the hydrogen 

atom abstraction (path i). NHPI behaves as good hydrogen donor, trapping peroxyl radicals before they 

undergo fast termination and prolonging the propagation chain (path iii). This latter aspect justifies the 

need to operate in solution. 

Third key point: NHPI guarantees high selectivity to the catalyzed oxidation process under 

homogeneous conditions.  

 

3. Process Technology 

3.1 Oxidation of adamantane to adamantanols. 

The unique structure of adamantane justifies the interest for selective functionalization of this 

molecule, in order to develop enhanced functional materials. In particular, selective synthesis of mono-

alcohols or diols represents the first step for the production of photoresist materials, via esterification of 

the hydroxyl groups with acrylic and methacrylic acids [7]. 

The selective oxidation of adamantane to adamantanols with molecular oxygen has found practical 

application by using NHPI catalysis. The reaction has been proposed and patented by Ishii in 

collaboration with Daicel Chemical Company [8], and consists of the aerobic oxidation of adamantane 

in chlorobenzene or acetic acid, at temperatures ranging from 75 to 85 °C for 7 h, in the presence of 

10%mol of NHPI and 0.5%mol of different metal salts, including Co(acac)2, Co(OAc)2, VO(acac)2 and 

V2O5 (Scheme 5).  

 

 

Scheme 5. Aerobic oxidation of adamantane catalyzed by NHPI. 
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Claimed conversion is higher than 90%, with a selectivity for alcohols depending on the co-catalyst of 

choice. Adamantanol production using this technology is commercialized at Daicel Arai plant in Japan. 

 

3.2. Oxidation of cyclohexane to adipic acid 

Ishii and Daicel Chemical Company also patented a method for the direct aerobic oxidation of 

cyclohexane to adipic acid by using NHPI in combination with small amounts of  Mn(acac)2 and 

Co(OAc)2 as co-catalysts (Scheme 6) [9].  

 

 

Scheme 6. Aerobic oxidation of cyclohexane to adipic acid catalyzed by NHPI. 

 

While traces of cobalt salts seem to play a key role in reducing the induction period and accelerating 

the radical chain (Scheme 3), Mn(II) guarantees a higher selectivity for adipic acid, by promoting the  

the enolization of cyclohexanone and activating the -carbonyl position towards oxidation [10]. The 

reaction occurs in acetic acid (AcOH) at 80 °C for 24 h. 

As previously disclosed, the solvent is necessary to guarantee a complete solubility of the polar 

organocatalyst. However, in 2001 Ishii proposed the use of 4-lauryloxycarbonyl-N-hydroxyphthalimide 

(1), a lipohilic verison of NHPI, in order to perform the reaction directly in neat cyclohexane [11] 

(Scheme 7). 

 

Scheme 7. Aerobic oxidation of cyclohexane in the presence of lipohilic NHPI. 

 

Since 2009 the process has been under evaluation at pilot scale, for further commercial application, by 

Daicel, in Aboshi (Japan).  

The Minister of Education, Culture, Sports, Science and Technology of Japan in 2003 awarded “The 

Third Green and Sustainable Chemistry Award” to Prof. Ishii and the Daicel Chemical Company for 
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their relevant efforts to the development of NHPI based industrial processes with low environmental 

impact. 

 

3.3 Epoxidation of olefins. 

In 2006, our research group proposed the selective epoxidation of α-olefins by combining, at room 

temperature and in MeCN, stoichiometric amounts of acetaldehyde with catalytic quantities of NHPI 

under oxygen atmosphere [12].  

Following the catalytic mechanism reported in Scheme 8, we demonstrated the role of peracetic acid, 

generated in situ, in promoting the formation of PINO by undergoing molecule induced homolysis with 

NHPI (path a), while the acyl peroxyl radical resulted to be the effective epoxidising agent (path b).  

The process was successfully applied to the synthesis of propylene oxide in MeCN [13]. 

The major drawback of this protocol consists into the long reaction times usually required in order to 

achieve high conversions (24-48 h). For this reason, in 2012 we started a collaboration for realizing an 

aerobic epoxidation catalyzed by NHPI under continuous-flow conditions by means of a new 

technology designed, manufactured, and developed by prof. Biørsvik (University of Bergen) and 

Fluens Synthesis Company: the multijet oscillating disk (MJOD) reactor [14]. A flowchart of this 

reactor applied to the our process is reported in Fig. 1. 

 

 

  Scheme 8. Reaction mechanism for epoxidation of olefins. 
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Figure 1. Process flowchart of NHPI-catalyzed epoxidation in MJOD millireactor system. 

 

Due to the advantageous reactor net volume versus the heating/cooling surface ratio of the MJOD 

reactor tube, an exceptionally good heat transfer capacity is achieved. Moreover, extremely good 

mixing of the components is obtained by the oscillation of the disks, resulting in an excellent mass 

transfer capacity. This properties are usually combined with a with a substantially increased reaction 

rate. 

For all the olefins investigated under continuous-flow conditions we obtained high conversions and 

yields (~80%) of the desired epoxides. Moreover, the process was substantially accelerated, shortening 

the residence time from 24–48 h (batch process) to only 1–4 h, with a standard production of about 80 

g/day, which makes this protocol appealing for applications in pharmaceutical industry. 

 

3.4 Oxidation of alkylaromatics to corresponding hydroperoxides 

Aerobic selective oxidation of alkylaromatics, including cumene (CU), ethylbenzene (EtB), and 

cyclohexylbenzene (CyB), to the corresponding hydroperoxides represents a key step for several large-

scale productions, including the Hock process for the synthesis of phenol  (see chapter 2) [15] and the 

Shell SM/PO process for the production of propylene oxide (PO) and styrene monomer (SM) [16]. 

In this context, the NHPI-catalysed oxidation approach has been widely investigated as an alternative 

route to the classical autoxidation process, due to the evident opportunity to increase conversion and 

selectivity in the hydroperoxide, according to the catalytic cycle reported in Scheme 2. In particular, 

autoxidation of CU usually requires high temperatures in order to favour partial homolytic 
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decomposition of the hydroperoxide for prolonging the propagation phase of the radical chain. The use 

of NHPI would allow to operate under milder conditions, that is temperatures lower than 100 °C, 

limiting the formation of secondary products deriving from termination, such as cumyl alcohol and 

above all acetophenone.  

The last decade has been characterized by a huge amount of patent applications in this field. Sheldon 

and Degussa (now Evonik) first reported in 2001 the NHPI-catalysed oxidation of a wide range of alkyl 

aromatics at 100°C, in the absence of co-solvent and initiators [17]. A particular attention was devoted 

to the oxidation of CyB [18]. Analogous to CU, the corresponding hydroperoxide could be converted to 

phenol and cyclohexanone, but in this case the dehydrogenation of the ketone could lead to the 

formation of a second molecule of phenol [19]. This process has attracted the interest of Exxon Mobil, 

which developed, with a series of patent applications, a protocol for the direct synthesis of phenol and 

cyclohexanone starting with the direct synthesis of CyB from benzene and H2 via hydroalkylation [20]. 

This approach is completely waste-free, since the stoichiometric amount of H2 required for the 

hydroalkylation is afforded by dehydrogenation of cyclohexanone formed after hydroperoxide cleavage 

(Scheme 9). 
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Scheme 9. Oxidation of cyclohexylbenzene. 

 

More in general Exxon Mobil significantly contributed to the process engineering of the NHPI-

catalysed oxidation of alkylaromatics, for example suggesting a procedure according to which water 

and NHPI-deactivating organic acid impurities are stripped from a portion of the reaction medium that 

is continuously removed from and after stripping returned to the reaction zone [21].   

In 2009 Fierro and Repsol Quimica S.A. reported the beneficial effect of combining NHPI with ppm  

amounts of NaOH for the synthesis of hydroperoxides [22], with the dual effect of promoting the 
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formation of PINO in the absence of transition metal salts, and of neutralizing the acidic by-products of 

the reaction. This approach resulted particularly effective for increasing conversion and selectivity in 

the oxidation of secondary alkylaromatics [23]. 

In all the above mentioned approaches, the reactions are conducted in neat solution of hydrocarbons 

and, for this reason, at temperatures higher than 100 °C, in order to guarantee complete solubilization 

of NHPI. However, as previously disclosed, these harsh operating conditions favor the self-

decomposition of the catalyst, partially limiting the applicability at industrial scale. 

The results of our investigation in this field, in collaboration with Polimeri Europa (now Versalis 

S.p.A., Eni Group) has convinced us that the presence of variable amounts of polar co-solvents was 

crucial to operate under homogenous and mild conditions (< 80 °C). We also proposed the possible use 

of tiny amounts of acetaldehyde to initiate the radical chain even at ambient temperature [24], 

according to the molecule-induced mechanism already reported in Scheme 8 (path a). Initiation was 

necessary when trying to convert the less reactive secondary alkylaromatics, such as EtB [25], but we 

found that no initiator was required for the NHPI-catalysed selective oxidation of CU to the 

corresponding hydroperoxide (CHP). This approach was successfully applied also to the oxidation of 

CyB [28]. A complete design of the oxidation process should include an efficient recovery and recycle 

of the catalyst. A possible overall approach is reported in Fig. 2 [27].  

 

 

Figure 2. Process scheme for the NHPI-catalyzed oxidation of cumene. 

 

Hydroperoxide formation in the reaction medium progressively increases the solution polarity, with a 

consequent increased solubility of NHPI, so that a variable amount of NHPI still remains in solution, 

the quantity depending on the converted starting material. In 2009 Exxon Mobil claimed the possibility 
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to exploit the acidic characteristics of NHPI by removing the catalyst via basic aqueous extraction or 

treatment of the effluent with a solid sorbent having basic properties (such as metal oxides and ionic 

exchange basic resins) [29]. However, we verified that this approach could be negatively affected by 

limitations in the recovery phase of the catalyst from the water solution or adsorbing bed, requiring the 

use of acidic solutions [27]. Moreover, NHPI can be hydrolysed under basic conditions [30].    

For this reason we claimed a different approach, consisting in the physical adsorption of NHPI onto 

non-basic solid beds, such as  A26(Cl) [26,31]. A26(Cl) guaranteed the reversibility of the adsorption 

process, allowing the recovery of the catalyst by washing the resin with the polar co-solvent used in the 

oxidation step (Fig. 2, path iv). Fig. 3 reports the adsorption/desorption cycles of NHPI onto A26(Cl). 

 

 

Figure 3. Adsorption of NHPI on A26(Cl) (mg of catalyst adsorbed per gram of A26(Cl) – Fig.3a) and 

regeneration of the adsorbing bed using MeCN. CU/CHP = 1.85/1 (mol/mol) (Fig.3b). Initial NHPI 

concentration: 2mg mL-1. 

 

4. New Developments 

All the above mentioned protocols are limited by the low solubility of NHPI in apolar mediums. Ishii 

first opened the way for a possible solution of the problem, by suggesting the introduction of  lipophilic 

chains onto the aromatic ring of the N-hydroxy derivative [9]. Nevertheless, the proposed catalyst 1 

suffers from a major limitation, if used in processes which require a high control of selectivity. The 

carboxylic group, thanks to which the alkyl tail is linked to the NHPI moiety, affects the NO-H BDE 

due to its electron-withdrawing character, and increases the value by 0.7 kcal/mol, so that the efficiency 

of 1 as hydrogen donor is expected to be significantly reduced. In fact, the process requires a lower 

NO-H BDE value, when the selective conversion to hydroperoxides is desired [32]. 
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In this context, we have very recently prosed catalyst 2 (Scheme 10), as a suitable lipohilic catalyst for 

the aerobic oxidation of CU and other alkyl aromatics to the corresponding hydroperoxides [33].   

 

 

Scheme 10. Ishii’s catalyst 1 and new organocatalyst 2. 

 

Our results confirmed for 2 a catalytic efficiency analogous to that observed for NHPI, and higher with 

respect to Ishii’s catalyst 1, for producing hydroperoxides. Even if this solution did not allow to 

completely remove the polar co-solvent, it was possible to operate with reduced amounts of MeCN and 

to run CU oxidations under homogeneous conditions even at 45°C, which cannot be realized in the 

presence of 1% NHPI catalyst.  As expected, the new conditions led to an increment of CHP 

selectivity. 
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