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SMOOTH PRINCIPAL COMPONENT ANALYSIS OVER
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Motivated by the analysis of high-dimensional neuroimaging signals
located over the cortical surface, we introduce a novel Principal Compo-
nent Analysis technique that can handle functional data located over a two-
dimensional manifold. For this purpose a regularization approach is adopted,
introducing a smoothing penalty coherent with the geodesic distance over the
manifold. The model introduced can be applied to any manifold topology,
and can naturally handle missing data and functional samples evaluated in
different grids of points. We approach the discretization task by means of
finite element analysis, and propose an efficient iterative algorithm for its res-
olution. We compare the performances of the proposed algorithm with other
approaches classically adopted in literature. We finally apply the proposed
method to resting state functional magnetic resonance imaging data from the
Human Connectome Project, where the method shows substantial differen-
tial variations between brain regions that were not apparent with other ap-
proaches.

1. Introduction. The recent growth of data arising from neuroimaging has
led to profound changes in the understanding of the brain. Neuroimaging is a mul-
tidisciplinary activity and the role of statistics in its success should not be under-
estimated. Much of the work to date has been to determine how to use statisti-
cal models in high-dimensional settings that arise out of such imaging modalities
as functional Magnetic Resonance Imaging (fMRI) and Electroencephalography
(EEG). However, it is becoming increasingly clear that there is now a need to in-
corporate more and more complex information about brain structure and function
into the statistical analysis to enhance our present understanding of the brain.

Considerable amounts of the brain signal captured, for example, by fMRI arise
from the cerebral cortex. The cerebral cortex is the highly convoluted thin sheet
where most neural activity is focused. It is natural to represent this thin sheet as a
2D surface embedded in a 3D space, structured with a 2D geodesic distance, rather
than the 3D Euclidean distance within the volume. In fact, functionally distinct
areas may be close to each other if measured with Euclidean distance, but, due

Received December 2015; revised August 2016.
1Supported in part by the Engineering and Physical Sciences Research Council (Grants

EP/K021672/2, EP/N014588/1).
Key words and phrases. Functional data analysis, principal component analysis, differential reg-

ularization, functional magnetic resonance imaging.

1854

http://www.imstat.org/aoas/
http://dx.doi.org/10.1214/16-AOAS975
http://www.imstat.org


SMOOTH PCA OVER TWO-DIMENSIONAL MANIFOLDS 1855

to the highly convoluted morphology of the cerebral cortex, their 2D geodesic
distance along the cortical surface can be far greater. While early approaches to the
analysis of hemodynamic signals ignore the morphology of the cortical surface, it
has now been well established [Glasser et al. (2013) and references therein] that it
is beneficial to analyze neuroimaging data through the processing of the signals on
the cortical surface using surface-constrained techniques. Classical tools such as
nonparametric smoothing models have already been adapted to deal with this kind
of data; see, for example, Chung, Hanson and Pollak (2014).

The goal of the present paper is to introduce a novel Principal Component Anal-
ysis (PCA) technique suitable for working with functional signals distributed over
curved domains and specifically over two-dimensional smooth Riemannian mani-
folds, such as the cortical surface. The cortical surface can be extracted from struc-
tural Magnetic Resonance Imaging (MRI), a noninvasive scanning technique used
to visualize the internal structure of the brain, rendering it as a 3D image with high
spatial resolution. The signal of interest, which we want to analyze with respect
to the surface, comes from fMRI, which detects a Blood Oxygen Level Depen-
dent (BOLD) signal [Ogawa et al. (1990)] as a series of repeated measurements in
time, yielding a time series of 3D images. An increased neural activity in a partic-
ular area of the brain causes an increased demand for oxygen. As the fMRI signal
is related to changes in the relative ratio of oxy- to deoxy-hemoglobin, due to their
differing magnetic properties, the signal captured within an fMRI scan is consid-
ered to be a surrogate for neural activity and is used to produce activation maps or
investigate brain functional connectivity. The fMRI signal of each individual re-
lated to the neural activity in the cerebral cortex is generally mapped on a common
template cortical surface to allow multi-subject statistical analysis.

In this paper, in particular, we will focus our attention on functional connectivity
(FC). FC maps, on the cortical surface, can be constructed computing the pairwise
correlation between all vertex’s fMRI time-series and the mean time-series of a
region of interest. The resulting FC map for each subject provides a clear view of
areas to which the region of interest is functionally connected.

In practice, the template cortical surface is represented by a triangulated surface
that can be considered a discrete approximation of the underlying smooth compact
two-dimensional Riemannian manifold M ⊂ R

3 modeling the cortical surface.
Each resting state FC map can be represented by a function xi : M → R. Once
we have the correlation maps on the cortical surface we want to study how the
phenomena varies from subject to subject. A statistical technique for this study is
PCA. It is natural to contextualize this task in the framework of Functional Data
Analysis [Ramsay and Silverman (2005)].

In Section 2 we establish the formal theoretical properties of Functional PCA
(FPCA) in the case of random functions whose domain is a manifold M. In Sec-
tion 3 we introduce a novel FPCA model and propose an algorithm for its resolu-
tion. We then give some simulation results in Section 4, indicating the performance
of our methodology as compared to other methods in literature. We then return to
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the FC maps example in Section 5 to consider how the surface based PCA analysis
might be used in this case, and draw some concluding remarks in Section 6.

2. Functional principal component analysis. Consider the space of square
integrable functions on M: L2(M) = {f : M → R : ∫

M |f (p)|2 dp < ∞} with
the inner product 〈f,g〉M = ∫

M f (p)g(p)dp and norm ‖f ‖M = ∫
M |f (p)|2 dp.

Consider the random variable X with values in L2(M), mean μ = E[X] and a fi-
nite second moment, that is,

∫
ME[X2] < ∞, and assume that its covariance func-

tion K(p,q) = E[(X(p) − μ(p))(X(q) − μ(q))] is square integrable. Mercer’s
lemma [Riesz and Sz.-Nagy (1955)] guarantees the existence of a nonincreasing
sequence (κj ) of eigenvalues of K and an orthonormal sequence of corresponding
eigenfunctions (ψj ), such that

(2.1)
∫
M

K(p,q)ψj (p)dp = κjψj (q), ∀q ∈ M

and that K(p,q) can be written as K(p,q) = ∑∞
j=1 κjψj (p)ψj (q) for each p,q ∈

M. Thus, X can be expanded as X = μ+∑∞
j=1 εjψj , where the random variables

ε1, ε2, . . . are uncorrelated and are given by εj = ∫
M{X(p)−μ(p)}ψj(p)dp. This

is also known as the Karhunen–Loève (KL) expansion of X.
The collection (ψj ) defines the strongest modes of variation in the random func-

tion X, and these are called Principal Component (PC) functions. In fact, ψ1 is
such that

ψ1 = argmax
φ:‖φ‖M=1

∫
M

∫
M

φ(p)K(p,q)φ(q) dp dq,

while ψm, for m > 1, solves an analogous problem with the added constraint of
ψm being orthogonal to the previous m − 1 functions ψ1, . . . ,ψm−1, that is,

ψm = argmax
φ:‖φ‖M=1

〈φ,ψj 〉M=0,j=1,...,m−1

∫
M

∫
M

φ(p)K(p,q)φ(q) dp dq.

The random variables ε1, ε2, . . . are called PC scores.
Another important property of PC functions is the best M basis approximation.

In fact, for any fixed M ∈ N, the first M PC functions of X satisfy

(2.2) (ψi)
M
m=1 = argmin

({φm}Mm=1:〈φm,φl〉=δml)

E

∫
M

{
X − μ −

M∑
m=1

〈X,φm〉φm

}2

,

where δml is the Kronecker delta; that is, δml = 1 for m = l and 0 otherwise.
Suppose x1, . . . , xn are n smooth samples from X. Usually, for each of

these functions, only noisy evaluations xi(pj ) on a fixed discrete grid of points
p1, . . . , ps are given. In this setting, we will now recall the two standard ap-
proaches to FPCA: the presmoothing approach and the regularized PCA approach.
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The presmoothing approach is based on the two following steps. In the first
step, the observations associated to each function are smoothed in order to ob-
tain smooth representations of x1, . . . , xn. Then the sample mean x̄ = n−1 ∑

i xi

and the sample covariance K̂(p, q) = 1
n

∑n
i=1(xi(p) − x̄(p))(xi(q) − x̄(q)) are

used to estimate μ and K , respectively. Finally, the estimates of the PC functions
ψ̂1, ψ̂2, . . . are computed through the characterization

∫
M K̂(p, q)ψ̂j (p) dp =

κ̂j ψ̂j (q), which is solved by the discretization of the problem on a fine grid or
by the basis expansion of estimated smooth functions. In the case where the do-
main is an interval of the real line, a theoretical study on the accuracy of ψ̂j as an
estimate of ψj is offered, for example, in Hall and Hosseini-Nasab (2006).

Define the n × s matrix X = (xi(pj )), the column vector μ = ( 1
n

∑n
i=1 xi(pj ))

of length s, the n×M matrix A = (〈Xi,φm〉) and the s ×M matrix � = (φm(pj )).
Let 1 denote the column vector of length n with all entries equal to 1. The empirical
counterpart of the objective function in (2.2) becomes

(2.3)
1

n

∥∥X − 1μT − A�T
∥∥2
F ,

where ‖ · ‖F is the Frobenius norm, defined as the square root of the sum of the
squares of its elements. This last formulation gives a natural way to deal with the
fact that only pointwise and noisy evaluations xi(pj ), i = 1, . . . , n, j = 1, . . . , s,
of the underlying functional samples are usually available. However, it does not
incorporate any information on the smoothness of the functional data. In fact, con-
sidering the Singular Value Decomposition (SVD) of X − 1μT = UDVT , it can be
shown that the minimizing arguments of (2.3) are �̂ = V and Â = UD, thus the
obtained formulation is a multivariate PCA applied to the data matrix X.

The regularized PCA approach consists of adding a penalization term to the
classic formulation of the PCA in order to recover a desired feature of the esti-
mated underlying functions. In particular, the formulation (2.3) has shown a great
flexibility for this purpose. Examples of models where a sparseness property is
assumed on the data are offered, for instance, in Jolliffe, Trendafilov and Uddin
(2003), Shen and Huang (2008), Zou and Hastie (2005). In the specific case of
functional data analysis, the penalization term usually encourages the PC functions
to be smooth. Examples of PCA models that explicitly incorporate a smoothing
penalization term are given by Huang, Shen and Buja (2008), Rice and Silverman
(1991), Silverman (1996). The cited works deal with functions whose domain is a
limited interval in R, and, in particular, our proposal can be seen as an extension
of Huang, Shen and Buja (2008) to the case of functions whose domain is a two-
dimensional manifold. Zhou and Pan (2014) recently proposed a smooth FPCA for
two-dimensional functions on irregular planar domains; their approach is based on
a mixed effects model that specifies the PC functions as bivariate splines on trian-
gulations and the PC scores as random effects. Here we propose a FPCA model
that can handle real functions observable on a two-dimensional manifold. We shall
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consider a smoothing penalty operator, coherent with the 2D geodesic distances
on the manifold. This leads to the definition of a model that can fully exploit the
information about the geometry of the manifold.

3. Smooth FPCA over two-dimensional manifolds.

3.1. Geometric concepts. We first introduce the essential geometric concepts
that allow the definition of the Laplace–Beltrami operator, which plays a central
role in the proposed model. In detail, let the bijective and smooth function ϕ : U ⊂
R

2 →R
3 be a local parametrization of M around the point p ∈M, as depicted in

Figure 1. Let θ ∈ U be such that θ = ϕ−1(p); then

(3.1)
{

∂ϕ

∂θi

(θ)

}
i=1,2

defines a basis for the tangent space TpM at the point p.
The Riemannian manifold M can be equipped with a metric by defining a scalar

product gp on the tangent space TpM. This enables, for instance, the computation
of the lengths of curves or integrals on the surface. Fixing the reference system
on the tangent plane with the basis (3.1), we can represent gp as the matrix G =
(gij )i,j=1,2 such that

gp(v,w) =
2∑

i,j=1

gij viwj

for all v = ∑
vi

∂ϕ
∂θi

(θ) and w = ∑
wi

∂ϕ
∂θi

(θ). In our case it is natural to consider

the scalar product induced by the Euclidean embedding space R
3, that is, the first

FIG. 1. A pictorial representation of the geometric objects modeling the idealized cortical sur-
face M.
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fundamental form

gij (θ) = ∂ϕ

∂θi

(θ) · ∂ϕ

∂θj

(θ),

where · denotes the inner product in R
3. Moreover, we denote by G−1 =

(gij )i,j=1,2 the inverse of the matrix G and by g = det(G) the determinant of
the matrix G.

Let now f : M → R be a real-valued and twice differentiable function on the
manifold M. Let F = f ◦ ϕ, then the gradient ∇Mf is defined as

(∇Mf )(p) =
2∑

i,j=1

gij (θ)
∂F

∂θj

(θ)
∂ϕ

∂θj

(θ).

In the case of a flat manifold M, the last expression reduces to the expression of
the gradient in R

2, that is, ∇ = ( ∂
∂θ1

, ∂
∂θ2

).
The Laplace–Beltrami operator 
M is a generalization to the case of surfaces

of the standard Laplacian defined on R
n, that is, 
 = ∑n

i=1
∂2

∂2θi
. It is related to the

second partial derivatives of f on M, that is, its local curvature, and it is defined
as

(
Mf )(p) = 1√
g(θ)

2∑
i,j=1

∂

∂θj

gij
√

g(θ)
∂F

∂θj

(θ).

The defined operator is invariant with respect to rigid transformations of the refer-
ence system on U .

3.2. Model. Suppose now the sample of n functions xi : M → R is ob-
served at a fixed set of points p1, . . . , ps in M (this will be relaxed later). Let
u = {ui}i=1,...,n be an n-dimensional real column vector. We propose to estimate
the first PC function f̂ : M →R and the associated PC scores vector û by solving
the equation

(3.2) (û, f̂ ) = argmin
u,f

n∑
i=1

s∑
j=1

(
xi(pj ) − uif (pj )

)2 + λuT u
∫
M


2
Mf,

where the Laplace–Beltrami operator is integrated over the manifold M, enabling
a global roughness penalty on f , while the empirical term encourages f to capture
the strongest mode of variation. The parameter λ controls the trade-off between the
empirical term of the objective function and the roughness penalizing term. The
uT u term is justified by some invariance considerations on the objective function,
as done in the case of one-dimensional domains in Huang, Shen and Buja (2008).
Consider the transformation (u → cu, f → 1

c
f ), with c a constant, and the trans-

formation (X → cX,u → cu), where X = (xi(pj )). Then the objective function
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in (3.2) is invariant with respect to the first transformation, while the empirical
and the smoothness terms are rescaled by the same coefficient with the second
transformation.

The subsequent PCs can be extracted sequentially by removing the preceding
estimated components from the data matrix X. This allows the selection of a dif-
ferent penalization parameter λ for each PC estimate. We will refer to the model
introduced as the Smooth Manifold FPCA (SM-FPCA).

3.3. Iterative algorithm. Here we present the numerical algorithm for the res-
olution of the model introduced above. Our approach for the minimization of the
functional (3.2) can be summarized in the following two steps:

• Splitting the optimization in a finite-dimensional optimization in u and an
infinite-dimensional optimization in f ;

• Approximating the infinite-dimensional solution thanks to a Surface Finite Ele-
ment discretization.

Let fs be the vector of length s such that fs = (f (p1), . . . , f (ps))
T . The expres-

sion in (3.2) can be rewritten as

(3.3) (û, f̂ ) = argmin
u,f

∥∥X − ufTs
∥∥2
F + λuT u

∫
M


2
Mf.

A normalization constraint must be considered in this minimization problem to
make the representation unique, as in fact multiplying u by a constant and dividing
f by the same constant does not change the objective function (3.3). In particular,
we set the constraint ‖u‖2 = 1, as this allows us to leave the infinite-dimensional
optimization in f unconstrained.

Our proposal for the minimization of the criterion (3.3) is to alternate the mini-
mization of u and f in an iterative algorithm:

Step 1. Estimation of u given f . For a given f , the minimizing u of the objec-
tive function in (3.3) is

(3.4) u = Xfs
‖fs‖2

2 + λ
∫
M 
2

Mf
,

and the minimizing unitary-norm vector u is

(3.5) u = Xfs
‖Xfs‖2

.

Step 2. Estimation of f given u. For a given u, solving (3.3) with respect to f

is equivalent to finding the f that minimizes

(3.6) Jλ,u(f ) = fTs fs + λ

∫
M


2
Mf − 2fTs XT u.
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Step 1 is basically the classical expression of the score vector given the loadings
vector, where in this case the loading vector is given by fs , the evaluations of the
PC function in p1, . . . , ps . The problem in Step 2 is not trivial, consisting in an
infinite-dimensional minimization problem. Let zj denote the j th element of the
vector XT u; then minimizing the functional in (3.6) is equivalent to minimizing

(3.7)
s∑

j=1

(
zj − f (pj )

)2 + λ

∫
M


2
Mf.

This problem involves estimating a smooth field f defined on a manifold, starting
from noisy observations zj at points pj . In the case of real functions defined on
the real line, adopting a penalty of the form λ

∫
f ′′, the minimization problem

turns out to have a finite-dimensional closed-form solution that is a cubic spline
[Green and Silverman (1993)]. For real functions defined on an Euclidean space,
cubic splines are generalized by thin-plate splines. In this case, for an opportune
smoothing penalty, the solution of the minimization problem can be expressed in
terms of a finite linear combination of radial basis functions [Duchon (1977)].

However, the case of real functions defined on a non-Euclidean domain M is
more involved. In the special case where M is a sphere or a sphere-like surface,
that is, M = {σ(v) = ρ(v)v : v ∈ S} where S ⊂ R

3 is the unit sphere centered at
the origin, this smoothing problem has been considered, among others, by Wahba
(1981) and Alfeld, Neamtu and Schumaker (1996). Moreover, the functional (3.7)
is considered, among others, by Ettinger, Perotto and Sangalli (2016) and Dassi
et al. (2015). Here M is respectively a manifold homeomorphic to an open-ended
cylinder and a manifold homeomorphic to a sphere. In the latter two works the
field f is estimated by first conformally recasting the problem to a planar domain
and then discretizing it by means of planar finite elements, generalizing the pla-
nar smoothing model in Ramsay (2002). Our approach is also based on a Finite
Element (FE) discretization, but, differently from Ettinger, Perotto and Sangalli
(2016) and Dassi et al. (2015), we construct here an FE space directly on the trian-
gulated surface MT that approximates the manifold M, that is, we use surface FE,
avoiding any flattening step and thereby allowing the formulation to be applicable
to any manifold topology.

3.4. Surface Finite Element discretization. Assume, for clarity of exposition
only, that M is a closed surface, as in our motivating application. The case of non-
closed surfaces can be handled by considering some appropriate boundary con-
ditions as done, for instance, in the planar case in Sangalli, Ramsay and Ramsay
(2013). Consider the linear functional space H 2(M), the space of functions in
L2(M) with first and second weak derivatives in L2(M). The infinite-dimensional
part of the estimation problem can be reformulated as follows: find f̂ ∈ H 2(M)

such that

(3.8) f̂ = argmin
f ∈H 2(M)

Jλ,u(f ).
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FIG. 2. The triangulated surface approximating the left hemisphere of the template brain. The mesh
is composed by 32K nodes and by 64K triangles.

PROPOSITION 1. The solution f̂ ∈ H 2(M) exists and is unique and is such
that

(3.9)
s∑

j=1

ϕ(pj )f̂ (pj ) + λ

∫
M


Mϕ
Mf̂ =
s∑

j=1

ϕ(pj )

n∑
i=1

xi(pj )ui

for every ϕ ∈ H 2(M).

As detailed in the Supplementary Material [Lila, Aston and Sangalli (2017)],
the key idea is to minimize Jλ,u(f ) by differentiating this functional with respect
to f . This leads to (3.9), which characterizes the estimate f̂ as the solution of a
linear fourth-order problem.

Consider now a triangulated surface MT , the union of the finite set of trian-
gles T , giving an approximated representation of the manifold M. Figure 2, for
instance, shows the triangulated surface approximating the left hemisphere of a
template brain. We then consider the linear finite element space V consisting in a
set of globally continuous functions over MT that are linear affine where restricted
to any triangle τ in T , that is,

V = {
v ∈ C0(MT ) : v|τ is linear affine for each τ ∈ T

}
.

This space is spanned by the nodal basis ψ1, . . . ,ψK associated to the nodes
ξ1, . . . , ξK , corresponding to the vertices of the triangulation MT . Such basis func-
tions are lagrangian, meaning that ψi(ξj ) = 1 if i = j and ψi(ξj ) = 0 otherwise.
Setting f = (f (ξ1), . . . , f (ξK))T and ψ = (ψ1, . . . ,ψK)T , every function f ∈ V

has the form

(3.10) f (p) =
K∑

k=1

f (ξk)ψk(p) = fT ψ(p)

for each p ∈ MT . The surface finite element space provides a finite-dimensional
subspace of H 1(M) [Dziuk (1988)]. To use this finite element space to discretize
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the infinite-dimensional problem (3.9), that is well posed in H 2(M), we first need
a reformulation of (3.9) that involves only first-order derivatives. This can be ob-
tained by introducing an auxiliary function g that plays the role of 
Mf , splitting
the equation (3.9) into a coupled system of second-order problems and finally in-
tegrating by parts the second-order terms. The details of this derivation can be
found in the Supplementary Material. The discrete estimators f̂h, ĝh ∈ V are then
obtained by solving⎧⎪⎪⎪⎨

⎪⎪⎪⎩

∫
MT

∇MT f̂h∇MT ϕh −
∫
MT

ĝhϕh = 0,

λ

∫
MT

∇MT ĝh∇MT vh +
s∑

j=1

f̂h(pj )vh(pj ) =
s∑

j=1

vh(pj )

n∑
i=1

xi(pj )ui

(3.11)

for all ϕh, vh ∈ V . Define the s × K matrix � = (ψk(pj )) and the K × K ma-
trices R0 = ∫

MT (ψψT ) and R1 = ∫
MT (∇MT ψ)(∇MT ψ)T . Then, exploiting the

representation (3.10) of functions in V , we can rewrite (3.11) as a linear system.
Specifically, the Finite Element solution f̂h(p) of the discrete counterpart (3.11) is
given by f̂h(p) = ψ(p)T f̂, where f̂ is the solution of

(3.12)

[
�T � λR1
λR1 −λR0

][
f̂
ĝ

]
=

[
�T XT u

0

]
.

Solving (3.12) leads to

(3.13) f̂ = (
�T � + λR1R−1

0 R1
)−1

�T XT u.

Although this last formula is a compact expression of the solution, it is preferable
to compute the solution from the linear system (3.12) due to the sparsity property
of the matrix in the left-hand side. As an example, in the simulations and the ap-
plication shown in Sections 4–5, respectively, less then 1% and less then 0.1% of
the elements in the matrix in the left-hand side of (3.12) are different from zero,
allowing a very efficient solution of the linear system.

In the model introduced, we assume that all the observed functions xi are
sampled on the common set of points p1, . . . , ps ∈ M. Suppose, moreover,
p1, . . . , ps ∈ M coincide with the vertices of the triangulated surface MT . In
this particular case, an alternative approach could consist of interpreting the points
p1, . . . , ps ∈ MT as the nodes of a graph linked by the edges of the triangula-
tion and considering the model (3.2) with a discrete smoothness operator term
instead of the Laplace–Beltrami operator [see, e.g., Belkin and Niyogi (2001) for
the choice of the penalization term and Cai et al. (2011) for an application to matrix
decomposition]. However, thanks to its functional nature, the formulation (3.2) can
be easily extended to the case of missing data or sparsely sampled functional data.
Specifically, suppose now that each function xi is observable on a set of points
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pi
1, . . . , p

i
si

; then the natural extension of the model (3.2) becomes

(3.14) (û, f̂ ) = argmin
u,f

n∑
i=1

si∑
j=1

(
xi

(
pi

j

) − uif
(
pi

j

))2 + λuT u
∫
M


2
Mf.

Following the same procedure, we can define an analogous algorithm based on the
following two steps:

Step 1. For a given f , the unitary-norm vector u minimizing (3.14) is given by

u such that ui =
∑si

j=1 xi(p
i
j )f (pi

j )√∑n
i=1(

∑si
j=1 xi(p

i
j )f (pi

j ))
2
.

Step 2. For a given u, the function f minimizing (3.14) is given by f = fT ψ

with f such that

[
L λR1

λR1 −λR0

][
f
g

]
=

[
DT u

0

]
,

where

L =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

n∑
i=1

si∑
j=1

u2
i ψ1

(
pi

j

)
ψ1

(
pi

j

) · · ·
n∑

i=1

si∑
j=1

u2
i ψ1

(
pi
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.

3.5. SM-FPCA algorithm. The algorithm for the resolution of the model SM-
FPCA (3.2) can be summarized in the following steps.
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Algorithm 1 SM-FPCA algorithm
1: Initialization:

(a) Computation of � , R0 and R1.
(b) Perform the SVD: X = UDVT .
(c) fs ← V[:,1], where V[:,1] are the loadings of the first PC.

2: Scores estimation:

u ← Xfs
‖Xfs‖2

.

3: PC function’s estimation: f such that[
�T � λR1
λR1 −λR0

][
f
g

]
=

[
�T XT u

0

]
.

4: PC function’s evaluation:

fs ← �T f.

5: Repeat Steps 2–4 until convergence.
6: Normalization:

f̂ (p) ← fT ψ(p)

‖fT ψ‖L2(MT )

.

The problems (3.2)–(3.14) are nonconvex minimization problems in (u, f ).
However, in the previous section we proved the existence and uniqueness of the
minimizing f given u and vice-versa. This implies that the objective function is
nonincreasing under the update rules of Algorithm 1. Since the first guess of the PC
function, given by the SVD, is usually a good starting point, in all our simulations
no convergence problem has been detected.

3.6. Parameters selection. The SM-FPCA model has a smoothing parameter
λ > 0 that adjusts the trade-off between the fidelity of the estimate to the data,
via the sum of the squared errors, and the smoothness of the solution, via the
penalty term. The problem of choosing the smoothing parameter is common to all
smoothing problems.

The flexibility given by the smoothing parameter can be seen as an advanta-
geous feature; by varying the smoothing parameter, the data can be explored on
different scales. However, in many cases a data-driven automatic method is nec-
essary. In the following simulations we consider two different criteria. The first
approach consists of a K-fold cross-validation. The data matrix X is partitioned by
rows into K roughly equal groups. For each group of data k = 1, . . . ,K , the dataset
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can be split into a validation set Xk , composed of the elements of the kth group,
and a training set, composed of the remaining elements. For different smoothing
parameters, the loading function f −k is estimated from the training dataset. Given
the estimated loading function f −k , the associated score vector uk is computed on
the validation dataset. Since f −k has been computed on the training dataset, uk

should be computed on the validation dataset via the formula (3.4), where
∫
M 
2

M
can be approximated by gT R0g, with gh(p) = ψ(p)T g the auxiliary function ap-
proximating 
Mf . Finally, we select the value of the parameter λ that minimizes
the following score:

(3.15) CV(λ) =
K∑

k=1

∑n
i=1

∑s
j=1(xi(pj ) − uk

i f
−k(pj ))

2

np
.

The second approach is based on the minimization of a generalized cross-
validation (GCV) criteria integrated on the regression step of the iterative algo-
rithm. Setting S(λ) = �T (�T � + λR1R−1

0 R1)
−1�T , the GCV score is defined

as

GCV(λ) = 1

s

‖(I − S(λ))(XT u)‖2

(1 − 1
s

tr{S(λ)})2
.

The GCV score represents the average misfit of the regression model with a leave-
one-out cross-validation strategy on the observations’ vector XT u. However, ex-
cluding the ith element from the vector XT u can be interpreted as removing the
ith column from the data matrix X. Thus, in terms of the data-matrix, this strategy
can be interpreted as a leave-one-column-out cross-validation strategy, as opposed
to the K-fold, where the data matrix X is partitioned by rows. The GCV approach
is generally faster than the K-fold approach. However, the K-fold does not require
the inversion of any matrix. This is an advantageous feature, since generally the
inverse of a sparse matrix is not sparse. It is thus applicable also to datasets X with
a large number of columns s.

3.7. Total explained variance. Another parameter that must be chosen is the
number of PCs that satisfactorily reduces the dimension of the data. A classical
approach consists of selecting this parameter on the basis of cumulated explained
variance of the PC. While in the ordinary PC the scores vectors are uncorrelated
and their loadings are orthogonal, in our formulation neither the loadings are ex-
plicitly imposed to be orthogonal nor the PC scores to be uncorrelated. It is never-
theless possible to define an index of explained variance as follows. Let Û be the
n × k matrix such that the columns of Û are the first k PC scores vectors. Since in
our estimation procedure the PC scores are normalized to have unitary norm, the
variance of the PCs is captured by the PC functions. It is thus necessary to con-
sider here the unnormalized PC scores, obtained by multiplying each score vector
by the norm of the associated PC function. Without the uncorrelation assumption,
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it is meaningless to compute the total variance explained by the first k PCs by
tr(ÛT Û). To overcome this problem, Zou, Hastie and Tibshirani (2006) propose to
remove linear dependence between correlated PC scores vectors by regression pro-
jection. Thus, they compute the QR decomposition of Û as Û = QR and define the
adjusted total variance as

∑k
j=1 R2

jj , where Rjj represents the variance explained
by the j th PC that is not already explained by the previous j − 1 components.

4. Simulation studies. In this section we conduct simulations to assess the
performance of the SM-FPCA algorithm compared to other methods.

We consider as domain of the functional observations a triangulated surface
MT with 642 nodes that approximates the brainstem. On this triangulated surface
we generate the orthonormal functions {vl}l=1,2,3, consisting in three eigenfunc-
tions of the Laplace–Beltrami operator, as shown in Figure 3. These functions
represent the first three PC functions. We then generate n = 50 smooth functions
x1, . . . , x50 on MT by

(4.1) xi = ui1v1 + ui2v2 + ui3v3, i = 1, . . . , n,

where ui1, ui2, ui3 are independent random variables that represent the scores and
are distributed as uil ∼ N (0, σ 2

l ), with σ1 = 5, σ2 = 3 and σ3 = 1. The smooth
functions xi are then sampled at locations pj ∈ R

3 with j = 1, . . . , s coinciding
with the nodes of the triangulated surface. Moreover, at each of these points we add
to the functions a Gaussian noise with mean zero and standard deviation σ = 0.1 to
obtain the noisy observations denoted with xi(pj ). We are thus interested in recov-
ering the smooth PC functions {vl}l=1,2,3 from these noisy observations over MT .
We compare the proposed SM-FPCA technique to two alternative approaches.

FIG. 3. From left to right, a plot of the true first, second and third PC functions and a plot of a noisy
observation on the brainstem generated from these three PC functions.
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The first basic approach we consider is a simple multivariate PCA (MV-PCA)
applied to the data matrix X. The PC functions are thus obtained by piecewise lin-
ear interpolation over the mesh MT . Finally, they are normalized to have unitary
norm in L2(MT ).

A second natural approach is based on a presmoothing of the noisy observations
that tries to recover the smooth functions xi, i = 1, . . . , n, from their noisy observa-
tions xi(pj ), followed by a MV-PCA on the denoised evaluations of the functions
on pj , j = 1, . . . , s. The smoothing problem for a field defined on a Riemannian
manifold is not trivial. In this case the smoothing technique applied is Iterated Heat
Kernel (IHK) smoothing [Chung et al. (2005)]. The heat kernel smoothing of the
noisy observation xi(pj ) is given by Kη ×xi(pj ) = ∫

M Kη(p,q)xi(pj ) dq , where
η is the smoothing parameter and Kη is the heat kernel, whose analytic expression
can be extracted from the eigenfunctions of the Laplace–Beltrami operator. How-
ever, for numerical approximation, it can be shown that, for η small and for q close
to p, we have

Kη(p,q) ≈ 1

(2πη)
1
2

exp
[
−d2(p, q)

2η2

]
.

The desired level of smoothing can be reached after k iterations, thanks to the
following property: Kk

η ×f = Kη×· · ·×Kη×f = K√
kη. For a fixed bandwidth η,

the level of smoothing is determined by an optimal number of iterations selected
via the F-test criterion outlined in Chung et al. (2005). In these simulations, the
bandwidth has been set at η = 2.5, heuristically selecting the one with the best
performance after some initial pilot studies. We refer to this approach as IHK-
PCA.

The proposed SM-FPCA technique is implemented as follows. For each PC we
run Algorithm 1 with 15 iterations of steps 2–4. For the choice of the optimal
smoothing parameter λ, both K-fold, with K = 5, and GCV approaches have been
applied.

The reconstructed PC functions using the three different approaches are shown
in Figure 4. It is evident that applying the MV-PCA yields to a reconstruction far
from the truth because of the absence of any spatial information. The reconstruc-
tion through the IHK-PCA approach and the SM-FPCA model is considerably
more satisfactory. In Figure 5 we show the plots with the cumulative percentage
of explained variance, where, in the case of SM-FPCA, the explained variance has
been computed as detailed in Section 3.6.

While the poor performance of the MV-PCA is evident, to assess the perfor-
mance of the other two methods, we apply them to 100 datasets generated as pre-
viously detailed. The quality of the estimated individual surfaces is then measured
using the mean square error (MSE) over all the locations pj , j = 1, . . . , s. MSEs
are also used to evaluate the reconstruction of the PC scores vectors. Another per-
formance measure used is the principal angle between the subspace spanned by
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FIG. 4. From left to right, contours of the original PC functions and their estimates, respectively,
with MV-PCA, IHK-PCA, SM-FPCA GCV and SM-FPCA K-fold. From a visual inspection, MV-PCA
shows unsatisfactory results, while a better estimation is achieved by IHK-PCA and SM-FPCA. In
particular, SM-FPCA is able to better capture details that IHK-PCA ignores. This is apparent, for
instance, in the third PC function reconstruction in the top-left and top-right corners.

FIG. 5. From left to right, plot of the empirical variances explained by the first 5 PCs computed
with MV-PCA, IHK-PCA, SM-FPCA GCV and SM-FPCA K-fold.
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the estimated PC functions and the subspace spanned by the true PC functions,
as used in Shen and Huang (2008). Intuitively, the principal angle measures how
similar the two subspaces are. For this purpose we construct the s × 3 matrices
V = (vi(pj )) and V̂ = (v̂i(pj )), where v̂i is the ith estimate of the true PC func-
tion vi . Then we compute the orthonormal set of basis QV and Q

V̂
from the QR

decomposition of V and V̂. The principal angle is defined as the angle cos−1(ρ),
where ρ is the minimum singular value of QT

V̂
QV. The results are summarized

in the boxplots in Figure 6, which compares the MV-PCA, IHK-PCA and SM-
FPCA algorithms with respect to the reconstruction’s errors of the PC functions
{vl}l=1,2,3, the PC scores {ul}l=1,2,3 where ul = (uil), the reconstructed signals

FIG. 6. Boxplots summarizing the performance of IHK-PCA and SM-FPCA. For the SM-FPCA,
both GCV and K-fold have been applied for the selection of the smoothing parameter.
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xi = ui1v1 + ui2v2 + ui3v3 for i = 1, . . . ,50, and the principal angles between the
subspaces spanned by the true and estimated PC functions.

The boxplots highlight the fact that SM-FPCA provides the best estimates of the
PC functions, corresponding scores vectors, signals and subspace reconstruction.

5. Application. The dataset which we consider in this paper arises from the
Human Connectome Project Consortium [HCP, Essen et al. (2012)], which is col-
lecting data such as structural scans, resting-state and task-based functional MRI
scans, and diffusion-weighted MRI scans from a large number of healthy vol-
unteers to help elucidate normal brain function. Many preprocessing considera-
tions have already been resolved in the so-called minimally preprocessed dataset.
Among the various preprocessing pipelines applied to the HCP original data, of
particular interest for us is the one named fMRISurface [Glasser et al. (2013)].
This pipeline provides a transformation of the 3D structural MRI and 4D signal
from the functional MRI scan so as to enable the application of statistical anal-
ysis techniques on brain surfaces. For each subject, the personal cortical surface
is extracted as a triangulated surface from the structural MRI and to each vertex
of this mesh is associated a BOLD time-series derived from the BOLD signal of
the underlying gray-matter ribbon. The extracted cortical surfaces are aligned to a
template cortical surface generated from the cortical surfaces of 69 healthy adults.
In practice, this cortical surface is represented by two triangulated surfaces with
32K vertices, one for each hemisphere. In Figure 2 the left hemisphere is shown.
Through this anatomical transformation map, the patients’ BOLD time-series, on
the cortical surface, are coherently located to the vertices of the template corti-
cal surface. This, of course, raises questions about the implications of anatomical
alignment, and a small simulation study in the supplementary material investigates
this issue. The fMRI signal used for our analysis has been acquired in the absence
of any task, and for this reason is also called the resting state fMRI. Finally, each
time-series is filtered to the band of frequencies [0.009,0.08] Hz. Summarizing,
the data considered are fMRI filtered time-series on a common triangulated tem-
plate mesh.

As already mentioned in Section 1, a classic approach in the study of the rest-
ing state fMRI is to exploit the time dimension of the data for the extraction of a
connectivity measure among the different parts of the cortical surface. A standard
choice for this purpose is the computation of the temporal correlation. It first con-
sists of identifying a Region of Interest (ROI) on the cortical surface. This is the
area whose behavior, as compared to the rest of the cortical surface, is of interest
for the investigator. Within each subject, a cross-sectional average of all the time-
series in the ROI is used to find a representative mean time-series. To each vertex
of the cortical surface we associate the pairwise correlation of the time-series lo-
cated in that vertex with the subject-specific time-series representative of the ROI.
Finally, each correlation value is transformed using Fisher’s r-to-z transformation,
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FIG. 7. Parcellation of the cortical surface derived in Gordon et al. (2014). In red the Region
of Interest chosen for the computation of the RSFC maps. This region is localized on an area of the
cerebral cortex called the precuneus. The blue colors indicate the parcellated regions, with the major
blue area being the part of the brain that connects the two brain hemispheres, which is not part of
the cortical surface and which is therefore excluded from the analysis.

yielding a resting state functional connectivity (RSFC) map for each subject. The
total number of subjects considered for this analysis is 491.

For the choice of the ROI, we consider the cortical parcellation derived in
Gordon et al. (2014), where a group-average boundary map of the cortical sur-
face is derived from resting state fMRI (Figure 7). The identified cortical areas are
unlikely to correspond to the individual parcellation of each subject since they are
derived from a group average study. However, they can serve as reasonable ROIs
in individual subjects. The parcel that served as ROI in the following analysis is
highlighted in red in Figure 7. For the chosen ROI, a snapshot of the RSFC map of
one subject is shown in Figure 8.

The mean RSFC map is shown in Figure 9. As expected, high correlation values
are visible inside the ROI. The mean RSFC over 491 subjects shows a variability
coherent with the parcellation, in the sense that the vertices inside each parcel show
similar values. We wish now to understand which are the main modes of variation
of these RSFC maps among the different subjects by applying a PCA.

FIG. 8. A snapshot of the RSFC map of one subject.
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FIG. 9. The mean RSFC map computed over 491 subject. As expected, high correlation values are
visible inside the ROI.

The first three PC functions, estimated with SM-FPCA, are shown in Fig-
ures 10–12 as compared to the PC functions derived from MV-PCA and IHK-PCA.
The choice of the smoothing parameter for the SM-FPCA is based on the K-fold
cross-validation, with K = 5.

The PC functions estimated from the MV-PCA show an excessive variability
since the sample size is not sufficiently large to deal with the extremely high di-
mensionality of the data, and the spatial information is completely ignored by this
model. In fact, even recent attempts to model the subject variability from rest-
ing state fMRI lead to the conclusion that spatial mismatches, introduced by the
alignment problem, are one of the biggest sources of currently observable dif-
ferences between subjects [Harrison et al. (2015)]. This registration process can

FIG. 10. From left to right, two views of the first PC function computed respectively with MV-PCA,
IHK-PCA and SM-FPCA.
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FIG. 11. From left to right, two views of the second PC function computed respectively with
MV-PCA, IHK-PCA and SM-FPCA.

result in misalignments, due to the lack of functional regions being perfectly co-
incident or due to situations where the local topology is strongly different among
subjects. These misalignments can introduce fictitious effects on the computed

FIG. 12. From left to right, two views of the third PC function computed respectively with MV-PCA,
IHK-PCA and SM-FPCA.
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PC functions. Data misalignment is a well-known problem in FDA [Marron et al.
(2015)]. For functional data with one-dimensional domains, typical approaches
are based on shifting or (monotone) transformations of the domain of each func-
tion. But neither shifting nor monotonic transformations make sense on a generic
non-Euclidean domain, and so it is not clear how to generalize the standard FDA
approaches. The introduction of a smoothing penalty in the PCA model should re-
duce the variability effects due to misalignment. In fact, the smoothing parameter
in the SM-FPCA algorithm can be seen as a further degree of freedom that allows a
multiscale analysis, meaning that, by increasing the smoothing penalty parameter,
it is possible to constrain the results to show only the macroscopical effects of the
phenomena and to remove the artifacts introduced by the preprocessing steps.

Both IHK-PCA and SM-FPCA return smooth PC functions. A visual inspec-
tion of the estimated PC functions, though, highlights that IHK-PCA completely
smooths out sharper changes in the modes of variations, missing some localized
features that are apparent in MV-PCA and are also very well captured by the pro-
posed SM-FPCA. Comparing, for instance, the estimated third PC functions, in the
top views of Figure 12, one can see for both MV-PCA and SM-PCA corresponding
localized areas with very high values (in red) and very low values (in blue) that are
instead missing in the IHK-PCA estimate. By contrast, the presmoothing approach
appears to introduce some artifacts: looking at the bottom views in Figure 12, one
can, for instance, notice that IHK-PCA estimated the third PC function has high
values in the higher part of the plot, which do not have a match on the MV-PCA or
on the SM-FPCA estimate.

For the purpose of interpretation of the PC functions, we might prefer to plot
the functions μ± 2σf , where μ denotes the mean RSFC map, σ denotes the stan-
dard deviation of the PC scores vector and f denotes the associated PC function.
In Figure 13 we show the described plot for the first PC function. We can ob-
serve that while the high correlation value in the ROI and inferior parietal are in
the first approximation preserved from subject to subject, a high variability be-
tween subjects can be observed in the areas surrounding the ROI and the inferior
parietal, which is understood due to individual inter-subject differences [Buckner,
Andrews-Hanna and Schacter (2008) and references therein]. However, it should
be noted that variability can be both somewhat localized as well as more spatially
smooth, indicating that, even in resting state data, brain regions have a differential
response which is not simply a result of noise in the data.

6. Discussion. In this paper we introduced a novel PCA technique that can
handle functional data located over a two-dimensional manifold. The adopted ap-
proach is based on a regularized PCA model. In particular, a smoothness penalty
term that measures the curvature of a function over a manifold is considered, and
the estimation problem is solved via an iterative algorithm that uses finite ele-
ments. The motivating application is the analysis the RSFC maps over the cortical
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FIG. 13. From left to right, two views of μ − 2σf , μ, μ + 2σf , where μ denotes the mean RSFC
map, σ denotes the standard deviation of the first PC scores vector and f denotes the first PC
function.

surface, derived from the fMRI. In this setting the adoption of a MV-PCA suf-
fers from the high-dimensionality of the data with respect to the relatively small
sample size. The adoption of an approach based on individual presmoothing of
the functional samples, followed by a MV-PCA, gives smooth estimates of the PC
functions. However, this presmoothing step tends to remove useful information
from the original data. The proposed SM-FPCA instead returns smooth PC func-
tions that nevertheless are able to capture localized features of the estimated PC
functions. It could also be imagined that, in more complex study designs (such
as patient versus control studies), these PC functions, along with the associated
scores, could be used to investigate diverse differences between groups or covari-
ate effects.

A further important feature of SM-FPCA is its computational efficiency. The
most computationally intensive operation is the resolution of the linear system in
the iterative algorithm. However, this linear system enjoys two important proper-
ties. The first is the independence between its dimensions, related to the number of
nodes of the triangular mesh, and the number of pointwise observations available
for each functional sample as well as the sample size. In fact, since its resolution
time depends mostly on the mesh size, a mesh simplification approach [Dassi et al.
(2015)] could be adopted to speed up the algorithm. The second and most funda-
mental property is the sparsity of the linear system. The use of a sparse solver
allows an efficient computation of the solution. For instance, in the final applica-
tion, the dimension of the linear system is 64K × 64K. Despite its dimension, the
solving time is less than a second. The application of the entire algorithm, for a
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fixed smoothing parameter, with 15 iterations is less than 15 seconds on a Intel
Core i5-3470 3.20 GHz workstation with 4 GB of RAM.
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SUPPLEMENTARY MATERIAL

Supplement to “Smooth Principal Component Analysis over two-dimen-
sional manifolds with an application to neuroimaging” (DOI: 10.1214/16-
AOAS975SUPP; .pdf). The online supplementary material contains the theoretic
details of the Finite Element discretization approach. Moreover, it includes further
simulations on the sphere investigating both the methodology and its robustness to
alignment issues.
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