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ABSTRACT 

 

We present an original computational method for the identification of prime implicants 

(PIs) in non-coherent structure functions of dynamic systems. This is a relevant problem 

for dynamic reliability analysis, when dynamic effects render inadequate the traditional 

methods of minimal cut-set identification. PIs identification is here transformed into an 

optimization problem, where we look for the minimum combination of implicants that 

guarantees the best coverage of all the minterms. For testing the method, an artificial 

case study has been implemented, regarding a system composed by five components that 

fail at random times with random magnitudes. The system undergoes a failure if during 

an accidental scenario a safety-relevant monitored signal raises above an upper 

threshold or decreases below a lower threshold. Truth tables of the two system end-states 

are used to identify all the minterms. Then, the PIs that best cover all minterms are found 

by Modified Binary Differential Evolution. Results and performances of the proposed 

method have been compared with those of a traditional analytical approach known as 

Quine-McCluskey algorithm and other evolutionary algorithms, such as Genetic 

Algorithm and Binary Differential Evolution. The capability of the method is confirmed 

with respect to a dynamic Steam Generator of a Nuclear Power Plant. 
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1. INTRODUCTION 

The reliability analysis of systems with significant hardware/software/human interactions is difficult, 

because the response of the system under accidental scenarios depends on the time of occurrence and 

on the magnitude of the events [1; 2]. Further, it turns out that the logic of these systems can give rise 

to non-coherent structure functions, where both failed and working states of the same components 

can lead the system to failure [3]; for example, if in a system made up of three components J, K, L it 

fails with components states (J, L , K), with the negation sign indicating that the component is failed, 

whereas it is working when the components states are (J , L , K), then the system is non-coherent. The 

traditional Probabilistic Risk Assessment (PRA) modeling tools, e.g. Fault Tree and Event Tree 

Analysis, have difficulties in including the specific timing and magnitude of the events. On the other 

hand, so-called dynamic reliability methods can complement the traditional methods to accounts for 

the interactions among the physical parameters of the processes (temperature, pressure, speed, etc.), 

the human operators actions and the failures of the components [2;4-6] and to identify the system 

prime implicants (PIs), i.e., the event product terms that render true the structure function and that 

cannot be covered by more reduced implicants [7], even if the structure functions are non-coherent1. 

PIs have been introduced as dynamic equivalent of Minimal Cut Sets (MCSs) for conveying the 

information on the minimum combinations of failures that lead (non-coherent and/or dynamic) the 

system to failure and that cannot be covered any other implicant [8]. 

Traditionally, non-coherent structure functions have been interpreted as indication of poor system 

design. However, in [9] it is shown that PIs identification can help developing an effective 

maintenance schedule for non-coherent systems. For example, suppose that , ,J K L  (components J 

and K failed and component L working) is a PI that causes a catastrophic system failure. This shows 

that, if components J, K and L have failed, L should be the last component to be repaired in order to 

avoid system failure. Furthermore, PIs identification allows taking additional counteracting measures 

                                                 
1For clarity sake, we recall that an implicant is a product of Boolean variables, each one associated with a system 

component and representing its failed (1) or safe state (0), that leads the system to failure: differently from minterms, in 

implicants not all the variables have to appear when these (missing) variables cannot affect the system behavior. 

Implicants, thus, can cover more minterms that differ in only one (or more) variable that does not influence the system  

failure (as well as cut sets and minterms in traditional PRA). 
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to prevent system failure, for example by forcing failure of component L when component J and K 

have already failed [10]. 

Fault tree analysis is undoubtedly an useful and efficient tool for minimal cut set identification, but 

not for PIs identification, since it can only deal with coherent structure functions [11]. The problem 

of extending the analysis to non-coherent fault trees has, then, been tackled in different ways: the 

simplification of non-coherent structure functions expressed in canonical forms has been raised by 

[7] and solved by [12], allowing a preliminary identification of PIs; the problem has also been tackled 

by means of graphical methods such as Karnaugh maps [13]. However, the actual implementation of 

these methods becomes very time-consuming when the number of variables involved in the given 

structure function increases. The computational efficiency has been improved resorting to various 

Partitioned List algorithms [14] and fast Binary Decision Diagram (BDD) algorithms [15]: in [16], a 

modification of a minimal cut sets algorithm known as Simple Prime Implicant Set Algorithm is 

proposed, although it does not always produce complete PI sets, whereas in [17] a method is proposed 

to convert the fault tree of a non-coherent structure function into a BDD for PIs identification, where 

each of the basic events of the tree is represented as a node with two branches (branch 1 and 0, 

corresponding to the component failure and working states respectively). This latter approach has 

been adapted in [18] for PI identification based on Dynamic Flowgraph Methodology (DFM).  

The difficulty in developing efficient computational methods for PIs identification lays in the fact 

that this can be seen as an NP-hard problem of covering a set (the minterms) with elements from 

given subsets (the PIs) [19]: each given subset has an associated cost proportional to its dimension 

and the objective of the problem is to choose the smallest group of subsets whose union contains the 

whole set with minimal cost, as we shall see in what follows. 

In this paper, we develop a new method for identifying all PIs of a non-coherent structure function 

resorting to the powerful evolutionary algorithm of Differential Evolution (DE) [20]. The PIs are 

found by solving by DE a properly defined optimization problem, for determining the exact (not 

approximated) solution of the Set Covering Problem (SCP) [21; 22]: in this way, none of the prime 

(minimal) failure scenarios (i.e., the PIs) can be neglected by the identification method.  

The paper is organized as follows. In Section 2, the artificial case study used to generate the scenarios 

for the dynamic reliability analysis is presented. In Section 3, the model of a Steam Generator (SG) 

of a Nuclear Power Plant (NPP) is presented [23]. In Section 4, PIs identification is formulated as an 

optimization problem and tackled by resorting to the DE-based approach. In Section 5, the results of 

the application of the approach to the scenarios of the artificial case and of the SG are presented. 

Conclusions and remarks are given in Section 6. 
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2. THE ARTIFICIAL CASE STUDY 

 

For ease of illustration of the method proposed, we build an artificial case study by simulating the 

accidental scenarios for a system made of 5 components (denoted as A, B, C, D and E), that can fail 

at random times with random magnitudes, giving rise to different scenarios whose evolutions are 

represented by 4 monitored signals. Multiple component failures can occur during the system life, set 

to T=7 [h]. For the simulation, a Monte Carlo sampling procedure for injecting faults of random 

magnitudes at random times is implemented. In particular, times and magnitudes of faults are 

obtained by a stratified sampling with respect to the possible accident scenarios [24]. The number of 

components that fail is sampled from a binomial distribution with parameters n=5 (equal to the 

number of components) and p=0.8 (so that even rare multiple fault events are included in the set of 

accident scenarios). The first failure time is sampled from a uniform distribution [0,1] [h], and the 

successive failure times are sampled by a stick-breaking strategy from the conditional distributions, 

uniform from the last sampled time up to 7 [h]. This sampling strategy models a wearing system, with 

average failure rate increasing in time. 

The equations deliberately used to simulate the signal evolutions in time during the accidental 

scenarios are (Tab. 1): 
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where a, b, c, d, μ, ω,12 and   are randomly sampled from the distributions listed in Tab. 2. 

Parameters 12 and  represent the magnitudes of the faults of the accidental scenarios. All 

parameters and variables have arbitrary units. 

 

Failed 

Component 
Signal 1 Signal 2 Signal 3 Signal 4 

A Eq. (1) Eq. (1) Eq. (3) Eq. (1) 

B Eq. (1) Eq. (2) Eq. (3) Eq. (1) 

C Eq. (2) Eq. (3) Eq. (1) Eq. (1) 

D Eq. (2) Eq. (3) Eq. (2) Eq. (1) 
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E Eq. (3) Eq. (3) Eq. (3) Eq. (1) 
 

Tab.1. Equations used to simulate the signals evolutions in time for each failed component  

 

Parameter Distribution Mean value Standard deviation 

a Gaussian 0.4 0.017 

b Gaussian 0.4 0.017 

c Gaussian 1.3 0.033 

d Gaussian 1.3 0.017 

1  Gaussian 1 0.083 

2  Gaussian 1.05 0.033 

3  Gaussian 1 0.033 

μ Gaussian 2.45 0.083 

ω Gaussian 0 1 

 

Table 2. Parameters distribution 
 

 

We take signal 1 as the safety-relevant parameter to be monitored against pre-defined safety 

thresholds: if it exceeds the upper threshold value of 2.5, the system fails in the “High” end state; if 

it decreases below the lower threshold value of -1.5, the system end state is “Low” [25]. In Fig. 1, the 

evolution of the 4 signals for 10 randomly sampled accidental scenarios are shown. Signals 

measurements are plotted in continuous lines; the upper and lower thresholds are in dotted and dashed 

lines, respectively. 

Fig. 1 shows that under different scenarios, the signals can increase or decrease. This can occur in 

reality where, for example, if a valve of the coolant injection system of a nuclear power plant (NPP) 

fails to open during a loss of coolant accident (LOCA), an in-vessel temperature growth is measured, 

which could arrive at exceeding the upper threshold [26]; if the pressurizer safety relief valve fails to 

close, the water level drops below the low-level safety threshold, leading the system into the 

undesirable state of uncovered electric heaters [27]. 

Yet, it is important to underline that the procedure implemented in this work for sampling the fault 

events is not intended to reproduce the actual stochastic failure behavior of the components of a real 

system; rather, the choices and hypotheses for modeling the faults (e.g. system life, number of faults 

and distributions of failure times and magnitudes) have been arbitrarily made with the aim of favoring 

multiple failures in the sequences and capturing the dynamic influence of their order, timing and 
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magnitude including possible compensatory effects for which a failure later in time compensates for 

the impact of another earlier failure, thus highlighting non-coherent system behavior. 

 

 

Fig 1. Examples of the behavior of the 4 monitored signals during simulated accidental scenarios 

 

2.1 Non-coherence 

Considering the binary (safe or faulty) states of the five components of the system, the number of 

possible system configurations is equal to 32. One simulation has been run for each system 

configuration with the hypothesis that faults are assumed to occur at the beginning of the scenarios 

and their magnitudes are taken equal to their mean values of Tab. 2. Tab. 3 shows the truth-table of 

the system, i.e., all possible system configurations, with the end state “Low” or “High” they lead to. 

 

System Component Component Component Component Component End State 

Configuration A B C D E Low Safe High 

1 - - - - - No Yes No 

2 x - - - - No Yes No 

3 - x - - - No Yes No 

4 - - x - - Yes No No 

5 - - - x - Yes No No 

6 - - - - x No No Yes 

7 x x - - - No No Yes 
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8 x - x - - Yes No No 

9 x - - x - Yes No No 

10 x - - - x No No Yes 

11 - x x - - Yes No No 

12 - x - x - Yes No No 

13 - x - - x No No Yes 

14 - - x x - Yes No No 

15 - - x - x No Yes No 

16 - - - x x No Yes No 

17 x x x - - No Yes No 

18 x x - x - No Yes No 

19 x x - - x No No Yes 

20 x - x x - Yes No No 

21 x - x - x No Yes No 

22 x - - x x No Yes No 

23 - x x x - Yes No No 

24 - x x - x No Yes No 

25 - x - x x No Yes No 

26 - - x x x Yes No No 

27 x x x x - Yes No No 

28 x x x - x No No Yes 

29 x x - x x No No Yes 

30 x - x x x Yes No No 

31 - x x x x Yes No No 

32 x x x x x No No Yes 

 

Table 3. Truth-table for the 32 system configurations and the “Low”, “Safe” and “High” end states. 

Legend: - = safe component, x = faulty component 

 

The analysis of the truth-table points out that the system failure logic is represented by a non-coherent 

structure function. In fact, as it can be shown in Fig. 2 and Fig. 3, both failed and working states of 

the components can contribute to the failure of the system. In particular, in Fig. 2 (left) the safety-

relevant signal 1 for the system configuration 11 of Tab. 3 (components B and C failed, and 

components A, D and E working) is shown; on the other hand, in Fig. 2 (right) the same signal for 

system configuration 17 of Tab. 3 (components A, B and C failed, and components D and E working) 

is plotted: from 11 to 17, adding the failure of component A brings the system from a “Low” end state 

to a “Safe” end state, violating coherence requirements. 

In Fig. 3 (left), the safety-relevant signal 1 for the system configuration 6 of Tab. 3 (component E 

failed, and components A, B, C and D working) is shown; on the other hand, in Fig. 3 (right) the same 

signal for system configuration 15 of Tab. 3 (components C and E failed, and components A, B and 

D working) is plotted: from 6 to 15, adding the failure of component C brings the system from a 

“High” end state to a “Safe” end state, violating coherence requirements. 

 



8 

 

 

Fig. 2. Example of non-coherence for the “Low” end state 

 

 

 

Fig. 3. Example of non-coherence for the “High” end state 

 

Furthermore, when we take into account uncertainties on timing and magnitudes of components 

failures, the dynamic aspects render non-coherence even more evident. Fig. 4 shows the frequency of 

the three system end states (“High”, Safe and “Low”) for the 32 system configurations reported in 

Tab. 3, estimated from the simulation of 10,000 accidental scenarios for each system configuration 

with random components failure times and magnitudes. Most of the configurations do not lead 

unequivocally to one end state: on one side, this means that even though the configuration is the same, 

when the failures of the components occur at different times or with different magnitudes, the end 

state can be different. For example, if a failure occurs towards the end of the mission time (as opposed 

to the start of the period), it may not lead to system failure [24]. On the other side, Fig. 4 shows that 
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as a new failure occurs, the faulty end states frequencies can become smaller or, vice versa, as a faulty 

component is repaired, the safe end state frequencies can become smaller. For example, adding one 

failure from system configuration 14 (components C and D failed and components A, B and E 

working) to system configuration 26 (components C, D and E failed and components A and B 

working), or from system configuration 23 (components B, C and D failed and components A and E 

working) to system configuration 31 (components B, C, D and E failed and component A working), 

the safe end state frequencies increase, and correspondingly the “Low” and “High” end state 

frequencies decrease. 

These examples show the need in dynamic reliability analysis to focus on the PIs of the system, rather 

than on the identification of its minimal cut sets, due to the evident non-coherence of the structure 

function. 

 

Fig. 4. Histograms of the frequency of end states for each of the 32 system configurations listed in Tab. 3 

 

3. THE STEAM GENERATOR OF A NUCLEAR POWER PLANT 

The U-Tube Steam Generator (UTSG) under consideration is sketched in Fig. 5. The reactor coolant 

enters the UTSG at the bottom, moves upward and then downward in the inverted U-tubes, 

transferring heat to the secondary fluid before exiting at the bottom. The secondary fluid, the 

feedwater (𝑄𝑒), enters the UTSG at the top of the downcomer, through the space between the tube 

bundle wrapper and the SG shell. The value of 𝑄𝑒 is regulated by a system of valves: a low flow rate 

valve, used when the operating power (𝑃𝑜) is smaller than 15% of nominal power (𝑃𝑛) and a high flow 

rate valve when 𝑃𝑜 > 0.15 𝑃𝑛 [23].  



10 

 

In the secondary side of the tube bundle, water heats up, reaches saturation, starts boiling and turns 

into a two-phase mixture. The two-phase fluid moves up through the separator/riser section, where 

steam is separated from liquid water, and through the dryers, which ensure that the exiting steam (𝑄𝑣) 

is essentially dry. The separated water is recirculated back to the downcomer. The balance between 

the exiting 𝑄𝑣 and the incoming 𝑄𝑒 governs the change in the water level in the SG. Because of the 

two-phase nature, two types of water level measurements are considered, as shown in Fig. 5, each 

reflecting a different level concept: the Narrow Range Level (𝑁𝑟𝑙) is calculated by pressure difference 

between two points close to the water level and indicates the mixture level, whereas, the Wide Range 

Level (𝑊𝑟𝑙) is calculated by pressure difference between the two extremities of the SG (steam dome 

and bottom of the downcomer) and indicates the collapsed liquid level that is related with the mass 

of water in the SG. 

 

 

Fig 5. Schematic of the UTSG [29] 

 

At low 𝑃𝑜, “swell and shrink” phenomena are also modeled to reproduce the dynamic behavior of the 

SG: when 𝑄𝑣 increases, the steam pressure in the steam dome decreases and the two-phase fluid in 

the tube bundle expands causing 𝑁𝑟𝑙 to initially swell (i.e., rise), instead of decreasing as would have 

been expected by the mass balance; contrarily, if 𝑄𝑣 decreases or 𝑄𝑒 increases, a shrink effect occurs 

[29]. A similar model has been presented in [23].  
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The goal of the system is to maintain the SG water level at a reference position (𝑁𝑟𝑒𝑓): the SG fails 

if the 𝑁𝑟𝑙 rises (falls) above (below) the threshold, 𝑁ℎ𝑖𝑔ℎ (𝑁𝑙𝑜𝑤), in which case automatic reactor or 

turbine trips are triggered. Indeed, if the 𝑁𝑟𝑙 exceeds 𝑁ℎ𝑖𝑔ℎ, the steam separator and dryer lose their 

functionality and excessive moisture is carried in 𝑄𝑣, degrading the turbine blades profile and the 

turbine efficiency; if 𝑁𝑟𝑙 decreases below 𝑁𝑙𝑜𝑤, insufficient cooling capability of the primary fluid 

occurs. Similarly, the 𝑊𝑟𝑙, is relevant for the cooling capability of the primary circuit [29]. 

A dedicated, simulation model has been implemented in SIMULINK to simulate the dynamic 

response of the UTSG at different 𝑃𝑜 values. Both feedforward and feedback digital control schemes 

have been adopted. The feedback controller is a PID that provides a flow rate 𝑄𝑝𝑖𝑑 resulting from the 

residuals between 𝑁𝑟𝑙 and 𝑁𝑟𝑒𝑓, whereas the feedforward controller consists in a safety relief valve 

that is opened if and only if 𝑁𝑟𝑙 exceeds the 𝑁ℎ𝑙, and removes a constant flow safety flow rate (𝑄𝑠𝑓). 

The block diagram representing the SIMULINK model of the SG is shown in Fig. 6: the controlled 

variable is 𝑁𝑟𝑙, whereas the control variable is 𝑄𝑒. 

 

Fig 6. Block diagram representing the SIMULINK model of the SG. 

 

3.1 The set of possible failures 

We assume component failures to occur at the beginning of the scenario (with 𝑇𝑚𝑖𝑠𝑠 equal to 4000 

(s)) [1]. We here analyze the system in constant 𝑃𝑜=80% Pn scenarios with respect to high level failure 

mode. Choices and hypotheses for modeling the failures have been arbitrarily made with the aim of 

generating multiple failures and the choice of a mission time (𝑇𝑚𝑖𝑠𝑠) equal to 4000 (s) has been made 

because it is a long enough interval of time to allow the complete development also of slow dynamic 

accident scenarios. The set of multiple component failures that can occur are: 
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1. The outlet steam valve (component T) can fail stuck at 85% of the nominal 𝑄𝑣 that should be 

provided at 𝑃𝑜. 

2. The communication between the sensor that monitors 𝑁𝑟𝑙 and the PID controller (component 

U) can fail so that the PID is provided with the same input value of the previous time step. 

3. The safety relief valve (component V) can fail stuck at a value 𝑄𝑠𝑓  = 50.5 (kg/s). 

4. The PID controller (component Z) can fail stuck providing a flow rate 𝑄𝑝𝑖𝑑 = 12.35% of the 

nominal 𝑄𝑒 that should be provided at 𝑃𝑜. 

Considering the binary (safe or faulty) states of the five components of the system, the number of 

possible system configurations (for which a simulation has been run) is equal to 16. Tab. 4 shows the 

truth-table of the system, i.e., all possible system configurations, with the end state “Low” or “High” 

they lead to. 

 

System Failure of 

the outlet 

steam valve 

Failure of 

the safety 

relief valve 

Level sensor- 

PID controller 

communication 

interruption 

Failure of 

the PID 

controller 

End State 

configuration Low Safe High 

1 - - - - No  Yes No 

2 X - - - No No Yes 

3 - X - - No  Yes No 

4 - - X - No  Yes No 

5 - - - X No No Yes 

6 X X - - No  Yes No 

7 X - X - No No Yes 

8 X - - X No No Yes 

9 - X X - Yes No No 

10 - X - X No  Yes No 

11 - - X X No No Yes 

12 X X X - No No Yes 

13 X X - X No No Yes 

14 X - X X No No Yes 

15 - X X X No  Yes No 

16 X X X X No No Yes 

 

Table 4. Truth-table for the 16 system configurations and the “Low”, “Safe” and “High” end states. 

Legend: - = safe component, x = faulty component 

 

The analysis of the truth-table points out that the system failure logic is represented by a non-coherent 

structure function. In fact, as it can be shown in Fig. 7 and Fig. 8, both failed and working states of 

the components can contribute to the failure of the system. In particular, in Fig. 7 (left) the 𝑁𝑟𝑙 level 

for system configuration 2 (steam valve failure) is shown; on the other hand, in Fig. 7 (right) the 𝑁𝑟𝑙 

level for system configuration 6 (steam and safety valves failures) is plotted: adding the failure of the 

safety valve brings the system from a “High” end state to a “Safe” end state, violating coherence 

requirements. 
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In Fig. 8 (left) the 𝑁𝑟𝑙 level for system configuration 9 (safety valve and communication failures) is 

shown; on the other hand, in Fig. 8 (right) the 𝑁𝑟𝑙 level for system configuration 15 (safety valve, 

communication and PID failures) is plotted: adding the failure of the PID brings the system from a 

“Low” end state to a “Safe” end state, violating coherence requirements. 

 

 
Fig 7. Example of non-coherence for the “High” end state. 

 

 
Fig 8. Example of non-coherence for the “Low” end state. 

 

4. A NOVEL METHOD FOR PIs IDENTIFICATION 

In this paper, the problem of PIs identification is innovatively handled resorting to the DE algorithm 

for solving a set covering problem (SCP) [22; 30]. Differently from [30], here we develop a DE search 

strategy to identify PIs and not the classical MCSs. The SCP is the problem of covering at minimal 

cost (that is defined depending on the context of the application) the columns of a zero-one matrix 

A=[aij], where i=1,2,...,R and j=1,2,...,C, by a subset of the rows. Defining xi=1 if row i is in the 

solution, and xi=0 otherwise, the SCP aims at identifying the set of xi with the lower cost (Eq. (4)) 
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that guarantee the coverage of each column j by at least one row (i.e., for each i-th row corresponding 

to the implicant chosen, there is at least one entry equal to 1 in one of the C columns) (Eq. (5)), viz: 

minimize 
1

R

i i

i

w x


            (4) 

subject to 
1

1
R

ij i

i

a x


           (5) 

where wi is the positive cost weight associated to the i-th row (which, again, depends on the specific 

problem). In the PIs identification, let A=[aij] be an implicant chart (i.e., a matrix representing the 

minterms covered by each implicant, where aij=1 if the i-th implicant covers the j-th minterm, aij=0 

otherwise), mj denote the j-th minterm (i.e., the product of all the Boolean variables associated with 

a system component, representing its failed (1) or safe state (0), that leads the system to failure), xi 

denote the i-th implicant of the structure function.  

A cost vector 1 2
( , ,..., )

R
w w w w  assigns a positive cost wi to each implicant i, e.g. cost of components 

in manufacturing industry [19], number of trips that can be performed by a single crew in 

transportation company [31]. For generality, here we define the cost wi as the number of Boolean 

variables (either true or complemented) associated to the system components included in the i-th 

implicant. For this problem, the solution space is the set of all possible combinations of 1,2,...,R  

implicants (hence the size of the solution space is 2R-1, excluding the possibility where no implicant 

is chosen). Each solution ˆ
opt

x  is represented by a specific combination of independent variables, or, 

mathematically speaking, by a R-dimensional vector 1 2
( , ,..., )

R
x x x x  (hereafter called chromosome 

within the differential evolution (DE) optimization method that will be adopted) that is a hypothetical 

solution of the optimization problem (4) and (5). A value of 1 in the i-th vector position xi implies 

that the implicant i is chosen to be in the cover; a value of 0, otherwise [19]. 

For clarification, let us consider the system made up by three components (J, K and L) whose 

reliability block diagram is shown in Fig. 9. The C= 5 minterms mj that lead this system to failure are 

reported in Tab. 5. 

 

 

 

 

Fig. 9. Reliability block diagram of the system 

 

 

J 

K 

L 
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 J K L 

m1 0 0 1 

m2 0 1 1 

m3 1 0 1 

m4 1 1 0 

m5 1 1 1 

 

Table 5. List of the faulty minterms mj of the system of Fig. 9 (1=failed component, 0=safe component) 

 

The R=11 implicants (xi in Eqs. (4) and (5)) of the system of Fig. 9, and their costs (wi in Eq. (4)), are 

reported in Tab. 6. Intuitively, the PIs of the system of Fig. 9 are x10 and x11. 

 

 J K L Cost (w) 

x1 0 0 1 3 

x2 0 1 1 3 

x3 1 0 1 3 

x4 1 1 0 3 

x5 1 1 1 3 

x6 0 - 1 2 

x7 - 0 1 2 

x8 1 - 1 2 

x9 - 1 1 2 

x10 1 1 - 2 

x11 - - 1 1 

 

Table 6. List of the implicants xi of the system of Fig. 9 (1=failed component, 0=safe component, -=component state 

does not influence the system failure) 

 

In Tab. 7, the implicant chart A, whose rows are aij in Eq. (5), for the system is finally shown. 

 

 m1 m2 m3 m4 m5 

x1 1 0 0 0 0 

x2 0 1 0 0 0 

x3 0 0 1 0 0 

x4 0 0 0 1 0 

x5 0 0 0 0 1 

x6 1 1 0 0 0 

x7 1 0 1 0 0 
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(6) 

x8 0 0 1 0 1 

x9 0 1 0 0 1 

x10 0 0 0 1 1 

x11 1 1 1 0 1 

Table 7. Implicant chart A for the system of Fig.9 (aij=1, minterm is covered, aij=0, minterm is uncovered) 

 

Within the evolutionary algorithm context, the optimal cover opt
x  is the chromosome 

(0,0,0,0,0,0,0,0,0,1,1)x   which means that only x10 and x11 are chosen to be in the solution, i.e., are 

PIs. 

For solving the above-defined SCP, we resort to Differential Evolution (DE), which belongs to the 

class of Evolutionary Algorithms (EAs) [32]. A main advantage of DE with respect to other EAs is 

the fact that the evolutionary operations used in DE are specifically built for optimization over 

continuous spaces and based on a floating-point representation [33-35].  

DE entails three phases called mutation, crossover and selection. This is the original scheme proposed 

in [20]: at the G+1-th generation, for each gene xi in the chromosome vector 1 2
( , ,..., )

G R G
x x x x  of the 

population of NP different chromosomes at the G-th generation, a noisy gene vi of the noisy vector 

1 1 2 1
( , ,..., )

G R G
v v v v

 
 , is generated by randomly adding to the i-th gene of the l-th chromosome the 

weighted difference between two other randomly selected k-th and m-th chromosomes from the 

population. 

( ) ( ) ( )
( )

l k mi i i i
v x F x x    

where the weighting factor [0,2]F  is a user-defined parameter, kept constant during the 

optimization and 
( ) ( ) ( )

,  and 
l k mi i i

x x x  are the i-th gene values of the three randomly chosen individuals, 

with  , , 1,2,...,l k m NP .  

To maintain the diversity inside the perturbed population, and shuffle old and new information, after 

mutation, 1G
v

  is not directly compared with G
x , but it is further modified by the crossover process, 

in which 1G
v

  and G
x  are mixed according to some rule to create the trial vector 1G

u
 , which inherits 

from them different pieces of chromosome. The most common crossover type adopted is the 

binomial: 1G
u

  is built by a modified Bernoulli trial rule, gauged by the control parameter [0,1],CR

which influences the probability for 1G
v

  
to be selected for the mutation process. Each gene ui of the 

trial vector is equal to  

         if (0,1]  or 

        otherwise

i

i

i

v U CR i irand R
u

x

  
 


 (7) 
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(9) 

where U(0,1] denotes the uniform continuous random value in (0,1]  and irand(R) is a uniform discrete 

random number from the set  1,2,...,R , where R is the length of the chromosome.  

The trial vector obtained 1G
u

 , then, enters the selection process where it is compared with (and 

eventually substitutes) the target vector G
x

 that is partially its parent according to the crossover rule. 

Referring to minimization, if the fitness, i.e., the cost, of 1G
u

  is less than the fitness of , the first 

will be a member of the next generation G+1, replacing the target vector, and the trial vector is 

discarded 

1 1

1

      ( ) ( )

       

G G G

G

G

u if fitness u fitness x
x

x otherwise

 




 


 

In this work, we aim at comparing the performance of two different DEs, that differ in the mutation 

step and are called “Binary Differential Evolution” (BDE) [33] and “Modified Binary Differential 

Evolution” (MBDE) [34].  

 

4.1 Binary Differential Evolution 

BDE is based on a mapping operator, defined as Eq. (9), that is constructed to map the gene xi in a 

discrete domain (in our case it is a binary domain) into a continuous domain by partitioning the 

interval [0, 1] into two equal subintervals [0,0.5) and [0.5,1], (i.e., if xi=0 and rand is a random 

number in [0,1), then, its image belongs to the first subinterval, whereas if xi=1 its image belongs to 

the second interval).  

 










randrand

rand
xi

5.0

5.0
 
if

if

1

0





i

i

x

x
 

 

 

After variable xi is mapped in the new domain, the mutation operator of Eq. (6) is applied. To ensure 

that the resulting gene generated by the mutation operator in the original DE falls into the interval 

[0,1], a sigmoid function is applied to obtain vi:  

1

1 i
i v

v
e





 

Before the crossover phase, an inverse mapping operator is used: 

0         if  [0,0.5)

1          if  [0.5,1]

i

i

i

v
v

v


 


 

G
x

(8) 

(10) 

(11) 
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Then, the procedure follows traditional DE steps of crossover and selection. 

 

4.2 Modified Binary Differential Evolution 

MBDE is based on the mutation phase of the standard DE: it entails embedding Eq. (6) into a 

probability estimation operator (Eq. (12)) that helps generating the mutated individuals, accounting 

for the information of the parent population: 

( ) ( )( )
2 0.5

1 2

1
( )

1

i il i mk

i
b x F x x

F

P x

e

  
    

  








 

where b is a positive real constant, usually set to the value of 6; F is the weighting factor and 

( ) ( ) ( )
,   and

l k mi i ix x x  are the i-th genes of three randomly chosen individuals, as in Eq. (6) for the 

standard DE. 

According to the probability estimation vector        1 2
, , ,

R
P x P x P x P x    , created by Eq. (12), 

the corresponding genes of the noisy vector 1G
v

  of the current target individual G
x  are generated: 

1          if ( )

0          otherwise

i

i

rand P x
v


 


 

The genes of the trial individual 1G
u

  
can be obtained by the crossover operator through Eq. (14): 

      if  or ( )

      otherwise

i

i

i

v rand CR i irand R
u

x

 
 


 

Therefore, at least one bit of the trial individual is inherited from the mutant individual so that MBDE 

is able to avoid duplication individuals and effectively search within the neighborhood [34]. Then, 

the procedure follows the traditional selection step. 

 

5. RESULTS 

5.1 The artificial case study 

Without loss of generality, we present our analysis on the “Low” end state. From the truth-table of 

Tab. 3, we can identify all the C=13 minterms that make the system fail, listed in Tab. 8. These are 

the 13 columns mj, j=1, 2, ..., 13, of the implicants chart A that have to be covered by the PIs we aim 

at identifying. The rows xi, i.e., the complete set of implicants of the system structure function, of the 

implicant chart A are listed in Tab. 9. 

 

(14) 

(13) 

(12) 
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 A B C D E 

m1 0 0 1 0 0 

m2 0 0 0 1 0 

m3 1 0 1 0 0 

m4 1 0 0 1 0 

m5 0 1 1 0 0 

m6 0 1 0 1 0 

m7 0 0 1 1 0 

m8 1 0 1 1 0 

m9 0 1 1 1 0 

m10 0 0 1 1 1 

m11 1 1 1 1 0 

m12 1 0 1 1 1 

m13 1 1 1 1 1 

 

Tab 8. List of the faulty minterms mi of the system 

 

 A B C D E 

x1 0 0 1 0 0 

x2 0 0 0 1 0 

x3 1 0 1 0 0 

x4 1 0 0 1 0 

x5 0 1 1 0 0 

x6 0 1 0 1 0 

x7 0 0 1 1 0 

x8 1 0 1 1 0 

x9 0 1 1 1 0 

x10 0 0 1 1 1 

x11 1 1 1 1 0 

x12 1 0 1 1 1 

x13 1 1 1 1 1 

x14 - 0 1 0 0 

x15 0 - 1 0 0 

x16 0 0 1 - 0 

x17 - 0 0 1 0 

x18 0 - 0 1 0 

x19 0 0 - 1 0 

x20 1 0 1 - 0 

x21 1 0 - 1 0 

x22 0 1 1 - 0 
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x23 0 1 - 1 0 

x24 - 0 1 1 0 

x25 0 - 1 1 0 

x26 0 0 1 1 - 

x27 1 - 1 1 0 

x28 1 0 1 1 - 

x29 - 1 1 1 0 

x30 0 1 1 1 - 

x31 - 0 1 1 1 

x32 0 - 1 1 1 

x33 - 0 1 - 0 

x34 0 - 1 - 0 

x35 - 0 - 1 0 

x36 0 - - 1 0 

x37 - - 1 1 0 

x38 - 0 1 1 - 

x39 0 - 1 1 - 

 

Tab 9. List of the implicants xi of the system   

 

The optimal cover opt
x  is the one for which the cost function Eq. (4) is minimized. Different 

approaches can be tailored for penalizing incomplete solutions (solutions that do not cover all faulty 

minterms), taking into account that assigning them a very high cost (for example the cost of all 

implicants) do not differentiate between extremely bad solutions (those who cover only a few 

minterms) and almost optimal ones (those that cover almost all minterms at a very low cost) [19]. 

In this work, we adopted two different cost functions for this, namely “Penalty” [19] and “One 

complement” [36]. The “Penalty” fitness function is the sum of the costs of the chosen implicants 

plus, in case the chosen implicants do not cover all the faulty minterms, an extra cost of i
w , with 

α=1.25, for each i-th implicant that should be added for a complete cover. So, when the chosen 

implicants do not cover all the faulty minterms, the function resorts to a sequential search starting at 

the first implicant and including all implicants needed to cover all the minterms. With the “One 

complement” fitness function, the cost of the trial solution is mapped into a binary fitness function 

made up by two parts: the most important digits are determined as the complement to one of the 

uncovered faulty minterms, while the least important digits are determined as the complement to one 

of the sum of the costs of the implicants included in the trial solution. In this way, we obtain that a 

complete subset of PIs that covers all faulty minterms has for sure a larger fitness than any other 
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incomplete subset. It is important to underline that with the “Penalty” fitness function we aim at 

minimizing the cost of Eq. (4), whereas with the “One complement” fitness function we aim at the 

maximization of the cost. 

In this case study, the fitness value corresponding to the true optimal solution opt
x  is equal to 21 when 

using the “Penalty” fitness function and to 4074 when using the “One Complement” fitness function. 

The true solution opt
x  is found using the Quine-McCluskey algorithm that gives a deterministic way 

to check that the minimal form of a Boolean function has been reached [12]. This is a tabular method 

that compares each minterm with all the other minterms: if two of them differ in only one variable, 

that variable is removed and a reduced (merged) implicant is formed; the merging process is repeated 

for all the minterms until the cycle yields no further elimination of variables; the remaining implicants 

are thus selected as the PIs [7; 12]. Although more practical than Karnaugh maps when dealing with 

more than four variables, the Quine–McCluskey algorithm also has a limited range of use since the 

problem it solves is NP-hard: the runtime of the Quine–McCluskey algorithm grows exponentially 

with the number of variables. However, in this artificial case study, it is able to provide the optimal 

PIs opt
x  as listed in Tab. 10, where each row represents one of the 7 PIs of this problem. 

 

 State of 

component A 

State of 

component B 

State of 

component C 

State of 

component D 

State of 

component E 

PI1 - B  C  - E  

PI2 A - C  - E  

PI3 - B  - D  E  

PI4 A - - D  E  

PI5 - - C  D  E  

PI6 - B  C  D  - 

PI7 A - C  D  - 

 

Table 10. Prime implicants set obtained analytically by Quine-McCluskey algorithm (component is failed 

( )X , working ( )X  or it is irrelevant (-) as contributor to the PI) 

 

It is worth mentioning that, if we would have been searching for traditional MCSs rather than PIs 

(like in [30]), the actual behavior of the system would not have been straightforwardly identified and 

the system could have been be exposed to (avoidable) risk states. For example, let us consider the PI1 

of Table 10 (where component C is failed, components B and E are working, and the states of 

components A and D do not influence the system end state). If component B (or E) is failed the system 

end state should remain “Failed”, if we assume coherence of the system. On the contrary, due to the 

http://en.wikipedia.org/wiki/Boolean_function
http://en.wikipedia.org/wiki/Karnaugh_mapping
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
http://en.wikipedia.org/wiki/NP-hard
http://en.wikipedia.org/wiki/Run_time_(program_lifecycle_phase)
http://en.wikipedia.org/wiki/Exponential_growth
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non-coherence of the analyzed system, if component E fails and the state of component B does not 

change, the end state of the system is “Safe” (as shown by system configuration 15 in Table 3) rather 

than “Failed”. Therefore, the analysis of the identified PIs would suggest that, in order to avoid system 

failure, component E could be forced to fail as a counteracting measure to component C failure; this 

conclusion could not be reached with a MCS analysis.  

The results by MBDE and BDE with the different fitness functions “Penalty” and “One 

Complement”, ˆ
opt

x , are compared with respect to three performance indicators that aim at quantifying 

the goodness of the results, on a set of 20 trials of optimizations to account for the inherent 

stochasticity of the search, viz: 

- Cpu: cpu time (expressed in seconds) necessary to converge to the solution ˆ
opt

x . 

- Success rate: percentage of trials for which the true optimum opt
x  is found. 

- Accuracy (λ): the larger λ, the larger the accuracy of the solution [37]. 
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5.1.1 MBDE Results 

We solve the set covering problem (SCP) defined in Section 4 on the problem of Section 2 using an 

MBDE software developed by LASAR (Laboratorio di Analisi di Segnale e Analisi di Rischio) at the 

Politecnico di Milano (www.lasar.cesnef.polimi.it). Parameters F (see Eq. (6)) and CR (see Eq. (7)) 

are optimized through a trial and error procedure and to the values reported in Tab. 11, for the MBDE 

with “Penalty” and “One complement” fitness functions. 

 

(15) 
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  Modified Binary Differential Evolution 

 Fitness Function Penalty One complement 

Parameters 
F 0.4 0.5 

CR 0.6 0.6 

 

Table 11. Values of the parameters F and CR used in the MBDE 

 

We perform the simulation for different population sizes (NP) (NP=30, 100, 300 and 500). Results 

are reported in Tab. 12, Tab. 13, Tab. 14 and Tab. 15, respectively. The only stopping criterion is the 

generation number, MAXGEN, equal to 500.  

 

 Modified Binary Differential Evolution 

Fitness Function Penalty One complement 

NP 30 30 

Cpu [s] 9.07 4.69 

Success rate 100 % 100 % 

Accuracy 11 11 

 

Tab. 12. Performance indicators for the MBDE performed with NP=30 

 

 

 

Modified Binary Differential Evolution 

Fitness Function Penalty One complement 

NP 100 100 

 Cpu [s] 30.43 16.15 

Success rate 100 % 100 % 

Accuracy 11 11 

 

Tab. 13. Performance indicators for the MBDE performed with NP=100 

 

 Modified Binary Differential Evolution 

Fitness Function Penalty One complement 

NP 300 300 

 Cpu [s] 99.66 53.95 

Success rate 100 % 100 % 

Accuracy 11 11 

 

Tab. 14 Performance indicators for the MBDE performed with NP=300 
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 Modified Binary Differential Evolution 

Fitness Function Penalty One complement 

NP 500 500 

 Cpu [s] 155.32 85.21 

Success rate 100 % 100 % 

Accuracy 11 11 

 

Tab. 15. Performance indicators for the MBDE performed with NP=500 

 

MBDE shows a success rate of 100% with both fitness functions, with very large accuracy (the 

solution found ˆ
opt

x  is always equal to the true optimum solution opt
x  and the relative error is always 

null) even when the population is composed by only 30 chromosomes. In general, the Cpu indicator 

shows that with the “Penalty” fitness function the algorithm is faster than with the “One complement” 

fitness function, mainly because of its more straightforward computation. Obviously, the Cpu 

indicator performance worsens when the number of chromosomes in the population becomes larger. 

 

5.1.2 BDE and GA Results 

For comparison, we solve the same set covering problem (SCP) using a BDE toolbox and a Genetic 

Algorithm (GA) toolbox taken from Mathwork’s MATLAB® computational software. For both 

techniques, we implement the same fitness functions as in MBDE, use the same stopping criterion, 

repeat the simulations for the same population sizes as in MBDE and calculate the same performance 

indicators. 

Parameters F and CR with “Penalty” and “One complement” fitness function for BDE were set equal 

to the values reported in Tab. 16, by trial and error. 

 

  Binary Differential Evolution (BDE) 

 Fitness Function Penalty One complement 

Parameters 
F 0.7 0.7 

CR 0.1 0.1 

 

Table 16. Values of the parameters F and CR used in the BDE 

 

For the GA toolbox, the settings of those parameters whose meaning is the same as for DE are 

reported in Tab. 17, optimized by a trial and error procedure; details on other parameters to be set for 
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the use of GA is out of the scope of the comparison: the interested reader may consult [22] for further 

details. 

 

  Genetic Algorithm 

 Fitness Function Penalty One complement 

Parameters 
CR 0.01 

 

0.01 

 MAXGEN 500 500 

 

Table 17. Relevant parameters set for the GA 

 

The results obtained are showed in Tab. 18, Tab. 19 Tab. 20 and Tab. 21. 

 

 

 Binary Differential Evolution Genetic Algorithm 

Fitness 

Function 

Penalty One complement Penalty One complement 

NP 30 30 

 

30 30 

 Cpu [s] 12.91 4.76 

 

20.10 12.33 

Success rate 25% 15% 0% 0% 

Accuracy 3.71 4.64 0.99 3.23 

 

Tab. 18. Performance indicators for the BDE and GA performed with NP=30 

 Binary Differential Evolution Genetic Algorithm 

Fitness 

Function 

Penalty One complement Penalty One complement 

NP 100 100 

 

100 100 

 Cpu [s] 37.06 16.11 47.11 27.52 

Success rate 50% 45% 35% 35% 

Accuracy 6.16 6.93 4.59 3.23 

 

Tab. 19. Performance indicators for the BDE and GA performed with NP=100 

 Binary Differential Evolution Genetic Algorithm 

Fitness 

Function 

Penalty One complement Penalty One complement 

NP 300 300 

 

300 300 

 Cpu [s] 108.05 53.54 116.45 66.65 

Success rate 95% 65% 100% 85% 

Accuracy 10.51 8.4135 11 9.89 

 

Tab. 20. Performance indicators for the BDE and GA performed with NP=300 



26 

 

 Binary Differential Evolution Genetic Algorithm 

Fitness 

Function 

Penalty One complement Penalty One complement 

NP 500 500 

 

500 500 

 Cpu [s] 170.9818 93.7270 230.58 99.60 

Success rate 100% 95% 100% 100% 

Accuracy 11 10.6305 11 11 

 

Tab. 21. Performance indicators for the BDE and GA performed with NP=500 

With respect to MBDE, BDE and GA need a large population to obtain a good success rate (i.e., 

success rate ≥85% if NP=300 for BDE and GA (Table 20), whereas NP=30 for MBDE (Table 12)); 

indeed, the probability estimation operator embedded into the MBDE (Eq. (12)) can provide superior 

global searching ability and avoid the optimization getting trapped into a local optimum, because the 

BDE mutation mechanism has a higher probability of producing a bit of value 1 in the evolution 

process that restricts the search diversity of the optimum solution [38]. On the other hand, in MBDE 

at least one bit of the trial individual is inherited from the mutant individual, so that it is able to avoid 

duplication individuals and effectively search within the neighborhood [34]. 

The success rate is better for BDE compared to GA when the population considered is small (see 

Tables 18 and 19, NP=30,100, respectively), whereas GA becomes better as the population increases 

(see Tables 20 and 21, NP=300,500, respectively); Success rate for BDE and GA is comparable to 

that of MBDE only with a population of NP=500 (see Tables 21 and 12, respectively). Concerning 

the Cpu performance, BDE is better than GA (see 3rd row of Tables 18 to 21), whereas it is slightly 

worse when compared to MBDE (see 3rd row of Tables 18 to 21, left, in comparison with 3rd row 

Tables 12 to 15). Also in these cases, the Cpu shows a superior performance with the “Penalty” fitness 

function compared with the “One complement”, and worsens when the number of chromosomes in 

the population becomes larger (see 3rd row, 2nd and 3rd column of Tables 18 to 21). These simulations 

underline the fact that for a smaller population BDE has a higher accuracy in terms of success rate 

and computational time, whereas when the population is increased GA outperforms BDE in terms of 

accuracy of the results. These differences are driven by the ability of DE to explore efficiently the 

search space, even with a small population thanks to its particular mutation phase [33; 34]. 

 

5.1.3 Confidence on the results 

Compared to MBDE results, BDE and GA do not converge to the true solution opt
x  for all the 20 

trials (i.e., in Tables 12 to 15, even with NP=30, success rate for MBDE is equal to 100%, whereas 

Tables 18 to 21 highlight that BDE and GA need NP≥300 for achieving success rate equal to 100%). 
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In Fig. 10, the empirical probability mass functions (pmfs) of the ˆ
opt

x
 
fitness values obtained by BDE 

(with population of 30, 100, 300 and 500 chromosomes) are plotted; in Fig. 11 those of the GA results 

are shown. These Figures allows comparing the confidence of the results provided by MBDE, BDE 

and GA: since MBDE allow for success rate equal to 100% for any NP, i.e., large confidence, its 

results correspond to a Dirac distribution with mass in opt
x  (21 for “One complement” and 4074 for 

“Penalty”), whereas, due to their lower values of success rate, pmfs of the ˆ
opt

x  obtained by BDE and 

GA are spread around opt
x , i.e., smaller confidence. 

In particular, Fig. 10 (left) and Fig. 11 (left) show the probability mass functions of the ˆ
opt

x  fitness 

values when the algorithm is implemented with the “Penalty” fitness function; the right probability 

mass functions correspond to when the algorithm is implemented with the “One complement” fitness 

function. Moreover, it can be seen the sensitivity of the results provided by BDE and GA on the 

population size NP can be seen: the increase of the number of individuals in the population moves 

the mean fitness value of the population towards the fitness value of opt
x , and the increase of the 

number of individuals in the population and the use of the “Penalty” function gives rise to 

distributions that are shrinked on the best fitness value, which makes the result more reliable. 

 

Fig. 10. Pmfs of the ˆ
opt

x  fitness values obtained with BDE, using the “Penalty” fitness function (left) and the 

“One complement” fitness function (right) 
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Fig. 11. Pmfs of the ˆ
opt

x  fitness values obtained with GA, using the “Penalty” fitness function (left) and the 

“One complement” fitness function (right) 

 

In all cases (MBDE, BDE and GA), the optimization algorithm may be challenged by the timing and 

order of the sequences of component failure events, and the number of system components. In the 

analytical case study, for example, the behavior of the system must be accurately modelled in order 

to be able to handle the set covering problem and, thus, to capture the influence of the timing and 

order of the sequences of component failure events on the determination of the PIs set, without 

reducing the DE searching capability. On the other hand, as the number of system components 

increases, the MBDE, BDE and GA methods can be challenged: in this case, an efficient and accurate 

PIs set determination can be achieved by a hierarchical method of a multi-steps DE optimization, as 

shown in [30]. Finally, if the system shows a large number of implicants (i.e., accident sequences), it 

might become necessary to prioritize the PIs search towards those accident sequences that are more 

meaningful with respect to the system end state of interest, instead of focusing on the whole 

implicants set, as done in [39], where authors present a visual interactive method for PI identification 

rather than resorting to the solution of a SCP. 

 

5.2 The UTSG case study 

From the truth-table of Tab. 4, we can identify all the C=9 minterms that make the system fail, listed 

in Tab. 22. These are the 9 columns mj, j=1, 2, ..., 9, of the implicants chart A, that have to be covered 

by the PIs. The rows xi, i.e. the complete set of implicants of our system structure function, of the 

implicant chart A are listed in Tab. 23. 
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We solve the SCP defined in Section 4 on the problem of Section 3 using an MBDE software whose 

parameters F (see Eq. (6)) and CR (see Eq. (7)) are optimized through a trial and error procedure and 

set to the values reported in Tab. 24, for the MBDE with “Penalty” and “One complement” fitness 

functions. In both cases, the application of the MBDE provides the list of PIs for the UTSG, as listed 

in Table 25. Results are confirmed by Quine–McCluskey algorithm. 

 

 

Minterm Failure of the outlet 

steam valve 

Failure of the safety 

relief valve 

Level sensor- PID 

controller 

communication 

interruption 

Failure of the PID 

controller 

m1 1 0 0 0 

m2 0 0 0 1 

m3 1 0 1 0 

m4 1 0 0 1 

m5 0 0 1 1 

m6 1 1 1 0 

m7 1 1 0 1 

m8 1 0 1 1 

m9 1 1 1 1 

Tab 22. List of the faulty minterms mi of the system 

 

Implicant Failure of the outlet 

steam valve 

Failure of the safety 

relief valve 

Level sensor- PID 

controller 

communication 

interruption 

Failure of the PID 

controller 

x1 1 0 0 0 

x2 0 0 0 1 

x3 1 0 1 0 

x4 1 0 0 1 

x5 0 0 1 1 

x6 1 1 1 0 

x7 1 1 0 1 

x8 1 0 1 1 

x9 1 1 1 1 

x10 1 0 - 0 

x11 1 0 0 - 

x12 - 0 0 1 

x13 0 0 - 1 

x14 1 - 1 0 

x15 1 0 1 - 

x16 1 - 0 1 

x17 1 0 - 1 

x18 - 0 1 1 

x19 1 1 1 - 

x20 1 1 - 1 

x21 1 - 1 1 

x22 1 0 - - 

x23 - 0 - 1 

x24 1 - 1 - 

x25 1 - - 1 

Tab 23. List of the implicants xi of the system   
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fitness function Penalty One complement 

NP 30 30 

MAXGEN 500 500 

F 0.8 0.8 

CR 0.3 0.3 

CPU [s] 1.11 22.61 

Success rate 100% 100% 

Accuracy 11 11 

Table 24. Values of the parameters F and CR used and performance indicators 

 
Prime Implicant Failure of the outlet 

steam valve 

Failure of the safety 

relief valve 

Level sensor- PID 

controller 

communication 

interruption 

Failure of the PID 

controller 

PI1 T̅ U - - 

PI2 - U - Z̅ 

PI3 T̅ - V̅ - 

PI4 T̅ - - Z̅ 
 

Table 25. Prime implicants set (component is failed ( )X , working ( )X  or it is irrelevant (-) as contributor 

to the PI) 

 

Again, it is worth noting that the non-coherence of the system, and the difference between MCSs and 

PIs can be pointed out by analyzing the PIs in Table 25. Indeed, for example, PI1 of Table 25 shows 

that the outlet steam valve is failed (T̅), the safety relief valve is working (U) and the states of Level 

sensor- PID controller communication and of the PID controller components are irrelevant to the end 

state of the steam generator. However, due to the non-coherence of the system, as soon as the steam 

valve fails, the safety relief valve could be forced to fail in order to have a safe end state of the steam 

generator (as shown by system configuration 16 in Table 4). 

 

6 CONCLUSIONS 

The reliability analysis of dynamic systems calls for the complementation of traditional PRA methods 

by dynamic reliability methods. For such systems, the sequence and timing of the events in a scenario 

is relevant and can give rise to non-coherent structure functions, in which failed and working states 

of the same components can lead the system to failure. Then, traditional minimal cut set analysis 

cannot be applied and prime implicants identification becomes the only way. 

In this paper, the problem of prime implicants identification has been treated as an optimization 

problem aimed at finding the minimum combination of implicants that can guarantee the best 

coverage of all the minterms which fail the system. For this, we have developed a new technique to 

find PIs of a non-coherent structure function resorting to MBDE. The results have been compared 

with those obtained by BDE and GA. 
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It has been shown that MBDE has superior performances in terms of computational time and accuracy 

of the results (i.e., success rate for the convergence to the true solution) compared to BDE and GA, 

and performs very well even with a small population. Thanks to its more straightforward 

implementation, the “One complement” fitness function requires less time compared to the “Penalty” 

fitness function and gives a more robust PI identification, as verified by the success rate of the search 

results provided by BDE and GA. The ability of the method in PI identification has been confirmed 

with respect to a dynamic Steam Generator (SG) of a Nuclear Power Plant (NPP). 
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