
1

DETERMINATION OF PRIME IMPLICANTS BY DIFFERENTIAL EVOLUTION

FOR THE DYNAMIC RELIABILITY ANALYSIS OF NON-COHERENT

NUCLEAR SYSTEMS

Francesco Di Maio1, Samuele Baronchelli1, Matteo Vagnoli1, Enrico Zio1,2

1 Energy Department, Politecnico di Milano

Via La Masa 34, 20156 Milano, Italy

francesco.dimaio@polimi.it

2 Chair on System Science and Energetic Challenge

Foundation EDF – Electricite de France

Ecole Centrale, Paris, and Supelec, Paris, France

ABSTRACT

We present an original computational method for the identification of prime implicants

(PIs) in non-coherent structure functions of dynamic systems. This is a relevant problem

for dynamic reliability analysis, when dynamic effects render inadequate the traditional

methods of minimal cut-set identification. PIs identification is here transformed into an

optimization problem, where we look for the minimum combination of implicants that

guarantees the best coverage of all the minterms. For testing the method, an artificial

case study has been implemented, regarding a system composed by five components that

fail at random times with random magnitudes. The system undergoes a failure if during

an accidental scenario a safety-relevant monitored signal raises above an upper

threshold or decreases below a lower threshold. Truth tables of the two system end-states

are used to identify all the minterms. Then, the PIs that best cover all minterms are found

by Modified Binary Differential Evolution. Results and performances of the proposed

method have been compared with those of a traditional analytical approach known as

Quine-McCluskey algorithm and other evolutionary algorithms, such as Genetic

Algorithm and Binary Differential Evolution. The capability of the method is confirmed

with respect to a dynamic Steam Generator of a Nuclear Power Plant.

mailto:francesco.dimaio@polimi.it

2

Keywords: Dynamic Reliability; Prime Implicants; Non-coherent Structure Functions;

Modified Binary Differential Evolution (MBDE); Genetic Algorithm (GA); Binary

Differential Evolution (BDE); Steam Generator (SG); Nuclear Power Plant (NPP).

1. INTRODUCTION

The reliability analysis of systems with significant hardware/software/human interactions is difficult,

because the response of the system under accidental scenarios depends on the time of occurrence and

on the magnitude of the events [1; 2]. Further, it turns out that the logic of these systems can give rise

to non-coherent structure functions, where both failed and working states of the same components

can lead the system to failure [3]; for example, if in a system made up of three components J, K, L it

fails with components states (J, L , K), with the negation sign indicating that the component is failed,

whereas it is working when the components states are (J , L , K), then the system is non-coherent. The

traditional Probabilistic Risk Assessment (PRA) modeling tools, e.g. Fault Tree and Event Tree

Analysis, have difficulties in including the specific timing and magnitude of the events. On the other

hand, so-called dynamic reliability methods can complement the traditional methods to accounts for

the interactions among the physical parameters of the processes (temperature, pressure, speed, etc.),

the human operators actions and the failures of the components [2;4-6] and to identify the system

prime implicants (PIs), i.e., the event product terms that render true the structure function and that

cannot be covered by more reduced implicants [7], even if the structure functions are non-coherent1.

PIs have been introduced as dynamic equivalent of Minimal Cut Sets (MCSs) for conveying the

information on the minimum combinations of failures that lead (non-coherent and/or dynamic) the

system to failure and that cannot be covered any other implicant [8].

Traditionally, non-coherent structure functions have been interpreted as indication of poor system

design. However, in [9] it is shown that PIs identification can help developing an effective

maintenance schedule for non-coherent systems. For example, suppose that , ,J K L (components J

and K failed and component L working) is a PI that causes a catastrophic system failure. This shows

that, if components J, K and L have failed, L should be the last component to be repaired in order to

avoid system failure. Furthermore, PIs identification allows taking additional counteracting measures

1For clarity sake, we recall that an implicant is a product of Boolean variables, each one associated with a system

component and representing its failed (1) or safe state (0), that leads the system to failure: differently from minterms, in

implicants not all the variables have to appear when these (missing) variables cannot affect the system behavior.

Implicants, thus, can cover more minterms that differ in only one (or more) variable that does not influence the system

failure (as well as cut sets and minterms in traditional PRA).

3

to prevent system failure, for example by forcing failure of component L when component J and K

have already failed [10].

Fault tree analysis is undoubtedly an useful and efficient tool for minimal cut set identification, but

not for PIs identification, since it can only deal with coherent structure functions [11]. The problem

of extending the analysis to non-coherent fault trees has, then, been tackled in different ways: the

simplification of non-coherent structure functions expressed in canonical forms has been raised by

[7] and solved by [12], allowing a preliminary identification of PIs; the problem has also been tackled

by means of graphical methods such as Karnaugh maps [13]. However, the actual implementation of

these methods becomes very time-consuming when the number of variables involved in the given

structure function increases. The computational efficiency has been improved resorting to various

Partitioned List algorithms [14] and fast Binary Decision Diagram (BDD) algorithms [15]: in [16], a

modification of a minimal cut sets algorithm known as Simple Prime Implicant Set Algorithm is

proposed, although it does not always produce complete PI sets, whereas in [17] a method is proposed

to convert the fault tree of a non-coherent structure function into a BDD for PIs identification, where

each of the basic events of the tree is represented as a node with two branches (branch 1 and 0,

corresponding to the component failure and working states respectively). This latter approach has

been adapted in [18] for PI identification based on Dynamic Flowgraph Methodology (DFM).

The difficulty in developing efficient computational methods for PIs identification lays in the fact

that this can be seen as an NP-hard problem of covering a set (the minterms) with elements from

given subsets (the PIs) [19]: each given subset has an associated cost proportional to its dimension

and the objective of the problem is to choose the smallest group of subsets whose union contains the

whole set with minimal cost, as we shall see in what follows.

In this paper, we develop a new method for identifying all PIs of a non-coherent structure function

resorting to the powerful evolutionary algorithm of Differential Evolution (DE) [20]. The PIs are

found by solving by DE a properly defined optimization problem, for determining the exact (not

approximated) solution of the Set Covering Problem (SCP) [21; 22]: in this way, none of the prime

(minimal) failure scenarios (i.e., the PIs) can be neglected by the identification method.

The paper is organized as follows. In Section 2, the artificial case study used to generate the scenarios

for the dynamic reliability analysis is presented. In Section 3, the model of a Steam Generator (SG)

of a Nuclear Power Plant (NPP) is presented [23]. In Section 4, PIs identification is formulated as an

optimization problem and tackled by resorting to the DE-based approach. In Section 5, the results of

the application of the approach to the scenarios of the artificial case and of the SG are presented.

Conclusions and remarks are given in Section 6.

4

2. THE ARTIFICIAL CASE STUDY

For ease of illustration of the method proposed, we build an artificial case study by simulating the

accidental scenarios for a system made of 5 components (denoted as A, B, C, D and E), that can fail

at random times with random magnitudes, giving rise to different scenarios whose evolutions are

represented by 4 monitored signals. Multiple component failures can occur during the system life, set

to T=7 [h]. For the simulation, a Monte Carlo sampling procedure for injecting faults of random

magnitudes at random times is implemented. In particular, times and magnitudes of faults are

obtained by a stratified sampling with respect to the possible accident scenarios [24]. The number of

components that fail is sampled from a binomial distribution with parameters n=5 (equal to the

number of components) and p=0.8 (so that even rare multiple fault events are included in the set of

accident scenarios). The first failure time is sampled from a uniform distribution [0,1] [h], and the

successive failure times are sampled by a stick-breaking strategy from the conditional distributions,

uniform from the last sampled time up to 7 [h]. This sampling strategy models a wearing system, with

average failure rate increasing in time.

The equations deliberately used to simulate the signal evolutions in time during the accidental

scenarios are (Tab. 1):

 3

1
() 2 1 10

2

t
y t a erf 

 
  

    
  

 (1)

   3

2
() 10

tdy t c c     (2)

 3

3
() 10y t bt    (3)

where a, b, c, d, μ, ω,12 and  are randomly sampled from the distributions listed in Tab. 2.

Parameters 12 and  represent the magnitudes of the faults of the accidental scenarios. All

parameters and variables have arbitrary units.

Failed

Component
Signal 1 Signal 2 Signal 3 Signal 4

A Eq. (1) Eq. (1) Eq. (3) Eq. (1)

B Eq. (1) Eq. (2) Eq. (3) Eq. (1)

C Eq. (2) Eq. (3) Eq. (1) Eq. (1)

D Eq. (2) Eq. (3) Eq. (2) Eq. (1)

5

E Eq. (3) Eq. (3) Eq. (3) Eq. (1)

Tab.1. Equations used to simulate the signals evolutions in time for each failed component

Parameter Distribution Mean value Standard deviation

a Gaussian 0.4 0.017

b Gaussian 0.4 0.017

c Gaussian 1.3 0.033

d Gaussian 1.3 0.017

1 Gaussian 1 0.083

2 Gaussian 1.05 0.033

3 Gaussian 1 0.033

μ Gaussian 2.45 0.083

ω Gaussian 0 1

Table 2. Parameters distribution

We take signal 1 as the safety-relevant parameter to be monitored against pre-defined safety

thresholds: if it exceeds the upper threshold value of 2.5, the system fails in the “High” end state; if

it decreases below the lower threshold value of -1.5, the system end state is “Low” [25]. In Fig. 1, the

evolution of the 4 signals for 10 randomly sampled accidental scenarios are shown. Signals

measurements are plotted in continuous lines; the upper and lower thresholds are in dotted and dashed

lines, respectively.

Fig. 1 shows that under different scenarios, the signals can increase or decrease. This can occur in

reality where, for example, if a valve of the coolant injection system of a nuclear power plant (NPP)

fails to open during a loss of coolant accident (LOCA), an in-vessel temperature growth is measured,

which could arrive at exceeding the upper threshold [26]; if the pressurizer safety relief valve fails to

close, the water level drops below the low-level safety threshold, leading the system into the

undesirable state of uncovered electric heaters [27].

Yet, it is important to underline that the procedure implemented in this work for sampling the fault

events is not intended to reproduce the actual stochastic failure behavior of the components of a real

system; rather, the choices and hypotheses for modeling the faults (e.g. system life, number of faults

and distributions of failure times and magnitudes) have been arbitrarily made with the aim of favoring

multiple failures in the sequences and capturing the dynamic influence of their order, timing and

6

magnitude including possible compensatory effects for which a failure later in time compensates for

the impact of another earlier failure, thus highlighting non-coherent system behavior.

Fig 1. Examples of the behavior of the 4 monitored signals during simulated accidental scenarios

2.1 Non-coherence

Considering the binary (safe or faulty) states of the five components of the system, the number of

possible system configurations is equal to 32. One simulation has been run for each system

configuration with the hypothesis that faults are assumed to occur at the beginning of the scenarios

and their magnitudes are taken equal to their mean values of Tab. 2. Tab. 3 shows the truth-table of

the system, i.e., all possible system configurations, with the end state “Low” or “High” they lead to.

System Component Component Component Component Component End State

Configuration A B C D E Low Safe High

1 - - - - - No Yes No

2 x - - - - No Yes No

3 - x - - - No Yes No

4 - - x - - Yes No No

5 - - - x - Yes No No

6 - - - - x No No Yes

7 x x - - - No No Yes

7

8 x - x - - Yes No No

9 x - - x - Yes No No

10 x - - - x No No Yes

11 - x x - - Yes No No

12 - x - x - Yes No No

13 - x - - x No No Yes

14 - - x x - Yes No No

15 - - x - x No Yes No

16 - - - x x No Yes No

17 x x x - - No Yes No

18 x x - x - No Yes No

19 x x - - x No No Yes

20 x - x x - Yes No No

21 x - x - x No Yes No

22 x - - x x No Yes No

23 - x x x - Yes No No

24 - x x - x No Yes No

25 - x - x x No Yes No

26 - - x x x Yes No No

27 x x x x - Yes No No

28 x x x - x No No Yes

29 x x - x x No No Yes

30 x - x x x Yes No No

31 - x x x x Yes No No

32 x x x x x No No Yes

Table 3. Truth-table for the 32 system configurations and the “Low”, “Safe” and “High” end states.

Legend: - = safe component, x = faulty component

The analysis of the truth-table points out that the system failure logic is represented by a non-coherent

structure function. In fact, as it can be shown in Fig. 2 and Fig. 3, both failed and working states of

the components can contribute to the failure of the system. In particular, in Fig. 2 (left) the safety-

relevant signal 1 for the system configuration 11 of Tab. 3 (components B and C failed, and

components A, D and E working) is shown; on the other hand, in Fig. 2 (right) the same signal for

system configuration 17 of Tab. 3 (components A, B and C failed, and components D and E working)

is plotted: from 11 to 17, adding the failure of component A brings the system from a “Low” end state

to a “Safe” end state, violating coherence requirements.

In Fig. 3 (left), the safety-relevant signal 1 for the system configuration 6 of Tab. 3 (component E

failed, and components A, B, C and D working) is shown; on the other hand, in Fig. 3 (right) the same

signal for system configuration 15 of Tab. 3 (components C and E failed, and components A, B and

D working) is plotted: from 6 to 15, adding the failure of component C brings the system from a

“High” end state to a “Safe” end state, violating coherence requirements.

8

Fig. 2. Example of non-coherence for the “Low” end state

Fig. 3. Example of non-coherence for the “High” end state

Furthermore, when we take into account uncertainties on timing and magnitudes of components

failures, the dynamic aspects render non-coherence even more evident. Fig. 4 shows the frequency of

the three system end states (“High”, Safe and “Low”) for the 32 system configurations reported in

Tab. 3, estimated from the simulation of 10,000 accidental scenarios for each system configuration

with random components failure times and magnitudes. Most of the configurations do not lead

unequivocally to one end state: on one side, this means that even though the configuration is the same,

when the failures of the components occur at different times or with different magnitudes, the end

state can be different. For example, if a failure occurs towards the end of the mission time (as opposed

to the start of the period), it may not lead to system failure [24]. On the other side, Fig. 4 shows that

9

as a new failure occurs, the faulty end states frequencies can become smaller or, vice versa, as a faulty

component is repaired, the safe end state frequencies can become smaller. For example, adding one

failure from system configuration 14 (components C and D failed and components A, B and E

working) to system configuration 26 (components C, D and E failed and components A and B

working), or from system configuration 23 (components B, C and D failed and components A and E

working) to system configuration 31 (components B, C, D and E failed and component A working),

the safe end state frequencies increase, and correspondingly the “Low” and “High” end state

frequencies decrease.

These examples show the need in dynamic reliability analysis to focus on the PIs of the system, rather

than on the identification of its minimal cut sets, due to the evident non-coherence of the structure

function.

Fig. 4. Histograms of the frequency of end states for each of the 32 system configurations listed in Tab. 3

3. THE STEAM GENERATOR OF A NUCLEAR POWER PLANT

The U-Tube Steam Generator (UTSG) under consideration is sketched in Fig. 5. The reactor coolant

enters the UTSG at the bottom, moves upward and then downward in the inverted U-tubes,

transferring heat to the secondary fluid before exiting at the bottom. The secondary fluid, the

feedwater (𝑄𝑒), enters the UTSG at the top of the downcomer, through the space between the tube

bundle wrapper and the SG shell. The value of 𝑄𝑒 is regulated by a system of valves: a low flow rate

valve, used when the operating power (𝑃𝑜) is smaller than 15% of nominal power (𝑃𝑛) and a high flow

rate valve when 𝑃𝑜 > 0.15 𝑃𝑛 [23].

10

In the secondary side of the tube bundle, water heats up, reaches saturation, starts boiling and turns

into a two-phase mixture. The two-phase fluid moves up through the separator/riser section, where

steam is separated from liquid water, and through the dryers, which ensure that the exiting steam (𝑄𝑣)

is essentially dry. The separated water is recirculated back to the downcomer. The balance between

the exiting 𝑄𝑣 and the incoming 𝑄𝑒 governs the change in the water level in the SG. Because of the

two-phase nature, two types of water level measurements are considered, as shown in Fig. 5, each

reflecting a different level concept: the Narrow Range Level (𝑁𝑟𝑙) is calculated by pressure difference

between two points close to the water level and indicates the mixture level, whereas, the Wide Range

Level (𝑊𝑟𝑙) is calculated by pressure difference between the two extremities of the SG (steam dome

and bottom of the downcomer) and indicates the collapsed liquid level that is related with the mass

of water in the SG.

Fig 5. Schematic of the UTSG [29]

At low 𝑃𝑜, “swell and shrink” phenomena are also modeled to reproduce the dynamic behavior of the

SG: when 𝑄𝑣 increases, the steam pressure in the steam dome decreases and the two-phase fluid in

the tube bundle expands causing 𝑁𝑟𝑙 to initially swell (i.e., rise), instead of decreasing as would have

been expected by the mass balance; contrarily, if 𝑄𝑣 decreases or 𝑄𝑒 increases, a shrink effect occurs

[29]. A similar model has been presented in [23].

11

The goal of the system is to maintain the SG water level at a reference position (𝑁𝑟𝑒𝑓): the SG fails

if the 𝑁𝑟𝑙 rises (falls) above (below) the threshold, 𝑁ℎ𝑖𝑔ℎ (𝑁𝑙𝑜𝑤), in which case automatic reactor or

turbine trips are triggered. Indeed, if the 𝑁𝑟𝑙 exceeds 𝑁ℎ𝑖𝑔ℎ, the steam separator and dryer lose their

functionality and excessive moisture is carried in 𝑄𝑣, degrading the turbine blades profile and the

turbine efficiency; if 𝑁𝑟𝑙 decreases below 𝑁𝑙𝑜𝑤, insufficient cooling capability of the primary fluid

occurs. Similarly, the 𝑊𝑟𝑙, is relevant for the cooling capability of the primary circuit [29].

A dedicated, simulation model has been implemented in SIMULINK to simulate the dynamic

response of the UTSG at different 𝑃𝑜 values. Both feedforward and feedback digital control schemes

have been adopted. The feedback controller is a PID that provides a flow rate 𝑄𝑝𝑖𝑑 resulting from the

residuals between 𝑁𝑟𝑙 and 𝑁𝑟𝑒𝑓, whereas the feedforward controller consists in a safety relief valve

that is opened if and only if 𝑁𝑟𝑙 exceeds the 𝑁ℎ𝑙, and removes a constant flow safety flow rate (𝑄𝑠𝑓).

The block diagram representing the SIMULINK model of the SG is shown in Fig. 6: the controlled

variable is 𝑁𝑟𝑙, whereas the control variable is 𝑄𝑒.

Fig 6. Block diagram representing the SIMULINK model of the SG.

3.1 The set of possible failures

We assume component failures to occur at the beginning of the scenario (with 𝑇𝑚𝑖𝑠𝑠 equal to 4000

(s)) [1]. We here analyze the system in constant 𝑃𝑜=80% Pn scenarios with respect to high level failure

mode. Choices and hypotheses for modeling the failures have been arbitrarily made with the aim of

generating multiple failures and the choice of a mission time (𝑇𝑚𝑖𝑠𝑠) equal to 4000 (s) has been made

because it is a long enough interval of time to allow the complete development also of slow dynamic

accident scenarios. The set of multiple component failures that can occur are:

12

1. The outlet steam valve (component T) can fail stuck at 85% of the nominal 𝑄𝑣 that should be

provided at 𝑃𝑜.

2. The communication between the sensor that monitors 𝑁𝑟𝑙 and the PID controller (component

U) can fail so that the PID is provided with the same input value of the previous time step.

3. The safety relief valve (component V) can fail stuck at a value 𝑄𝑠𝑓 = 50.5 (kg/s).

4. The PID controller (component Z) can fail stuck providing a flow rate 𝑄𝑝𝑖𝑑 = 12.35% of the

nominal 𝑄𝑒 that should be provided at 𝑃𝑜.

Considering the binary (safe or faulty) states of the five components of the system, the number of

possible system configurations (for which a simulation has been run) is equal to 16. Tab. 4 shows the

truth-table of the system, i.e., all possible system configurations, with the end state “Low” or “High”

they lead to.

System Failure of

the outlet

steam valve

Failure of

the safety

relief valve

Level sensor-

PID controller

communication

interruption

Failure of

the PID

controller

End State

configuration Low Safe High

1 - - - - No Yes No

2 X - - - No No Yes

3 - X - - No Yes No

4 - - X - No Yes No

5 - - - X No No Yes

6 X X - - No Yes No

7 X - X - No No Yes

8 X - - X No No Yes

9 - X X - Yes No No

10 - X - X No Yes No

11 - - X X No No Yes

12 X X X - No No Yes

13 X X - X No No Yes

14 X - X X No No Yes

15 - X X X No Yes No

16 X X X X No No Yes

Table 4. Truth-table for the 16 system configurations and the “Low”, “Safe” and “High” end states.

Legend: - = safe component, x = faulty component

The analysis of the truth-table points out that the system failure logic is represented by a non-coherent

structure function. In fact, as it can be shown in Fig. 7 and Fig. 8, both failed and working states of

the components can contribute to the failure of the system. In particular, in Fig. 7 (left) the 𝑁𝑟𝑙 level

for system configuration 2 (steam valve failure) is shown; on the other hand, in Fig. 7 (right) the 𝑁𝑟𝑙

level for system configuration 6 (steam and safety valves failures) is plotted: adding the failure of the

safety valve brings the system from a “High” end state to a “Safe” end state, violating coherence

requirements.

13

In Fig. 8 (left) the 𝑁𝑟𝑙 level for system configuration 9 (safety valve and communication failures) is

shown; on the other hand, in Fig. 8 (right) the 𝑁𝑟𝑙 level for system configuration 15 (safety valve,

communication and PID failures) is plotted: adding the failure of the PID brings the system from a

“Low” end state to a “Safe” end state, violating coherence requirements.

Fig 7. Example of non-coherence for the “High” end state.

Fig 8. Example of non-coherence for the “Low” end state.

4. A NOVEL METHOD FOR PIs IDENTIFICATION

In this paper, the problem of PIs identification is innovatively handled resorting to the DE algorithm

for solving a set covering problem (SCP) [22; 30]. Differently from [30], here we develop a DE search

strategy to identify PIs and not the classical MCSs. The SCP is the problem of covering at minimal

cost (that is defined depending on the context of the application) the columns of a zero-one matrix

A=[aij], where i=1,2,...,R and j=1,2,...,C, by a subset of the rows. Defining xi=1 if row i is in the

solution, and xi=0 otherwise, the SCP aims at identifying the set of xi with the lower cost (Eq. (4))

0 1000 2000 3000 4000
100

120

140

160

180

200

time [s]

le
v
e
l
[c

m
]

Upper threshold

Lower threshold

Reference level

N
rl

0 1000 2000 3000 4000
100

110

120

130

140

150

160

170

180

time [s]

le
v
e
l
[c

m
]

Upper threshold

Lower threshold

Reference level

N
rl

0 1000 2000 3000 4000
100

110

120

130

140

150

160

170

180

time [s]

le
v
e
l
[c

m
]

Upper threshold

Lower threshold

Reference level

N
rl

0 1000 2000 3000 4000
100

110

120

130

140

150

160

170

180

time [s]

le
v
e
l
[c

m
]

Upper threshold

Lower threshold

Reference level

N
rl

14

that guarantee the coverage of each column j by at least one row (i.e., for each i-th row corresponding

to the implicant chosen, there is at least one entry equal to 1 in one of the C columns) (Eq. (5)), viz:

minimize
1

R

i i

i

w x


 (4)

subject to
1

1
R

ij i

i

a x


 (5)

where wi is the positive cost weight associated to the i-th row (which, again, depends on the specific

problem). In the PIs identification, let A=[aij] be an implicant chart (i.e., a matrix representing the

minterms covered by each implicant, where aij=1 if the i-th implicant covers the j-th minterm, aij=0

otherwise), mj denote the j-th minterm (i.e., the product of all the Boolean variables associated with

a system component, representing its failed (1) or safe state (0), that leads the system to failure), xi

denote the i-th implicant of the structure function.

A cost vector 1 2
(, ,...,)

R
w w w w assigns a positive cost wi to each implicant i, e.g. cost of components

in manufacturing industry [19], number of trips that can be performed by a single crew in

transportation company [31]. For generality, here we define the cost wi as the number of Boolean

variables (either true or complemented) associated to the system components included in the i-th

implicant. For this problem, the solution space is the set of all possible combinations of 1,2,...,R

implicants (hence the size of the solution space is 2R-1, excluding the possibility where no implicant

is chosen). Each solution ˆ
opt

x is represented by a specific combination of independent variables, or,

mathematically speaking, by a R-dimensional vector 1 2
(, ,...,)

R
x x x x (hereafter called chromosome

within the differential evolution (DE) optimization method that will be adopted) that is a hypothetical

solution of the optimization problem (4) and (5). A value of 1 in the i-th vector position xi implies

that the implicant i is chosen to be in the cover; a value of 0, otherwise [19].

For clarification, let us consider the system made up by three components (J, K and L) whose

reliability block diagram is shown in Fig. 9. The C= 5 minterms mj that lead this system to failure are

reported in Tab. 5.

Fig. 9. Reliability block diagram of the system

J

K

L

15

 J K L

m1 0 0 1

m2 0 1 1

m3 1 0 1

m4 1 1 0

m5 1 1 1

Table 5. List of the faulty minterms mj of the system of Fig. 9 (1=failed component, 0=safe component)

The R=11 implicants (xi in Eqs. (4) and (5)) of the system of Fig. 9, and their costs (wi in Eq. (4)), are

reported in Tab. 6. Intuitively, the PIs of the system of Fig. 9 are x10 and x11.

 J K L Cost (w)

x1 0 0 1 3

x2 0 1 1 3

x3 1 0 1 3

x4 1 1 0 3

x5 1 1 1 3

x6 0 - 1 2

x7 - 0 1 2

x8 1 - 1 2

x9 - 1 1 2

x10 1 1 - 2

x11 - - 1 1

Table 6. List of the implicants xi of the system of Fig. 9 (1=failed component, 0=safe component, -=component state

does not influence the system failure)

In Tab. 7, the implicant chart A, whose rows are aij in Eq. (5), for the system is finally shown.

 m1 m2 m3 m4 m5

x1 1 0 0 0 0

x2 0 1 0 0 0

x3 0 0 1 0 0

x4 0 0 0 1 0

x5 0 0 0 0 1

x6 1 1 0 0 0

x7 1 0 1 0 0

16

(6)

x8 0 0 1 0 1

x9 0 1 0 0 1

x10 0 0 0 1 1

x11 1 1 1 0 1

Table 7. Implicant chart A for the system of Fig.9 (aij=1, minterm is covered, aij=0, minterm is uncovered)

Within the evolutionary algorithm context, the optimal cover opt
x is the chromosome

(0,0,0,0,0,0,0,0,0,1,1)x  which means that only x10 and x11 are chosen to be in the solution, i.e., are

PIs.

For solving the above-defined SCP, we resort to Differential Evolution (DE), which belongs to the

class of Evolutionary Algorithms (EAs) [32]. A main advantage of DE with respect to other EAs is

the fact that the evolutionary operations used in DE are specifically built for optimization over

continuous spaces and based on a floating-point representation [33-35].

DE entails three phases called mutation, crossover and selection. This is the original scheme proposed

in [20]: at the G+1-th generation, for each gene xi in the chromosome vector 1 2
(, ,...,)

G R G
x x x x of the

population of NP different chromosomes at the G-th generation, a noisy gene vi of the noisy vector

1 1 2 1
(, ,...,)

G R G
v v v v

 
 , is generated by randomly adding to the i-th gene of the l-th chromosome the

weighted difference between two other randomly selected k-th and m-th chromosomes from the

population.

() () ()
()

l k mi i i i
v x F x x  

where the weighting factor [0,2]F is a user-defined parameter, kept constant during the

optimization and
() () ()

, and
l k mi i i

x x x are the i-th gene values of the three randomly chosen individuals,

with  , , 1,2,...,l k m NP .

To maintain the diversity inside the perturbed population, and shuffle old and new information, after

mutation, 1G
v

 is not directly compared with G
x , but it is further modified by the crossover process,

in which 1G
v

 and G
x are mixed according to some rule to create the trial vector 1G

u
 , which inherits

from them different pieces of chromosome. The most common crossover type adopted is the

binomial: 1G
u

 is built by a modified Bernoulli trial rule, gauged by the control parameter [0,1],CR

which influences the probability for 1G
v


to be selected for the mutation process. Each gene ui of the

trial vector is equal to

  if (0,1] or

 otherwise

i

i

i

v U CR i irand R
u

x

  
 


 (7)

17

(9)

where U(0,1] denotes the uniform continuous random value in (0,1] and irand(R) is a uniform discrete

random number from the set  1,2,...,R , where R is the length of the chromosome.

The trial vector obtained 1G
u

 , then, enters the selection process where it is compared with (and

eventually substitutes) the target vector G
x

 that is partially its parent according to the crossover rule.

Referring to minimization, if the fitness, i.e., the cost, of 1G
u

 is less than the fitness of , the first

will be a member of the next generation G+1, replacing the target vector, and the trial vector is

discarded

1 1

1

 () ()

G G G

G

G

u if fitness u fitness x
x

x otherwise

 




 


In this work, we aim at comparing the performance of two different DEs, that differ in the mutation

step and are called “Binary Differential Evolution” (BDE) [33] and “Modified Binary Differential

Evolution” (MBDE) [34].

4.1 Binary Differential Evolution

BDE is based on a mapping operator, defined as Eq. (9), that is constructed to map the gene xi in a

discrete domain (in our case it is a binary domain) into a continuous domain by partitioning the

interval [0, 1] into two equal subintervals [0,0.5) and [0.5,1], (i.e., if xi=0 and rand is a random

number in [0,1), then, its image belongs to the first subinterval, whereas if xi=1 its image belongs to

the second interval).










randrand

rand
xi

5.0

5.0

if

if

1

0





i

i

x

x

After variable xi is mapped in the new domain, the mutation operator of Eq. (6) is applied. To ensure

that the resulting gene generated by the mutation operator in the original DE falls into the interval

[0,1], a sigmoid function is applied to obtain vi:

1

1 i
i v

v
e





Before the crossover phase, an inverse mapping operator is used:

0 if [0,0.5)

1 if [0.5,1]

i

i

i

v
v

v


 



G
x

(8)

(10)

(11)

18

Then, the procedure follows traditional DE steps of crossover and selection.

4.2 Modified Binary Differential Evolution

MBDE is based on the mutation phase of the standard DE: it entails embedding Eq. (6) into a

probability estimation operator (Eq. (12)) that helps generating the mutated individuals, accounting

for the information of the parent population:

() ()()
2 0.5

1 2

1
()

1

i il i mk

i
b x F x x

F

P x

e

  
    

  








where b is a positive real constant, usually set to the value of 6; F is the weighting factor and

() () ()
, and

l k mi i ix x x are the i-th genes of three randomly chosen individuals, as in Eq. (6) for the

standard DE.

According to the probability estimation vector        1 2
, , ,

R
P x P x P x P x    , created by Eq. (12),

the corresponding genes of the noisy vector 1G
v

 of the current target individual G
x are generated:

1 if ()

0 otherwise

i

i

rand P x
v


 


The genes of the trial individual 1G
u


can be obtained by the crossover operator through Eq. (14):

 if or ()

 otherwise

i

i

i

v rand CR i irand R
u

x

 
 


Therefore, at least one bit of the trial individual is inherited from the mutant individual so that MBDE

is able to avoid duplication individuals and effectively search within the neighborhood [34]. Then,

the procedure follows the traditional selection step.

5. RESULTS

5.1 The artificial case study

Without loss of generality, we present our analysis on the “Low” end state. From the truth-table of

Tab. 3, we can identify all the C=13 minterms that make the system fail, listed in Tab. 8. These are

the 13 columns mj, j=1, 2, ..., 13, of the implicants chart A that have to be covered by the PIs we aim

at identifying. The rows xi, i.e., the complete set of implicants of the system structure function, of the

implicant chart A are listed in Tab. 9.

(14)

(13)

(12)

19

 A B C D E

m1 0 0 1 0 0

m2 0 0 0 1 0

m3 1 0 1 0 0

m4 1 0 0 1 0

m5 0 1 1 0 0

m6 0 1 0 1 0

m7 0 0 1 1 0

m8 1 0 1 1 0

m9 0 1 1 1 0

m10 0 0 1 1 1

m11 1 1 1 1 0

m12 1 0 1 1 1

m13 1 1 1 1 1

Tab 8. List of the faulty minterms mi of the system

 A B C D E

x1 0 0 1 0 0

x2 0 0 0 1 0

x3 1 0 1 0 0

x4 1 0 0 1 0

x5 0 1 1 0 0

x6 0 1 0 1 0

x7 0 0 1 1 0

x8 1 0 1 1 0

x9 0 1 1 1 0

x10 0 0 1 1 1

x11 1 1 1 1 0

x12 1 0 1 1 1

x13 1 1 1 1 1

x14 - 0 1 0 0

x15 0 - 1 0 0

x16 0 0 1 - 0

x17 - 0 0 1 0

x18 0 - 0 1 0

x19 0 0 - 1 0

x20 1 0 1 - 0

x21 1 0 - 1 0

x22 0 1 1 - 0

20

x23 0 1 - 1 0

x24 - 0 1 1 0

x25 0 - 1 1 0

x26 0 0 1 1 -

x27 1 - 1 1 0

x28 1 0 1 1 -

x29 - 1 1 1 0

x30 0 1 1 1 -

x31 - 0 1 1 1

x32 0 - 1 1 1

x33 - 0 1 - 0

x34 0 - 1 - 0

x35 - 0 - 1 0

x36 0 - - 1 0

x37 - - 1 1 0

x38 - 0 1 1 -

x39 0 - 1 1 -

Tab 9. List of the implicants xi of the system

The optimal cover opt
x is the one for which the cost function Eq. (4) is minimized. Different

approaches can be tailored for penalizing incomplete solutions (solutions that do not cover all faulty

minterms), taking into account that assigning them a very high cost (for example the cost of all

implicants) do not differentiate between extremely bad solutions (those who cover only a few

minterms) and almost optimal ones (those that cover almost all minterms at a very low cost) [19].

In this work, we adopted two different cost functions for this, namely “Penalty” [19] and “One

complement” [36]. The “Penalty” fitness function is the sum of the costs of the chosen implicants

plus, in case the chosen implicants do not cover all the faulty minterms, an extra cost of i
w , with

α=1.25, for each i-th implicant that should be added for a complete cover. So, when the chosen

implicants do not cover all the faulty minterms, the function resorts to a sequential search starting at

the first implicant and including all implicants needed to cover all the minterms. With the “One

complement” fitness function, the cost of the trial solution is mapped into a binary fitness function

made up by two parts: the most important digits are determined as the complement to one of the

uncovered faulty minterms, while the least important digits are determined as the complement to one

of the sum of the costs of the implicants included in the trial solution. In this way, we obtain that a

complete subset of PIs that covers all faulty minterms has for sure a larger fitness than any other

21

incomplete subset. It is important to underline that with the “Penalty” fitness function we aim at

minimizing the cost of Eq. (4), whereas with the “One complement” fitness function we aim at the

maximization of the cost.

In this case study, the fitness value corresponding to the true optimal solution opt
x is equal to 21 when

using the “Penalty” fitness function and to 4074 when using the “One Complement” fitness function.

The true solution opt
x is found using the Quine-McCluskey algorithm that gives a deterministic way

to check that the minimal form of a Boolean function has been reached [12]. This is a tabular method

that compares each minterm with all the other minterms: if two of them differ in only one variable,

that variable is removed and a reduced (merged) implicant is formed; the merging process is repeated

for all the minterms until the cycle yields no further elimination of variables; the remaining implicants

are thus selected as the PIs [7; 12]. Although more practical than Karnaugh maps when dealing with

more than four variables, the Quine–McCluskey algorithm also has a limited range of use since the

problem it solves is NP-hard: the runtime of the Quine–McCluskey algorithm grows exponentially

with the number of variables. However, in this artificial case study, it is able to provide the optimal

PIs opt
x as listed in Tab. 10, where each row represents one of the 7 PIs of this problem.

 State of

component A

State of

component B

State of

component C

State of

component D

State of

component E

PI1 - B C - E

PI2 A - C - E

PI3 - B - D E

PI4 A - - D E

PI5 - - C D E

PI6 - B C D -

PI7 A - C D -

Table 10. Prime implicants set obtained analytically by Quine-McCluskey algorithm (component is failed

()X , working ()X or it is irrelevant (-) as contributor to the PI)

It is worth mentioning that, if we would have been searching for traditional MCSs rather than PIs

(like in [30]), the actual behavior of the system would not have been straightforwardly identified and

the system could have been be exposed to (avoidable) risk states. For example, let us consider the PI1

of Table 10 (where component C is failed, components B and E are working, and the states of

components A and D do not influence the system end state). If component B (or E) is failed the system

end state should remain “Failed”, if we assume coherence of the system. On the contrary, due to the

http://en.wikipedia.org/wiki/Boolean_function
http://en.wikipedia.org/wiki/Karnaugh_mapping
http://en.wikipedia.org/wiki/Boolean_satisfiability_problem
http://en.wikipedia.org/wiki/NP-hard
http://en.wikipedia.org/wiki/Run_time_(program_lifecycle_phase)
http://en.wikipedia.org/wiki/Exponential_growth

22

non-coherence of the analyzed system, if component E fails and the state of component B does not

change, the end state of the system is “Safe” (as shown by system configuration 15 in Table 3) rather

than “Failed”. Therefore, the analysis of the identified PIs would suggest that, in order to avoid system

failure, component E could be forced to fail as a counteracting measure to component C failure; this

conclusion could not be reached with a MCS analysis.

The results by MBDE and BDE with the different fitness functions “Penalty” and “One

Complement”, ˆ
opt

x , are compared with respect to three performance indicators that aim at quantifying

the goodness of the results, on a set of 20 trials of optimizations to account for the inherent

stochasticity of the search, viz:

- Cpu: cpu time (expressed in seconds) necessary to converge to the solution ˆ
opt

x .

- Success rate: percentage of trials for which the true optimum opt
x is found.

- Accuracy (λ): the larger λ, the larger the accuracy of the solution [37].

11

10

ˆ

0 if 1

ˆ

if 0 = 11 if 10

ˆ

log otherwise

0

if 0 =

opt opt

opt

opt opt

opt

opt

opt opt

opt

opt

x x

x

x x
x

x

x x

x

x







 
 


 

 



 
 
 
 



 

11

10

ˆ if 1

ˆ11 if 10

ˆlog otherwise

opt

opt

opt

x

x

x



 








5.1.1 MBDE Results

We solve the set covering problem (SCP) defined in Section 4 on the problem of Section 2 using an

MBDE software developed by LASAR (Laboratorio di Analisi di Segnale e Analisi di Rischio) at the

Politecnico di Milano (www.lasar.cesnef.polimi.it). Parameters F (see Eq. (6)) and CR (see Eq. (7))

are optimized through a trial and error procedure and to the values reported in Tab. 11, for the MBDE

with “Penalty” and “One complement” fitness functions.

(15)

23

 Modified Binary Differential Evolution

 Fitness Function Penalty One complement

Parameters
F 0.4 0.5

CR 0.6 0.6

Table 11. Values of the parameters F and CR used in the MBDE

We perform the simulation for different population sizes (NP) (NP=30, 100, 300 and 500). Results

are reported in Tab. 12, Tab. 13, Tab. 14 and Tab. 15, respectively. The only stopping criterion is the

generation number, MAXGEN, equal to 500.

 Modified Binary Differential Evolution

Fitness Function Penalty One complement

NP 30 30

Cpu [s] 9.07 4.69

Success rate 100 % 100 %

Accuracy 11 11

Tab. 12. Performance indicators for the MBDE performed with NP=30

Modified Binary Differential Evolution

Fitness Function Penalty One complement

NP 100 100

 Cpu [s] 30.43 16.15

Success rate 100 % 100 %

Accuracy 11 11

Tab. 13. Performance indicators for the MBDE performed with NP=100

 Modified Binary Differential Evolution

Fitness Function Penalty One complement

NP 300 300

 Cpu [s] 99.66 53.95

Success rate 100 % 100 %

Accuracy 11 11

Tab. 14 Performance indicators for the MBDE performed with NP=300

24

 Modified Binary Differential Evolution

Fitness Function Penalty One complement

NP 500 500

 Cpu [s] 155.32 85.21

Success rate 100 % 100 %

Accuracy 11 11

Tab. 15. Performance indicators for the MBDE performed with NP=500

MBDE shows a success rate of 100% with both fitness functions, with very large accuracy (the

solution found ˆ
opt

x is always equal to the true optimum solution opt
x and the relative error is always

null) even when the population is composed by only 30 chromosomes. In general, the Cpu indicator

shows that with the “Penalty” fitness function the algorithm is faster than with the “One complement”

fitness function, mainly because of its more straightforward computation. Obviously, the Cpu

indicator performance worsens when the number of chromosomes in the population becomes larger.

5.1.2 BDE and GA Results

For comparison, we solve the same set covering problem (SCP) using a BDE toolbox and a Genetic

Algorithm (GA) toolbox taken from Mathwork’s MATLAB® computational software. For both

techniques, we implement the same fitness functions as in MBDE, use the same stopping criterion,

repeat the simulations for the same population sizes as in MBDE and calculate the same performance

indicators.

Parameters F and CR with “Penalty” and “One complement” fitness function for BDE were set equal

to the values reported in Tab. 16, by trial and error.

 Binary Differential Evolution (BDE)

 Fitness Function Penalty One complement

Parameters
F 0.7 0.7

CR 0.1 0.1

Table 16. Values of the parameters F and CR used in the BDE

For the GA toolbox, the settings of those parameters whose meaning is the same as for DE are

reported in Tab. 17, optimized by a trial and error procedure; details on other parameters to be set for

25

the use of GA is out of the scope of the comparison: the interested reader may consult [22] for further

details.

 Genetic Algorithm

 Fitness Function Penalty One complement

Parameters
CR 0.01

0.01

 MAXGEN 500 500

Table 17. Relevant parameters set for the GA

The results obtained are showed in Tab. 18, Tab. 19 Tab. 20 and Tab. 21.

 Binary Differential Evolution Genetic Algorithm

Fitness

Function

Penalty One complement Penalty One complement

NP 30 30

30 30

 Cpu [s] 12.91 4.76

20.10 12.33

Success rate 25% 15% 0% 0%

Accuracy 3.71 4.64 0.99 3.23

Tab. 18. Performance indicators for the BDE and GA performed with NP=30

 Binary Differential Evolution Genetic Algorithm

Fitness

Function

Penalty One complement Penalty One complement

NP 100 100

100 100

 Cpu [s] 37.06 16.11 47.11 27.52

Success rate 50% 45% 35% 35%

Accuracy 6.16 6.93 4.59 3.23

Tab. 19. Performance indicators for the BDE and GA performed with NP=100

 Binary Differential Evolution Genetic Algorithm

Fitness

Function

Penalty One complement Penalty One complement

NP 300 300

300 300

 Cpu [s] 108.05 53.54 116.45 66.65

Success rate 95% 65% 100% 85%

Accuracy 10.51 8.4135 11 9.89

Tab. 20. Performance indicators for the BDE and GA performed with NP=300

26

 Binary Differential Evolution Genetic Algorithm

Fitness

Function

Penalty One complement Penalty One complement

NP 500 500

500 500

 Cpu [s] 170.9818 93.7270 230.58 99.60

Success rate 100% 95% 100% 100%

Accuracy 11 10.6305 11 11

Tab. 21. Performance indicators for the BDE and GA performed with NP=500

With respect to MBDE, BDE and GA need a large population to obtain a good success rate (i.e.,

success rate ≥85% if NP=300 for BDE and GA (Table 20), whereas NP=30 for MBDE (Table 12));

indeed, the probability estimation operator embedded into the MBDE (Eq. (12)) can provide superior

global searching ability and avoid the optimization getting trapped into a local optimum, because the

BDE mutation mechanism has a higher probability of producing a bit of value 1 in the evolution

process that restricts the search diversity of the optimum solution [38]. On the other hand, in MBDE

at least one bit of the trial individual is inherited from the mutant individual, so that it is able to avoid

duplication individuals and effectively search within the neighborhood [34].

The success rate is better for BDE compared to GA when the population considered is small (see

Tables 18 and 19, NP=30,100, respectively), whereas GA becomes better as the population increases

(see Tables 20 and 21, NP=300,500, respectively); Success rate for BDE and GA is comparable to

that of MBDE only with a population of NP=500 (see Tables 21 and 12, respectively). Concerning

the Cpu performance, BDE is better than GA (see 3rd row of Tables 18 to 21), whereas it is slightly

worse when compared to MBDE (see 3rd row of Tables 18 to 21, left, in comparison with 3rd row

Tables 12 to 15). Also in these cases, the Cpu shows a superior performance with the “Penalty” fitness

function compared with the “One complement”, and worsens when the number of chromosomes in

the population becomes larger (see 3rd row, 2nd and 3rd column of Tables 18 to 21). These simulations

underline the fact that for a smaller population BDE has a higher accuracy in terms of success rate

and computational time, whereas when the population is increased GA outperforms BDE in terms of

accuracy of the results. These differences are driven by the ability of DE to explore efficiently the

search space, even with a small population thanks to its particular mutation phase [33; 34].

5.1.3 Confidence on the results

Compared to MBDE results, BDE and GA do not converge to the true solution opt
x for all the 20

trials (i.e., in Tables 12 to 15, even with NP=30, success rate for MBDE is equal to 100%, whereas

Tables 18 to 21 highlight that BDE and GA need NP≥300 for achieving success rate equal to 100%).

27

In Fig. 10, the empirical probability mass functions (pmfs) of the ˆ
opt

x

fitness values obtained by BDE

(with population of 30, 100, 300 and 500 chromosomes) are plotted; in Fig. 11 those of the GA results

are shown. These Figures allows comparing the confidence of the results provided by MBDE, BDE

and GA: since MBDE allow for success rate equal to 100% for any NP, i.e., large confidence, its

results correspond to a Dirac distribution with mass in opt
x (21 for “One complement” and 4074 for

“Penalty”), whereas, due to their lower values of success rate, pmfs of the ˆ
opt

x obtained by BDE and

GA are spread around opt
x , i.e., smaller confidence.

In particular, Fig. 10 (left) and Fig. 11 (left) show the probability mass functions of the ˆ
opt

x fitness

values when the algorithm is implemented with the “Penalty” fitness function; the right probability

mass functions correspond to when the algorithm is implemented with the “One complement” fitness

function. Moreover, it can be seen the sensitivity of the results provided by BDE and GA on the

population size NP can be seen: the increase of the number of individuals in the population moves

the mean fitness value of the population towards the fitness value of opt
x , and the increase of the

number of individuals in the population and the use of the “Penalty” function gives rise to

distributions that are shrinked on the best fitness value, which makes the result more reliable.

Fig. 10. Pmfs of the ˆ
opt

x fitness values obtained with BDE, using the “Penalty” fitness function (left) and the

“One complement” fitness function (right)

P
ro

b
a

b
ili

ty
 m

a
s
s
 f

u
n

c
ti
o

n

P
ro

b
a

b
ili

ty
 m

a
s
s
 f

u
n

c
ti
o

n

Fitness value Fitness value

28

Fig. 11. Pmfs of the ˆ
opt

x fitness values obtained with GA, using the “Penalty” fitness function (left) and the

“One complement” fitness function (right)

In all cases (MBDE, BDE and GA), the optimization algorithm may be challenged by the timing and

order of the sequences of component failure events, and the number of system components. In the

analytical case study, for example, the behavior of the system must be accurately modelled in order

to be able to handle the set covering problem and, thus, to capture the influence of the timing and

order of the sequences of component failure events on the determination of the PIs set, without

reducing the DE searching capability. On the other hand, as the number of system components

increases, the MBDE, BDE and GA methods can be challenged: in this case, an efficient and accurate

PIs set determination can be achieved by a hierarchical method of a multi-steps DE optimization, as

shown in [30]. Finally, if the system shows a large number of implicants (i.e., accident sequences), it

might become necessary to prioritize the PIs search towards those accident sequences that are more

meaningful with respect to the system end state of interest, instead of focusing on the whole

implicants set, as done in [39], where authors present a visual interactive method for PI identification

rather than resorting to the solution of a SCP.

5.2 The UTSG case study

From the truth-table of Tab. 4, we can identify all the C=9 minterms that make the system fail, listed

in Tab. 22. These are the 9 columns mj, j=1, 2, ..., 9, of the implicants chart A, that have to be covered

by the PIs. The rows xi, i.e. the complete set of implicants of our system structure function, of the

implicant chart A are listed in Tab. 23.

P
ro

b
a

b
ili

ty
 m

a
s
s
 f

u
n

c
ti
o

n

P
ro

b
a

b
ili

ty
 m

a
s
s
 f

u
n

c
ti
o

n

Fitness value Fitness value

29

We solve the SCP defined in Section 4 on the problem of Section 3 using an MBDE software whose

parameters F (see Eq. (6)) and CR (see Eq. (7)) are optimized through a trial and error procedure and

set to the values reported in Tab. 24, for the MBDE with “Penalty” and “One complement” fitness

functions. In both cases, the application of the MBDE provides the list of PIs for the UTSG, as listed

in Table 25. Results are confirmed by Quine–McCluskey algorithm.

Minterm Failure of the outlet

steam valve

Failure of the safety

relief valve

Level sensor- PID

controller

communication

interruption

Failure of the PID

controller

m1 1 0 0 0

m2 0 0 0 1

m3 1 0 1 0

m4 1 0 0 1

m5 0 0 1 1

m6 1 1 1 0

m7 1 1 0 1

m8 1 0 1 1

m9 1 1 1 1

Tab 22. List of the faulty minterms mi of the system

Implicant Failure of the outlet

steam valve

Failure of the safety

relief valve

Level sensor- PID

controller

communication

interruption

Failure of the PID

controller

x1 1 0 0 0

x2 0 0 0 1

x3 1 0 1 0

x4 1 0 0 1

x5 0 0 1 1

x6 1 1 1 0

x7 1 1 0 1

x8 1 0 1 1

x9 1 1 1 1

x10 1 0 - 0

x11 1 0 0 -

x12 - 0 0 1

x13 0 0 - 1

x14 1 - 1 0

x15 1 0 1 -

x16 1 - 0 1

x17 1 0 - 1

x18 - 0 1 1

x19 1 1 1 -

x20 1 1 - 1

x21 1 - 1 1

x22 1 0 - -

x23 - 0 - 1

x24 1 - 1 -

x25 1 - - 1

Tab 23. List of the implicants xi of the system

30

fitness function Penalty One complement

NP 30 30

MAXGEN 500 500

F 0.8 0.8

CR 0.3 0.3

CPU [s] 1.11 22.61

Success rate 100% 100%

Accuracy 11 11

Table 24. Values of the parameters F and CR used and performance indicators

Prime Implicant Failure of the outlet

steam valve

Failure of the safety

relief valve

Level sensor- PID

controller

communication

interruption

Failure of the PID

controller

PI1 T̅ U - -

PI2 - U - Z̅

PI3 T̅ - V̅ -

PI4 T̅ - - Z̅

Table 25. Prime implicants set (component is failed ()X , working ()X or it is irrelevant (-) as contributor

to the PI)

Again, it is worth noting that the non-coherence of the system, and the difference between MCSs and

PIs can be pointed out by analyzing the PIs in Table 25. Indeed, for example, PI1 of Table 25 shows

that the outlet steam valve is failed (T̅), the safety relief valve is working (U) and the states of Level

sensor- PID controller communication and of the PID controller components are irrelevant to the end

state of the steam generator. However, due to the non-coherence of the system, as soon as the steam

valve fails, the safety relief valve could be forced to fail in order to have a safe end state of the steam

generator (as shown by system configuration 16 in Table 4).

6 CONCLUSIONS

The reliability analysis of dynamic systems calls for the complementation of traditional PRA methods

by dynamic reliability methods. For such systems, the sequence and timing of the events in a scenario

is relevant and can give rise to non-coherent structure functions, in which failed and working states

of the same components can lead the system to failure. Then, traditional minimal cut set analysis

cannot be applied and prime implicants identification becomes the only way.

In this paper, the problem of prime implicants identification has been treated as an optimization

problem aimed at finding the minimum combination of implicants that can guarantee the best

coverage of all the minterms which fail the system. For this, we have developed a new technique to

find PIs of a non-coherent structure function resorting to MBDE. The results have been compared

with those obtained by BDE and GA.

31

It has been shown that MBDE has superior performances in terms of computational time and accuracy

of the results (i.e., success rate for the convergence to the true solution) compared to BDE and GA,

and performs very well even with a small population. Thanks to its more straightforward

implementation, the “One complement” fitness function requires less time compared to the “Penalty”

fitness function and gives a more robust PI identification, as verified by the success rate of the search

results provided by BDE and GA. The ability of the method in PI identification has been confirmed

with respect to a dynamic Steam Generator (SG) of a Nuclear Power Plant (NPP).

References

[1] Zio, E., Di Maio, F., Processing Dynamic Scenarios from a Reliability Analysis of a Nuclear Power Plant Digital Instrumentation

and Control System, Annals of Nuclear Energy 36, 1386-1399, 2009.

[2] Aldemir, T., Guarro, S., Mandelli, D., Kirschenbaum, J., Mangan, L.A., Bucci, P., Yau, M., Ekici, E., Miller, D.W., Sun, X., Arndt,

S.A., Probabilistic risk assessment modeling of digital instrumentation and control systems using two dynamic methodologies,

Reliability Engineering and System Safety, 1011-1039, 2010.

[3] Di Maio, F., Vagnoli, M., Zio, E., Risk-based clustering for near misses identification in integrated deterministic and probabilistic

safety analysis, Science and Technology of Nuclear Installations, 2015, art. no. 693891, 2015.

[4] Siu, N., Risk assessment for dynamic systems: an overview, Reliability Engineering and System Safety, 43, 43-73, 1994.

[5] Devooght, D., Dynamic reliability, Advances in Nuclear Science and Technology, 25, 215-278, 1997.

[6] Marseguerra, M., Zio, E., Devooght, J., Labeau, P.E., A concept paper on dynamic reliability via Monte Carlo simulation,

Mathematics and Computers in Simulation, Volume 47, Issues 2–5, 1 August 1998, Pages 371–382.

[7] Quine, W.V., The problem of simplifying truth functions, Am. Math. Monthly, Volume 59, 521-531, 1952.

[8] Garrett, C., Apostolakis, G., Context in the risk assessment of digital systems, Risk Analysis, 19 (1), pp. 23-32, 1999.

[9] Beeson S.C., “Non-coherent fault tree analysis”, Loughborough University UK.

[10] Sharvia, S., Papadopoulos, Non-coherent Modelling in Compositional Fault Tree Analysis, Proceedings of the 17th World

Congress, The International Federation of Automatic Control, Seoul, Korea, July 6-11, 2008.

[11] Morreale, E., Partitioned List Algorithms for Prime Implicant Determination from Canonical forms, IEEE Transactions on

Electronic Computers, Volume EC-16, No.5, 611-620, 1967.

[12] McCluskey, E.J.Jr., Minimization of Boolean functions, Bell Sys. Tech. J., Volume 35, 1417-1444, 1956.

[13] Karnaugh, M., The Map Method for Synthesis of Combinational Logic Circuits, Transactions of the American Institute for

Electrical Engineers part I 72 (9): 593–599, 1953.

[14] Morreale, E., Recursive Operators for Prime Implicant and Irredundant Normal Form Determination, IEEE Transactions on

Computers, Volume C-19, No.6, 504-509, 1970.

[15] Jung, W.S. , Han, S.H., Ha, J., A fast BDD algorithm for large coherent fault trees analysis, Reliability Engineering and System

Safety, Volume 83, Issue 3, Pages 369-374, 2004.

[16] Worrell, R.B., Stack, D.W., Hulme, B.L., Prime implicant of non-coherent fault trees, IEEE Transactions on Reliability R-30/2,

98-100, 1981.

[17] Rauzy, A., Dutuit, Y., Exact and truncated computations of prime implicants of coherent and non-coherent fault tree, Reliability

Engineering and System Safety, 58, 127-144, 1997.

[18] Bjorkman, K., Solving dynamic flowgraph methodology models using binary decision diagrams, Reliability Engineering and

System Safety 111, 206–216, 2013.

[19] Sen, S., Minimal cost set covering using probabilistic methods, Proceedings of the 1993 ACM/SIGAPP symposium on Applied

computing: states of the art and practice, 157-164, 1993.

32

[20] Storn, R.; Price, K., Differential evolution - a simple and efficient heuristic for global optimization over continuous spaces, Journal

of Global Optimization, 11: 341–359, 1996.

[21] Christofides, N., Paixão, J., Algorithms for large scale set covering problems, Annals of Operations Research, Volume 43, Issue

5, May 1993, Pages 259-277.

[22] Beasley, J.E., Chu, P.C., A genetic algorithm for the set covering problem, European Journal of Operational Research, vol.94,

pp392-404, 1996.

[23] Aubry, J. F., Babykina, G., Barros, A., Brinzei, N., Deleuze, G., De Saporta, B., Dufour, F., Langeron, Y., Zhang, H., Project

APPRODYN: APPROches de la fiabilité DYNamique pour modéliser des systèmes critiques, Technical report, collaboration

CRAN, EDF R&D, INRIACQFD, UTT-ICD, 2012.

[24] Di Maio, F., Secchi, P., Vantini, S., Zio, E., Fuzzy C-Means Clustering of Signal Functional Principal Components for Post-

Processing Dynamic Scenarios of a Nuclear Power Plant Digital Instrumentation and Control System, IEEE Transactions on

Reliability, 415-425, 2011.

[25] Baraldi, P., Di Maio, F., Zio, E., Unsupervised Clustering for Fault Diagnosis in Nuclear Power Plant Components, International

Journal of Computational Intelligence Systems, Vol. 6, No. 4, July 2013, pp. 764-777.

[26] Di Maio, F., Nicola, G., Zio, E., Yu, Y., Ensemble-based sensitivity analysis of a best estimate thermal hydraulic model:

application to a Passive Containment Cooling System of an AP1000 Nuclear Power Plant, Annals of Nuclear Energy, 73, 200–210,

2014.

[27] Di Maio, F., Baronchelli, S., Zio, E., A Computational framework for Prime Implicants Identification in non-coherent Dynamic

Systems, Risk Analysis, DOI: 10.1111/risa.12251.

[28] Assessment and management of ageing of major nuclear power plant component important to safety: Steam Generators, IAEA,

IAEA-TECDOC-98, Vienna, ISSN 1011-4289, 1997.

[29] Kothare, M.V., Mettler, B., Morari, M., Bendotti, P., Falinower, C.-M., Level control in the steam generator of a nuclear power

plant, IEEE Transactions on Control Systems Technology, 8 (1), pp. 55-69, 2000.

[30] Di Maio, F., Baronchelli, S., Zio, E., Hierarchical Differential Evolution for Minimal Cut Sets Identification: Application to

Nuclear Safety Systems, European Journal of Operational Research, Volume 238, Issue 2, Pages 645–652, 2014.

[31] Belas, E., A class of location, distribution and scheduling problems: modeling and solution methods, in P. Gray and L. Yuanzhang

(ed.), Proceeding of the Chinese-U.S. Symposium on System Analysis, J. Wiley and Sons.

[32] Holland, J.H., Adaptation in Natural and Artificial Systems” University of Michigan Press, Ann Arbor, 1975.

[33] Deng, C., Zhao, B., Yang, Y., Deng, A., Novel Binary Differential Evolution Algorithm for Discrete Optimization, Fifth

International Conference on Natural Computation, Volume 4, 346-349, 2009.

[34] Wang, L., Fu, X., Menhas, M.I., A Modified Binary Differential Evolution Algorithm, Life Modelling and Intelligent Computing,

Lecture Notes in Computer Science, Volume 6329/2010, 2010.

[35] Baraldi, P., Zio, E., Di Maio, F., Pappaglione, L., Chevalier, R., Seraoui, R., Differential Evolution for Optimal Grouping of

Condition Monitoring Signals of Nuclear Components, Advances in Safety, Reliability and Risk Management, ESREL 2011, 410-

418, 2011.

[36] Shackleford, B., Snider, G., Carter, R.J., Okushi, E., Yasuda, M., Seo, K., Yasuura, H., A High-Performance, Pipelined, FPGA-

Based Genetic Algorithm Machine, Genetic Programming and Evolvable Machines, Volume 2, Number 1, 33-60, 2001.

[37] Tvrdìk, J., Competitive differential evolution, in MENDEL 2006, 12th International Conference on Soft Computing, 7-12, 2006.

[38] Wu, C.-Y., Tseng, K.-Y., Engineering optimization using modified binary differential evolution algorithm, 3rd International Joint

Conference on Computational Sciences and Optimization, CSO 2010: Theoretical Development and Engineering Practice, 1, art.

no. 5533094, pp. 501-505, 2010.

[39] Di Maio, F., Baronchelli, S., Zio, E., A Visual Interactive Method for Prime Implicants Identification, IEEE Transactions on

Reliability, 64, Issue 2, 539-549, 2015.

