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Abstract We consider the Advanced Scheduling Problem (ASP) assuming a block scheduling
strategy. A set of patients and the related surgery waiting list are given, together with a set of
Operating Room (OR) blocks and a planning horizon. The problem asks to determine the subset
of patients to be scheduled and their assignment to the available OR blocks.

We consider a so-called rolling horizon approach in order to solve the ASP over a planning
horizon of several weeks. The approach is iterative and readjusts the schedule each week: at each
iteration the mid-term schedule over the next n weeks is generated by solving an optimization
problem, minimizing a penalty function based on patients’ delay and tardiness; the first week
schedule is then implemented. Unpredictable extensions of surgeries and new arrivals may disrupt
the schedule. The schedule is then repaired in the next week iteration, again optimizing over n

weeks the penalty function while limiting the number of disruptions from the previously computed
plan.

The total delay and tardiness minimization problem is formulated as an ILP model and solved
with a commercial solver. A deterministic formulation and a robust one are proposed and compared
over different stochastic realization of surgery times.

Keywords operating room planning, rolling horizon, robust optimization, block scheduling,
re-optimization

1 Introduction and problem addressed

In the last decades, the growing pressure on budget cuts and performance evaluation led health
care managers to improve hospital organization, by reducing cost, optimizing resource use and
increasing operational efficiency. The crucial role that surgery departments play within hospitals
has been raising an increasing number of research studies aimed at planning Operating Room
(OR) activities. This is due both to the significant costs of surgical facilities and to the impact
that surgical activities have on the demand for hospital services and on patients waiting times [Testi
et al., 2007]. Exhaustive literature reviews on operating room planning and scheduling are reported
in [Cardoen et al., 2010a] and [Guerriero and Guido, 2011]. Several different versions of the OR
problem have been considered in literature [Cardoen et al., 2010b] which differ w.r.t. features and
assumptions.

In this paper we focus on an OR planning problem assuming a closed block planning approach.
Following this strategy, during each week, a given number of pre-assigned OR blocks is assigned
to each surgical specialty/surgeon, in which surgical cases can be operated [van Oostrum et al.,
2010]. The OR blocks cannot be shared among surgical specialties. In block scheduling approach,
OR planning and scheduling problem is often divided into three phases/sub-problems each one
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associated with a different decision level [Testi et al., 2007]. In the first phase, number, type and
working hours of the available ORs, and OR capacity assignment to surgical groups or specialties
are determined at a strategic level. In the second phase, a cyclic timetable, denoted as Master
Surgical Schedule (MSS), is built on a medium term stand point to define the tactical assignment
of specialties to days and ORs. The last phase, referred to as Surgery Process Scheduling, is divided
into two sub-problems: Advanced Scheduling and Allocation scheduling [Magerlein and Martin,
1978, Blake and Carter, 1997]. The Advanced Scheduling Problem (ASP) assigns a surgery date
and OR to the each scheduled patient, while the Allocation Scheduling problem determines the
sequence of surgeries in each OR block.

The Surgery Process Scheduling, i.e. scheduling and sequencing patients into OR blocks, has
recently received growing attention and many solution approaches have been proposed. Langragian
relaxation approaches [Augusto et al., 2008], branch and price algorithms [Cardoen et al., 2009,
Fei et al., 2008], heuristics [Marques et al., 2012, Tànfani and Testi, 2010, Herring and Herrmann,
2012] and metaeuristics algorithms [Rizk and Arnaout, 2012, Herring and Herrmann, 2011] have
been recently proposed to solve the ASP with deterministic surgery times.

Real life OR scheduling decisions are further complicated by inherent variability of surgical
cases durations [Tyler et al., 2003].

Stochastic optimization models have been proposed to tackle ASP with uncertain surgery
duration. In [Denton et al., 2007] a two-stage stochastic model with recourse, taking into account
patient waiting times and OR idle time and overtime is proposed. Different heuristics are compared
and the influence of patient sequencing within OR blocks is analyzed. In [Min and Yih, 2010]
a stochastic programming model with recourse is presented. A sample average approximation
method to obtain an optimal surgery schedule with the aim of minimizing patient costs and
OR overtime costs is used. In [van Oostrum et al., 2008] a mathematical programming model is
proposed in which uncertain surgery durations are dealt with through probabilistic constraints.
The proposed model tries to optimize OR utilization without increasing overtime and cancellations.

Researchers are recently moving towards robust optimization approaches. In [Hans et al., 2008]
different heuristics for the robust surgery loading problem are proposed, with the aim of maxi-
mizing operating theatre utilization and minimizing overtime risk by introducing planned slack
times. In [Tànfani et al., 2010] a two-level framework is proposed. In the first level, a MIP model
computes a deterministic solution for the OR planning problem. In the second level, variability of
surgery duration is taken into account by means of individual chance constraints for each OR block
and a robust solution is achieved by iteratively adding safety slacks to the first level deterministic
model solutions. In [Denton et al., 2010] two models aimed at minimizing overall OR cost including
a fixed cost of opening ORs and a variable cost of overtime are compared. The first is a two-stage
stochastic linear model with binary decision variables in the first stage and simple recourse in the
second stage. The second is its robust counterpart, in which the objective is to minimize the max-
imum cost associated with an uncertainty set for surgery durations. They show that the robust
method is much faster than stochastic recourse model, and limits the worst-case outcome of the
recourse problem. In [Addis et al., 2014] a cardinality constrained robust optimization approach
based on [Bertsimas and Sim, 2004] is proposed. The method allows to exploit the potentialities
of a linear programming model without the necessity of generating scenarios. Different levels of
robustness are evaluated and the solutions found are compared with the deterministic one in terms
of number of operated and tardy patients, OR utilization rate and number of rescheduled patients.

In general, the previous reported robust approaches solve a single run planning and schedul-
ing phase, i.e. they anticipate future disruptions of OR schedules caused by real operating time
realizations and guarantee the solutions to be feasible taking into account changes in surgery du-
ration. The main aims of the so called proactive scheduling are optimizing OR utilization rate and
reducing the risk of patient cancellations. In [Stuart and Kozan, 2012] the disruption management
and rescheduling problem, i.e. reactive scheduling, of a single OR is solved focusing on the day-
to-day running of a day-surgery unit. To the best of the authors’ knowledge, reactive scheduling
and re-optimization of patient assignment over a longer planning horizon have not been already
addressed in the literature.
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In this paper we focus our attention on the ASP including uncertainty in surgery duration.
We consider a planning horizon of several weeks. The initial waiting list is given , and successive
weekly arrivals are considered. The problem is tackled with a rolling horizon approach. The set
of patients to be scheduled in each OR block and week of the planning horizon is determined
by solving an optimization model, which spans several weeks, yet usually not the whole planning
horizon. Only the first week is applied and its impact on real surgery times is computed, possibly
canceling patients. Then the waiting list is updated with new arrivals and cancelled patients, and
a new optimization phase is performed on the following weeks. We consider the previous solution
as a baseline schedule, and we search for a new re-optimized solution that does not “differ too
much” from the previously computed schedule. In fact, changes in the scheduling, also refereed as
disruptions, represent a reduction in the quality of service for patients. We also force the scheduling
of cancelled patients. Both a deterministic optimization model and its robust counterpart (in the
sense of Bertsimas and Sim [2004]) are proposed and evaluated to solve the ASP.

The paper is organized as follows. In Section 2 we describe the proposed solution approach.
In Section 3 we present the basic optimization model and its robust counterpart. The proposed
approach is evaluated in a realization based environment and computational results are presented
in Section 4.

2 Optimization–re-optimization framework

In the considered environment ORs are assumed to be assigned to specialties according to a
predefined master schedule. The general idea of the approach is to schedule one week (or, more
in general, one time slot) at a time, and to iterate for all the weeks of the planning horizon. The
framework provides the schedule for one week at a time, yet according to a look-ahead policy, the
optimization step takes into account a longer planning horizon. The first week is applied and its
outcome, in terms of cancelled patients, is combined with new arrivals to produce the input for the
next week re-optimization. As patients must be summoned in advance, the number of differences
between the re-optimized and the previously planned schedule is limited. The architecture of the
proposed solution approach is detailed in Fig 1.

An aggregate optimization model is applied every week (B1), providing a mid-term patient
schedule which spans a horizon of several weeks. The output of the model is the assignment of a
subset of selected patients to OR blocks in the considered time horizon. The first week schedule
is then completed by deciding the fine scheduling and applied. The fine scheduling of patients
assigned to one block is handled and refined on a tactical level by a dispatcher (B2) that provides
the order according to which patients are operated in a single block.

Real surgery durations may differ from forecasted values used in the mid-term and fine schedul-
ing planning; thus, it may happen that not all the scheduled patients can be operated in the block
they are assigned to. As an outcome, a set of cancelled patients can be generated, who must be
rescheduled in following weeks. Cancelled patients and new arrivals, together with patients who
leave the system, are taken into account in updating the waiting list (B4).

The four components of Figure 1 are to be iteratively activated in a sequence (B1, B2, B3, B4),
and the output of each one feeds the next component. For evaluation purposes the framework has
been implemented in a realization based environment.

2.1 Optimization model (B1)

This is the most complex element in the system, and a detailed description is deferred to Section 3.
Basically the optimization model deals with scheduling a set I of patients over a planning horizon
composed of a set K of consecutive weeks, and it assigns patients to blocks in such weeks. At the
p-th iteration, K is made up of the p, p+1, . . . , (p+n−1)-th weeks, where n = |K|. In general, we
cannot expect all the patients of I to be scheduled, hence the model aims to produce a schedule
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Fig. 1 Structure of the optimization framework

S for a subset I ′ ⊂ I minimizing a total weighted delay measure, For patients in I \ I ′ (that will
be scheduled out of the planning horizon) a lower bound on their delay is computed.

The model is fed with a list of patients, where for each patient his/her expected operating
time, waiting time, due date and an urgency coefficient are specified.

We stress that at each iteration a schedule over n weeks is produced, but only the first week of
the schedule is applied, the remainder of the schedule is kept as a reference for the next iteration.
Besides minimizing the tardiness measure, the model also aims to be conservative with respect to
decisions taken in the previous iteration, limiting the number of changes in the schedule.

2.2 Rule dispatcher (B2)

This component takes care of the allocation problem in the first week of the planning horizon. It
takes the first week of the produced schedule and defines the order according to which patients
assigned to each block are to be operated. In a real-life environment, such decisions would be taken
by the surgical staff; in order to run in a simulated environment, this block implements a simple
“longest surgery time first” rule, assuming heuristically that long operations are more complex
and hence are given higher priority in accessing the operating room.

2.3 Rule dispatcher real implementation (B3)

In applying the solutions to real data, this component generates realizations of the random pa-
rameters that describe the surgery time of each patient scheduled in the given week. Here is where
unexpected events come into play — in a real-life environment, and operation can require more
time than expected. According to the realized operating times, some operations may be cancelled
and patients sent back without entering the operating room.
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2.4 Waiting list updater (B4)

Cancelling operations cause patients to “reenter” the waiting list, along with newly arrived pa-
tients. The updated list is sent as an input plan for the remaining to the optimization model (B1)
together with the plan for the remaining weeks. At the next iteration, the optimization model will
again produce a schedule over the next planning horizon — say weeks p+1, p+2, . . . , p+n, while
also trying to ensure that reentering patients will be scheduled early in the next planning horizon
and limiting disruptions with respect to the old schedule.

3 Models

We introduce the optimization model to solve the ASP with stochastic surgery durations (Stochas-
tic Advanced Scheduling, SAS). We assume a block scheduling approach and focus on a single
surgical specialty, but the approach can be easily adapted to take into account more than one
specialty. The objective function aims at minimizing an overall penalty due to delay in serving
patients. As proposed in Tànfani and Testi [2010] it takes into account both urgency and waiting
time of scheduled and not scheduled patients. Besides, a penalty for due date violation (i.e. patient
tardiness) is also considered as in (Addis et al. [2014]).

A set of elective patients I to be scheduled in a planning horizon of D days is given. A set J of
OR blocks and their schedule during each week are given. Each block is described by an operating
room and a week day. The planning horizon is then represented by a sequence of repetitions of
the same group of blocks in a set of weeks K. The available total time of a time block j in week
k, i.e. the OR block length, is denoted as γjk.

Patients in the set I belong to a waiting list, where patients are registered at the moment they
arrive in the service. For each patient i, let wi denote the number of days which the patient has
already spent in the waiting list at the beginning of the planning horizon. Moreover, a maximum
waiting time li and a corresponding urgency parameter ui are given for each patient i. If the patient
has spent wi days in the waiting list, he/she must receive surgery before a due date ddi = li −wi,
otherwise he/she is considered tardy. According to the block weekly based pattern, if a patient is
scheduled in block j ∈ J and in week k ∈ K, he/she waits a total number of days djk = 7(k−1)+j.
The surgery time t̃i for each patient i is consider to follow a given probability distribution.

The set of weeks in which a cancelled patient must be rescheduled is denoted as Kr ⊂ K. For
each patient i belonging to the set I of patients to be scheduled in the next optimization step, let
introduce the parameter ri which is equal to 1 if patient i must be rescheduled in the next weeks
k ∈ Kr and 0 otherwise.
To limit the impact of rescheduled patients and newly arriving ones, we accept a limited number
of disruptions in the first weeks on the rolling period. Let us denote with Kd the first week set in
which disruptions have to be limited. Urgent new arrivals are dealt with by leaving some empty
space in each week.

The problem can be formulated using the following sets of binary decision variables:

– xk
ij , such that xk

ij = 1 if patient i is assigned to block j in week k ∈ K, and zero otherwise.

– zki , such that zki = 1 if pre-planned patient i is cancelled from the current schedule
– yki , such that yki = 1 if patient i, who was not previously pre-planned, is added to the schedule

The objective function is formulated as follows:

min
∑

i∈I







∑

j∈J

∑

k∈K

[

djk + (wi + djk − li)
+
]

uix
k
ij (1)

+
[

(wi +D + 1) + (wi +D + 1− li)
+
]

ui



1−
∑

j∈J

∑

k∈K

xk
ij











,
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where (wi + djk − li)
+ = max{wi + djk − li, 0} is the patient tardiness, that is the number of

days waited after the due date. The first term represents the penalty for the scheduled patients.
For each scheduled patient i the penalty is composed by two parts: the number of days djk spent
before receiving surgery in the planning horizon and the tardiness (wi + d − li)

+ of the patient.
The term is weighted by patient urgency parameter ui, in order to give priority to most urgent
patients. The second term is associated with the penalty of unscheduled patients. It is the sum
of the tardiness and the overall days spent waiting for surgery before and after the beginning of
the planning horizon, while for the scheduled patients, the waiting days term do not consider the
days before the beginning of the planning horizon. As real tardiness and waiting days cannot be
computed for unscheduled patients (we do not know when they will be scheduled), we use a lower
bound to take them into account. The bound is calculated assuming that all the remaining patients
are scheduled in the first day after the end of the planning horizon (D + 1). Also for unscheduled
patients waiting time and tardiness are weighted by urgency parameter ui.

The set of constraints is the following:

∑

j∈J

∑

k∈K

xk
ij ≤ 1 ∀i ∈ I : ri = 0 (2)

∑

j∈J

∑

k∈Kr

xk
ij = 1 ∀i ∈ I : ri = 1 (3)

∑

i∈I

t̃ix
k
ij ≤ γjk ∀j ∈ J, ∀k ∈ K (4)

∑

i∈I

∑

j∈J

t̃ix
k
ij ≤ αk

∑

j∈J

γjk ∀k ∈ K (5)

zki ≥ 1−
∑

j∈J

xk
ij ∀i ∈ I, k ∈ Kd :

∑

j

x̃k
ij = 1 (6)

yki ≥
∑

j∈J

xk
ij − 1 ∀i ∈ I, k ∈ Kd :

∑

j

x̃k
ij = 0 (7)

∑

i∈I

zki +
∑

i∈I:ri=0

yki ≤ δk ∀k ∈ Kd (8)

xk
ij ∈ {0, 1} ∀i ∈ I, j ∈ J, k ∈ K (9)

yki ∈ {0, 1}, zki ∈ {0, 1} ∀i ∈ I, k ∈ Kd (10)

Constraints (2) ensure that each patient is operated at most once, while constraints (3) ensure
that each patient cancelled is scheduled in one block belonging to week k ∈ Kr. Constraints (4) are
stochastic capacity constraints for each block forcing the total time in block j of week k to be lesser
than or equal to the maximum available time γjk. Constraints (5) are week utilization constraints
which bounds the total occupation of blocks for week k to be less than given occupation parameters
αk; in our implementation the value of αk is set equal to 1 for the first week of the planning horizon
and decreases for the following weeks — this leaves increasing slack capacity to manage new patient
arrivals and emergency cases in the future. Constraints (6) and constraints (7) compute the number
of variations between the actual solution and the previous one, namely disruptions. We denote by
x̃k
ij the solution found in the previous iteration in the scheme of Figure 1. Constraints (8) bound

the total number of disruptions between the actual and the previous schedule to the value δk, for
the set of weeks Kd. Finally (9) and (10) are variable domain constraints.

The Deterministic Advanced Scheduling (DAS) model is obtained from the SAS model using
for each patient i a deterministic surgery time t̄i. Constraints (4) and (5) are replaced by

∑

i∈I

t̄ix
k
ij ≤ γjk ∀j ∈ J, ∀k ∈ K (11)

∑

i∈I

∑

j∈J

t̄ix
k
ij ≤ αk

∑

j∈J

γjk ∀k ∈ K (12)
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Beside, we propose a robust model, the Robust Advanced Scheduling (RAS) model, to deal with
uncertainty.

The RAS model is based on the robust optimization approach proposed in [Bertsimas and
Sim, 2004]. Random parameters are assumed to vary in a given interval. Uncertainty is dealt with
so as to guarantee than any solution is feasible even if, for each constraint involving uncertain
parameters, at most a fixed number Γ of them assume the maximum value in the interval and
all the others assume the central one. The parameter Γ controls the “level of robustness” for
the solution. In our case uncertain parameters are the surgery times t̃i. We consider the interval
t̄− t̂, t̄+ t̂, where the central value of the interval is denoted as t̄ and the maximum value we want
to protect from is equal to t̄i + t̂i.

Uncertainty of surgery times have an impact on capacity constraints (4) and (5). We enforce
robustness on the single block capacity constraints (4) as follows. For each block j, and week k, a
subset Sjk of patients, of cardinality (at most) Γ , assigned to the block is assumed to get the worst
possible realization of surgery times. The solution is guaranteed to be feasible even with respect
to the selection of elements of subset Sjk having the worst impact on the capacity constraint:

∑

i∈I

t̄ix
k
ij + max

Sjk⊂I:|Sjk|=Γ







∑

i∈Sjk

t̂ix
k
ij







≤ γjk (13)

Following [Bertsimas and Sim, 2004] the robust capacity constraints (13) are linearized and trans-
formed into constraints (17) in the RAS model that follows, via dualization: this also requires

new variables ζjk, πjk
i and new constraints (21) (see appendix A for details). In order to limit

the computational effort required by the solution process, we decided to impose robustness only
on the set EK of the first |EK | weeks of the planning horizon. Week capacity constraints (5) are
transformed into constraints (18) by forming their left-hand sides as the sum of the left-hand
sides of (17), without introducing new worst-impact subproblems. In this way we guarantee that
the worst case capacity evaluated with the robust constraints does not exceed the fraction αk for
each week.

min
∑

i∈I







∑

j∈J

∑

k∈K

[djk + (wi + djk − li)
+]uix

k
ij

+[(wi +D + 1) + (wi +D + 1− li)
+]ui



1−
∑

j∈J

∑

k∈K

xk
ij











(14)
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s.t.
∑

j∈J

∑

k∈K

xk
ij ≤ 1 ∀i ∈ I : ri = 0 (15)

∑

j∈J

∑

k∈Kr

xk
ij = 1 ∀i ∈ I : ri = 1 (16)

∑

i∈I

t̄ix
k
ij + Γζjk +

∑

i∈I

π
jk
i ≤ γjk ∀j ∈ J, ∀k ∈ EK (17)

∑

j∈J

(

∑

i∈I

t̄ix
k
ij + Γζjk +

∑

i∈I

π
jk
i

)

≤ αk

∑

j∈J

γjk ∀k ∈ EK (18)

∑

i∈I

t̄ix
k
ij ≤ γjk ∀j ∈ J, ∀k ∈ K \ EK (19)

∑

i∈I

∑

j∈J

t̄ix
k
ij ≤ αk

∑

j∈J

γjk ∀k ∈ K \ EK (20)

ζjk + π
jk
i ≥ t̂ix

k
ij ∀j ∈ J, ∀i ∈ I, ∀k ∈ EK (21)

zki ≥ 1−
∑

j∈J

xk
ij ∀i ∈ I, k ∈ Kd :

∑

j

x̃k
ij = 1 (22)

yki ≥
∑

j∈J

xk
ij − 1 ∀i ∈ I, k ∈ Kd :

∑

j

x̃k
ij = 0 (23)

∑

i∈I

zki +
∑

i∈I:ri=0

yki ≤ δk ∀k ∈ Kd (24)

xk
ij ∈ {0, 1} ∀j ∈ J, ∀k ∈ K, ∀i ∈ I (25)

yki ∈ {0, 1}, zki ∈ {0, 1} ∀i ∈ I, k ∈ Kd (26)

ζjk, π
jk
i ≥ 0 ∀j ∈ J, ∀k ∈ EK , ∀i ∈ I (27)

4 Computational tests

The optimization–re-optimization framework has been tested on real life based data. The frame-
work has been coded in C++, models have been solved with CPLEX 12.2.0.0 with single thread
option. Tests have been run on a Intel Xeon CPU E5335 (2 quad core cpus at 2GH). We set a two
hours time limit and a keep the default 10−4 as acceptable relative gap. We limit the size of the
search tree to at most 2000MB.

At each optimization phase a planning horizon of 4 weeks is considered. The framework is
applied for 8 consecutive times, then covering 8 weeks of effective scheduling. We consider two
patients lists, one with 80 initial patients rising up to a total of 132 due to new arrivals and
one with 120 initial patients rising up to 176 during the planning period. The arrivals span the
considered planning horizon. Patients are divided into five urgency classes as proposed in [Valente
et al., 2009]. Each urgency class is associated with a maximum waiting time expressed in days,
that is the maximum number of days that a patient can wait without deteriorating his/her clinical
conditions. The maximum waiting times are set to 8, 30, 60, 180 and 360 days, respectively. The
corresponding urgency coefficients of the five considered classes are 45, 12, 6, 2, 1, respectively.
For each list we generated different instances, by assigning surgery times derived from [Hans et al.,
2008] to patients. We considered three surgery time lists, each described by an average surgery
time, a standard deviation and the percentage of this type over the total number of surgeries in
the list. According to these percentages, an average surgery time (t̄i) and a standard deviation
(σi) is randomly assigned to each patient i. The maximum deviation is assumed to be equal to
the standard deviation, i.e. t̂ = σi. Based on such data, 10 random realization are generated for
each patient set and surgery time list, and the framework is applied to each of them.
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Determ. # op # op < dd # canc # wait # wait >dd
surgery list 1 65.70 31.50 11.80 66.30 18.40
surgery list 2 78.20 45.80 11.40 53.80 10.30
surgery list 3 68.30 38.30 9.00 63.70 15.00

Γ = 1
surgery list 1 59.60 26.20 3.50 72.40 25.10
surgery list 2 75.50 42.90 3.70 56.50 10.60
surgery list 3 65.40 35.70 2.70 66.60 17.40

Γ = 3
surgery list 1 34.50 25.50 0.10 97.50 44.50
surgery list 2 65.90 38.40 0.40 66.10 17.60
surgery list 3 57.29 30.30 0.50 74.70 24.40

Table 1 Results on cancelled, operated and waiting patients for 80 initial patients instances

Three blocks are considered for the 80 patients list, and 4 for the 120 case. The length of blocks
is assumed to be equal to 6 hours for all the cases.

A previously cancelled patient is forced to be rescheduled in the first 2 weeks of the planning
horizon – i. e. with horizon K = {p, . . . , p + 3} we set Kr = {p, p + 1} –, while disruptions are
must be at most 2 in the first week of the planning horizon – Kd = {p} and δk = 2. The value of
αk depends on the week: αp = 1, αp+1 = 0.73, αp+2 = 0.73, αp+3 = 0.73. Finally, when applying
the robust model, robustness is required in the first 2 weeks – namely EK = {p, p+ 1}, |EK | = 2.

4.1 Quality of solutions: patient point of view

To asses quality of obtained solutions from the patients point of view, Table 1 and 2 report the
total number of operated patients (# op), the total number of patients operated before their due
date ( # op <dd), the total number of cancelled patients (# canc), the number of patients still
in the waiting list at the end of the planning period (# wait ), and, among them, the number of
those whose due date has been exceeded (# wait >dd), for the 80 and 120 initial patients case,
respectively. Values are averaged out over the 10 realizations.

Results on 80 initial patients case show that by applying the deterministic model about one
half of the patients entering the systems are operated in the considered planning horizon for the
surgery list 1 and 3. The number slightly increases for surgery list 2. More than 50% of operated
patients receive surgery before their due date is exceeded. The number of patients in the waiting
list at the end of the planning horizon is smaller than 80. The size of the waiting list oscillates
along weeks. Although the length differs for the different realizations, in general the final waiting
list is shorter then the initial one, and the reduction may rise up to 11. The number of tardy
waiting patients usually increases in the first weeks, and then reduces, but at the end is higher
than the initial value.

Increasing the level of robustness reduces the number of operated patients and increases the
final waiting list size. Besides, the waiting list size may increase along the planning horizon, for
surgery list 1 and 3. The increase may be significant, up to more than 20 patient if high robustness
is required Γ = 3. The number of tardy patient at the end of the planning horizon increases, as
well.

On the other hand, the deterministic solutions produce high number of cancelled patients, while
the robust ones reduce them dramatically. In fact, by imposing Γ = 3, the number of cancelled
patients is negligible (0.5 in the worst case), while it may rise up to 12 if robustness is not required.

A similar behavior is obtained for the 120 initial patients case.

4.2 Quality of solutions: hospital point of view

From the hospital point of view, operating rooms utilization rate and overtime are important met-
rics, as they describe the impact on usage of limited resources. We provide per week utilization
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Determ. # op # op < dd # canc # wait # wait > dd
surgery list 1 86.10 58.00 12.70 89.90 30.10
surgery list 2 102.30 69.90 13.80 73.70 18.50
surgery list 3 92.40 61.50 12.30 83.60 23.00

Γ = 1
surgery list 1 79.40 50.50 5.50 96.60 35.50
surgery list 2 100.30 64.60 4.10 75.70 22.10
surgery list 3 87.00 64.90 3.30 89.00 26.80

Γ = 3
surgery list 1 44.40 40.20 0.80 131.60 57.50
surgery list 2 85.90 58.30 0.60 90.10 26.90
surgery list 3 76.10 54.20 0.40 99.90 33.00

Table 2 Results on cancelled, operated and waiting patients for 120 initial patients instances

rate, fraction of overtime and undertime blocks, and average overtime and undertime (in min-
utes)for different initial set of patients and values of Γ in Tables 3, 4 and 5, for the 80 initial
patients, and 6, 7 and 8 for the 120 patients case. Values are averaged out on the 10 random
realizations. In the first row, for each surgery list, values averaged out over 8 weeks are reported.

The average utilization rate is between 0.86 and 0.89 for the deterministic solutions and de-
creases if robustness is required. For the 80 patients case it is between 0.74 and 0.8 if Γ = 1 and
between 0.57 and 0.68 if Γ = 3. It is even lower for the 120 patients case, being between on average
0.68 and 0.71 for Γ = 1 and between 0.57 and 0.62 for Γ = 3.

The fraction of undertime and overtime blocks are similar for different realizations, while
average overtime and undertime amount vary.

The fraction of overtime blocks is very low: it is always less than 0.2, and it drops down to
less than 0.05 if Γ = 3. On the contrary, of course, the fraction of undertime blocks is very high,
especially when a high level of robustness is required: for Γ = 3 it is almost always above 0.9. In
some weeks, for the 80 patients case, all blocks are undertime.

The small number of overtime blocks is mainly due to the conservative robust capacity con-
straints. When robustness is not required, although the fraction of overtime blocks is limited, the
amount of overtime almost balanced the amount of undertime. Instead, when the level of required
robustness increases, the amount of undertime may become significantly greater than the overtime,
and may rise up to half the length of the block.

The overall approach is able to manage successfully a waiting list. If the level of robustness
is low the waiting list size is reduced, while increasing the desired level of robustness reduces the
number of operated patients. According to results, robustness has a positive impact on the number
of cancelled patients, which is reduced dramatically. On the other hand, it increases the average
undertime and reduces the utilization rate. The level of robustness must be therefore carefully set
to take into account these conflicting goals.

4.3 Model performance

Having assessed the quality of obtained solutions, the computational performance of the applied
models must be evaluated, to verify whether the approach can be used for a real life planning,
which is usually performed on a weekly basis. The computational behavior is described in Tables 9
and 10, for the 80 and 120 initial patients instances, respectively.

The number of cases in which optimality (# opt) is proved, the number of cases in which time
limit (#TL) or memory limit (# mem) are reached are reported.

Concerning the 80 initial patients instances, the deterministic model is solved to optimality
within the time limit for all the weeks and all realizations for surgery lists 1 and 3. For surgery list
2, 38 of the considered cases out of 80 (namely number of weeks times number of realizations) is
solved to optimality, while 26 exceed the time limit and in 16 cases CPLEX stops because of the
search tree memory limitation. However, the gap never rises above 2.5%. When Γ = 1 the number
of instances solved to optimality is similar for surgery list 1 and 3. For both it is about 63%. The
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Instance Util rate over blocks under blocks Avg overtime Avg undertime
surgery list 1 0.86 0.18 0.83 76.92 79.13

1 0.85 0.13 0.87 28.95 68.08
2 0.89 0.23 0.77 59.16 70.97
3 0.86 0.17 0.83 40.62 68.45
4 0.82 0.17 0.83 33.30 83.16
5 0.91 0.23 0.77 109.98 78.00
6 0.94 0.30 0.70 135.32 87.67
7 0.79 0.07 0.93 41.15 83.53
8 0.79 0.10 0.90 86.99 92.63

surgery list 2 0.89 0.16 0.84 29.64 53.90
1 0.86 0.10 0.90 17.76 59.96
2 0.92 0.17 0.83 44.03 41.96
3 0.90 0.13 0.87 26.00 46.32
4 0.89 0.13 0.87 18.86 46.57
5 0.89 0.27 0.73 27.53 66.36
6 0.88 0.07 0.93 33.04 49.69
7 0.89 0.27 0.73 29.28 63.86
8 0.88 0.17 0.83 36.51 59.82

surgery list 3 0.88 0.13 0.87 36.41 57.12
1 0.89 0.17 0.83 46.66 58.32
2 0.86 0.03 0.97 18.62 51.73
3 0.88 0.13 0.87 25.12 53.98
4 0.87 0.13 0.87 63.86 62.90
5 0.92 0.20 0.80 24.96 43.76
6 0.87 0.10 0.90 29.03 53.46
7 0.86 0.13 0.87 21.61 62.04
8 0.86 0.17 0.83 46.81 71.09

Table 3 Utilization rate, overtime and undertime, 80 initial patients, deterministic model

Instance Util rate over blocks under blocks Avg overtime Avg undertime
surgery list 1 0.74 0.10 0.90 91.10 116.06

1 0.70 0.03 0.97 7.16 111.70
2 0.77 0.13 0.87 48.00 103.97
3 0.66 0.03 0.97 6.12 128.19
4 0.69 0.10 0.90 24.89 125.36
5 0.76 0.10 0.90 191.15 115.60
6 0.83 0.27 0.73 130.23 128.47
7 0.72 0.07 0.93 78.26 113.76
8 0.76 0.10 0.90 75.24 102.80

surgery list 2 0.80 0.07 0.93 14.51 79.80
1 0.82 0.10 0.90 9.97 73.10
2 0.82 0.00 1.00 - 66.56
3 0.80 0.03 0.97 3.44 73.37
4 0.78 0.03 0.97 0.07 80.81
5 0.80 0.07 0.93 11.93 78.55
6 0.80 0.10 0.90 17.06 83.76
7 0.75 0.03 0.97 1.32 92.02
8 0.80 0.17 0.83 24.48 92.18

surgery list 3 0.80 0.07 0.93 27.11 80.55
1 0.81 0.07 0.93 21.14 75.63
2 0.78 0.03 0.97 14.24 82.95
3 0.83 0.03 0.97 0.14 62.64
4 0.82 0.10 0.90 40.18 76.59
5 0.77 0.13 0.87 14.68 95.85
6 0.84 0.13 0.87 8.00 68.49
7 0.80 0.03 0.97 186.18 82.72
8 0.73 0.03 0.97 6.76 99.47

Table 4 Utilization rate, overtime and undertime, 80 initial patients, robust model Γ = 1
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Instance Util rate over blocks under blocks Avg overtime Avg undertime
surgery list 1 0.57 0.05 0.95 78.86 166.06

1 0.57 0.03 0.97 39.27 159.96
2 0.72 0.03 0.97 204.87 112.73
3 0.64 0.07 0.93 121.71 145.79
4 0.45 0.00 1.00 - 197.06
5 0.52 0.03 0.97 17.51 178.09
6 0.46 0.00 1.00 - 194.05
7 0.59 0.17 0.83 72.30 192.08
8 0.62 0.07 0.93 39.87 148.95

surgery list 2 0.68 0.03 0.97 10.78 120.05
1 0.66 0.00 1.00 - 123.73
2 0.76 0.07 0.93 12.01 95.13
3 0.67 0.00 1.00 - 120.29
4 0.68 0.07 0.93 2.40 124.31
5 0.67 0.03 0.97 10.78 123.20
6 0.65 0.00 1.00 - 125.38
7 0.68 0.07 0.93 21.62 125.76
8 0.67 0.03 0.97 3.42 121.80

surgery list 3 0.69 0.03 0.97 16.61 115.48
1 0.68 0.07 0.93 16.09 124.44
2 0.72 0.03 0.97 4.48 103.64
3 0.68 0.00 1.00 - 116.90
4 0.73 0.10 0.90 26.56 110.16
5 0.73 0.03 0.97 16.37 100.75
6 0.65 0.00 1.00 - 127.34
7 0.66 0.00 1.00 - 121.36
8 0.68 0.03 0.97 0.22 118.50

Table 5 Utilization rate, overtime and undertime, 80 initial patients, robust model Γ = 3

Instance Util rate over blocks under blocks Avg overtime Avg undertime
surgery list 1 0.83 0.17 0.83 90.88 92.97

1 0.93 0.23 0.78 124.75 68.13
2 0.87 0.25 0.75 106.20 98.87
3 0.82 0.10 0.90 128.63 86.68
4 0.81 0.08 0.93 38.60 75.13
5 0.74 0.15 0.85 49.70 118.65
6 0.84 0.20 0.80 86.97 92.04
7 0.80 0.15 0.85 117.04 106.05
8 0.82 0.23 0.78 54.13 99.14

surgery list 2 0.82 0.11 0.89 49.43 80.54
1 0.88 0.10 0.90 34.38 50.45
2 0.82 0.08 0.93 43.00 72.17
3 0.83 0.10 0.90 38.98 72.89
4 0.89 0.20 0.80 51.95 61.67
5 0.78 0.15 0.85 76.78 106.76
6 0.80 0.13 0.88 59.95 88.94
7 0.80 0.08 0.93 29.27 78.49
8 0.72 0.08 0.93 31.08 111.96

surgery list 3 0.78 0.09 0.91 32.55 89.09
1 0.85 0.05 0.95 68.37 61.11
2 0.88 0.10 0.90 29.66 51.36
3 0.80 0.10 0.90 46.30 86.37
4 0.73 0.05 0.95 54.87 106.79
5 0.72 0.10 0.90 19.99 115.21
6 0.71 0.08 0.93 17.56 114.63
7 0.82 0.13 0.88 15.42 75.76
8 0.76 0.10 0.90 37.83 100.97

Table 6 Utilization rate, overtime and undertime, 120 initial patients, deterministic model
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Instance Util rate over blocks under blocks Avg overtime Avg undertime
surgery list 1 0.68 0.10 0.90 81.79 139.39

1 0.72 0.13 0.88 86.92 128.86
2 0.76 0.08 0.93 175.29 107.81
3 0.62 0.08 0.93 80.31 154.35
4 0.72 0.15 0.85 34.79 124.34
5 0.60 0.10 0.90 41.02 164.29
6 0.68 0.10 0.90 78.01 138.29
7 0.62 0.08 0.93 157.47 160.67
8 0.70 0.13 0.88 68.11 135.09

surgery list 2 0.71 0.05 0.95 24.55 111.01
1 0.80 0.05 0.95 17.84 78.32
2 0.76 0.05 0.95 9.37 92.72
3 0.72 0.05 0.95 45.86 108.37
4 0.74 0.10 0.90 20.59 107.17
5 0.67 0.05 0.95 9.07 125.37
6 0.72 0.05 0.95 52.89 108.58
7 0.66 0.05 0.95 19.50 128.24
8 0.63 0.03 0.98 25.85 138.43

surgery list 3 0.70 0.06 0.94 26.73 115.26
1 0.76 0.08 0.93 48.32 97.27
2 0.81 0.13 0.88 24.27 83.31
3 0.78 0.10 0.90 15.73 88.86
4 0.69 0.08 0.93 25.94 122.12
5 0.60 0.03 0.98 14.01 146.69
6 0.69 0.05 0.95 45.80 119.70
7 0.62 0.03 0.98 18.92 139.14
8 0.68 0.03 0.98 3.06 119.26

Table 7 Utilization rate, overtime and undertime, 120 initial patients, robust model Γ = 1

Instance Util rate over blocks under blocks Avg overtime Avg undertime
surgery list 1 0.57 0.06 0.94 68.92 166.84

1 0.67 0.10 0.90 39.01 135.64
2 0.60 0.05 0.95 53.46 153.04
3 0.66 0.10 0.90 51.22 142.71
4 0.59 0.00 1.00 - 149.05
5 0.49 0.05 0.95 68.61 197.27
6 0.54 0.08 0.93 158.24 190.01
7 0.49 0.08 0.93 53.59 204.21
8 0.55 0.00 1.00 - 162.64

surgery list 2 0.62 0.03 0.97 30.16 142.29
1 0.68 0.00 1.00 - 115.22
2 0.64 0.03 0.98 30.39 133.88
3 0.57 0.00 1.00 - 153.21
4 0.69 0.05 0.95 13.26 117.45
5 0.53 0.03 0.98 33.11 175.38
6 0.61 0.05 0.95 36.66 149.52
7 0.61 0.03 0.98 66.66 146.20
8 0.61 0.05 0.95 20.71 147.57

surgery list 3 0.61 0.03 0.97 43.20 147.26
1 0.68 0.08 0.93 53.43 127.05
2 0.73 0.00 1.00 - 98.03
3 0.70 0.03 0.98 25.91 112.65
4 0.66 0.08 0.93 16.13 133.30
5 0.43 0.00 1.00 - 205.15
6 0.44 0.00 1.00 - 201.67
7 0.60 0.05 0.95 78.02 154.57
8 0.62 0.03 0.98 41.37 142.44

Table 8 Utilization rate, overtime and undertime, 120 initial patients, robust model Γ = 3
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surgery list 1 surgery list 2 surgery list 3
Week # opt # TL # mem # opt # TL # mem # opt # TL # mem

1 10 0 0 0 10 0 10 0 0
2 10 0 0 1 8 1 10 0 0
3 10 0 0 0 6 4 10 0 0
4 10 0 0 2 2 6 10 0 0

deterministic 5 10 0 0 5 0 5 10 0 0
6 10 0 0 10 0 0 10 0 0
7 10 0 0 10 0 0 10 0 0
8 10 0 0 10 0 0 10 0 0

total (out of 80) 80 0 0 38 26 16 80 0 0
percentage 100 0 0 48 33 20 100 0 0

1 0 10 0 0 0 10 10 0 0
2 0 1 9 0 1 9 3 7 0
3 0 1 9 0 2 8 1 9 0
4 10 0 0 0 1 9 1 9 0

Γ = 1 5 10 0 0 0 1 9 6 4 0
6 10 0 0 2 3 5 10 0 0
7 10 0 0 4 3 3 10 0 0
8 10 0 0 10 0 0 10 0 0

total (out of 80) 50 12 18 16 11 53 51 29 0
percentage 63 15 23 20 14 66 64 36 0

1 10 0 0 0 10 0 0 10 0
2 10 0 0 0 3 7 0 10 0
3 8 2 0 0 3 7 0 10 0
4 0 10 0 0 5 5 0 10 0

Γ = 3 5 0 10 0 0 5 5 0 10 0
6 0 10 0 0 8 2 0 10 0
7 0 10 0 0 10 0 0 10 0
8 0 10 0 0 10 0 0 10 0

total (out of 80) 28 52 0 0 54 26 0 80 0
percentage 35 65 0 0 68 33 0 100 0

Table 9 Computational performance on 80 initial patients instances

remaining cases of surgery list 3 reach the time limit, while 23% of surgery list 1 cases run out of
memory. For the remaining 15% time limit is reached. Surgery list 2 has a large number of cases,
53 out of 80, in which CPLEX runs out of memory, and only 20% is solved to optimality. The gap
never rises above 6%, but it is in general significantly lower (about 1.2%). When Γ = 3 for none
of the cases in surgery list 1 and 3 CPLEX runs out of memory. As for surgery list 1, 35% of the
cases are solved to optimality, and for the remaining the gap never rises above 6%. For surgery
list 3 all the cases reached the time limit with a worst gap of about 11.5%.

Concerning the 120 initial patients case, the deterministic model always proves optimality for
surgery list 1, it solves to optimality 19% of cases for surgery list 2 and 90% for surgery list 3.
CPLEX runs out of memory for 80% of cases in surgery list 2. However the gap is limited, being
always below 2%. With Γ = 1 33% of cases in surgery list 1 is solved to optimality, and none for
surgery list 2 and 3. For surgery list 2 CPLEX runs out of memory for 93% of cases, while 90% of
cases reach the time limit for surgery list 3. On the overall, setting Γ = 1 produces an average gap
of about 4% and a maximum of about 9%. Increasing the level of robustness reduces the number
of optima found: in fact optimality is never proved. The time limit is reached in 60% of cases for
surgery list 1, and in 15% for surgery lists 2 and 3. The overall average and maximum gaps rise
up to about 11% and 21%, respectively.

5 Conclusions

In this work we proposed and tested an approach aimed to solve the Advanced Scheduling problem
assuming a block scheduling strategy. To guarantee a certain level of performance with respect
of quality of service, we consider a penalty function associated to waiting time, urgency and
tardiness of patients. We considered two sources of uncertainty that complicate the problem:
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surgery list 1 surgery list 2 surgery list 3
Week # opt # TL # mem # opt # TL # mem # opt # TL # mem

1 10 0 0 0 0 10 10 0 0
2 10 0 0 0 0 10 10 0 0
3 10 0 0 0 0 10 9 0 1
4 10 0 0 0 0 10 7 1 2

deterministic 5 10 0 0 0 0 10 10 0 0
6 10 0 0 1 0 9 10 0 0
7 10 0 0 6 0 4 10 0 0
8 10 0 0 8 1 1 10 0 0

total (out of 80) 80 0 0 15 1 64 76 1 3
percentage 100 0 0 19 1 80 95 1 4

1 0 0 10 0 0 10 0 10 0
2 0 0 10 0 0 10 0 8 2
3 0 0 10 0 1 9 0 9 1
4 0 1 9 0 0 10 0 9 1

Γ = 1 5 0 0 10 0 0 10 0 7 3
6 7 1 2 0 1 9 0 10 0
7 9 1 0 0 3 7 0 9 1
8 10 0 0 0 1 9 0 10 0

total (out of 80) 26 3 51 0 6 74 0 72 8
percentage 33 4 64 0 8 93 0 90 10

1 0 0 10 0 0 10 0 0 10
2 0 0 10 0 0 10 0 0 10
3 0 1 9 0 0 10 0 0 10
4 0 7 3 0 0 10 0 0 10

Γ = 3 5 0 10 0 0 0 10 0 0 10
6 0 10 0 0 1 9 0 8 2
7 0 10 0 0 2 8 0 1 9
8 0 10 0 0 9 1 0 3 7

total (out of 80) 0 48 32 0 12 68 0 12 68
percentage 0 60 40 0 15 85 0 15 85

Table 10 Computational performance on 120 initial patients instances

(1) new patients arrivals that occur within the planning horizon and (2) surgery times, that are
only roughly predictable.

We tackled issue (1) by adopting a rolling horizon approach with reoptimization. At the be-
ginning of each week a time window of several weeks is planned, and the first planned week is
implemented; the plan for the other weeks is kept as a reference for the next iterations. Each plan
is produced by solving an optimization model.

We tackled issue (2) by adopting robust optimization models that allow to specify a robustness
level Γ . We stress that, although the realization of operating times were drawn from probability
distributions in testing, the considered model are not stochastic — instead, they guarantee the
feasibility of the generated solution when at most Γ operating times get the worst possible re-
alization in a given interval. When Γ = 0 the robust model reduces to the deterministic version
where all operating times are assumed to be known without uncertainty.

The computational results, obtained from testing with data and probability distributions from
real-life instances, are promising. First of all the models remain reasonably well solvable in all
cases: by this we mean that small optimality gaps are reached within the specified time limit for
computations — since the planning is an offline activity, even allowing two full hours of CPU time
for is not a severe restriction. Furthermore, starting from the deterministic model and moving
towards more stringent robustness requirements (increasing Γ ) we saw a shift from solutions that
show a better resources utilization, hence possibly appealing to the management of an hospital,
to solutions that strongly limit the number of cancelled operations, hence somehow more patient-
oriented. Because of this we think that the proposed models could be effective decision-support
tools in the mid-term Operating Rooms planning.
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A Robust model linearization

We report here the linearization of the robust conterpart of the capacity contraints. We recall that surgery times t̃i
are the uncertainty parameters, and that we want to guarantee feasibility to variations in a given interval t̄− t̂, t̄+ t̂.
In particular, at most Γ parameters are allowd to assume the maximum value t̄i + t̂i, while all the others assume
the central value t̄.

Then, for each block j, and week k, a subset Sjk of patients, who require their maximum surgery time, such
that |Sjk| = Γ , is chosen among the patients assigned to the block in the given week. Among all the possible
subsets, the one having the worst impact on the capacity constraint is selected, and the solution is guaranteed to
be feasible even with respect to this subset:

∑

i∈I

t̄ix
k
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The value maxSjk⊂I:|Sjk|=Γ
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can be computed for each block j and each week k solving the

following Linear Programming problem:

βjk =max
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∑
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zi ≤ Γ (30)

zi ≤ 1 ∀i ∈ I (31)

zi ≥ 0 ∀i ∈ I (32)

Let denote with ζjk the dual variables associated to constraints (30) and with π
jk
i the dual variables associated

to constraints (31). The dual of (βjk) can be formulated as follows:

min Γζjk +
∑

i∈I

π
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k
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The optimal values of the objective functions (29) and (33) coincide. Thus, constraints (28) can be linearized,
by replacing them with:
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