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ABSTRACT 
 

The challenge of Risk-Informed Safety Margin Characterization (RISMC) is 

to develop a methodology for estimating system safety margins in presence of 

stochastic and epistemic uncertainties affecting the system dynamic behavior. 

This is useful to support decision-making for licensing purposes. In the 

present work, safety margin uncertainties are handled by Order Statistics 

(OS) (with both Bracketing and Coverage approaches) to jointly estimate 

percentiles of the distributions of the safety parameter and of the time 

required for it to reach these percentiles values during its dynamic evolution. 

The novelty of the proposed approach consists in the integration of dynamic 

aspects (i.e., timing of events) into the definition of a dynamic safety margin 

for a probabilistic Quantification of Margin and Uncertainties (QMU). 

The system here considered for demonstration purposes is the Lead- Bismuth 

Eutectic- eXperimental Accelerator Driven System (LBE-XADS). 

 

Keywords: Risk-Informed Safety Margins; Dynamic Probabilistic Safety Margins; 

Order Statistics; Grace time. 

 

NOTATION AND LIST OF ACRONYMS 
 

BDBA Beyond Design Basis Accident 

BE Best Estimate 

DBA Design Basis Accident 

DET Dynamic Event Tree 

DSA Deterministic Safety Analysis 

DSM Dynamic probabilistic Safety Margin 

ECCS Emergency Core Cooling System 

ET Event Tree 

FT Fault Tree 

IDPSA Integrated Deterministic & Probabilistic Safety Assessment 

LBE-XADS Lead Bismuth Eutectic- eXperimental Accelerator Driven System 

LOCA Loss Of Coolant Accident 

MC Monte Carlo 

NPP Nuclear Power Plant 

OS Order Statistics 
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PCT Peak Cladding Temperature 

PID Proportional- Integral-Derivative controller 

PSA Probabilistic Safety Assessment 

PWR Pressurized Water Reactor 

QMU Quantification of Margin and Uncertainties 

RISMC Risk Informed Safety Margin Characterization 

TH Thermal Hydraulic  

U Upper Safety Threshold 

L Lower Safety Threshold 

𝑇𝑜,𝑚𝑎𝑥  Maximum Temperature of Diathermic Oil 

𝑃(𝑡) Thermal power 

𝑄(𝑡) Proton Beam 

𝜏𝐿𝐵
𝐶,𝑃

 Temperature of LBE liquid leaving from the top of the core of the LBE XADS 

𝜏𝐿𝐵
𝑃,𝐶

 Temperature of LBE liquid re-entering the core from the bottom of the LBE 

XADS 

𝑇𝐿𝐵
𝑎𝑣,𝐶

 Average in-core temperature of LBE liquid 

Γ𝑎(𝑡) Airflow 

𝑇𝑜
𝑎𝑣,𝑆 Average temperature of diathermic oil 

𝑇𝑜
𝑡ℎ,𝑢 Upper safety threshold of LBE XADS diathermic oil temperature 

𝑇𝑜
𝑡ℎ,𝑙 Lower safety threshold of LBE XADS diathermic oil temperature 

𝑚1 Flow rate of air when PID controller fails stuck 

𝑚2 Airflow mass flow when air coolers fail stuck 

𝑚3 Flow rate of air when feedforward controller fails stuck 

𝑇𝑎𝑖𝑛    Air inlet temperature from air cooler 

𝑥̅   Input values vector 

𝑥𝑚   mth element of the input vector 

 ith element of the representative sample of independent input vectors 

J Number of safety parameters 

j Index of the safety parameter 

𝑦 Set of values of first output vector (e.g., safety parameter) 

𝑦𝑗(𝑎) j-th safety parameter for accidental scenario a 

𝑦𝑗𝑟𝑒𝑓  Reference value for 𝑦𝑗(𝑎) 

𝑀(𝑦𝑗 , 𝑎) Safety margin for the j-th safety parameter during accidental scenario a 

𝑀(𝛾, ) Probabilistic safety margin 

𝑀(𝛾1, 𝛾2, 1,2) Dynamic probabilistic safety margin 

𝑦 Set of values of first output vector (e.g., safety parameter) 

𝑦
𝑡  Set of values of second output vector (e.g., time) 

𝑦̅ Safety parameter output vector 

𝑦̅∗ Ordered set of the safety parameter output vector 

𝑦̅
𝑡
 Time output vector 

𝑦̅𝑡
∗
 Ordered set of the time output vector 

𝑓(𝑦) Probability density function of y 

𝑓(𝑦𝛾) Probability density function of the γ-th percentile of y 

𝑘 Number of outputs 

𝑁 Number of simulations 

𝛽   Confidence value 

𝛽
1
 Confidence value of the safety parameter (e.g., 95%) 

𝛽
2
 Confidence value of the time (e.g., 95%) 

𝛾 Coverage value 

 i
x
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𝛾
1 Coverage value of the safety parameter (e.g., 95th percentile) 

𝛾
2 Coverage value of the time (e.g., 5th percentile) 

𝑚 Number of values that lie beyond the γ coverage extent 

𝑦
𝛾
 Real γth percentile 

𝑦̂
𝛾1

 Estimated γth percentile of the safety parameter 

𝑦
𝑡̂𝛾2

 Estimated γth percentile of the time 

𝑦
𝛾1

 Real value of the γth percentile of the safety parameter 

𝑦
𝑡𝛾2

 Real value of the γth percentile of the time 

𝑦
95

 Real 95th percentile 

𝑦̂
95

 Estimate of the 95th percentile 

 

1. INTRODUCTION 

 

Risk assessment and safety analysis are traditionally supported by a Deterministic Safety 

Analysis (DSA) of a limited set of Design Basis Accidents (DBAs) under largely 

conservative assumptions [NUREG CR-6042, U.S. NRC, 1994]. For this, IAEA defines 

four possible options that combine differently computer codes availability, realism of 

assumptions and boundary conditions [IAEA SSG-2, 2008]. Among these options, 

traditional DSA using Best Estimate (BE) Thermal-Hydraulic (TH) codes based on 

conservative (pessimistic) assumptions on the system dynamics and physical models (i.e., 

IAEA option 3) is limited in the consideration of system failure modes and sequences, 

timing and order of failure events. 

Probabilistic Safety Assessment (PSA) overcomes the limitation of considering only 

DBAs by extending the set of accidents through a systematic analysis of the failure 

events and sequences (e.g., by Event Trees (ETs) / Fault Trees (FTs)). Yet, PSA does not 

give full account to the timing of failure events and to the magnitude of component 

failures, which can be important especially when the system dynamics significantly 

influences the system failure behavior [Rutt et al., 2006]. 

Dynamic reliability approaches [Siu, 1994; Devooght, 1997; Marseguerra et al., 1998; 

Labeau et al., 2000; Dufour et al., 2002; Di Maio et al., 2009; Aldemir, 2013] have been 

developed, aimed at giving explicit account to the interactions among the physical 

parameters of the process (such as temperature, pressure, speed, etc.), the human 
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operators actions and the failures of the hardware and software components. This creates 

the opportunity of DSA and PSA integration into one framework of Integrated 

Deterministic and Probabilistic Safety Analysis (IDPSA) [Aldemir, 2013; Zio, 2014] and 

as a by-product for the quantification of operational safety margins within a dynamic 

reliability scheme [Zio et al., 2012].  

Traditionally, a safety margin is defined as the minimum distance between the system 

“loading” and its “capacity” [US D.O.E., 2009]. The challenge is the effective 

representation of the uncertainties inherent in the TH code parameters, correlations and 

approximations. 

Uncertainty is typically distinguished into two types: randomness due to inherent 

variability in the system behavior and imprecision due to lack of knowledge and 

information on the system [Apostolakis, 1990]. The former type of uncertainty is often 

referred to as objective, aleatory, stochastic, whereas the latter is often referred to as 

subjective, epistemic, state of knowledge [Apostolakis 1990; Helton, 2011]. To deal with 

these uncertainties, traditional safety margins quantification in DSA analysis has implied 

conservatism in both the analysis of the TH code outputs and the evaluation criteria [Nutt 

et al., 2004]. Best Estimate (BE) methodologies have reduced the amount of conservatism 

for the evaluation of safety margins, but do not take into account all aleatory and 

epistemic uncertainties in the physical models stochastic behavior and model parameter 

values [US D.O.E., 2009]. 

In order to more realistically quantify the uncertainty of TH code outcomes, a 

probabilistic safety margin definition has been proposed for PSA, which better deals with 

epistemic uncertainties [Zio et al., 2010]. However, the effect of timing, order and 

magnitude of the component failures on the system dynamics is not considered. 

In this respect, a Dynamic probabilistic Safety Margin (DSM) approach is proposed in 

this paper, based on time-dependent phenomenological models of stochastic system 

evolution including possible dependencies between failure events [Aldemir, 2013]. For 

this, we introduce a novel definition of a DSM by the combined quantification of a 

percentile (e.g., 95th) of the safety parameter distribution (e.g., oil temperature, peak 

cladding temperature) and a percentile (e.g., 5th) of the distribution of the earliest time 

required to the safety parameter to reach the given percentile value. The uncertainties 
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affecting the DSM are treated using Order Statistics (OS) (i.e., Bracketing and Coverage 

approach) [Nutt et al., 2004]. By doing so, we are able to compute the confidence that, for 

a selected accidental scenario of a Dynamic Event Tree (DET) obtained by a IDPSA 

analysis, the estimated 95th percentile of the safety parameter cannot be reached before 

the 5th percentile of the estimated time: if these estimated percentiles meet the safety 

criteria with the required confidence, the NPP can be licensed as “safe” to withstand the 

selected accidental scenario.  

The rationale behind the choice of the selection of the 95th and the 5th percentiles for the 

safety parameter and the estimated time, respectively, lies in the attempt of assuring that 

there is no significant evidence of exceedance of the safety parameter threshold which 

could lead to a higher than accepted probability of failure within an extremely 

unavoidable (fast) time (i.e., the unlikely condition that the safety parameter reaches the 

threshold within the 5th percentile value of the time distribution). With these assumptions, 

the proposed definition of DSM provides the analyst with the additional resilience 

information on the available time for counteracting the occurrence of an accidental 

scenario, rather than only quantifying to which extent the selected combination of failure 

events can be harmful for the NPP. 

The proposed framework of analysis is developed with reference to a Lead Bismuth 

Eutectic-eXperimental Accelerator Driven System (LBE-XADS) model, in which the 

average oil temperature (𝑇𝑜
𝑎𝑣,𝑆

), of the secondary coolant loop is taken as the safety 

parameter [Cammi et al., 2006; Di Maio et al., 2009]. A SIMULINK model of the LBE-

XADS system is used for the estimation of the percentiles of the maximum oil 

temperature (𝑇𝑜,𝑚𝑎𝑥) distribution and of the distribution of the time required to reach 

𝑇𝑜,𝑚𝑎𝑥. A Monte Carlo (MC)-driven fault injection engine is used for randomly sampling 

the model parameters values, the components failures times and magnitudes. The 

illustration of the analysis is given with respect to one accidental scenario of a DET 

generated in an IDPSA. 

The paper is organized as follows. In Section 2, the concept of probabilistic safety margin 

is explored and that of DSM is introduced. In Section 3, a brief explanation is given of 

the OS approaches (bracketing and coverage) used for the definition of the number of TH 

code runs for uncertainty analysis with a required confidence (e.g., 95%) in the 
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quantification of the DSM. In Section 4, a short description of the LBE-XADS system 

and its failure modes is given, along with the SIMULINK model used. The MC driven 

fault injection engine, used for sampling the physical parameters affecting the system 

behavior (epistemic uncertainties) and the components failure times and magnitudes 

(aleatory uncertainties), is also presented, the effects of the uncertainties on the dynamic 

evolution of 𝑇𝑜,𝑚𝑎𝑥 are discussed, and the results are shown and analyzed. Conclusions of 

the whole study are drawn in Section 5. 

 

2. DYNAMIC PROBABILISTIC SAFETY MARGIN 

 

Traditionally, for an accidental scenario ‘𝑎’, the safety margin 𝑀(𝑦𝑗, 𝑎) is defined as the 

difference between the conservatively computed values reached by a selected safety 

parameter 𝑦𝑗(𝑎), j=1,2,…J, and a predefined upper (lower) threshold 𝑈𝑗 (𝐿𝑗) during an 

accidental scenario [Nutt et al., 2004; Secchi et al., 2008; Martorell et al., 2009].  

For the upper threshold 𝑈𝑗, it is defined as:  

𝑀(𝑦𝑗 , 𝑎) =

{
 
 

 
 

𝑈𝑗−𝑦𝑗(𝑎)

𝑈𝑗−𝑦𝑗 𝑟𝑒𝑓
   

   
        𝑖𝑓 𝑦𝑗(𝑎) ≤  𝑈𝑗

           0            𝑖𝑓 𝑈𝑗 < 𝑦𝑗(𝑎)

                  1            𝑖𝑓 𝑦𝑗(𝑎) <  𝑦𝑗 𝑟𝑒𝑓  }
 
 

 
 

                         (1) 

and for the lower threshold 𝐿𝑗 as: 

𝑀(𝑦𝑗 , 𝑎) =

{
 
 

 
 

𝑦𝑗(𝑎)−𝐿𝑗

𝑦𝑗 𝑟𝑒𝑓−𝐿𝑗
   

   
        𝑖𝑓 𝐿𝑗 ≤ 𝑦𝑗(𝑎)

           0            𝑖𝑓 𝑦𝑗(𝑎) <  𝐿𝑗
                  1            𝑖𝑓 𝑦𝑗(𝑎) >  𝑦𝑗 𝑟𝑒𝑓  }

 
 

 
 

                         (2) 

where 𝑦𝑗 𝑟𝑒𝑓 is a reference value for 𝑦𝑗(𝑎), which can also be considered as the nominal 

value of the safety parameter 𝑦𝑗. However, a safety margin so defined ends up to be too 

conservatively computed not accounting explicitly for the uncertainties in the estimation 

of safety margin [Martorell et al., 2006; Zio et al., 2008b]. 

To overcome this conservatism, the safety margin can be defined in probabilistic terms as 

the difference between 𝑈𝑗 (𝐿𝑗) and the value of a specific 𝛾1 percentile of the distribution 
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of the safety parameter 𝑦𝑗(𝑎), accounting for both the aleatory and epistemic 

uncertainties that effect 𝑦. Without loss of generality, we only refer to an upper threshold 

𝑈𝑗, the extension to 𝐿𝑗 being straightforward. By regulation, 𝛾1 is usually set equal to the 

95th percentile. Despite that, the estimation of the probability density function of y, 

𝑓(𝑦), and of its 𝛾-th percentile 𝑦𝛾1, 𝑓(𝑦𝛾1), is a non-trivial task that requires guaranteeing 

a confidence 𝛽1 (e.g., 95% confidence), viz [Nutt et al., 2004; Zio et al., 2010]:  

𝛾1 = Pr{𝑦 < 𝑦𝛾1}                                                        (3) 

𝛽1 = 𝑃𝑟{𝑦𝛾1 < 𝑦̂𝛾1}                                                      (4) 

 

Figure 1 Sketch of the probability distribution of the values of safety parameter 𝒚, the probabilistic 

safety margin, the real 𝑦𝛾1  and estimated 𝑦̂𝛾1values of a given percentile (e.g., 95th). 

 

Figure 1 shows that 𝑀(𝑦𝑗 , 𝑎) > 0 if yγ1 < 𝑈𝑗. Since 𝑦̂𝛾1 > yγ1with confidence 𝛽1, if 

yγ1 < 𝑈𝑗, then 𝑀(𝑦𝑗 , 𝑎) > 0. After the distribution of the values of the safety parameter 



 8 

𝑦 and the point estimates of the percentiles (i.e., 𝑦𝛾1 (real) and 𝑦̂𝛾1 (estimated)) are 

obtained, the probabilistic safety margin can be calculated from equation (5) [Nutt et al., 

2004; Zio et al., 2008a]:  

𝑀(𝛾1, 𝛽1) =

{
 
 

 
 

𝑈𝑗−𝑦̂𝛾1

𝑈𝑗−𝑦𝑗 𝑟𝑒𝑓
   

   
  𝑖𝑓 𝑦̂𝛾1 ≤ 𝑈𝑗

           0            𝑖𝑓 𝑈𝑗 < 𝑦̂𝛾1
                  1            𝑖𝑓 𝑦̂𝛾1 < 𝑦𝑗 𝑟𝑒𝑓 }

 
 

 
 

                        (5) 

 

 

Figure 2 Sketch of the probability distribution of the values of time 𝒕, the real 𝒚𝒕𝜸𝟐
 and estimated 

𝒚𝒕̂𝜸𝟐
, values of a given percentile (e.g., 5th) 

The definition of probabilistic safety margin of equation (5) can be enriched by taking 

into account the resilience information related to the time required for reaching 𝑦𝛾1. 

Similarly to 𝑦, if we consider the pdf 𝑓(𝑦𝑡) of time 𝑦𝑡 required to reach 𝑦𝛾1, 𝑦𝑡𝛾2  a 

specific percentile (e.g., 5th percentile) of 𝑦𝑡 and 𝑦̂𝑡𝛾2 its estimate, then we can define (see 

Figure 2):  
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𝛾2 = Pr {𝑦𝑡 < 𝑦𝑡𝛾2
}                                                       (6) 

𝛽2 = 𝑃𝑟 {𝑦𝑡𝛾2
> 𝑦̂𝑡𝛾2}                                                    (7) 

The dynamic probabilistic safety margin can, thus, be defined as a probabilistic safety 

margin with respect to the safety parameter 𝑦 together with the information on the earliest 

(grace) time 𝑡 required to reach that margin (i.e., the available time for counteracting the 

occurrence of an accidental scenario a). 

𝑀(𝛾1, 𝛾2, 𝛽1, 𝛽2) =

{
 
 

 
 

𝑈𝑗−𝑦̂𝛾1

𝑈𝑗−𝑦𝑗 𝑟𝑒𝑓
   

   
  𝑖𝑓 𝑦̂𝛾1 ≤ 𝑈𝑗

           0            𝑖𝑓 𝑈𝑗 < 𝑦̂𝛾1
                  1            𝑖𝑓 𝑦̂𝛾1 < 𝑦𝑗 𝑟𝑒𝑓 }

 
 

 
 

  with grace time 𝑦̂𝑡𝛾2  (8) 

where, the 𝛾2-th percentile of the grace time, 𝑦̂𝑡𝛾2, provides the twofold information 

regarding: the resilience of the system not to exceed the safety threshold and the available 

time for undertaking counteraction measures. In other words, it provides the dynamic 

information for the computed probabilistic safety margin.  

 

3. ORDER STATISTICS FOR PERCENTILES ESTIMATION 

 

Order statistics (OS) is a non-parametric statistical quantification approach that has been 

shown useful in for various nuclear applications: evaluation of fuel densification [U.S. 

NRC, 1978], evaluation of the reliability of an Emergency Core Cooling System (ECCS) 

[U.S. NRC, 1996] and a Loss of Coolant Accident (LOCA) best estimate plus uncertainty 

nuclear safety analysis [Martin et al., 2011]. The invaluable advantage of OS is that an 

unlimited number of model uncertainties can be explicitly considered simultaneously, 

especially when the Nutt-Wallis method [Nutt et al., 2004] is enforced (as done in this 

work) for capturing the uncertainties in multivariate cases: this is, indeed, the only 

approach for multivariate cases that can determine their individual coverage with a 

specified confidence level and an expression of the probability distribution is not required 

[Martin et al., 2011]. 

In this study, the estimates 𝑦̂𝛾1 and 𝑦̂𝑡𝛾2 are quantified using OS [Nutt et al., 2004] 

methodology to get the optimal number of samples 𝑁 of the TH code simulations to be 
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run to guarantee confidences 𝛽1 and 𝛽2 in the estimation of 𝑦̂𝛾1 and 𝑦̂𝑡𝛾2 , respectively. 

This is done to avoid the computational costs for running complex TH models for 

obtaining the full distributions of 𝑦 and 𝑦𝑡. [Zio et al., 2008a; Nutt et al., 2004]. Order 

Statistics and Finite Mixture Models (FMMs) [Carlos et al., 2013; Di Maio et al., 2014b] 

are used for the quantification of the uncertainties of the outputs. FMM provides a natural 

“clustering” of the TH code outputs, by reproducing them providing information 

pertaining to the most important input variables which affect the output uncertainty, 

whereas OS focuses on characterizing the PDFs of certain percentiles and providing 

approximate estimation of safety limits. This latter can also be integrated with Artificial 

Neural Network (ANNs) for speeding up the computation by substituting the TH code 

with a simpler and faster surrogate [Di Maio et al., 2015; Zio et al., 2008b; Mclachlan et 

al., 2000]. Therefore, OS allows obtaining the optimum number of samples 𝑁 to be used 

for properly estimating the percentiles 𝑦̂𝛾1 and 𝑦̂𝑡𝛾2with high confidences 𝛽1 and 𝛽2, 

respectively.  

Let us assume we have a collection of two output vectors 𝑦̅ = {𝑦1, 𝑦2, …… , 𝑦𝑁} and 𝑦̅𝑡 =

 {𝑦𝑡1 , 𝑦𝑡2 , …… . , 𝑦𝑡𝑁} that are obtained from N runs of the TH code, each one with a 

different input deck 𝑥̅. Let 𝑦̅∗ = {𝑦(1), 𝑦(2), … , 𝑦(𝑁)} and 𝑦̅𝑡
∗ = {𝑦𝑡

(1), 𝑦𝑡
(2), … , 𝑦𝑡

(𝑁)} be 

the ordered set of values of the two outputs. Without loss of generality, with reference to 

only the safety parameter 𝑦 (or the time 𝑦𝑡) to be limited from above by U, the approach 

aims at showing that the mth member 𝑦𝑚 (𝑦𝑡,𝑚) of the 𝑁 sorted output 𝑦̅∗ (𝑦̅𝑡
∗) has a 

certain probability 𝛽1 (𝛽2) of exceeding (undershooting) the unknown true 𝛾1 − 𝑡ℎ (𝛾2 −

𝑡ℎ) percentile 𝑦𝛾1(𝑦𝑡𝛾2
). Then, one has a level of confidence 𝛽1 (𝛽2) that the actual value 

of 𝑦𝛾1 (𝑦𝑡𝛾2
) is less (more) than the value obtained for 𝑦𝑚 (𝑦𝑡,𝑚): if 𝑦𝑚 (𝑦𝑡,𝑚) meets the 

criterion of being less than the safety threshold 𝑈, then the unknown 𝑦𝛾1 (𝑦𝑡𝛾2
) will do so, 

too [Nutt et al., 2004; Wald, 1943; Zio et al.,2008a,b]. It is worth noticing that the mth 

member 𝑦𝑡,𝑚 of the 𝑁 sorted outputs 𝑦𝑡  is required to guarantee a confidence (𝛽2) of not 

exceeding (i.e., being smaller than) the unknown true 𝛾2
𝑡ℎ percentile 𝑦𝑡𝛾2

.  

Two non-parametric approaches (namely Bracketing and Coverage) can be embraced to 

calculate 𝑁 and to deal with a multi-dimensional output 𝑦̅ and 𝑦̅𝑡 and their uncertainties. 
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Both approaches entail two sets of outputs to be sequentially sorted. Then, from the 

regulatory bodies point of view, the two approaches fundamentally differ in the way they 

demand the outputs to satisfy their specific safety criteria. The Bracketing approach only 

guarantees a certain fraction of the possible nuclear safety codes outputs to be 

simultaneously considered, which does not guarantee adherence to all safety criteria 

simultaneously, but they are guaranteed to be satisfied by each output independently (or 

by a subset of outputs) [Nutt et al., 2004]. Coverage, on the other hand, provides a 

confidence that all outputs will simultaneously meet the criteria and, thus, it is expected 

to better conform to the regulatory conservative guidelines [Nutt et al., 2004]. 

 

3.1 Bracketing 

The Bracketing approach provides the confidence that each value of the outputs from the 

sorted lists will be covered by the specified ranges of the cumulative probability 

distribution of all possible results of that output [Nutt et al., 2004]. Let 𝛾1 be the 

probability that 𝑦 lies below 𝑦𝛾1 in any of the 𝑁 runs, whatever the value of 𝑦𝑡; 𝛾2 is the 

corresponding probability for the other output 𝑦𝑡. The 𝑦 and 𝑦𝑡 sets of outputs are 

assumed to be uncorrelated for the purpose of simplification.  For uncorrelated outputs 

and assuming 𝑚 = 1, we can calculate 𝑁 from equation (9), where 𝑁 is expressed as a 

function of 𝛾 and 𝛽  [Nutt et al., 2004]: 

𝛽 = (1 − 𝛾𝑁)2                                                         (9) 

A value 𝑁 = 72 allows calculating the 𝛾 = 95th percentile of 𝑦̅ (i.e., 𝑦̂𝛾1) with a 𝛽 = 95% 

confidence; similarly, 𝑦̂𝑡𝛾2can be found by sorting 𝑁 = 72 values of 𝑦̅𝑡 [Nutt et al., 

2004]. 

 

3.2 Coverage 

The Coverage approach provides the confidence that each value of the sorted outputs will 

be covered by the specific ranges of the joint probability distribution of the outputs 

[Wilks, 1941; Wald, 1943; Nutt et al., 2004]. The coverage approach requires knowledge 

on the correlation between the outputs 𝑦 and 𝑦𝑡. It is assumed after investigation that the 

sets of outputs 𝑦 and 𝑦𝑡 are found to be uncorrelated. Shortly, for uncorrelated outputs 

and 𝑚 = 1, we calculate 𝑁 = 89 resorting to equation (10) [Nutt et al., 2004]:  
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𝛽 = 1 − 𝛾𝑁 + 𝑁𝛾𝑁ln (𝛾)                                              (10) 

where 𝛽 = 0.95  and 𝛾 = 0.95. This value confirms that the Coverage approach requires 

larger number of runs as compared to the Bracketing approach. This is because in the 

Coverage approach (contrarily to the Bracketing approach) one output (e.g., 𝑦) is sorted 

jointly with the other output (e.g., 𝑦𝑡) and both percentiles 𝑦𝛾1 and 𝑦𝑡𝛾2  are required to 

simultaneously lie within the estimated percentiles 𝑦̂𝛾1 and 𝑦̂𝑡𝛾2  to guarantee the 

confidence 𝛽1 and 𝛽2.  

 

4. THE LBE-XADS SYSTEM 

 

The Lead-Bismuth Eutectic eXperimental Accelerator Driven System (LBE-XADS) is a 

sub-critical, fast reactor in which the fission process for providing thermal power 𝑃(𝑡) is 

sustained by an external neutron source through spallation reaction by a proton beam 

𝑄(𝑡) accelerated by a synchrotron on a lead-bismuth eutectic target: a simple scheme of 

the system is given in Figure 3 [Cammi et al., 2006].  

The primary cooling system is of pool-type with Lead-Bismuth Eutectic (LBE) liquid 

metal coolant leaving the top of the core, at full power nominal conditions, at temperature 

𝜏𝐿𝐵
𝐶,𝑃

 equal to 400 [°C] pushed by natural circulation enhanced by argon gas injection into 

the heat exchangers of the secondary cooling circuit and then re-entering the core from 

the bottom through the down-comer at temperature 𝜏𝐿𝐵
𝑃,𝐶

 equal to 300 [°C]. The average 

in-core temperature of the LBE 𝑇𝐿𝐵
𝑎𝑣,𝐶

 is taken as the mean of 𝜏𝐿𝐵
𝐶,𝑃

 and 𝜏𝐿𝐵
𝑃,𝐶

 [Di Maio et 

al., 2009]. The secondary cooling system is a flow of diathermic oil at 290-320 [°C], at 

full power conditions. Cooling of the diathermic oil is obtained through an airflow Γ𝑎(𝑡) 

provided by three air coolers connected in series [Di Maio et al., 2009].  
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Figure 3 LBE-XADS simplified schematics. A = Accelerator; C = core; P = primary heat exchanger; 

S = secondary heat exchanger [Cammi et al., 2006] 

 

A dedicated, dynamic simulation model, as shown by a block diagram in Figure 4, has 

been implemented in SIMULINK for providing a simplified, lumped and zero-

dimensional description of the coupled neutronic and thermo-hydraulic evolution of the 

system [Cammi et al., 2006]. The interested reader may refer to [Cammi et al., 2006] for 

further details of the model considered. The control system aims to keep the average oil 

temperature value approximately around 300 [°C] (573.15 [K]), which is the optimum 

working temperature of the diathermic oil under steady state, nominal condition at full 

power 80 [MWTh]. 
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Figure 4 Block diagram representing the SIMULINK model of the LBE-XADS [Cammi et al., 2006] 

 

As described in [Cammi et al., 2006], the upper safety threshold 𝑇𝑜
𝑡ℎ,𝑢

 considered is 340 

[°C] (613.15 [K]) beyond which the changes in the physical and chemical properties of 

the oil will render it inefficient while a temperature below a lower safety threshold 𝑇𝑜
𝑡ℎ,𝑙

 

of 260 [°C] (533.15 [K]) can result in thermal shocks of the primary fluid and thus the 

structural components. The controlled variable is the average temperature of diathermic 

oil (𝑇𝑜
𝑎𝑣,𝑆

), whereas the control variable is the mass flow rate of air ( ) in the air coolers 

battery. In Figure 5, the profile of the average temperature of diathermic oil (𝑇𝑜
𝑎𝑣,𝑆

) at full 

power nominal conditions (i.e., without component failures and with input parameter 

equal to the mean values listed in Table 1) is shown: even if the system is stable at 

nominal conditions (303.85 [°C] or 577 [K]), the discrete-state regulation of the air 

coolers causes visible ripples of the diathermic oil temperature [Di Maio et al., 2009]. 

a



 15 

 

Figure 5 Oil average temperature evolution at nominal conditions  

 

4.1 The Monte- Carlo Driven Fault Injection Engine 

In order to simulate transients representative of the dynamic failure behavior of the LBE-

XADS, the SIMULINK model has been embedded within a MC procedure for sampling 

the values of the input physical variables from their respective uncertainty distributions 

(epistemic uncertainty) and injecting faults at random times and of random magnitudes 

(aleatory uncertainty).  

4.1.1. Epistemic Uncertainty 

The physical input parameters that are fed to the SIMULINK model have been randomly 

sampled from their respective distributions as given in Table 1, where the chosen 

distributions have been taken from the listed references. 
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Parameter Range of parameter distribution Mean 

μ 

Standard 

Deviation σ 

Probability 

distribution Min Max 

βdelayed (Fraction of delayed neutrons) [%] 

[Cammi et al., 2006] 

0.0033 

 

0.0037 

 

0.0035 6.42E-05 

 

Normal 

Ca (Air Specific heat capacity) [kJ/kg-K] 

[Panasiti et al., 1999] 

0.973 

 

1.027 

 

0.999 

 

0.0089 

 

Normal 

Cf (Fuel specific heat capacity) [kJ/kg-K] 
[ORNL, 2000] 

0.234 
 

0.265 
 

0.250 
 

0.0052 
 

Normal 

Gammaa0 (Initial air mass flow rate) 
[kg/s] 

[Agostini et al., 2005] 

694.11 
 

910.85 
 

802.48 
 

36.12 
 

Normal 

Gammao (Oil Mass Flow rate) [kg/s] 
[Agostini et al., 2005] 

699.60 
 

965.50 
 

832.55 
 

44.32 
 

Normal 

Gammap (Lead Mass Flow rate) [kg/s] 

[Agostini et al., 2005] 

4630.54 

 

6254.78 

 

5442.66 

 

270.71 

 

Normal 

Ma (Mass of air) [kg] 

[Cammi et al., 2006] 

139.79 

 

185.18 

 

162.48 

 

7.56 

 

Normal 

Mf (Mass of fuel) [kg] 

[Cammi et al., 2006] 

3540.14 

 

3750.65 

 

3645.39 

 

35.09 

 

Normal 

Mo1 (Mass of oil in Loop 1) [kg] 
[Cammi et al., 2006] 

1505.12 
 

2008.12 
 

1756.62 
 

83.83 
 

Normal 

Mo2 (Mass of oil in Loop 2) [kg] 

[Cammi et al., 2006] 

3651.55 

 

4780.99 

 

4216.27 

 

188.24 

 

Normal 

Mp1 (Mass of lead in Loop 1) [kg] 

[Anderson et al., 1986] 

9469.96 13673.72 

 

11571.84 

 

700.63 

 

Normal 

Mp2 (Mass of lead in Loop 2) [kg] 
[Anderson et al., 1986] 

56160.75 
 

82239.52 
 

69200.13 
 

4346.46 
 

Normal 

Tfave_0 (Average initial temperature of  
fuel) [K] 

[D’ Angelo et al., 2003] 

972.36 
 

1162.90 
 

1067.63 
 

31.76 
 

Normal 

Tpin_0 (LBE temperature entering  
Primary HX- Core Loop) [K] 

[NEA, OECD, 2011] 

530.15 
 

617.49 
 

573.82 
 

14.56 
 

Normal 

Tpout_0 (LBE temperature leaving 

 Primary HX-Core Loop) [K] 
[NEA, OECD, 2011] 

623.79 

 

727.85 

 

675.82 

 

17.34 

 

Normal 

Q (Source value) 

[Negrini et al., 2003] 

0.0943 

 

0.1061 

 

0.1002 

 

0.002 

 

Normal 

Po (Total thermal power of XADS in  
steady state) [kWth](assumed) 

80000 82682.42 
 

80000 
 

- Uniform 

K (Multiplication factor, nominal  
power, BOC)  

[Negrini et al., 2003] 

0.95 0.99 
 

0.97 
 

- Uniform 

Tain [Air inlet temperature from air 
 coolers) [K] 

281.48 318.02 299.75 
 

6.09 Seasonal 

 

Table 1 Distributions of physical parameters  

 

The result of the random sampling of the physical parameters fed to the SIMULINK 

model of the LBE- XADS is given in Figure 6 where a large set of transients are plotted 

whose evolution is affected by the sampled values of input parameters. The randomness 

of the evolution of the oil average temperature ( ) in comparison with its nominal 

case (shown in Figure 5) is due to the inherent variability and combination of the sampled 

physical variables. Nevertheless, the inherent uncertainties of the physical variables do 

,av S

oT
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not lead the system to failure (none of the transients exceeds the upper and lower 

thresholds at 340 °C (613.15 K) and 260 °C (533.15 K), respectively). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6 Oil Average Temperature with physical variables uncertainties and no initiating events  

 

4.1.2. MC fault injection 

The dynamics of the failures of the LBE-XADS system are explained focusing on four 

faults, as shown in Figure 7, which are:  

 The PID controller fails stuck with a random flow rate output value m1 sampled 

from a uniform distribution in [0,797] [kg/s]. 

 The air coolers fail stuck in a random position that provides a corresponding air 

flow mass m2 uniformly distributed in [0,1000] [kg/s]. 

 The feedforward controller fails stuck with a corresponding flow rate value m3 

uniformly distributed in [0,797] [kg/s]. 

 The communication between air coolers actuators and PID controller fails so that 

the PID is provided with the same input value of the previous time step. 
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The choice of a mission time 𝑇𝑀 of 3000 [s] has been made, because it is a long enough 

interval of time to allow the complete development also of slow dynamic accident 

scenarios occurring at early/medium times [Di Maio et al., 2009]. 

 

 

Figure 7 Sketch of the faults that can be injected into the system: the PID controller fails stuck at a 

random output value, the air coolers fails stuck at a random position, the feedforward control fails 

stuck a random output value, the communication between air coolers actuators and the PID 

controller is interrupted 

 

Within the mission time 𝑇𝑀  of 3000 s, the transients can lead to three end states:  

1. Low-temperature failure mode (𝑇𝑜
𝑎𝑣,𝑆

<𝑇𝑜
𝑡ℎ,𝑙

) 

2. Safe mode (𝑇𝑜
𝑡ℎ,𝑙

<𝑇𝑜
𝑎𝑣,𝑆

<𝑇𝑜
𝑡ℎ,𝑢

) 

3. High-temperature failure mode (𝑇𝑜
𝑎𝑣,𝑆

>𝑇𝑜
𝑡ℎ,𝑢

) 

A comprehensive quantitative reliability assessment of the system is expected to involve 

all system components and failure modes and the dynamic effects arising from the 

complex interactions of all system elements, including the software and the human (here 

not modeled) [Di Maio et al., 2009]. However, to reduce the computational burden and to 

avoid the complexity of combinatorial explosion of a DET in such situation [Di Maio, 

2009], we consider the ad-hoc case study hereafter described and sketched in Figure 8. 
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As an example of a dynamic evolution of an accidental scenario among the infinite 

number of scenarios that might be considered in a DET for IDPSA, we limit our analysis 

to those scenarios leading to high-temperature failure mode (the upper safety threshold is 

equal to 𝑈𝑗 = 𝑇𝑜
𝑡ℎ,𝑢 = 613.15 [K]) and, among these, to the scenarios that consist in 

multiple successive failures of the air coolers getting stuck at random times and 

magnitudes (whose distributions are given in Table 2). 

 

 Air Mass Flow [kg/s] Time [s] Probability 

distribution Min Max Min Max 

Air Cooler fails stuck 

(First failure) 

630 645 600 800 Uniform 

Air Cooler fails stuck 

(Second failure) 

850 850 1000 1200 Uniform 

Table 2 Uncertainty distributions of failure time and magnitude for the DET scenario considered. 

 

The set of failure events that occur during this accidental scenario are not Prime 

Implicants (PIs) (i.e., these are not the minimum combination of failure events, with 

certain order and timing, that could lead the system to failure) [Di Maio et al., 2015; 

Garret et al., 1999]). Thus, this set of failure events does not unequivocally determine the 

end-state of the system as a failure, but, rather, it is a ‘near-miss’ scenario [Di Maio et al., 

2009]. These failure events make the temperature 𝑇𝑜
𝑎𝑣,𝑆

 approach the upper safety 

threshold 𝑇𝑜
𝑡ℎ,𝑢

 without exceeding it, as shown in Figure 9, where the evolution of 104 

safe transients of  𝑇𝑜
𝑎𝑣,𝑆

 towards 𝑇𝑜
𝑡ℎ,𝑢

 are plotted, when the selected accidental scenario 

of Table 2 (and sketched in bold line in Figure 8) is injected into the SIMULINK model 

of the LBE-XADS along with the uncertainties of its physical variables (as given in Table 

1).  
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Figure 8. A conceptual sketch of a DET. The bold line indicates one of the infinite sequences that can 

take place. 

 

It is worth pointing out that the random timings and magnitudes of successive failures 

cause randomness in the system dynamics (as shown in Table 3, where, the maximum 

temperature reached 𝑇𝑜,𝑚𝑎𝑥 and the time 𝑦𝑡 at which this is reached are listed for each 

transient that is plotted in Figure 9). The need of assessing the risk related to the 

occurrence of this scenario, in terms of both the capability of the system to keep 

below 𝑇𝑜
𝑡ℎ,𝑈

 and the availability of time for counteracting the temperature rise, calls for 

the quantification of a DSM.  

To do this, we aim at estimating, with a given confidence 𝛽, the 95th percentiles of the 

distribution of 𝑇𝑜,𝑚𝑎𝑥 and the 5th percentile of the distribution of the time required to 

reach these temperatures. 

 

 

(1st	failure)	 (2nd	failure)	

SAFE	
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Figure 9 Different evolutions of 𝑻𝒐
𝒂𝒗,𝑺

 during the accidental scenario described in Table 2  

 

Simulation# 𝑻𝒐,𝒎𝒂𝒙 Time 𝒚𝒕 (s) Simulation# 𝑻𝒐,𝒎𝒂𝒙 Time 𝒚𝒕 (s) 

1 586.20 1088 53 593.63 1142 

2 600.16 1114 54 608.09 1295 

3 579.50 1079 55 604.14 1199 

4 603.24 1110 56 605.03 3001 

5 594.18 1133 57 599.73 1222 

6 600.06 1232 58 584.17 1109 

7 584.67 1049 59 581.69 1139 

8 594.03 1189 60 581.56 1194 

9 595.27 1157 61 593.31 1128 

10 604.31 1223 62 612.64 1188 

11 603.64 1282 63 601.61 1243 

12 596.68 1112 64 600.87 3001 

13 608.01 1234 65 602.65 1123 

14 582.46 1021 66 597.07 1263 

15 610.94 1251 67 608.83 1209 

16 580.56 1105 68 596.54 1170 

17 588.56 1064 69 585.51 1110 

18 595.52 1191 70 611.99 1255 

19 611.12 3001 71 611.19 1123 

20 601.19 1278 72 584.12 1156 

21 593.56 1251 73 610.45 1222 

22 598.68 1124 74 596.84 1181 

23 588.28 1158 75 580.99 1001 

24 609.73 1211 76 588.67 1097 
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25 602.28 1236 77 599.92 1141 

26 604.02 1175 78 584.95 1108 

27 578.59 1125 79 589.57 1151 

28 600.18 1246 80 595.41 1156 

29 606.33 1248 81 594.57 1134 

30 599.17 1170 82 600.09 1139 

31 609.03 1257 83 587.14 1031 

32 612.29 1268 84 610.74 1158 

33 609.55 1241 85 603.36 1231 

34 604.61 3001 86 601.64 1221 

35 605.51 1161 87 583.25 1131 

36 599.60 1124 88 599.56 1088 

37 610.17 1299 89 604.99 1232 

38 606.63 1260 90 584.69 1141 

39 584.01 1060 91 583.97 1117 

40 580.54 1132 92 597.29 1188 

41 589.23 1129 93 608.01 1198 

42 602.08 1295 94 612.93 1178 

43 598.52 1103 95 611.74 3001 

44 607.58 1268 96 582.39 1049 

45 608.32 1209 97 584.82 1163 

46 603.48 1166 98 581.19 1180 

47 594.41 1178 99 589.34 1172 

48 603.91 1255 100 586.66 1109 

49 580.10 1101 101 591.04 1121 

50 581.33 1051 102 586.97 1197 

51 612.99 1290 103 586.82 1157 

52 583.84 1085 104 582.68 1049 

Table 3 List of the maximum value of the average oil temperature that is reached in the simulations 

of Figure 9 and the respective times.  

 

4.2 Results and Discussions 

For applying the Bracketing and Coverage approaches to 𝑦 =  𝑇𝑜,𝑚𝑎𝑥 and 𝑦𝑡, 𝑁 = 72 and 

𝑁 = 89 samples are randomly selected from the 104 safe transients plotted in Figure 9 

and listed in Table 3. In both cases, 𝑚 has been chosen to be equal to 1, 𝛾1 equal to 0.95, 

𝛾2 equal to 0.05 and 𝛽1 and 𝛽2 equal to 95%. In practice, we want to quantify the 

dynamic probabilistic safety margin for the selected accidental scenario by quantifying a 

reasonable grace time 𝑦̂𝑡𝛾2before the estimated temperature 𝑦̂𝛾1 is reached. Indeed, the 

value of 𝛾2 = 5th percentile with 𝛽2 = 95% will allow the operator to know the time at 

his disposal with large confidence for mitigating the risk of the onset of the selected 

accidental scenario.  

 

4.2.1 Results using Bracketing approach 

Using the 𝑁 = 72 samples, the results of the point estimates of the 95th percentile (γ1) of 

Maximum Oil Temperature and the 5th percentile (γ2) of the time taken to reach the 
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maximum temperature, as computed by the Bracketing OS method on the sample 𝑦̅ =

{𝑦1, 𝑦2, …… , 𝑦𝑁} and 𝑦̅𝑡 = {𝑦𝑡1 , 𝑦𝑡2 , …… . , 𝑦𝑡𝑁} are given in Table 4. The two sets of 

outputs 𝑦̅ and 𝑦̅𝑡 are independently sorted in descending and ascending order, 

respectively. The 𝑚−th value of the sorted 𝑦̅ of the 𝑁 = 72  𝑇𝑜,𝑚𝑎𝑥 values sampled from 

Table 3 is assumed (according to OS theory) to exceed the real 95th percentile of 𝑦̅ with a 

probability of 95%. Similarly for 𝑦̅𝑡, the 𝑚−th value is considered to be that time which 

with probability 95% underestimate the 5th percentile of 𝑦̅𝑡. 

 

Safety parameter y (maximum oil temperature To,max [K]) 

Estimated 95th 

percentile value, 𝒚̂𝜸𝟏 

Real 95th percentile 

value, 𝒚𝜸𝟏  

Upper safety 

threshold U 

Nominal 

value, yref 

DSM Distribution 

612.99 611.89 613.15 577.12 0.0044 Weibull 

Distribution of time [s] to reach To,max 

Estimated 5th percentile value 𝒚𝒕̂𝜸𝟐 
Real 5th percentile value 𝒚𝒕𝜸𝟐

 Distribution 

1088 1102.56 Normal 

 

Table 4 Point estimates of the percentiles of the 𝑻𝒐,𝒎𝒂𝒙  and the time to reach the maximum 

temperature with the Bracketing approach 

 

The DSM for the safety parameter y is calculated using equation (8), where the reference 

value 𝑦𝑟𝑒𝑓 is taken equal to 577.12 [K]. The real 𝑦𝛾1 is calculated as the 𝛾1
𝑡ℎ percentile 

(95th) of the distribution of 𝑦̅, that turns out to be a Weibull distribution by Anderson-

Darling (AD) statistical hypothesis test [Ali, 2012]. The Weibull probability distribution 

of the 𝑇𝑜,𝑚𝑎𝑥 has a 𝑦𝛾1  equal to 611.89 [K], which is smaller than 𝑦̂𝛾1 = 612.99 [K] and, 

thus, also smaller than 𝑈 = 613.15 [K]. The real 𝑦𝑡𝛾2 is calculated as the 𝛾2
𝑡ℎ percentile 

(5th) of the distribution 𝑦̅𝑡 that turns out to be a Normal distribution, identified using AD 

statistical hypothesis test [Jäntschi and Bolboacã, 2009]. 

Thus, the Normal distribution of 𝑦̅𝑡 at which 𝑇𝑜,𝑚𝑎𝑥 is reached has the value 𝑦𝑡𝛾2= 

1102.56 [s], which is larger than the 𝑦̂𝑡𝛾2= 1088 [s].  
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4.2.2. Results using Coverage approach  

The same analysis is done using the Coverage approach on 𝑁 = 89 selected samples. The 

outcomes of the point estimates of the 95th percentile (𝛾1) of 𝑇𝑜,𝑚𝑎𝑥 and the 5th percentile 

(𝛾2) of the time taken to reach the maximum temperature, as computed by the Coverage 

OS method on the sample 𝑦̅ = {𝑦1, 𝑦2, …… , 𝑦𝑁} and 𝑦̅𝑡 = {𝑦𝑡1 , 𝑦𝑡2 , …… . , 𝑦𝑡𝑁}, are given 

in Table 5. The two sets of outputs 𝑦̅ and 𝑦̅𝑡 are jointly sorted in descending order for the 

𝑦̅ set of values and its corresponding time from the 𝑦̅𝑡 set as given in Table 3. The 𝑚 −th 

value of the sorted 𝑦̅ of the 𝑁 =89  𝑇𝑜,𝑚𝑎𝑥  values samples from Table 3 is assumed 

(according to OS theory) to exceed the real 95th percentile of 𝑦̅ with a probability of 95% 

while also, simultaneously for 𝑦̅𝑡, the 𝑚−th value of the sorted 𝑦̅𝑡 is considered to be 

that time which with a probability of 95% underestimates the 5th percentile of 𝑦̅𝑡.  

The DSM for the safety parameter y is again calculated using equation (8), where the 

reference value 𝑦𝑟𝑒𝑓 is taken equal to 577.12 [K] and the real 𝑦𝛾1 is calculated as the 𝛾1
𝑡ℎ 

percentile (95th) of the distribution of 𝑦̅ that turns out again to be a Weibull distribution 

by Anderson-Darling (AD) statistical hypothesis test [Ali, 2012]. The Weibull probability 

distribution of the 𝑇𝑜,𝑚𝑎𝑥 has a 𝑦𝛾1 equal to 611.76 [K] which is smaller than 𝑦̂𝛾1 =

 612.99 [K] and, thus, also smaller than 𝑈 = 613.15 [K]. The real 𝑦𝑡𝛾2 is calculated as the 

𝛾2
𝑡ℎ percentile (5th) of the distribution of 𝑦̅𝑡 that turns out to be a Gamma distribution by 

the AD statistical hypothesis test [Won, 1996]. 

Safety parameter y (maximum oil temperature To,max [K]) 

Estimated 95th 

percentile value, 𝒚̂𝜸𝟏 

Real 95th percentile 

value, 𝒚𝜸𝟏  

Upper safety 

threshold U 

Nominal 

value, yref 

DSM Distribution 

612.99 611.76 613.15 577.12 0.0044 Weibull 

Distribution of time [s] to reach To,max 

Estimated 5th percentile value 𝒚𝒕̂𝜸𝟐 
Real 5th percentile value 𝒚𝒕𝜸𝟐

 Distribution 

1031 1076 Gamma 

Table 5 Point estimates of the percentiles of the 𝑻𝒐,𝒎𝒂𝒙  and the time to reach the maximum 

temperature with the Coverage approach 
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Thus, the Gamma distribution of 𝑦̅𝑡 at which 𝑇𝑜,𝑚𝑎𝑥 is reached has the value 𝑦𝑡𝛾2= 1076 

[s], which is larger than the 𝑦̂𝑡𝛾2= 1031 [s].  

It is to be observed that the point estimates of the 95th percentile and the 5th percentile (as 

shown in Table 4 and Table 5, respectively) guarantee the dynamic probabilistic safety 

margin to be positive in both cases of Bracketing and Coverage, and provide additional 

integrated information about the grace time before 𝑇𝑜,𝑚𝑎𝑥 is reached. 

As a concluding remark, it is worth noticing that both the dynamic probabilistic safety 

margins of Tables 4 and 5 result to be equal to 0.0044 with Bracketing and Coverage 

approaches, respectively. This is not surprising, because these results have been obtained 

with a different number 𝑁 of simulations. The Coverage approach is more 

computationally burdensome (𝑁 =89 samples required) as compared to the Bracketing 

approach (𝑁 =72 samples required). This is because the Bracketing approach provides a 

safety margin when both outputs (𝑇𝑜
𝑎𝑣,𝑆

 and 𝑡) are tested to independently meet the safety 

criteria, while the Coverage approach guarantees for both outputs to simultaneously fall 

into the acceptable criteria. 

 

5. CONCLUSION 

 

In this work, we address the problem of the estimation of dynamic probabilistic safety 

margin for taking into account the aleatory and epistemic uncertainties affecting the 

physical behavior of dynamic systems. We adopt by using Order Statistics and Finite 

Mixture Models approaches to jointly estimate percentiles of the distributions of the 

safety parameter and of the time required for the safety parameter to reach these 

percentiles values. This information, here originally provided within the framework of 

safety margin, is quite important in practice. 

The computational framework has been developed with respect to an accidental sequence 

considered in an IDPSA that might occur in the LBE-XADS system. The result of the OS 

approaches of Bracketing and Coverage for the LBE-XADS case study confirms the 

capability of the proposed framework for the quantification of the safety margin and the 

estimation of the grace time with a given confidence. Using an optimal number of 

samples 𝑁 as proposed by the OS theory, the point estimates of the percentiles of the 
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distributions of a safety parameter and of the earliest time required for the safety 

parameter to reach this percentile can be computed for estimating the dynamic 

probabilistic safety margins with a given confidence.  
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