
1 INTRODUCTION 

Saturated hydraulic conductivity and the parameters 
of constitutive relations between relative conductivi-
ty and pressure head in unsaturated soils vary spa-
tially in a manner that cannot be described with cer-
tainty. Therefore, they are often modeled as 
correlated random fields, rendering the correspond-
ing unsaturated flow equations stochastic. If the 
(geo)statistical properties of these fields can be in-
ferred from measurements, the stochastic flow equa-
tions can be solved numerically by conditional Mon-
te Carlo simulation. The corresponding first 
moments constitute optimum unbiased predictors of 
quantities such as pressure head and flux. Condi-
tional second moments constitute measures of asso-
ciated prediction errors. The Monte Carlo method is 
conceptually straight forward but computationally 
demanding. It lacks well-established convergence 
criteria and requires that one specify the probability 
distribution of the parameter fields. 

We present a deterministic alternative to condi-
tional Monte Carlo simulation which allows predict-
ing steady state unsaturated flow under uncertainty, 
and assess the latter, without having to generate ran-
dom fields or variables, without upscaling, and 
without linearizing the constitutive characteristics of 
the soil. Neuman et al. (1999) and Tartakovsky et al. 
(1999) have shown that such prediction is possible 

when soil properties scale according to the linearly 
separable model of Vogel et al. (1991). They have 
demonstrated that when the scaling parameter of 
pressure head is a random variable independent of 
location, the steady state unsaturated flow equation 
can be linearized by means of the Kirchhoff trans-
formation for gravity-free flow. Linearization is also 
possible in the presence of gravity when hydraulic 
conductivity varies exponentially with pressure head 
according to the exponential model of Gardner 
(1958). This allowed Tartakovsky et al. (1999) to 
develop exact conditional first- and second-moment 
equations for unsaturated flow which are nonlocal 
(integro-differential) and therefore non-Darcian. The 
authors solved their equations analytically by per-
turbation for unconditional vertical infiltration. 
Their solution treats  as a nonrandom constant and 
is otherwise valid to second order in the standard 
deviation, Y, of natural log saturated hydraulic 
conductivity, Y = ln Ks. 

Lu (2000) developed perturbation approximations 
for the nonlocal conditional moment equations of 
Tartakovsky et al. (1999), valid to second order in 
both Y and the standard deviation of  = ln, . In 
this paper, we present only such equations for condi-
tional expectations of pressure head and flux. The 
equations for conditional second moments can be 
found in Lu (2000). Based on these approximations, 
Lu developed a finite element algorithm for flow in 
the vertical plane when Y and  are mutually uncor-
related. We show some of his computational results 
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for  = 0 in the presence of a point source, and 
compare them with those of conditional Monte Car-
lo simulations. 

 

2 STATEMENT OF PROBLEM 

We start from the steady state Richards' equation 

 3( , ) ( ) ( ) 0            x x x xK gx f  (1) 

subject to  

    D                                     x x x  (2) 

                           Q   Nq x n x x x  (3) 

where q is flux, K is unsaturated hydraulic conduc-
tivity, is pressure head, g is an indicator showing 
whether the flow is gravity-free or not, being one for 
flow with gravity and zero for the gravity-free flow, 
x3 is the vertical coordinate, f is a source term, is 
prescribed head on the Dirchlet boundary D, Q is 
prescribed flux on the Neumann boundary N, and n 
is a unit outward vector normal to the boundary , 
the union of D and N. All quantities are defined, 
and measurable, on a bulk support volume  that is 
small compared to the flow domain  The forcing 
terms f, , Q are random and mutually uncorrelated. 
This and the fact that K is a random field renders (1) 
- (3) stochastic. 

 According to Gardner's (1958) model 
( ) ( )( , ) ( ) ( , )      ( , )       x xx x xs r rK K x K K e  (4) 

where Kr is relative conductivity and  is a positive 
exponent. Setting  = constant allows defining the 
Kirchhoff transformation (Tartakovsky et al., 1999) 
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which transforms (1) - (3) into 
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where e3=(0, 0, 1)T.  

3 EXACT CONDITIONAL MEAN EQUATIONS 

3.1 Exact equations for (x) 

We write 
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where   indicates conditional mean and primed 
quantities define zero mean random fluctuations 
about the mean. Substituting (9) into (6) - (8) and 
taking their conditional mean yields 
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where [*] is identical to the other term in [  ] and 
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Substituting (9) into (6) - (8) and subtracting (10) 
gives 
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Let G(y,x) be an auxiliary function that satisfies  
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Rewriting (12) in terms of y, multiplying by G and 
integrating with respect to y over  yields 
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This allows developing explicit integral expressions 
for all four terms in (11), for example 
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The integral over N and that containing f' have been 
omitted because K's and G are independent of Q and 
f. The integral over D remains because both H and 
G' depend on '.  

 

3.2 Exact expression for q(x) 

By virtue of (6) and (7), Darcy's law transforms into 

s( ) ( )[ ( ) g ( ) ]      3q x K x x x e  (16) 

Writing q(x) = q(x) + q(x), substituting (9) into 
(16), and taking conditional mean, we obtain an 
exact expression for the conditional mean flux 
q(x), 
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where R(x), RK(x), RK(x) are defined in (11). 

4 RECURSIVE CONDITIONAL MEAN FLOW 
APPROXIMATIONS  

The above conditional mean equations are exact but 
not workable because they include a number of un-
known moments. To render them workable, we ex-
pand them in powers of Y and , which represent 
measures of the standard deviation of Y’(x) and , 
respectively. For example, 
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where (n,m) designates terms including nth power of 
Y and mth power of , and KG and G are geomet-
ric mean values of K and , respectively. The ex-
pansion is not guaranteed to be valid for strongly 
heterogeneous soils with Y  1 and   1. As we 
shall see, it actually works well for relatively large 
values of Y as long as  remains small. 

4.1 Recursive approximations for (x) 

Expansion of (10) to second order in Y and  
yields the following set of recursive equations, 
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where H(0,0) and H(0,2) can be derived from per-
turbation expansion of (7). All terms (n,m)(x) with 
n or m equal to 1 are zero. To illustrate how terms 
are evaluated recursively to second order, we pre-
sent the corresponding nonzero expressions for r, 
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Evaluating  to second order requires 1) solving 
(19) for (0,0) and (13) for G(0,0) (upon replacing Ks 
and  in (13) by KG and G); 2) evaluating moments 
that involve G up to first order, such as G(0,1) and 
YG(1,0); 3) evaluating the moments in (11) up to 
second order in one of the expansion parameters, for 
example r(2,0), R

 (0,2), RK
(2,0); 4) solving (20) - 

(21) for (0,2) and (2,0), respectively; 5) 
evaluating r(2,2), R

 (2,2), RK
(2,2), RK

(2,2); and 6) 
solving (22) for (2,2). A detailed derivation of all 
the requisite euqations is given by Lu (2000). 

4.2 Recursive approximations  of q(x) 

Expansion of (17) leads to the following recursive 
approximations of q(x) to second order, 
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5 FINITE ELEMENT ALGORITHM   

In most cases of practical interest, conditioning 
points are sparse enough to ensure that conditional 
mean quantities vary more slowly in space than do 
their random counterparts.  Hence one can resolve 
the former (by an algorithm such as we propose) on 
a coarser grid than is required to resolve the latter 
(by Monte Carlo simulation).  Here we nevertheless 
use a fine grid to allow comparing our direct finite 
element solution of the recursive moment equations 
with a finite element Monte Carlo solution of the 
original stochastic flow equations.  



We solve the recursive conditional moment equa-
tions by a Galerkin finite element scheme on a rec-
tangular vertical grid with square elements, using bi-
linear weight functions n(x). For simplicity, we 
consider only deterministic forcing terms. To illus-
trate our approach we consider the Galerkin orthog-
onalization of (19) which, following the application 
of Green's first identity, yields 
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where n = 1, 2, …NN, NN being the number of 
nodes.  Let 
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where m
(0,0) is (0,0)(x) evaluated at node m. 

Substituting (30) into the leftmost integral in (29), 
and defining the matrix components 
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Equations corresponding to n  D can be dropped; 
at all other nodes, the integral over D vanishes. As 
all terms on the right-hand-side are known, the cor-
responding integrals can be evaluated numerically 
and (32) solved for (0,0)(x) at all nodes. 

To illustrate how the moments in (11) are evalu-
ated numerically, consider for example r(2,0)(x). For 
any xe and ye' in elements e and e, let 
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where Gjk
(0,0)(e,e) is G(0,0) associated with local node j 

in element e and node k in element e, p
(0,0)(e) is 

(0,0)(x) at local node p in element e, N is the 
number of nodes in an element, k

(e) is  associated 
with local node k in element e, and j

(e) is  
associated with local node j in element e.  
Substituting (33) and (34) into (23), and writing the 
integral over  as a sum of integrals over elements,  
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where CY(e,e) is autocovariance of Y between 
elenents e and e, and 
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6 MEAN PRESSURE HEAD 

Once the problem has been solved in terms of 
Kirchhoff-transformed pressure head, it can be back-
transformed to yield, with the aid of (5), 
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where C is the covariance of .  The mean pres-
sure head is given to second order by 
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and the corresponding mean flux vector by 
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7 EXAMPLE 

Consider a rectangular grid of 20 x 40 square ele-
ments in the vertical plane (Fig. 1) having a width 
L1 = 4, height L2 = 8, and elements with sides 
0.2, where  is the autocorrelation scale of Y. A 
water table boundary condition is imposed on the 
bottom of the domain. A constant deterministic flux 
Q = 0.5 (all terms are given in arbitrary consistent 
units) is prescribed at the top boundary and zero 
pressure head at the bottom. The side boundaries are 
impermeable. A point source of magnitude QS = 1 is 
placed inside the domain to render the mean flow 
locally divergent. The saturated hydraulic conduc-
tivity field is statistically nonhomogeneous through 
conditioning at three points, two above and one be-
low the source.  
 
 
 
 
 
 
 
 
 
 
 

 
 

 
 
 
 
 
 
 
 

 
 
 
 
 
 
 

Figure 1.  Problem definition and associated grid. 
 

Our moment equations are free of any distribu-
tional assumptions. To solve the original stochastic 
flow equations by Monte Carlo simulation on the 
same grid (using standard finite elements), we as-
sume that Y is multivariate Gaussian. Prior to condi-
tioning, Y is statistically homogeneous and isotropic 
with exponential autocovariance 

/2( )Y YC e     (46) 

where  is separation distance, Y
2  is the variance of 

Y, and  is its autocorrelation scale. We started by 
generating an unconditional random Y field on the 
grid by using a Gaussian sequential simulator, 
GCOSIM (Gómez-Hernández 1991), with Y = 1, 
Y

2 = 2 and =1. We took its values at the condition-
ing points to represent exact "measurements" and 
generated NMC = 3,000 realizations of a corre-
sponding nonhomogeneous Y field by the same 
method. We solved (1) - (4) for each realization with 
a constant  by standard finite elements, and calcu-
lated sample mean pressure head and flux at each 
node, as well as sample variance and covariance of 
head and flux across the grid. This completed our 
conditional Monte Carlo simulation of flow in the 
example. 

To render our direct solution of the conditional 
moment equations consistent with the Monte Carlo 
solution, we based it on the same conditional mean 
and autocovariance of Y as generated earlier by 
GCOSIM (in practical applications of our solution 
method, one would normally infer them geostatisti-
cally from measurements). Figures 2 - 7 compare 
various moments as obtained by these two methods 
of solution. Each of these figures includes a contour 
map and a vertical profile along the center line of 
the grid (at x1/ = 2.0). Whereas the second order (in 
Y) mean pressure head virtually coincides with 
Monte Carlo (MCS) results (Fig. 2), the zero-order 
solution deviates from them slightly, especially near 
the upper flux boundary. Second-order horizontal 
(Fig. 3) and vertical (Fig. 4) mean fluxes correspond 
closely to their MCS counterparts, except for slight 
discrepancies near conditioning points and the point 
source. The zero-order results are also reasonably 
good, but somewhat less so. 

It is not possible to obtain zero-order values of 
variance and covariance. Figure 5 shows a noticea-
ble difference between contours of pressure head 
variance obtained directly to second order and by 
MCs. These differences are much smaller when 
viewed in profile. Variances of horizontal (Fig. 6) 
and vertical (Fig. 7) flux show very good agreement 
with MCS results, with some exceptions near condi-
tioning points and the point source. Considering that 
our example concerns a strongly heterogeneous me-
dium with Y

2=2, our direct second-order finite ele-
ment algorithm for solving the moment equations 
appears to work very well.  
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Figure 2. Contour map of mean pressure head and a vertical 
profile along x1/=2.0. 
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Figure 3. Contour map and vertical profile along x1 /=2.0 of 
horizontal mean flux q1. 
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Figure 4. Contour map and vertical profile along x1/=2.0 of 
horizontal mean flux q2. 
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Figure 5. Contour map and vertical profile along x1/=2.0 of 
variance of pressure head.  
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Figure 6. Contour map and vertical profile along x1/=2.0 of 
variance of horizontal flux. 
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Figure 7. Contour map and vertical profile along x1/=2.0 of 
variance of vertical flux. 



8 CONCLUSION 

It is possible to linearize the steady state stochastic 
unsaturated flow equations by means of the Kirch-
hoff transformation, integrate them in probability 
space, and obtain exact integro-differential equa-
tions for the conditional mean and variance-
covariance of transformed pressure head and flux. 
Approximating the latter equations to second order 
and solving them by finite elements for conditional 
mean pressure head, flux, and associated variance-
covariance leads to results that compare favorably 
with those obtained by conditional Monte Carlo 
simulation, even under divergent flow in a soil that 
is strongly heterogeneous. 
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