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Abstract: Alkali Silica Reaction (ASR) is known to be a serious problem for concrete worldwide,
especially in high humidity and high temperature regions. ASR is a slow process that develops over
years to decades and it is influenced by changes in environmental and loading conditions of the
structure. The problem becomes even more complicated if one recognizes that other phenomena
like creep and shrinkage are coupled with ASR. This results in synergistic mechanisms that can
not be easily understood without a comprehensive computational model. In this paper, coupling
between creep, shrinkage and ASR is modeled within the Lattice Discrete Particle Model (LDPM)
framework. In order to achieve this, a multi-physics formulation is used to compute the evolution of
temperature, humidity, cement hydration, and ASR in both space and time, which is then used within
physics-based formulations of cracking, creep and shrinkage. The overall model is calibrated and
validated on the basis of experimental data available in the literature. Results show that even during
free expansions (zero macroscopic stress), a significant degree of coupling exists because ASR induced
expansions are relaxed by meso-scale creep driven by self-equilibriated stresses at the meso-scale.
This explains and highlights the importance of considering ASR and other time dependent aging and
deterioration phenomena at an appropriate length scale in coupled modeling approaches.

Keywords: Alkali Silica Reaction; Lattice Discrete Particle Model; concrete; Creep; shrinkage;
aging; deterioration

1. Introduction

Alkali-Silica Reaction (ASR), a problem of world wide nature [1], leads to internal deterioration
in the form of a distributed network of cracks. In the early stages, the cracks are very fine and
usually unseen by naked eye since only cracks with opening >100 µm can be visually noticeable,
yet deterioration is enough to reduce concrete strength by a noticeable level [2]. It must be observed here
that such deterioration is often overlooked in typical experiments simply because it is counterbalanced
by strength increase due to cement hydration While many research efforts are directed towards
a permanent cure for ASR affected structures, the currently available solutions are only in the research
development stage and have many limitations. Therefore, unfortunately, unless moisture in concrete is
reduced below 60% to 80% and maintained below these limits, affected structures, even if rehabilitated,
will not stop deteriorating and, eventually, they will need to be replaced.

Basic mechanisms of ASR can be summarized as follows: alkali available in Portland cement react
with the silica in siliceous aggregate and produce the so-called basic ASR gel. While the basic ASR
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gel is believed not to cause expansion [3], it imbibes water and, consequently, it expands resulting in
internal pressure inside the concrete meso-structure ultimately causing cracking and damage.

Many variables related to concrete chemistry and composition as well as structural details affect
ASR evolution, but a major player is the effect of the surrounding environment. Many researchers
confirmed that for ASR to occur, a minimum moisture content must be present, and they reported
different critical values for the internal relative humidity, between 60% and 85% [4–8]. In addition,
similarly to many chemical reactions and diffusion processes, temperature accelerates the reaction in
warmer places [1] and slows it down in colder ones. Furthermore, over the service lifetime—expected
to be 100 years according to the most recent guidelines– of concrete structures, other aging and
deterioration phenomena interfere and interact with ASR. These include creep, shrinkage [9–11],
delayed ettringite formation [12,13], freeze-thaw [14], and others. Such complexity limits the validity
of typical laboratory approaches for which, one of the main challenges in extrapolating accelerated lab
experimental data to real structures is the inconsistency of the acceleration rate of different phenomena,
e.g., ASR, creep and concrete aging. For example, creep deformations occurring over multi-decades are
believed to relieve ASR expansive pressure in a different way compared to lab accelerated experiments
that start and finish at a relatively young age of concrete [15]. The only reasonable way to extrapolate
from lab to real applications is through the use of computational models.

The simulation of ASR induced expansion and its effect on both concrete materials and structures
has been approached by various authors at different time and length scales with a wide range of levels
of sophistication and complexity.

Existing models often even differ on the fundamental assumptions related to ASR mechanisms.
Such large variety can be traced back to: (1) specific application needs, e.g., models intended for
use in design or retrofit are different from those used to understand the chemistry or replicate the
reaction kinetics; (2) experiments used in model development, which have a major effect on the
formulated hypothesis and the resulting simplifying assumptions; (3) available computational power
which, if limited, restricts the modeling approach to macroscopic level finite element simulations,
or whereas, if substantial, allows formulating models all the way to molecular dynamics. Item 2 is
likely to be the most important because ASR processes depend highly on the chemistry and mineralogy
of aggregate including its silica chemistry, distribution, and content, and it also highly depends on
the surrounding binder chemistry including cement, cement replacement products (slag, silica-fume,
fly ash, etc.), and additives (superplasticizers). The composition of all these products has huge
geographical variations making observations and conclusions obtained in specific research difficult to
extrapolate [16–18]. This, in turn, limits the general applicability of deterioration models to different
experimental observations. On the aggregate side, inside each aggregate particle, the silica distribution
is, in most cases, non-uniform and it forms pockets, veins, and scattered inclusions [19–21]. Outside
the aggregate particle, a variety of different alkali (Na+,K+,Ca+,...) ions are available and all react with
silica inside the aggregate in presence of hydroxide (OH−) ions and water (H2O) [17,22,23] that are
mainly provided through the cement paste [24,25] especially at later concrete ages [26,27]. With such
a variety in both aggregate mineralogy and alkali available ions, the reaction of silica gives rise to an
amorphous gel whose precise chemical composition varies widely [28,29]. In all situations, regardless
of the chemistry and physics of the reaction and products, the observed result is significant cracking
in reactive mixes both in the cement paste and inside the aggregate particles [18,30,31]. Furthermore,
experimental (especially petrographic) observations clearly indicate the presence of ASR gel at the
aggregate surface (“reaction rim”), inside aggregate particles, and, only in the case of very reactive
aggregate, inside cracks.

Several theoretical models were formulated to describe ASR gel evolution as a function of
petrographic measurements of aggregate and mortar [3,32–39]. They mainly captured various aspects
of ASR expansion including aggregate pessimum size, ASR induced expansion and pressure, but
they missed the underlying fracture mechanics of the deterioration process. Bažant [40] predicted
the pessimum size of aggregate in a fracture mechanics based formulation and Gao et al. studied
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the combined pessimum size and specimen size [41]. Dunant and Scrivener recently showed that the
effects can be explained by the difference in rate of aggregate reaction that produces early cracking in
small aggregate and late cracking in cement paste [42].

At the macroscopic scale, models aimed at describing the global expansion and mechanical
deterioration due to ASR. Purely phenomenological models were presented by Charlwood et al. [43]
and Thompson et al. [44]. Leger et al. presented a more refined FE model for dam analysis [45] and,
later, others included creep [46]. Such models were able to predict well displacements and stress history
in the structure, but they completely lack the ability to predict crack patterns and had no connection
between the deterioration of mechanical properties and ASR physical phenomena. To improve
these models, chemo-mechanical coupling was introduced by Huang and Pietruszczak [47,48] and
Ulm et al. [49] who developed models based on the ASR kinetics. Using these models [49] within
a smeared crack finite element framework, Farage et al. [50] and Fairbairn et al. [51] were able to
reproduce some ASR expansion data available in the literature.

More advanced models considered stress state effects. The model by Saouma and Perotti [52]
introduced a three dimensional weighing function describing the dependence of expansion on the stress
state. Multon et al. [53] accounted for the shrinkage and compressive strains in beams affected by ASR.
Comi et al. [54,55] proposed damage models that combined, in a consistent thermodynamic fashion,
the chemical and mechanical components of the ASR process. Furthermore, an important improvement
was added by Poyet et al. [56] as he incorporated the effect of humidity and temperature in the reaction
kinetics law. A similar, yet more recent, work by Pesavento et al. [57] introduced the humidity effects
as a change of the ASR kinetics model by Ulm et al. [49] which originally considered only temperature
effects. While all previous models were deterministic, Capra and Sellier [58] formulated a probabilistic
model based on the main parameters affecting ASR. For very extensive literature reviews of available
ASR models, the reader may want to consult Refs. [1,15,59,60].

All aforementioned models while were successful to some extent, they all lacked the ability to
reproduce physically realistic cracking both in pattern and in distribution. They all depended on
some sort of phenomenological assumptions and relationships to replicate the degradation effect of
ASR. Many models were only simulating expansion, and damage was just a byproduct of restraining
and, as a result, such models can never simulate degradation of free expansion tests. In addition,
those models which were successful in reproducing stress state effects on ASR expansion, failed to
explain complex triaxial behavior of concrete under ASR and had to merely use phenomenological
relationships between ASR gel expansion and stress state. A common reason for such limitations is
considering concrete as an isotropic, homogenous continuum.

In the literature, it is very rare to find reliable concrete models that incorporate its heterogeneous
and random nature by describing it as a multi-phase material (three phase consisting of aggregate,
binder and interfacial transition zone or two phase consisting of aggregate and binder). One of the
attempts in this direction is the model by Comby-Peyrot et al. [61] which modeled concrete behavior
at mesoscale with the application to ASR in a 3D computational framework, which replicated well
concrete fracture up to the peak but was unable to reproduce complete degradation in the softening
regime. A microscale 2D model by Dunant et al. [62] qualitatively reproduced material deterioration of
concrete properties by simulating expansive gel pockets inside the aggregates. Inability to reproduce
diffusion of alkali into the aggregate and the simplified 2D character of the model, did not allow the
model to produce quantitative results. With the help of scanning electron microscopy techniques,
Shin and colleagues [63,64] developed a refined, and computationally very intensive, 2D finite element
models of damaged internal structure of concrete. Still in 2D, the micromechanical model by Giorla
et al. also included creep effects [11]. This model also suffered from 2D limitations, extremely high
computational cost and overall very simplified reaction kinetics. This limited the predictive capability
of the model to be extended to different aggregate types and it only replicates SEM images of the
samples that were tested. However, it was able to demonstrate that in many cases, there is no need
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to assume diffusion of the produced gel from the silica pockets to replicate damage and only pocket
expansion is enough.

Generally, the length scale at which computational models are developed allows capturing the
phenomena at that length scale and requires that lower scale phenomena are averaged and included
in the constitutive equations. The choice of the length scale is a challenge where a trade off must be
considered between the model accuracy and maximum size of structure that can be eventually be
simulated. For example, as appealing molecular dynamics simulations can be, they are usually limited
to the simulation of volumes of material in the nanometer range. Therefore, there is no chance at the
moment to use these approaches to model even one single aggregate piece.

In 2013, Alnaggar et al. [65] proposed a multiscale model for ASR deterioration of concrete
structures entitled ASR-LDPM and simulating ASR effects within the Lattice Discrete Particle Model
(LDPM) [66,67]. LDPM, in a full 3D setting, simulates the mechanical interaction of coarse aggregate
pieces through a system of three-dimensional polyhedral particles, each resembling a spherical coarse
aggregate piece with its surrounding mortar, connected through lattice struts [66] and it has the
ability of simulating the effect of material heterogeneity on the fracture process [67]. ASR-LDPM
unprecedentedly replicated all general aspects of ASR expansion and its degradation effects without
the need of postulating any phenomenological assumptions between stress state or material constitutive
behavior and the ASR kinetics. Such a unique feature was made possible by distinguishing between
ASR gel and ASR induced cracking, two sources of measured expansion that have been always
denoted by other researchers as a combined ASR strain. The model was limited to fully saturated
conditions and accounted for the accompanying shrinkage and creep strains at the macroscopic level
only. ASR-LDPM was able to explain the experimental results of non-destructive testing of concrete
using ultrasonic techniques [68]. The model replicated the change in acoustic nonlinearity parameter
and correlated it to the cracking volume and pattern. Till today, there has been no other model able to
replicate these measurements in concrete without any explicit introduction of constitutive relationships
relating expansion to damage. The model also was extended to consider alkali nonlinear diffusion
and proposed a concentration dependent diffusivity parameter for alkali that accounts for the effect
of concrete pore charge on diffusivity [68]. In addition, in his PhD work, Alnaggar [9] also proposed
an extension of the ASR-LDPM model to unsaturated conditions and its coupling with creep and
shrinkage deformations.

More recently, other multi-scale models appeared in the literature. Multon et al. modeled the effect
of alkali leaching by modeling alkali macro-diffusion and its effects on expansion of specimens [69].
While the model did include leaching effects, the simplified assumption of linear diffusion represent a
contradiction with available literature data on alkali diffusion [70–72]. In addition, the phenomenological
damage mechanics constitutive formulation of the model reduces also its capability to realistically
capture all ASR expansion and damage aspects, not to mention its coupling with other phenomena.
An extended version of the model was used to simulate both ASR and DEF expansions considering
their coupling with leaching and moisture transfer. The model and accompanying experiments showed
the importance of such coupling especially for large crack openings [73]. Another comprehensive
model considering possible migration of ASR gel and its diffusion within the concrete porous structure
was recently presented by Bažant et al. [10]. This model also considered creep effects, stress effects and
humidity effects on ASR expansion and the resulting damage [74].

In the present study, ASR-LDPM [65] is reviewed and extended to variable moisture conditions
and is implemented within a multi-scale multi-physics framework that takes into consideration
spatial and temporal distributions of humidity and temperature inside concrete. All accompanying
deformations, such as shrinkage, thermal and creep strains, are also introduced in the numerical
framework allowing not only the macroscopic effects of those deformations but notably the effects
of creep-induced stress relaxation of ASR induced internal pressure. The humidity, temperature
and cement hydration calculations are performed using an FE multi-physics framework and are
interpolated at the facets of the mechanical model (LDPM).
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With the exception of the Microplane model [10], macroscopic homogeneous continuum models
can not simulate such feature. This is because, in case of free expansion, all ASR stresses are self
equilibrated and don’t contribute to the macroscopic stress state, thus the macroscopic stress tensor
is zero and that does not produce any creep strain. This can be seen for example in the model by
Kawabata et al. [2], which while successful in many regards, it considers macroscopic creep only.

2. Multi-Physics Formulation

2.1. Modeling ASR Expansion

Considering the observations on aggregate nature, its chemistry, and the chemistry of the
surrounding binder mentioned in Section 1, it is obvious that, regardless of the sub-scale phenomena
that govern the ASR expansion and cracking within the aggregate, a diffusion process at the meso-scale
has to happen to transport alkali ions into the aggregate for ASR gel to form and to also transport
water for the gel to imbibe and later expand. Considering also, the non-feasible simulation of full
3D structural elements using micro-to nano-scale models, in this study the choice was made to use
a meso-scale model (ASR-LDPM) [65,68,75], that would be capable of reflecting the major phenomena
at that length scale and average sub-scale ones. ASR-LDPM implements, within the mesoscale
framework of LDPM, a model describing ASR gel formation and expansion at the level of each
individual aggregate particle. The overall average rate of expansion of a single aggregate piece
is related to two main processes: (1) basic gel formation; and (2) water imbibition. Subsequently,
the volume increase due to water imbibition is imposed as an eigenstrain within the LDPM model.

Gel Formation. Similarly to the work in Reference [65], the formulation focuses on the mesoscale
(length scale of coarse aggregate pieces) and finer scale mechanisms are accounted for in an average
sense through mesoscale governing equations. The gel mass Mg generated from an aggregate particle
with diameter D, is derived by solving the equation governing a radial diffusion process into the
aggregate particle (see Figure 1a). This is justified by the fact that, regardless of the fine scale
characteristics of gel formation, water and alkali ions must diffuse through aggregate particle to
reach the silica. Thus, one can write,

Mg = κaρg
π

6

(
D3 − 8z3

)
(1)

and

ż = −κz
we

z
(
1− 2z

D
) (2)

where we = water content in the concrete surrounding the aggregate particle estimated based on
Reference [76] as we = (w/c− 0.188α∞

c )c at saturation; α∞
c = (1.031 w/c)/(0.194 + w/c) asymptotic

hydration degree [77]; w/c = water-to-cement ratio; c = cement content. Furthermore, in Equations (1)
and (2), z = the diffusion front position measured from each aggregate particle center as shown in
Figure 1a, ρg (with units kg/m3) represents the mass density of gel formed and it depends on its

chemical composition and silica content per aggregate volume. κz = κz0 exp
(

Eag
RT0
− Eag

RT

)
represents

the diffusivity of alkali rich water into the aggregate and has units of m5/(kg day) where κz0 is its
value at room temperature (T0 = 296 ◦K); T = current temperature; Eag = activation energy of the
diffusion process; and R = universal gas constant. κa = min(〈ca − ca0〉 /(ca1 − ca0), 1) accounts for
the fact that alkali content available in the cement paste surrounding each aggregate particle, is not
always enough for the ASR reaction to occur; ca0 is the threshold alkali content at which, no or minimal
expansion is observed, and ca1 is the saturation alkali content enough for complete silica reaction.
Note that z might represent, depending on the situation, the evolution of different phenomena, from
the thickness of the reaction rim to the extent of the penetration of alkali rich water needed for the
reaction of isolated silica pockets.
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be almost instantaneous. Thus, the rate of ASR gel production can be best approximated by solving a

di↵usion problem.

Consistently, for a steady state di↵usion process at constant temperature, one can write [21]

Mw = ws
1 � z/x

1 � 2z/D
(1)

where Mw = water concentration within the layer of ASR gel; x = radial coordinate; z = radius of the

remaining unreacted particle; and D = aggregate particle diameter (See Fig. 1a for details). In addition,

ws is the concentration of water in the concrete surrounding the aggregate particle and can be estimated

[73], as ws = (w/c � 0.425↵1
c )c; ↵1

c = (1.031 w/c)/(0.194 + w/c) (asymptotic hydration degree); w/c =

water-to-cement ratio; c = cement content.

Furthermore, the advancement of the reaction front can be expressed through a mass balance equation

expressing the balance between the water available and the water used in the chemical reaction:

rwcsdz = �as(T )
@Mw

@x

����
x=z

dt (2)

in which t = time; rw = water-to-silica stoichiometric ratio; cs = silica content, e.i. mass of silica per

unit volume of aggregate; and as(T ) = temperature dependent ASR gel permeability to water. The silica

content varies based on the aggregate type; it can be as high as about 50 % of the aggregate volume and

its average value can be estimated in about 20 % [74]. Considering that the silica mass density is 2,200

kg/m3, one can assume, in absence of more accurate information, cs ⇡ 440 kg/m3.

A stoichiometric relationship for the ASR reaction is very di�cult to ascertain due to the great variety

of possible chemical equilibria for di↵erent values of pH [71, 72, 75, 76]. In this study, as also done in [21],

the monomer H2SiO�
4 is considered to be the main form of basic gel produced by the dissolution process.

In this case, it can be stated that about two water molecules are necessary to dissolve one silica atom and

one can set rw = 2mw/ms; mw=18 g/mole; and ms=60.09 g/mole.

The temperature dependence of the permeability can be formulated with an Arrhenius-type equation

[77, 78, 73] as

as(T ) = as0 exp

✓
Ead

RT0

� Ead

RT

◆
(3)

6

D/2 

surfaces to facilitate the application of boundary conditions. 3) A three-dimensional domain tessellation,

based on the Delaunay tetrahedralization of the generated aggregate centers, creates a system of polyhedral

cells interacting through triangular facets and a lattice system composed by the line segments connecting

the particle centers.

In LDPM, particle rigid body kinematics is used to describe the deformation of the lattice/particle

system and the displacement jump, JuCK, at the centroid of each facet is used to define measures of strain

as

eN =
nTJuCK

`
; eL =

lTJuCK
`

; eM =
mTJuCK

`
(8)

where ` = interparticle distance; and n, l, and m, are unit vectors defining a local system of reference

attached to each facet.

Next, a vectorial constitutive law governing the behavior of the material is imposed at the centroid

of each facet. In the elastic regime, the normal and shear stresses are proportional to the corresponding

strains: tN = ENeN ; tM = ET eM ; tL = ET eL, where EN = E0, ET = ↵E0, E0 = e↵ective normal modulus,

and ↵ = shear-normal coupling parameter. In the inelastic regime, a nonlinear constitutive equation is

used to describe meso-scale failure phenomena such as fracturing and shearing; frictional behavior; and

pore collapse under high compressive stresses. Detailed description of model behavior in the nonlinear

range can be found in Ref. [68]. Finally, the governing equations of the LDPM framework are completed

through the equilibrium equations of each individual particle.

To account for ASR in LDPM, first the radius variation of each aggregate particle of initial radius

r = D/2 can be calculated from the volume variation of the ASR gel due to water imbibition:

�r =

✓
3Mi

4⇡⇢w

+ r3

◆1/3

� r (9)

This result can be then used to calculate an incompatible ASR strain, e0
N , to be applied to the LDPM

system assuming that strain additivity holds:

eN = et
N + e0

N (10)

where e0
N = (�r1+�r2��c)/`; �r1 and �r2 are the radius changes of the two aggregate particles sharing a
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presented in Ref. [125,126]. Eq. 17 can be interpreted as the rheological model depicted in fig. ??b. In321

the next sections, the constitutive behavior and the evolution of all strain rates in Eq. 17 are described322

in details.323

2.3.1. LDPM Model For concrete elastic, cracking and damage behavior324

In the elastic regime, the normal and shear stresses are proportional to the corresponding strains:325

tN = ENeN ; tM = ETeM; tL = ETeL, where EN = E0, ET = aE0, E0 = effective normal modulus,326

and a = shear-normal coupling parameter. In general, the uniaxial Hooke’s law # = s/E can be327

generalized to multiaxial relation e = E�1Gs. For LDPM, one has e = E�1
0 Gs where:328

G =

2
64

1 0 0
0 1/a 0
0 0 1/a

3
75 (18)

For stresses and strains beyond the elastic limit, LDPM mesoscale nonlinear phenomena are329

characterized by three mechanisms as described below.330

Fracture and cohesion due to tension and tension-shear. For tensile loading (e⇤N > 0), the fracturing331

behavior is formulated through an effective strain, e =
q

e⇤2
N + a(e⇤2

M + e⇤2
L ), and stress, t =332

q
t2

N + (tM + tL)2/a, which define the normal and shear stresses as tN = e⇤N(t/e); tM = ae⇤M(t/e);333

tL = ae⇤L(t/e). The effective stress t is incrementally elastic (ṫ = E0 ė) and must satisfy the inequality334

0  t  sbt(e, w) where sbt = s0(w) exp [�H0(w)he � e0(w)i/s0(w)], hxi = max{x, 0}, and335

tan(w) = e⇤N/
p

ae⇤T = tN
p

a/tT , and e⇤T =
q

e⇤2
M + e⇤2

L . The post peak softening modulus is336

defined as H0(w) = Ht(2w/p)nt , where Ht is the softening modulus in pure tension (w = p/2)337

expressed as Ht = 2E0/ (lt/le � 1); lt = 2E0Gt/s2
t ; le is the length of the tetrahedron edge; and338

Gt is the mesoscale fracture energy. LDPM provides a smooth transition between pure tension339

and pure shear (w = 0) with parabolic variation for strength given by s0(w) = str2
st

⇣
� sin(w)340

+
q

sin2(w) + 4a cos2(w)/r2
st

⌘
/ [2a cos2(w)], where rst = ss/st is the ratio of shear strength to341

tensile strength.342

Compaction and pore collapse from compression. Normal stresses for compressive loading (e⇤N < 0)343

are computed through the inequality �sbc(eD, eV)  tN  0, where sbc is a strain-dependent344

boundary function of the volumetric strain, eV , and the deviatoric strain, eD = eN � eV . The345

volumetric strain is computed by the volume variation of the Delaunay tetrahedra as eV = DV/3V0346

and is assumed to be constant for all facets belonging to a given tetrahedron. Beyond the elastic limit,347

�sbc models pore collapse as a linear evolution of stress for increasing volumetric strain with stiffness348

Hc for �eV  ec1 = kc0ec0: sbc = sc0 + h�eV � ec0iHc(rDV); Hc(rDV) = Hc0/(1 + kc2 hrDV � kc1i);349

sc0 is the mesoscale compressive yield stress; rDV = eD/eV and kc1, kc2 are material parameters.350

Compaction and rehardening occur beyond pore collapse (�eV � ec1). In this case one has sbc =351

sc1(rDV) exp [(�eV � ec1)Hc(rDV)/sc1(rDV)] and sc1(rDV) = sc0 + (ec1 � ec0)Hc(rDV).352

Friction due to compression-shear. The incremental shear stresses are computed as ṫM = ET(ė⇤M �353

ė⇤p
M ) and ṫL = ET(ė⇤L � ė⇤p

L ), where ė⇤p
M = l̇∂j/∂tM, ė⇤p

L = l̇∂j/∂tL, and l is the plastic multiplier354

with loading-unloading conditions jl̇  0 and l̇ � 0. The plastic potential is defined as355

j =
q

t2
M + t2

L � sbs(tN), where the nonlinear frictional law for the shear strength is assumed to be356

sbs = ss + (µ0 � µ•)sN0[1 � exp(tN/sN0)] � µ•tN ; sN0 is the transitional normal stress; µ0 and µ•357

are the initial and final internal friction coefficients.358

Finally, the governing equations of the LDPM framework are completed through the equilibrium359

equations of each individual particle.360

LDPM has been used successfully to simulate concrete behavior under a large variety of loading361

conditions [87,88]. Furthermore it can be properly formulated to account for fiber reinforcement [127,362

128] and it was recently extended to simulate the ballistic behavior of ultra-high performance concrete363

Version December 31, 2016 submitted to Materials 10 of 30

presented in Ref. [125,126]. Eq. 17 can be interpreted as the rheological model depicted in fig. ??b. In321

the next sections, the constitutive behavior and the evolution of all strain rates in Eq. 17 are described322

in details.323

2.3.1. LDPM Model For concrete elastic, cracking and damage behavior324

In the elastic regime, the normal and shear stresses are proportional to the corresponding strains:325

tN = ENeN ; tM = ETeM; tL = ETeL, where EN = E0, ET = aE0, E0 = effective normal modulus,326

and a = shear-normal coupling parameter. In general, the uniaxial Hooke’s law # = s/E can be327

generalized to multiaxial relation e = E�1Gs. For LDPM, one has e = E�1
0 Gs where:328

G =

2
64

1 0 0
0 1/a 0
0 0 1/a

3
75 (18)

For stresses and strains beyond the elastic limit, LDPM mesoscale nonlinear phenomena are329

characterized by three mechanisms as described below.330

Fracture and cohesion due to tension and tension-shear. For tensile loading (e⇤N > 0), the fracturing331

behavior is formulated through an effective strain, e =
q

e⇤2
N + a(e⇤2

M + e⇤2
L ), and stress, t =332

q
t2

N + (tM + tL)2/a, which define the normal and shear stresses as tN = e⇤N(t/e); tM = ae⇤M(t/e);333

tL = ae⇤L(t/e). The effective stress t is incrementally elastic (ṫ = E0 ė) and must satisfy the inequality334
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in details.323

2.3.1. LDPM Model For concrete elastic, cracking and damage behavior324

In the elastic regime, the normal and shear stresses are proportional to the corresponding strains:325

tN = ENeN ; tM = ETeM; tL = ETeL, where EN = E0, ET = aE0, E0 = effective normal modulus,326

and a = shear-normal coupling parameter. In general, the uniaxial Hooke’s law # = s/E can be327

generalized to multiaxial relation e = E�1Gs. For LDPM, one has e = E�1
0 Gs where:328

G =

2
64

1 0 0
0 1/a 0
0 0 1/a

3
75 (18)

For stresses and strains beyond the elastic limit, LDPM mesoscale nonlinear phenomena are329

characterized by three mechanisms as described below.330

Fracture and cohesion due to tension and tension-shear. For tensile loading (e⇤N > 0), the fracturing331

behavior is formulated through an effective strain, e =
q

e⇤2
N + a(e⇤2

M + e⇤2
L ), and stress, t =332

q
t2

N + (tM + tL)2/a, which define the normal and shear stresses as tN = e⇤N(t/e); tM = ae⇤M(t/e);333

tL = ae⇤L(t/e). The effective stress t is incrementally elastic (ṫ = E0 ė) and must satisfy the inequality334

0  t  sbt(e, w) where sbt = s0(w) exp [�H0(w)he � e0(w)i/s0(w)], hxi = max{x, 0}, and335

tan(w) = e⇤N/
p

ae⇤T = tN
p

a/tT , and e⇤T =
q

e⇤2
M + e⇤2

L . The post peak softening modulus is336

defined as H0(w) = Ht(2w/p)nt , where Ht is the softening modulus in pure tension (w = p/2)337

expressed as Ht = 2E0/ (lt/le � 1); lt = 2E0Gt/s2
t ; le is the length of the tetrahedron edge; and338

Gt is the mesoscale fracture energy. LDPM provides a smooth transition between pure tension339

and pure shear (w = 0) with parabolic variation for strength given by s0(w) = str2
st

⇣
� sin(w)340

+
q

sin2(w) + 4a cos2(w)/r2
st

⌘
/ [2a cos2(w)], where rst = ss/st is the ratio of shear strength to341

tensile strength.342

Compaction and pore collapse from compression. Normal stresses for compressive loading (e⇤N < 0)343

are computed through the inequality �sbc(eD, eV)  tN  0, where sbc is a strain-dependent344

boundary function of the volumetric strain, eV , and the deviatoric strain, eD = eN � eV . The345

volumetric strain is computed by the volume variation of the Delaunay tetrahedra as eV = DV/3V0346

and is assumed to be constant for all facets belonging to a given tetrahedron. Beyond the elastic limit,347

�sbc models pore collapse as a linear evolution of stress for increasing volumetric strain with stiffness348

Hc for �eV  ec1 = kc0ec0: sbc = sc0 + h�eV � ec0iHc(rDV); Hc(rDV) = Hc0/(1 + kc2 hrDV � kc1i);349

sc0 is the mesoscale compressive yield stress; rDV = eD/eV and kc1, kc2 are material parameters.350

Compaction and rehardening occur beyond pore collapse (�eV � ec1). In this case one has sbc =351

sc1(rDV) exp [(�eV � ec1)Hc(rDV)/sc1(rDV)] and sc1(rDV) = sc0 + (ec1 � ec0)Hc(rDV).352

Friction due to compression-shear. The incremental shear stresses are computed as ṫM = ET(ė⇤M �353

ė⇤p
M ) and ṫL = ET(ė⇤L � ė⇤p

L ), where ė⇤p
M = l̇∂j/∂tM, ė⇤p

L = l̇∂j/∂tL, and l is the plastic multiplier354

with loading-unloading conditions jl̇  0 and l̇ � 0. The plastic potential is defined as355

j =
q

t2
M + t2

L � sbs(tN), where the nonlinear frictional law for the shear strength is assumed to be356

sbs = ss + (µ0 � µ•)sN0[1 � exp(tN/sN0)] � µ•tN ; sN0 is the transitional normal stress; µ0 and µ•357

are the initial and final internal friction coefficients.358

Finally, the governing equations of the LDPM framework are completed through the equilibrium359

equations of each individual particle.360

LDPM has been used successfully to simulate concrete behavior under a large variety of loading361

conditions [87,88]. Furthermore it can be properly formulated to account for fiber reinforcement [127,362

128] and it was recently extended to simulate the ballistic behavior of ultra-high performance concrete363
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At the beginning of each time step, nodal velocities are used to evaluate the rates of displacement

jumps at each LDPM facet, from which, the total facet strain rate �̇ is computed. By simply multiplying

it by �t, the total strain increment becomes �� = �t�̇.It only remains to extract all imposed strain

increments out of it and the remaining will be the concrete skeleton strain increment �� which is used by

the LDPM constitutive law to compute the corresponding facet stress vector increment �⇥ and update

the stress vector at the end of the time step.

Shrinkage ��s and thermal ��t strain increments are straight forward and are simply computed at

each facet based on the rates of humidity ḣ and temperature Ṫ at the beginning of the time step as

��s = ⇤sh�tḣ[1 0 0]T and ��t = �th�tṪ [1 0 0]T

For the ASR strain increment, at the beginning of each time step, all aggregate imbibed water masses

are computed by first advancing the reaction fronts through integrating Eq. 2 over �t using forward Euler

method, in this integration, a check for convergence and error minimization is always performed. Then,

the gel masses are computed from Eq. 3 and finally substituted in Eq. 6. Again, the rate of imbibed water

mass is integrated over �t to give the current amount of imbibed water Mi. For each aggregate piece, the

increase in radius is computed from Eq. 17. The normal component of gel strain at the end of the time

step i is computed as:

ea
N(i+1) = ⇥0, (ri1 + ri2 � 2⇥c)/�⇤ (26)

This strain is saved as a state variable for each facet. Before updating it, the value from the previous

time step (value at the beginning of the current time step) ea
N(i) is used to compute the gel strain increment

as:

��a =
�
ea

N(i+1) � ea
N(i)

⇥

⇤
⌥⌥⌥⌥⇧

1

0

0

⌅
����⌃

(27)

Finally, creep strain is formulated on the facet level using the assumption of constant stress in the time

20

�� + �t + �s + �v + �f (36)
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Visco-Elastic strains  Viscous 
strains 

Volumetric 
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Aggregate pieces Facets 

nD 
 nD 

Figure 1. (a) Idealization of gel formation in one aggregate; (b) Diffusivity change with relative
humidity; (c) One Lattice Discrete Particle Model (LDPM) Cell around an aggregate piece; (d)
Equivalent rheological model based on strain additivity; (e) Cylinder and Prism generated LDPM
geometries (Aggregate are colored by their relative size); (f) 1/8th of the simulated cylinder showing the
discrete facets inside it surrounding the aggregate; (g) 1/8th Hygro-Thermo-Chemical (HTC) cylindrical
mesh colored by the values from RH field for the drying case at 420 days; (h) The interpolated values
of RH from the HTC mesh into LDPM facets centroids.

Water Imbibition. The water imbibition process is described by relating the rate of water mass Mi
imbibed by gel to the thermodynamic affinity and a characteristic imbibition time. Considering the gel
mass Mg given by the integration of Equation (2), the rate of water imbibition is given by:

Ṁi =
Ci
δ2

[
κi Mg −Mi

]
(3)

where the imbibed water at thermodynamic equilibrium has been assumed to be linearly proportional
to the mass of formed gel with κi = κi0 exp

(
Eai
RT0
− Eai

RT

)
as the constant of proportionality,

and temperature-dependent through an Arrhenius-type equation governed by the activation
energy of the imbibition capacity, Eai, and is its value at room temperature, κi0. Similarly,
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Ci = Ci0 exp
(

Eaw
RT0
− Eaw

RT

)
represents the bulk diffusivity of imbibed water through both the cement

paste surrounding the aggregate and the reacted external rim of the aggregate; Eaw = diffusion process
activation energy and Ci0 = value at room temperature. δ is the average (or effective) distance of water
transport process from the concrete around the aggregate into the ASR gel. Similarly to Reference [10],
it is reasonable to assume that δ is proportional to the aggregate diameter D as δ = αMD where αM
is a small fraction and can be assumed to be about 1%. With this assumption, an effective diffusivity
parameter C̃i = Ci/α2

M can be defined and thus the rate of water imbibition can be re-written as:

Ṁi =
C̃i
D2

[
κi Mg −Mi

]
(4)

The inverse of the ratio Ci/δ2 = C̃i/D2 here represents the imbibition rate characteristic time as
was explained earlier in References [3,65]. The characteristic time is assumed to be constant at full
saturation, but depending on silica distribution, type of aggregate, porosity and the inter-connectivity
and tortuosity of its pore system, this coefficient can vary with the amount of imbibed water.
Two competing factors are expected to affect the characteristic time, the first is the increase of water
transport path as the diffusion front advances along with the possible clogging of pores due to water
imbibition. This would result in longer characteristic time. The other is that as the reaction advances,
the aggregate cracks and cracks can easily increase the diffusivity resulting in a smaller characteristic
time. So, with the limited information at hand and due to the vast variability of the aggregate sources
and other aforementioned factors, the simplified constant assumption seems reasonable [3,65].

Extension for nonsaturated conditions. In real situations, structures are not fully saturated and
a variable distribution of humidity over the cross-section or along the length of the structural element
is generally possible. The amount of moisture content is typically governed by a nonlinear diffusion
process with a nonlinear temperature dependence which, in turn, considerably affect ASR generation
and imbibition [65]. ASR-LDPM is extended here to account for nonsaturated conditions. The spatial
and temporal distributions of relative humidity h, temperature T and degree of cement hydration
αc are computed using the Hygro-Thermo-Chemical (HTC) model (described in the next section).
The first step is to account for the amount of evaporable water, we, in the surrounding of aggregate
particles which depends on the relative humidity in the pores and the aging of the cement paste.
According to Reference [76] one can write:

we(h, αc) = G1(αc)

[
1− 1

e10(g1α∞
c −αc)h

]
+ K1(αc)

[
e10(g1α∞

c −αc)h − 1
]

(5)

G1(αc) = g2αcc (6)

K1(αc) =
w0 − 0.188αccG1(αc)

[
1− e−10(g1α∞

c −αc)
]

e10(g1α∞
c −αc) − 1

(7)

where g1 and g2 are material parameters. Equation (5) does not account for the water consumed in the
ASR process. This is a reasonable assumption because the cement hydration process varies significantly
only within the first months of concrete life and humidity variations are usually within seasonal cycles
(at least at concrete surface) while the ASR process is a multi-decade process. This means that the
time scales that contribute to we variations are different and typical variations due to relative humidity
and aging are time sub-scales of the ASR process. Similar observations apply to variations of relative
humidity and temperature. In other words, in this study, there is only one way coupling between
the hygro-thermo-chemical processes and the ASR process. All field variables (h, T and αc) are
calculated according to the HTC model [76] (reviewed later in Section 2.2) assuming no effects from
ASR evolution. For nonsaturated humidity environments, the imbibition is dramatically reduced, and
at relative humidity lower than 60%–80%, no noticeable expansions are reported [1]. The effect of
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relative humidity is introduced into the diffusion front speed ż by making the diffusivity parameter κz

a function of h as:

κz(h, T) = κ1
z

[
1 +

(
κ1

z

κ0
z
− 1
)
(1− h)nZ

]−1

(8)

where κ1
z = κ1

z0 exp
(

Eag
RT0
− Eag

RT

)
diffusivity at the current temperature T and full saturation (h = 1);

κ1
z0 = diffusivity at room temperature T0 and full saturation (h = 1); κ0

z = κ0
z0 exp

(
Eag
RT0
− Eag

RT

)

diffusivity at the current temperature T and dry condition (h = 0); κ0
z0 = diffusivity at room

temperature T0 and dry condition (h = 0); nZ is a model parameter. This changes the diffusion
front speed Equation (2) into:

ż = −κz(h, T)
we(h, αc)

z
(
1− 2z

D
) (9)

The ASR gel water imbibition is also affected by the relative humidity. It is reasonable to account
for this additional effect by postulating a dependence of the effective diffusivity parameter C̃i on the
relative humidity h. This is captured by setting:

C̃i(h, T) = C̃1
i

[
1 +

(
C̃1

i
C̃0

i
− 1

)
(1− h)nM

]−1

(10)

where C̃1
i = C̃1

i0 exp
(

Eaw
RT0
− Eaw

RT

)
is the effective diffusivity at full saturation (h = 1) and the current

temperature T; C̃1
i0 is the effective diffusivity at full saturation (h = 1) and room temperature T0;

C̃0
i = C̃0

i0 exp
(

Eaw
RT0
− Eaw

RT

)
is the effective diffusivity at dry condition (h = 0) and the current

temperature T; C̃0
i0 is the effective diffusivity at dry condition (h = 0) and room temperature T0;

and nM is a model parameter.
By considering all these effects together and taking into account Equation (8), the governing

equation for water imbibition into the gel previously given by Equation (4) becomes:

Ṁi =
C̃i(h, T)

D2

[
κi Mg −Mi

]
(11)

The assumed functional forms of both κz(h, T) and C̃i(h, T) are essentially inherited from
the moisture permeability dependence on h as presented in Reference [76] and reported later in
Equation (14). This is mainly because, we assume that the rate of both processes is controlled by
moisture diffusion. Although one can argue that the formation of basic gel requires the diffusion of
alkali, we assume, as confirmed by physical observations, that the amount of alkali transported by
convection (through water movement) dominate compared to the one carried by molecular diffusion
through the solid structure of the aggregate. Finally, in absence of specific experimental data, it is
assumed that, at constant temperature, the ratio of gel diffusivities is equal to the ratio of water
imbibition diffusivities κ1

z /κ0
z = C̃1

i /C̃0
i = rD and also the exponents are the same nz = nM = nD.

This is basically equivalent to assuming that the effects of relative humidity variations are the same for
both processes. The dependence on h is plotted for two different exponents (nD = 2 and nD = 3) in
Figure 1b and it shows that the adopted functional form is consistent with almost complete suppression
of ASR evolution for relative humidity levels smaller than 0.8. This approach was first introduced by
Alnaggar [9] and then was also utilized by Bažant et al.

2.2. Hygro-Thermo-Chemical (HTC) Model

To be able to describe the interaction and coupling between various aging and deterioration
phenomena along with changes in environmental conditions, the values of temperature, T, relative
humidity, h, and cement hydration degree, αc, must be spatially and temporally defined over the
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structural element with enough resolution so that their differences around aggregate pieces are
captured. This is essential for capturing creep and shrinkage deformations in a meso-scale setting.
In addition, as previously discussed, ASR processes are strongly dependent on temperature and
humidity. This means that rough average measures of any of these variables are not enough to
properly describe the ASR evolution and thus, the need for precise reliable modeling of the moisture
and temperature transport and distribution within the concrete internal structure becomes essential.
A comprehensive three dimensional Hygro-Thermo-Chemical (HTC) model [76] for the evolution of
temperature, humidity and cement hydration degree is adopted in this study. Based on this model,
h and T distributions can be computed by imposing moisture mass balance and enthalpy balance
equations in the volume of interest. For concrete mixes in which the binder is Portland cement and for
temperature not exceeding 90 ◦C, one can write [76]

∇ · (Dh∇h)− ∂we

∂h
∂h
∂t
− ∂we

∂αc
α̇c − ẇn = 0 (12)

and
∇ · (λt∇T)− ρct

∂T
∂t

+ α̇c c Q̃∞
c = 0 (13)

where c = cement content, Dh is moisture permeability, we is evaporable water, αc = hydration degree,
ẇn = 0.253α̇cc is rate of non-evaporable water, ρ = mass density of concrete, ct = isobaric heat
capacity (specific heat), λt = heat conductivity, Q̃∞

c = hydration enthalpy. Typically Q̃∞
c ≈ 450 kJ/kg.

Note here that in both Equations (12) and (13) there are no sink terms for water consumption nor heat
consumption/generation by ASR consistently with what was discussed previously.

The moisture permeability is assumed to be a nonlinear function of the relative humidity h and
temperature T, and is formulated as follows

Dh(h, T) = exp
(

Ead
RT0
− Ead

RT

)
D1

[
1 +

(
D1

D0
− 1
)
(1− h)n

]−1
(14)

where T0 = 296 ◦K, Ead/R ≈ 2700 K.
The evaporable water (sorption/desorption isotherm) can be assumed to be a function of relative

humidity and degree of hydration [78] and it is formulated through Equations (5)–(7).
Diluzio and Cusatis [79] report detailed calibration and validation of this theory. It must be noted

here that this theory does not account, as first approximation, for typically observed hysteresis during
adsorption/desorption cycles [80,81], which has been recently explained by Bažant and Bažant [82]
to be the consequence of two related mechanisms: snap-through instabilities during the filling or
emptying of non-uniform nanopores or nanoscale asperities and the molecular coalescence, or capillary
condensation, within a partially filled surface. In addition, the moisture permeability defined in
Equation (14) does not account for the cracking effect due to ASR. This approximation is relatively
valid here as the modeled experimental expansions are small. But when expansions are larger (either
due to ASR or other phenomena like DEF) the cracking effect on permeability and leaching becomes
very important as it has been shown by Martin et al. [73] and Kawabata et al. [83].

For the concrete mixes of interest in this study, the main early-age chemical reaction is the cement
hydration—the reaction of free-water with unhydrated cement particles. This reaction generates
Calcium-Silicate-Hydrates (C-S-H) which is the main constituent providing stiffness and strength
to concrete.

Cement hydration can be characterized by the hydration degree [76,84–86], αc, that represents the
fraction of Portland clinker fully reacted with water. Its evolution law can be formulated as

α̇c =
Ac1e−ηcαc/α∞

c e−Eac/R(T−T0)

1 + (5.5− 5.5h)4

(
Ac2

α∞
c

+ αc

)
(α∞

c − αc) (15)
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where Eac/R ≈ 5000/◦K, T0 = 296◦K and ηc, Ac1, Ac2 are material parameters.

2.3. Mechanical Behavior

In this research, ASR induced deformations, in addition to thermal, shrinkage and creep
deformations are formulated within the framework of the Lattice Discrete Particle Model (LDPM).

The Lattice Discrete Particle Model (LDPM) [66,67] is a meso-scale discrete model that simulates
the mechanical interaction of coarse aggregate pieces embedded in a cementitious matrix (mortar).
The geometrical representation of concrete mesostructure is constructed through the following steps.
(1) The coarse aggregate pieces, whose shapes are assumed to be spherical, are introduced into the
concrete volume by a try-and-reject random procedure. (2) Zero-radius aggregate pieces (nodes) are
randomly distributed over the external surfaces to facilitate the application of boundary conditions.
(3) A three-dimensional domain tessellation, based on the Delaunay tetrahedralization of the generated
aggregate centers, creates a system of polyhedral cells interacting through triangular facets and a lattice
system composed by the line segments connecting the particle centers. Figure 1c shows an idealized
spherical aggregate piece surrounded by the generated system of interaction facets. The two vectors
shown in Figure 1c are the stress vector σ and strain vector ε acting on this facet. The equation of
motion (in absence of body forces) of a generic LDPM cell reads:

∑
F

Aσ = muü ; ∑
F

Ac× σ = mωω̈ (16)

where F is the set of facets defining the cell, A is each facet area, mu is the mass of the cell, mω is the
rotational inertia of the cell, and ü, ω̈ are acceleration and rotational acceleration, respectively, of the
cell center.

The stress vector σ = [tN tM tL]
T is assumed to be uniform over each facet and is computed

through constitutive relationships, σ = f(ε), governing the behavior of the material.
In LDPM, rigid body kinematics is used to describe the deformation of the lattice/particle system

and the displacement jump, JuCK, at the centroid of each facet is used to define measures of strain as

eN =
nTJuCK

`
; eL =

lTJuCK
`

; eM =
mTJuCK

`
(17)

where ` = interparticle distance; and n, l, and m, are unit vectors defining a local system of reference
attached to each facet, and ε = [eN eM eL]

T represents the facet material strain vector (see Figure 1c).
It was recently demonstrated that the strain definitions in Equation (17) correspond to the projection
into the local system of references of the strain tensor typical of continuum mechanics [87–89].
By assuming additivity of strains, one can write:

ε̇ = ε̇∗ + ε̇a + ε̇s + ε̇t + ε̇v + ε̇ f (18)

where ε̇∗ represents the effect of instantaneous elasticity and damage, ε̇a represents the ASR induced
strain rate; ε̇s and ε̇t are shrinkage and thermal strain rates (respectively); ε̇v is the viscoelastic strain
rate and ε̇ f is the purely viscous strain rate. Equation (18) can be seen as the mathematical interpretation
of the rheological model depicted in Figure 1d.

2.3.1. LDPM for Concrete Elastic, Cracking and Damage Behavior

In the elastic regime, the normal and shear stresses are proportional to the corresponding strains:
tN = ENe∗N ; tM = ETe∗M; tL = ETe∗L, where EN = E0, ET = αE0, E0 = effective normal modulus,
and α = shear-normal coupling parameter. In vectorial form, one has ε∗ = 1/E0Gσ where:
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G =




1 0 0
0 1/α 0
0 0 1/α


 (19)

It must be observed here that in theory, E0 should not account for any creep deformation that
always occurs during quasi-static tests because all creep strains are included in the Kelvin chain of the
rheological model. In practice, however, the Kelvin chain is always approximated by a finite chain and,
in this case, E0 will also include the effect of very short term creep whose characteristic time is smaller
than the smallest of the discrete chain. More discussion of this point is reported in Section 4.

Fracture and cohesion due to tension and tension-shear. For tensile loading (e∗N > 0), the fracturing

behavior is formulated through an effective strain, e =
√

e∗2N + α(e∗2M + e∗2L ), and stress,

t =
√

t2
N + (t2

M + t2
L)/α, which define the normal and shear stresses as tN = e∗N(t/e); tM = αe∗M(t/e);

tL = αe∗L(t/e). The effective stress t is incrementally elastic (ṫ = E0 ė) and must satisfy the
inequality 0 ≤ t ≤ σbt(e, ω) where σbt = σ0(ω) exp [−H0(ω)〈e− e0(ω)〉/σ0(ω)], 〈x〉 = max{x, 0},
and tan(ω) = e∗N/

√
αe∗T = tN

√
α/tT , and e∗T =

√
e∗2M + e∗2L . The post peak softening modulus is

defined as H0(ω) = Ht(2ω/π)nt , where Ht is the softening modulus in pure tension (ω = π/2)
expressed as Ht = 2E0/ (`t/`− 1); `t = 2E0Gt/σ2

t ; ` is the length of the tetrahedron edge;
and Gt is the mesoscale fracture energy. LDPM provides a smooth transition between pure tension

and pure shear (ω = 0) with parabolic variation for strength given by σ0(ω) = σtr2
st

(
− sin(ω)

+
√

sin2(ω) + 4α cos2(ω)/r2
st

)
/[2α cos2(ω)], where rst = σs/σt is the ratio of shear strength to

tensile strength.
Compaction and pore collapse in compression. To simulate pore collapse and material compaction,

LDPM normal stresses for compressive loading (e∗N < 0) are computed through the inequality
−σbc(e∗D, e∗V) ≤ tN ≤ 0, where σbc is a strain-hardening boundary assumed to be a function of the
volumetric strain, e∗V , and the deviatoric strain, e∗D = e∗N − e∗V . The volumetric strain is computed
by the volume variation of the Delaunay tetrahedra as e∗V = ∆V/3V0 and is assumed to be
constant for all facets belonging to a given tetrahedron. Beyond the elastic limit, −σbc is defined
as : −σbc(e∗D, e∗V) = σc0 for −e∗DV ≤ 0, −σbc(e∗D, e∗V) = σc0 + 〈−e∗DV − ec0〉Hc(rDV) for 0 ≤ −e∗DV ≤ ec0,
and −σbc(e∗D, e∗V) = σc1(rDV) exp

[
(−e∗DV − ec1)Hc(rDV)/σc1(rDV)

]
otherwise. Where e∗DV = e∗V + βe∗D,

β is a material parameter, σc0 is the mesoscale compressive yield stress, ec0 = σc0/E0 is the compaction
strain at the beginning of pore collapse, Hc(rDV) is the hardening modulus, ec1 = κc0ec0 is the
compaction strain at which rehardening begins, κc0 is the material parameter governing the
rehardening and σc1(rDV) = σc0 + (ec1 − ec0)Hc(rDV). In Ceccato et al. [90], the hardening modulus
is given by Hc(rDV) = Hc1 + (Hc0 − Hc1) / (1 + κc2〈rDV − κc1〉), with rDV = |e∗D|/(eV0 − e∗V) for
e∗V ≤ 0 and rDV = |e∗D|/eV0 for e∗V > 0, eV0 = 0.1ec0, κc1 = 1, κc2 = 5 and Hc0, Hc1 are assumed to be
material parameters.

Friction due to compression-shear. The incremental shear stresses are computed as ṫM = ET(ė∗M −
ė∗p

M ) and ṫL = ET(ė∗L − ė∗p
L ), where ė∗p

M = λ̇∂ϕ/∂tM, ė∗p
L = λ̇∂ϕ/∂tL, and λ is the plastic multiplier

with loading-unloading conditions ϕλ̇ ≤ 0 and λ̇ ≥ 0. The plastic potential is defined as

ϕ =
√

t2
M + t2

L − σbs(tN), where the nonlinear frictional law for the shear strength is assumed to
be σbs = σs + (µ0 − µ∞)σN0[1− exp(tN/σN0)]− µ∞tN ; σN0 is the transitional normal stress; µ0 and
µ∞ = 0 are the initial and final internal friction coefficients.

LDPM has been used successfully to simulate concrete behavior under a large variety of loading
conditions [66,67]. Furthermore it can be properly formulated to account for fiber reinforcement [91,92]
and it was recently extended to simulate the ballistic behavior of ultra-high performance concrete
(UHPC) [93]. In addition, LDPM was successfully used in structural element scale analysis using
multiscale methods [88,94,95] and was also used to simulate compression failure of confined concrete
columns with FRP wrapping [90].
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2.4. Microprestress-Solidification Theory for Viscous and Visco-Elastic Deformations

According to the Microprestress Solidification Theory [96–98], the visco-elastic behavior of
concrete is modeled through the sum of two strain components: the visco-elastic strain and the
purely viscous strain.

The viscoelastic strain rate is formulated as:

ε̇v(t) =
1

v(αc)
γ̇; γ =

∫ t

0
Φ(tr(t)− tr(τ))Gσ̇dτ (20)

where γ̇ represents the cement gel viscoelastic micro-strain rate, v(αc) = (αc/α∞
c )nα is a function

that represents the volume fraction of cement gel produced by early-age chemical reactions,
Φ(t− t0) = ξ1 ln

[
1 + (t− t0)

0.1] is the non-aging micro-compliance function of cement gel, with t− t0

as the loading time interval. ξ1 and nα are model parameters. To account for the effect of change in
relative humidity and temperature the reduced time concept is used [99], where tr(t) =

∫ t
0 ψ(τ)dτ and

ψ(t) = [0.1 + 0.9h2] exp[Qv/R(1/T0 − 1/T)], where h, T are the relative humidity and temperature
(in Kelvin) at time t, R is the universal gas constant and Qv is the activation energy for the creep
processes. For typical concrete mixes Qv/R ≈ 5000 K [96].

The purely viscous strain rate represents the totally unrecoverable part of the creep strain and it is
associated to long-term creep, drying creep effect (also called Pickett effect) and transitional thermal
creep. One can write:

ε̇ f = ξ2κ0ψ(t)SGσ (21)

where S is the microprestress computed by solving the differential equation Ṡ + ψs(t)κ0S2 =

κ1
∣∣Ṫ ln(h) + Tḣ/h

∣∣, where κ0, κ1 and ξ2 are model parameters. Furthermore, ψs(t) = [0.1 +

0.9h(t)2] exp[Qs/R(1/T0 − 1/T(t))] and, typically, Qs/R ≈ 3000 K [96]. In this differential equation,
the initial value S0 at time t = t0 must be defined and it is assumed to be a model parameter [99].
However, if one assumes, as verified by experiments, that the purely viscous strain is a logarithmic
function of time in the case of basic creep, one has S0κ0t0 = 1 where t0 = 1 day can be assumed
without loss of generality. It must be observed here that, the three parameters, κ0, κ1, ξ2 are not
independent as far as the viscous strain is concerned. Basic creep viscous strain depends on ξ2

only [99]; drying and transitional thermal creep depend on ξ2 and the product κ0κ1 [100] This
is simple to show by introducing the auxiliary variable S = κ0S. One has ε̇ f = ξ2Sψ(t)Gσ,
Ṡ + ψs(t)S

2
= κ0κ1

∣∣Ṫ ln(h) + Tḣ/h
∣∣ [101]. Hence, the value of κ0 = 2×10−3 MPa/day will be used in

this paper. Independent identification of κ0 requires experimental data on the microprestress evolution.
Such data is not available at the moment.

2.5. ASR Induced Deformation

The water imbibition rate Ṁi for a specific aggregate piece is given by Equation (11). If there is
no room for the additional mass to be accommodated, the aggregate starts to swell. In many cases,
initial expansion of the ASR gel can be partly accommodated without significant pressure build up
by filling the capillary pores and voids in the hardened cement paste located close to the surface of
the reactive aggregate particles. This is also facilitated by the existence of the so-called interfacial
transition zone (ITZ) that is a layer of material with higher porosity in the hardened cement paste near
the aggregate surface (see Figure 1a). Similarly to the ITZ size, the equivalent thickness, δc, of the layer
in which the capillary pores are accessible to the ASR gel may be considered constant and independent
of the particle size D. To account for this behavior, the amount of imbibed water used to compute
the aggregate expansion is defined by 〈Mi −M0

i 〉, where M0
i = (4πρw/3)((r + δc)3 − r3) is the mass

required to fill this space, ρw is the mass density of water, and the brackets 〈〉 extracts the positive
value of the expression. The increased radius of each aggregate particle of initial radius r = D/2 can
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be calculated as ri = (3〈Mi −M0
i 〉/4πρw + r3)1/3. The rate of radius increase can be written using the

chain rule as

ṙi =
dri
dt

=
dri

dMi

dMi
dt

= Ṁi
dri

dMi
=

Ṁi
4πρw

(3〈Mi −M0
i 〉/4πρw + r3)−2/3 (22)

This definition of radius change rate is used to compute an incompatible ASR gel normal strain
rate as

ėa
N = (ṙi1 + ṙi2)/` (23)

where ri1 and ri2 are the increases in the radii of the two aggregate particles sharing a generic facet.
Note that the model formulated herein assumes approximately that the imposed facet shear strains
due to gel swelling are negligible, ea

M = ea
L ≈ 0, although this might not be exactly true due to the

irregular shape of actual aggregate particles. Based on this simplification, the ASR gel strain rate is
given by:

ε̇a =
[
ėa

N 0 0
]T

(24)

2.6. Thermal and Hygral Deformations

Most materials expand/shrink proportionally to temperature increase/decrease. The coefficient
of proportionality is assumed to be a material property called coefficient of thermal expansion, αT . So,
the thermal strain rate can be given by:

ε̇t =
[
αT Ṫ 0 0

]T
(25)

Similarly, to account for hygral variation, one can write:

ε̇s =
[
αh ḣ 0 0

]T
(26)

and αh is the so-called shrinkage coefficient which in typical situations is identified from drying tests.
In the above formulations, αT and αh are assumed to be average concrete properties which represent
average properties of aggregate and mortar.

3. Numerical Implementation

Numerical implementation of the concrete constitutive equations requires that at each step,
the stress increment ∆σ is calculated on the basis of the response at the previous step and current strain
increment ∆ε. At the beginning of each step, prior to integrating the constitutive equations, the one
way coupling between the chemo-physical model and the mechanical model is imposed directly at
the facets centroids. The shape functions of the HTC tetrahedral mesh are first used to determine
which facets lie inside each tetrahedron, next each facet is assigned an exchange function that uses
the HTC tetrahedron shape functions to interpolate—at the facet centroid—the values of HTC nodal
variables and their instantaneous rates (namely temperature T, temperature rate Ṫ, relative humidity
h, relative humidity rate ḣ, and cement hydration degree, αc). Figure 1e shows one of the cylinder and
prism geometries used in simulations with modeled aggregate shown inside both and colored by their
radii. As discussed before, around each aggregate, a set of facets is obtained. Figure 1f shows an 8th
of the cylinder where both aggregate (in gray) and facets (in purple) are shown. Figure 1g shows the
corresponding 8th of the HTC cylindrical mesh colored by the values from the humidity field and
Figure 1h shows the same values interpolated on the facets.
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For the integration of the constitutive equations to be explicit, all strain increments other than
∆ε∗ can be considered as imposed strain increments. From the rearrangement of Equation (18) in
an incremental form one has:

∆ε∗ = ∆ε−
(

∆εa + ∆εs + ∆εt + ∆εv + ∆ε f
)

(27)

At the beginning of each time step, nodal velocities are used to evaluate the rates of displacement
jumps at each LDPM facet, from which, the total facet strain rate ε̇ is computed. By simply multiplying
it by ∆t, the total strain increment becomes ∆ε = ∆tε̇.

Shrinkage ∆εs and thermal ∆εt strain increments are computed at each facet based on humidity
and temperature increments at the beginning of the time step as ∆εs = αh∆h[1 0 0]T and
∆εt = αT∆T[1 0 0]T .

For the ASR strain increment, at the beginning of each time step, all aggregate in which ASR is
progressing are computed by first advancing the diffusion fronts through integrating Equation (9)
over the time increment ∆t using forward Euler method. Then, the gel masses are computed from
Equation (1) and finally substituted in Equation (11). Again, the rate of imbibed water mass is integrated
over ∆t to give the current increment in imbibed water ∆Mi. For each aggregate piece, the increase
in radius is computed from the incremental form of Equation (22) as ∆ri = ∆Mi/(4πρw)(3〈Mi −
M0

i 〉/4πρw + r3)−2/3 . Then, the gel normal strain increment is computed as ∆ea
N = (∆ri1 + ∆ri2)/`

and the ASR imposed strain increment vector becomes ∆εa = [∆ea
N 0 0]T .

Finally, also the creep strain increment is calculated on the facet level under the assumption of
constant stress. This assumption means that the creep strain is integrated with a step-wise stress
history in which the value of the current stress has a one time step delay, as done in the Euler explicit
method for numerical integration of differential equations. In this case the global error is proportional
to the step size, which, however, is very small due to the explicit numerical implementation of LDPM.

The viscoelastic creep strain is modeled as an aging multi Kelvin chain model. For a one
dimensional single Kelvin model with spring constant Ej and damper coefficient ηj the stress σ is given
by σ = Ejγj + ηjγ̇j, where γj is the strain. Let τj = Ej/ηj be the retardation time constant of the Kelvin
unit. Because the stress is assumed constant, σ(t) = σ(ti) = σi, in the time step from ti to ti+1 with
∆t = ti+1 − ti, the general solution of the strain evolution is given by γj(t) = A + B exp[−(t− ti)/τj]

with A = σi/Ej and B = γi
j − σi/Ej (obtained imposing the initial condition γj(ti) = γi

j). The strain at
time ti+1 is then given by

γi+1
j =

σi

Ej

(
1− e−∆t/τj

)
+ γi

je
−∆t/τj (28)

and the strain increment becomes

∆γi
j =

(
σi

Ej
− γi

j

)(
1− e−∆t/τj

)
(29)

For a chain of N Kelvin elements we have

∆γi =
N

∑
j=0

(
σi

Ej
− γi

j

)(
1− e−∆t/τj

)
(30)

Following [102], the non-aging compliance 1/Ej = Aj is computed for each chain to satisfy,

A0 +
N

∑
j=1

Aj

(
1− e−∆t/τj

)
≈ ξ1 ln

[
1 + (∆t)0.1

]
(31)

According to [102], logarithmically equally spaced values for τj are used to cover a wide range of
creep response, ten elements are used with a retardation time ranging from 10−4 to 105 days. This gives
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A0 = 0.279ξ1 ln(10) for τ0 = 0 [99]. A0 is the compliance of an elastic element that accounts for very
short time creep (<10 min load duration) typical of quasi-static lab tests. With these values for τj,
Aj = Lj ln(10) and using an approximate retardation spectrum of order 3 [102], Lj is given by

Lj =
(3τj)

3

2
ξ1

[
−2n2(3τj)

2n−3(n− 1− (3τj)
n)

[
1 + (3τj)n

]3 (32)

+
n(n− 2)(3τj)

n−3(n− 1− (3τj)
n)− n2(3τj)

2n−3

[
1 + (3τj)n

]2

]

Also by considering a constant ψ(ti) = ψ(ti+1) = ψi over the time step, one can write,

∆tr = tr(ti+1)− tr(ti) =
∫ ti+1

0 ψ(τ)dτ −
∫ ti

0 ψ(τ)dτ =
∫ ti+1

ti ψ(τ)dτ = ψi∆t. So, including all effects,
the viscoelastic strain increment is given by

∆εv =
N

∑
j=1

(
GAjσ

i − γi
j

) (
1− e−ψi∆t/τj

) 1
v(αi

c)
(33)

Similarly, the purely viscous strain increment at the facet level is computed considering again
constant stress σi, constant ψi and similarly constant ψi

s = ψs(ti), in the time step ∆t. This gives:

∆ε f = ∆tξ2κ0ψiSiGσi (34)

with the following relation to update the microprestress S,

∆Si = −ψi
sκ0Si2 ∆t + κ1

∣∣∣∣∆Ti ln(hi) + Ti ∆hi

hi

∣∣∣∣ (35)

By subtracting the imposed strain increments, the remaining will be the strain increment ∆ε∗

which is used by the LDPM constitutive law to compute the corresponding facet stress vector increment
∆σ and update the stress vector at the end of the time step. The LDPM equations are integrated with
reference to the apparent normal modulus E0(t) defined as:

E0(t) =
1

1
E0

+ A0
v(αc(t))

(36)

This means that the incrementally elastic effective LDPM stress (see Section 2.3.1) is calculated
at each step as ∆tel = E0(ti)∆e. The nonlinear part of the LDPM constitutive equations is imposed
through a vertical return algorithm [67].

The presented formulation, is implemented into MARS, a multi-purpose computational code for
the explicit dynamic simulation of structural performance [103].

4. Numerical Simulations and Comparison with Experimental Data

This section presents numerical simulations of experimental data relevant to concrete specimens
and structural members with and without reinforcement undergoing ASR deformations in different
environmental conditions as presented in Reference [104]. Three sets of experiments were performed.
The first and second sets were performed using cylindrical specimens (320 mm length and 160 mm in
diameter). The first set included uniaxial compression tests and Brazilian splitting tests to characterize
concrete strength and stiffness. In the second set, the tests performed were free ASR expansions lasting
480 days from casting. Three different relative humidity conditions were considered: (1) 100% RH
(saturation); (2) completely sealed; and (3) 30% RH, and both mass changes and total axial deformations
of specimens were reported. The third set was relevant to the structural member scale. In this set,
full scale (3 m long and 250×500 mm cross-section) simply supported beams were instrumented to
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collect their long term deformation over 420 days after being cured in sealed conditions for 28 days.
Beam internal humidity profile was measured at 4 locations along the beam depth. No external load
other than the self weight of the beam was applied. Beams were kept at a slightly elevated temperature
of 38 ◦C with both lateral sides sealed with aluminum sheets. A nearly 1D humidity profile was
created along the beam by immersing its bottom 7 cm in water and leaving the top surface exposed to
a controlled relative humidity of 30%. Five different beams were tested: 2 were nonreactive control
beams with and without reinforcement (labeled here as NPC and NRC, respectively); one reactive
plain concrete (labeled here as RPC) beam and two reactive reinforced concrete beams with different
(0.45% and 1.8%) longitudinal reinforcements (labeled here as RRC1 and RRC2, respectively).

The generated geometries used in the numerical simulations consisted of two types: FE meshes
for the HTC model and particle systems for LDPM. Both specimens (cylinders and prisms) and beams
were discretized. All HTC model meshes made full use of any possible axes of symmetry (X,Y and
Z for both prisms and cylinders and X a Y only for beams) which resulted in meshing only 1/8 of
both cylinders and prisms and meshing 1/4 of the beams. As for the LDPM systems, all cylinders
and prisms were fully meshed, but as the beams were taking a huge computational time, symmetry
was used also for the LDPM beam specimens. As will be explained in the discussion of results, 1/8
LDPM samples were also generated and ran with the same full samples parameters to check if there
was any significant effect of applying symmetry boundary conditions on the heterogeneous LDPM
system. Figure 1e shows the LDPM cylinder and prism meshes and Figure 1g shows the HTC mesh
for the cylinder. HTC and LDPM beams are also shown in Figures 2b and 3a, respectively.
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Figure 2. (a) Experimental and numerically simulated RH values along the depth of the beam at 28 and
448 days; (b) HTC mesh colored by the RH field at 448 days showing the quarter that was simulated;
(c) Experimental and numerically simulated average axial expansions of both cylinders and prisms
under fully saturated, sealed and 30% RH exposure conditions; (d) Midspan deflections of unreinforced
NPC and RPC beams; (e) Midspan deflections of reinforced RRC1 and RRC2 beams; (f) Normalized
evolutions of all simulated aggregate diffusion fronts.



Materials 2017, 10, 471 17 of 30

R
R

C
1 

&
 N

R
C

 
 R

FM
T 

0 80 160 240 320 400 480
−0.06

0

0.06

0.12

0.18

0.24

Time [Days]

A
xi

al
 E

xp
an

si
on

 %

 

 

0 80 160 240 320 400 480
−0.06

0

0.06

0.12

0.18

0.24

Time [Days]

A
xi

al
 E

xp
an

si
on

 %

 

 

0 80 160 240 320 400 480
−0.06

−0.05

−0.04

−0.03

−0.02

−0.01

0

0.01

Time [Days]

A
xi

al
 E

xp
an

si
on

 %

 

 

100% RH
Seled
30% RH

d 10 mm 

d 16 mm 

d 
8 

m
m

 

b) a) 

d) c) e) 

Symmetry Boundary Conditions 
LD

PM
 M

es
h 

Coupled Expansions ASR expansion only 

Lo
ng

itu
di

na
l 

Tr
an

sv
er

se
 

Top view 

d 16 mm 

d 32 mm 

d 
12

 m
m

 

R
R

C
2 

R
FM

T 
Total Crack Opening [µm] 

0 80 160 240 320 400 480
−0.06

0

0.06

0.12

0.18

0.24

Time [Days]

A
xi

al
 E

xp
an

si
on

 %

 

 

ASR
Coupled

0 80 160 240 320 400 480
−0.06

0

0.06

0.12

0.18

0.24

Time [Days]

A
xi

al
 E

xp
an

si
on

 %

 

 

Sum
Coupled

100% RH 

Sealed 

30% RH 

100% RH 

Sealed 

30% RH 

Sealed 

Figure 3. (a) Beam simulated geometry, showing symmetry boundary conditions, LDPM generated
mesh and reinforcements for NRC, RRC1 and RRC2 beams (Aggregate are colored by their relative size);
(b) Simulated crack pattern distribution due to ASR with coupling and without coupling with creep and
shrinkage deformations; (c) Simulated pure ASR expansion versus coupled ASR, creep and shrinkage
expansion; (d) Simulated creep and shrinkage expansions only; (e) Sum of simulated ASR shrinkage
and creep expansions versus fully coupled expansion.

4.1. Identification of Cement Hydration Parameters

The experimental data did not include relevant tests to identify these parameters. Hence, they
were assumed based on existing literature and they are reported in Table A1.

4.2. Identification of HTC Parameters

The relative humidity measurements from the NPC beam were used to calibrate the HTC model
parameters. The 4 sensors placed at 8, 17, 27 and 37 cm from the top drying surface of the beam
recorded RH = 97% after 28 days of sealed curing; whereas after 14 months, the top one recorded
RH = 85%, the lower one RH = 100% and the two middle ones RH ≈ 95%. These values were used for
the HTC model calibration. The identified parameters are listed in Table A3 along with values of other
parameters that were assumed on the basis of existing literature.

Figure 2a shows excellent agreement between the simulated humidity profile and the reported
sensor data. It must be considered here that most of the relative humidity sensors have an error of
about 1% to 2% in the middle range of relative humidity (20% to 80%) and around 2% to 4% close to
saturation and dry conditions. Figure 2b shows the HTC mesh for one quarter of the beam, colored by
relative humidity at 14 months from curing (448 days).
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4.3. Identification of Shrinkage and Creep Parameters

Given the HTC parameters, the internal relative humidity change in the cylinder kept in
an environment with 30% of relative humidity is known. So, its axial deformation history can be used
to identify the shrinkage coefficient αh. This gives αh = 9×10−4 which is in excellent agreement with
typical values reported in the literature [96]. Simulated vs experimental deformation curves are shown
in Figure 2c and the two curves are nearly identical. The simulation results are the average of both
cylinders and prisms axial deformations at 30% relative humidity exposure, while the experimental
curve is the cylinder axial deformation only as no prism deformations were reported at 30% in
Reference [104]. Table A4 reports the hygro-thermal parameters used.

Identifying creep parameters from only one drying creep curve is a challenging task. The reported
deformations are measured after 28 days of curing and no clear information are provided about
the supporting condition during curing, so it was assumed that the beams were resting on ground.
In addition, it is not clear when the first deflection was measured after loading. These factors create
uncertainty in the creep data in the early stage of loading. Therefore, the reported quasi-static elastic
modulus was used to calibrate the parameter E0. The meso-scale creep compliance at 28 days of age
and 0.001 load duration can be assumed to be equal to the reciprocal of the apparent LDPM normal
modulus at 28 days E28

0 = E0(28 days)= 1/J(28, 0.001) as typically accepted in the literature [105,106].
In addition, it can be assumed that ξ1 ≈ 2.3/E0 based on average ratios of their values in the extensive
calibrations presented in Reference [96]. With this assumption, three independent parameters E0, ξ2

and κ1 need to be calibrated using 2 different tests. The first test is the simulation of the apparent
elastic modulus according to the ASTM C469 method [107]. In this test, the secant modulus at 45%
peak load is used for calibration. For the elastic modulus test, the contribution of the viscous creep
part during the 0.001 day loading time is very small, thus it is mainly calibrating E0. The second test is
the simulation of the NPC beam mid-span deflection history. For this test, the slope of the long term
creep deformation is mainly governed by ξ2, therefore, although only 2 tests are used to calibrate 3
independent parameters, the test data allow a unique identification calibrate because not all the three
parameters affect each part of the tests equally.

Following this procedure, the calibrations yielded E0 = 133.33 GPa, ξ1 = 1.75 ×10−5 MPa−1,
κ1 = 19 MPa/◦K and ξ2 = 7 ×10−6 MPa−1. All creep parameters are listed in Table A2. The simulated
elastic modulus was E28

num = 37.7 GPa and the experimentally reported value was E28
exp = 37.3 GPa

which means that the error is less than 1.07%. Figure 2d shows the relevant experiments versus
simulations comparison. The numerical results match well the deformation trend and magnitude
over most of the time history up to the end. Only the early part is slightly underestimated at about
2 months. Many factors affect this difference including the estimation of early age creep parameters
for lack of specific experiments and possible shortcomings in the experiments. The latter includes
imperfect sealing, accuracy of humidity profile measurement, and the general variability of lab results
for concrete testing. It is also worth mentioning that the experiments on beam specimens had only one
beam sample per case which, of course, has limited statistical validity.

4.4. Calibration of LDPM Concrete Parameters

LDPM parameters were calibrated based on reported values of compressive strength, f ′c = 38.4 MPa,
and splitting tensile strength, f ′t = 3.2 MPa. The generation of the different LDPM meso-structures was
performed considering the aggregate size distribution reported in Reference [108]. The parameters used
for geometry and aggregate system generation were: minimum aggregate size, d0 = 10 mm; maximum
aggregate size, da = 20 mm; fuller curve exponent, nF = 0.79; cement content, c = 410 kg/m3;
water-to-cement ratio, w/c = 0.5207; aggregate-to-cement ratio, a/c = 4.249.

The identified LDPM parameters were: meso-scale tensile strength, σt = 4.75 MPa; shear strength
ratio, σs/σt = 3.07; and meso-scale tensile characteristic length, `t = 75 mm. Other parameters
were assumed based on existing literature and they are listed in Table A2. The average of the
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simulated concrete properties are: f ′c,num = 38.41 MPa and f ′t,num = 3.19 MPa, which match the
given experimental data with an error smaller than 0.026% and 0.31%, respectively.

4.5. Calibration of ASR Model Parameters

The already calibrated HTC, creep, shrinkage and LPDM parameters are used with no changes
and coupled with ASR response during the ASR parameter calibration step. This is the only reasonable
approach for a calibration process that represents realistic ASR evolution because the visco-elastic
character of the model can render the simulated ASR expansion unreliable by under predicting it (if the
compliance is too high) or over predicting it (if the compliance is underestimated). Similarly, the HTC
model parameters are extremely important because they characterize the h and T fields that affect
ASR processes. It is worth mentioning that the identified ASR parameters are relevant to T = 38 ◦C,
which was the temperature at which the tests were performed.

The identification is here executed in two main stages: stage I concerns the calibration of ASR
evolution parameters at full saturation; stage II deals with the identification of the parameters
governing the effects of relative humidity on ASR induced expansion.

Stage I: Calibration under 100% relative humidity. The calibration first step is to try decoupling the
two ASR processes, namely gel formation and water imbibition. The evolution rate of both processes
decreases with time: the gel formation slows down and stops as the aggregate becomes fully reacted and
Ṁi is proportional to the difference between the mass of imbibed water, Mi, and the thermodynamic
imbibition capacity. Thus it is possible to fit an ASR expansion curve by over- or under- estimating
one process rate and doing the opposite with the other one especially if the ASR expansion curve
does not reach an asymptotic value within the experimental testing period. By examining the axial
deformation curves for the 100% case for both cylindrical and prismatic samples in Reference [104], it is
clear that they reach a plateau at about 420 days. So, while calibrating ASR parameters, a check was
made to have the largest aggregate pieces react completely around 420 days. Since the temperature is
constant throughout the test period, only κ1

z needs to be calibrated to adjust the time of full aggregate
reaction. Hence, regardless of matching the expansion curve amplitude, κ1

z = 2.62 ×10−10 m5/(kg day)
was directly obtained. In the actual experiments, the fine aggregate was not reactive while the coarse
aggregate (>4 mm in diameter) was reactive therefore all reactive aggregate could have been modeled
in LDPM. The problem is that, while doable for small samples, it is too expensive for large sample
size. Therefore, a cut off radius is usually used in all LDPM simulations. The usual limit [66,67] is
to assume dmin = 0.5dmax which was used in the calibration of LDPM parameters as mentioned in
Section 4.4. The only problem here is that the expansion from smaller aggregate that would be cut off
needs to be accounted for. It is important here to say that the coarser aggregate has more significance
in cracking than the fine aggregate as it produces more gel over longer times. Figure 2f shows the
normalized diffusion front profiles of all simulated aggregate. By examining Figure 2f, the smallest
modeled aggregate (d = 9.89 mm) completely reacted after only 120 days, so, the coarser aggregate
alone is responsible of the heterogeneity in expansion (which is the main reason for cracking [65]) from
120 to 480 days.

Next, the amplitude of the expansive deformation due to ASR and its profile also need to be fitted.
In the model, its initial part is controlled by δc and C̃1

i while the amplitude is controlled by κa × κg × κi.
In the reference experimental program [104], potassium hydroxide was added to the mixing water to
raise the alkali content to 1.25% by cement mass of Na2Oeq as typically done in similar accelerated
tests for ASR [109,110]. Thus ca = c × 1.25/100 = 410 × 1.25/100 = 5.125 kg/m3. This value is
typically higher than the required saturation alkali content [65]. Therefore, the available alkali content
is more than enough to react with all silica in aggregate. This leads to κa = 1.0. Furthermore, as
the gel composition and silica content are not known from Reference [104], a reasonable estimate
of κg =689 kg/m3 can be obtained based on previous works [65,68]. This means that only κi, δc

and C̃1
i are free parameters. The calibration now is simple, first, δc is set to zero, then, an initial

estimate of κi is obtained. Next, C̃1
i is calibrated to match the linear slope of the middle stage of ASR
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expansion. Finally, to match the initial delay along with the final asymptote, δc is introduced along
with adjusting κi. Then fine tuning is done for the three parameters. It must be noticed here that none
of the parameters can interfere with the identification of the other two, and basically, each parameter
adjusts a specific portion of the full ASR expansion curve. This final step gives δc =6.0×10−6 m,
C̃1

i =7.78 ×10−10 m2/day, and κi = 1.45 ×10−2.
It must be mentioned here that the experimental data are largely scattered, therefore,

the calibrations, discussed above, were performed on the average axial deformation of cylinders and
prism samples. For more details on the reasons of this scatter, one can refer directly to Reference [104],
in which the main explanation was the different direction of concrete casting for prisms and cylinders.

Stage II: Calibrating relative humidity effects parameters. At this point, only two parameters remain
to be calibrated rD and nD. For this calibration, the average of experimental data for sealed samples
(both cylinders and prisms) is used. The calibrated parameters are rD = 3600 and nD = 2. It must
be noted here that the sealed samples had a relative humidity of 97% at 28 days. At this value, and
using the calibrated parameters, the diffusivity ratio becomes 1/(1 + (3600− 1)(1− 0.97)2) = 0.236.
This means that calibrating at 97% relative humidity is covering a wide range of the humidity effect.
The fitted expansive deformation due to ASR is shown in Figure 2c. It is worth noting also that
the experimental program suffered from small water loss in the sealed samples as reported by
Reference [104], therefore, the slightly increasing final value in the numerical simulations that does
not match the average can be explained by that moisture loss in the experiments. Nevertheless, this
slight difference is way below the experimental scatter for sealed specimens, where the final expansion
range was from 0.25% to 1.36%.

At this point, all models parameters are fully calibrated, all effort was made to minimize
redundancy and to keep the calibration process as uncoupled as possible. All ASR parameters are listed
in Table A5. Now, it only remains to validate the overall framework against a completely different
scale and range of conditions which is left for the next section.

4.6. Validation through Full Scale Beam Simulations

The predictive capabilities of the framework can be verified through the simulation of a set of
experiments not used in the calibration phase and relevant to the same concrete material utilized.
The set consists of 3 different reactive beams tested in Reference [104] with the same dimensions of
the NPC beam used in the creep model calibration. Figure 3a shows the geometry of the beams along
with their reinforcement. As can be seen from Figure 2d, a good matching between experimental and
simulated responses is achieved for the RPC beam. In the beginning, simulations tend to over estimate
the response but then, towards the end, the response is underestimated where the experiments showed
5.2 mm deflection while the simulated one was 4.6 mm which is just 12% smaller. In fact, this is an
excellent prediction given that the scatter observed in experimental data used for ASR calibration was
over 20%. As for the reinforced beams RRC1 and RRC2, the model correctly captures the different
stages of the response: and it shows an increase in deflection in the beginning; then as time goes on,
it starts to plateau, then finally, the deflection decreases back. This is because the lower saturated
region reacts faster and more than the middle region. In addition, the top region tends to shrink due
to drying. The combined effect is generation of a curvature that leads to initial downward deflection
for the samples RPC, RRC1, and RRC2. For RPC, since no reinforcement is present, the ASR induced
expansions in the bottom part are at their maximum and shrinkage of the top is also unrestrained,
as a result, the beam bends down and never returns up again, but towards the end, the deflection rate
slows down as both shrinkage and ASR induced deformations reach a plateau. For RRC1 and RRC2,
the presence of reinforcement constrains top and bottom deformations. Especially in the bottom where
the reinforcement area is 2.25 times the top one for RRC1 and 4 times the top one for RRC2, the overall
ASR induced expansion and thus the deflection is clearly reduced. However, in those samples the less
restrained middle part starts to be of more relevance here as it keeps expanding towards the end of the
test period. Therefore, the deflection of the beam does not show a plateau, and, instead, it cambers
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back up. This is much more clear with the deflection of the sample RRC2, which tends to camber up
earlier than RRC1 (see Figure 2d). This is because, for RRC2, the bottom part is even more restricted
compared to the top part than for beam RRC1. The model captures all these aspects, which means that
it does represents the correct effects of humidity on ASR expansion, even if it over estimates the whole
curve. The discrepancy can be partially explained again by the very large scatter in the experimental
data and by the fact that only one beam sample of each type was tested. In addition, any slight change
in the actual location of the reinforcement or possible slippage due to ASR cracking in the bottom part
can also have an effect on the deflection.

5. Discussion of Results

As shown in the previous section, the proposed framework was able to replicate full structural
members deformations induced by ASR under varying environmental conditions, loads, and
reinforcement arrangements based on small companion specimens behavior. This is an unprecedented
predictive capability that—to the best knowledge of the authors—has never been achieved before by
any existing comprehensive and physics-based ASR model as they had to be calibrated on the actual
structural member behavior to be able to replicate it, or they were only replicating special uniform
conditions on lab specimens. Simplified empirical models that can only estimate deformations without
explicit evaluation of damage and stress transfer, can only be used for structural type preliminary
calculations. They can not be used to evaluate strength degradation and service life prediction. In fact,
the power of this proposed framework is not limited to its predictive capability, but it extends to the
ability to see inside the structural element and to understand more in details how different phenomena
interact. In this section, emphasis on understanding these coupling aspects is presented to elucidate
the unseen redistribution of cracking and stress relief as a result of creep-ASR coupling.

First, by looking closely at Figure 3b, with a 30 µm crack opening cutoff, it is pretty clear that in
the case of considering only ASR effect the specimen presents much more distributed small cracks and
the maximum crack opening is 128 µm. Whereas in the case of fully coupled model (ASR expansion
with creep and shrinkage) the specimen presents less distributed cracks (about 13% less cracking) with
a maximum crack opening of 113 µm. Figure 3c shows, for the fully coupled model and the ASR-only,
the axial deformations versus time obtained under different conditions, namely 100% environmental
RH, sealed condition, and 30% environmental RH. For the 100% RH case, the axial expansion due to
ASR-only is 0.2129% while it is 0.1962% for the coupled case with a difference of 8.5%. For the sealed
case, the axial expansion with ASR-only is 0.1158% compared with 0.0995% for the coupled model.
In this case the effect of coupling is more pronounced with a significant difference of 16.4%. This is
partially due to the slight shrinkage caused by self-desiccation in sealed condition that is opposite
to the slight swelling caused by resaturation for the 100% RH case. Finally, as a proof that ASR does
not significantly affect the calibration of the shrinkage coefficient based on the 30% RH case axial
deformation, the simulated expansion with ASR-only model at 30% RH was only 1.27×10−4%.

To further understand the actual contributions to the observed deformation, the axial deformations
were also simulated for the three different cases and are plotted in Figure 3d. At 100% RH swelling
is very small (only 5.6×10−4%) but a little shrinkage is observed in the sealed case which was
−3.8×10−3%. If this is subtracted from the coupled case, the sealed expansion becomes 0.1033% and
still the uncoupled ASR expansion is 12% higher than the coupled one. This means that for the sealed
case, although the overall expansion is less, the creep affects more the overall deformation. This can be
explained again in a fully coupled setting because, as the relative humidity drops, the microprestress
decay is slowed down slightly and thus, more viscous strains can develop. In addition, the higher ASR
imposed strains in the 100% RH case cause earlier cracking which, in turn, prevents these cracks from
contributing to creep/relaxation of the internal stresses build up. It is very important here to notice
that, if a continuum based formulation is used, all these meso-scale phenomena can not be explicitly
captured and, on the contrary, they have to be phenomenologically assumed. Thanks to the discrete
setting and the mimicking of concrete internal structure and heterogeneity, this framework allows
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for clear understanding of the coupling mechanisms and their interactions. In fact, almost all other
available models add shrinkage/swelling expansions algebraically to ASR expansions without any
consideration of creep as they are all continuum based and in case of free expansions, the macroscopic
stress tensor is always zero. Only the model by Bažant and Rahimi-Aghdam [10] considers creep
induced deformations as function of ASR induced pressure, but as mentioned before, it is done
in an average sense, where the ASR induced pressure does not correspond directly to the actual
aggregate-aggregate stress fields and thus, the estimated creep also does not directly correlate to the
actual meso-scale level creep deformation. As a final clarification here, the sum of shrinkage/swelling
and ASR deformations is compared to their corresponding result of the coupled model in Figure 3e
and, again, at 100% RH the sum overestimates the coupled one by 8.8%, the sealed one is 12.6%
overestimated, and at 30% RH no large difference is observed.

This becomes much more interesting when beam simulations are studied. First, the crack
distributions are shown for RPC and RRC1 in Figure 4a from which it can be seen the difference
of the cracks distribution and how the reinforcement confinement tends to reduce the amount of
cracking and crack opening (334 µm for beam RPC and only 97 µm for beam RRC1). In Figure 4a the
color scale of crack openings was intentionally modified for the RPC beam to show all cracks above
100 µm in red so they can be distinguished from those in RRC1. By looking at Figure 4b, the tensile
forces along the rebars for NRC beam are plotted just after the application of its own weight (no creep
nor drying is included). The bottom rebars are in tension with 0.228 kN per each 16mm bar and the
top are in compression with 0.094 kN per bar. The beam self-weight is 23.6× 0.25× 0.5= 2.95 kN/m
which generates a mid span bending moment of 2.89 kNm (over a span of 2.8 m). Even neglecting
any steel contribution (RPC case), the bottom fiber tensile stress is 0.283 MPa which is clearly below
the concrete tensile strength by about an order of magnitude. After including ASR effect as shown
in Figure 4c, the compression in top bars completely reversed into tension, 11.9 kN, almost constant
along the rebar up to the beam end and it only decreases close to the support where the presence of
more stirrups provides confinement, reduces expansion and, thus, reduces rebar tension. With ASR
effects, the bottom bar force increased up to 46 kN which corresponds to a stress of 230 MPa that
would have yielded the bottom reinforcement if mild steel was adopted. In addition, this high level of
stress means clearly that rebar-concrete slippage probably occurred in the experiments. While LDPM
was recently extended to capture bond-slip behavior [111], due to lack of enough experimental data,
this phenomenon was neglected in this study. The possibility of slippage supports the explanation of
why the simulated RRC1 and RRC2 deflections are larger than the experimental ones. If slippage had
occurred in the simulations, the stresses would have been relieved, the curvature would have been
smaller, and, consequently, deflections would have been smaller since most of the deflection is due to
the rebar restricted ASR expansion as opposed to the very small applied own weight.

Figure 4b,c show the forces in both vertical and horizontal parts of the stirrups. The stirrups in
NRC beam (under own weight only) shown in Figure 4b have minimal forces as expected. Close to the
midspan, the top and bottom segments of the stirrups are the most stressed ones with −0.008 kN at
the bottom (compression) and 0.008 kN at the top (tension) which is a result of the lateral strain due
to Poisson effects. Figure 4c shows the forces in RRC1 beam where expansion due to ASR produces
tension in the horizontal segments at the bottom and shrinkage due to top surface drying reduces that
expansion. The top segments now carry a 2 kN and the bottom ones carry about 8 kN. In addition,
the vertical segments are all in tension and carry a maximum of 13.5 kN. Again, this is 268 MPa of tensile
stresses, which is only elastic for the used high strength steel (mild steels like A36 yield at 220 MPa).
To conclude, the proposed framework was able to compute internal forces in the reinforcement, that
can not be measured and extremely hard to theoretically estimate by properly coupling different
mechanisms at the main concrete heterogeneity length scale.
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Figure 4. (a) Simulated crack patterns and crack openings for both RPC and RRC1 beams showing the
effects of reinforcement on crack suppression; (b) Simulated rebar internal forces due to beam own
weight only; (c) Simulated rebar internal forces due to beam own weight, Alkali Silica Reaction (ASR),
creep and shrinkage effects.

6. Conclusions

In this paper a multi-scale multi-physics framework that simulates coupled ASR damage, thermal,
shrinkage and creep deformations in concrete is presented. The framework accounts for variations
in environmental conditions including temperature and moisture changes as well as concrete aging
as a function of cement hydration. All phenomena are translated into imposed strains, that are
applied to the Lattice Discrete Particle Model which simulates concrete mechanical behavior including
cracking and damage in a discrete setting at its meso-scale (length scale of large aggregate pieces). The
framework was fully calibrated based on small samples experimental data. Full scale plain concrete
and reinforced concrete beams were simulated as a validation step. The obtained results suggest the
following conclusions.

1. ASR progression is a process that takes a few years to multi-decades depending on moisture
and temperature conditions as well as cement chemistry and aggregate mineralogy. This makes
ASR in full interaction with other aging and deterioration phenomena like creep, shrinkage and
thermal expansions. Simple addition of the deformation induced by these phenomena is incorrect
because the different phenomena are nonlinearly coupled.

2. Meso-scale modeling reveals the sub-scale interactions between coupled phenomena that are
not seen at the macroscopic length scale. Namely, for the case of ASR induced free expansion,
only modeling of deformations at the meso-scale can capture meso-scale creep deformations and
relaxation of meso-scale stress build up that are not seen at the macroscopic scale because the
macroscopic stress is zero.

3. Relative humidity effect on ASR expansion is essentially a moisture diffusion controlled process
that can be modeled similarly to relative humidity effects on moisture diffusivity in concrete.

4. Simplified average section models that describe creep and shrinkage can lead to large inaccuracy in
predicting ASR deformations for nonsaturated conditions. The humidity profile has a significant
effect on ASR expansions that can not be averaged.
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5. ASR expansions in reinforced concrete elements can lead to large internal forces build up and
may lead to reinforcement yielding, reinforcement slippage, and partial bond loss.

6. For any complex framework to be predictive, its calibration needs to depend on uncoupled
phenomena, then, it must be validated clearly. This was accomplished here by a multi-step
calibration procedure on companion specimens with no ASR expansion, followed by ASR
expansion calibration, then finally validation on full scale beams. A key factor here is the degree of
scatter in the experimental data which is reflected directly in the prediction results of the model.

7. To the best knowledge of the authors, this is the only framework in literature that was calibrated
on individual lab size specimens and was able to predict structural behavior. Other models are
either directly calibrated based on structural response to simulate structural behavior, or are
calibrated and validated based on individual lab size specimens.
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Appendix A. Model Parameters

Table A1. Parameters to Simulate Concrete Chemical Reactions.

Param. (Units) Modeled Chemical Reaction Test for Calibration Value Source

Ac1 (h−1) Cement hydration Calorimetric tests 1.41× 107 [79]
Ac2 (-) Cement hydration Calorimetric tests 5× 10−3 [79]
ηc (-) Cement hydration Calorimetric tests 8 [79]

Table A2. Parameters to Simulate Concrete Mechanical Behavior.

Param.
(Units) Modeled Behavior or Mechanism Test for Calibration Value Source

E0 (GPa) Elasticity Any in the linear range 133 Calibrated

α (-) Poisson’s effect 0.25 [67]

ξ1 (MPa−1) Short term visco-elasticity Basic creep tests with short load
duration (≈1 year) 1.75 ×10−5 Calibrated

ξ2 (MPa−1) Long term viscocity Basic creep tests with long load
duration (≈10 year) 7 ×10−6 Calibrated

nα (-) Aging visco-elasticity Basic creep tests at different age of
loading 1.9 [96]

κ1
(MPa/◦K)

Evolution of the microprestress at variable
temperature and relative humidity

Drying creep test or transitional
thermal creep tests 19 [96]

σt (MPa) Tensile fracture Fracture tests or tensile strength tests 4.75 Calibrated

`t (mm) Tensile fracture Fracture tests or size effect tests 75 Calibrated

σs/σt (-) Cohesive behavior in shear Unconfined compression test 3.07 Calibrated

µ0 (-) Frictional behavior Triaxial compression tests at low
confinement 0.2 [67]

σN0 (MPa) Frictional behavior Triaxial tests at high confinement 600 [67]

σc0 (MPa) Yielding and pore collapse Hydrostatic compression test 150 [67]

Hc0/E28
0 (-) Yielding and pore collapse Hydrostatic compression test 0.3 [90]
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Table A2. Cont.

Param.
(Units) Modeled Behavior or Mechanism Test for Calibration Value Source

Hc1/E28
0 (-) Yielding and pore distorsion Passively confined tests 0.1 [90]

κc0 (-) Material densification after pore collapse Hydrostatic compression test 4 [90]

Ed/E28
0 (-) Material densification after pore collapse Hydrostatic compression test at very

high pressure or with unloading 1 [67]

Table A3. Parameters to Simulate Heat Transfer and Moisture Transport in Concrete.

Param. (Units) Modeled Behavior or
Mechanism Test for Calibration Value Source

ct (J/kg◦C) Heat transfer Thermal conductivity tests 1100 [79]

λt (W/m◦C) Heat transfer Thermal conductivity tests 2.3 [79]

g1 (-) Moisture content Sorption/desorption isotherms relevant to
two different values of hydration degree 1.7 [79]

g2 (-) Moisture content in
C-S-H pores

Sorption/desorption isotherms relevant to
two different values of hydration degree 0.2 [79]

D0 (kg/mm h) Moisture transport Humidity profile during drying tests 2 ×10−9 Calibrated

D1 (kg/mm h) Moisture transport Humidity profile during drying tests 4 ×10−7 Calibrated

n (-) Moisture transport Humidity profile during drying tests 2.35 Calibrated

Table A4. Parameters to Simulate hygro-thermal deformation.

Param. (Units) Modeled Behavior or Mechanism Test for Calibration Value Source

αh (-) Shrinkage and swelling due to
moisture content change Shrinkage tests 9×10−4 Calibrated

αT (-) Thermal expansion and contraction Thermal expansion tests 1×10−5 [96]

Table A5. Parameters to Simulate Alkali Silica Reaction in Concrete

Param. (Units) Modeled Behavior or
Mechanism Test for Calibration Value Source

ρg (kg/m3) ASR gel density Free ASR expansion tests at 100 %
relative humidity 689 [65,68]

κz1
(cm5kg−1day−1) ASR gel formation Free ASR expansion tests at 100 %

relative humidity 2.62 Calibrated

κi (-) Water imbibition Free ASR expansion tests at 100 %
relative humidity 1.45 ×10−2 Calibrated

C̃1
i (mm2/day) Water imbibition Free ASR expansion tests at 100 %

relative humidity 7.78 Calibrated

δc (µm) ITZ porosity effect on
ASR imposed strain

Free ASR expansion tests at 100 %
relative humidity 6.0 Calibrated

ca0 (kg/m3) Alkali content effect
Free ASR expansion tests at 100 %
relative humidity and different
alkali contents

2.7 [65]

ca1 (kg/m3) Alkali content effect
Free ASR expansion tests at 100 %
relative humidity and different
alkali contents

4.37 [65]

rD (-) Relative humidity effect Free ASR expansion at different
levels of relative humidity 3600 Calibrated

nD (-) Relative humidity effect Free ASR expansion at different
levels of relative humidity 2 Calibrated
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