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ABSTRACT: The paper deals with the identification of variables and models that can explain why a 
certain Severity Level (SL) may be expected in the event of a certain type of crash at a specific point of an 
urban road network. Two official crash records, a weather database, a traffic data source, and information 
on the characteristics of the investigated urban road segments of Turin (Italy) for the seven years from 2006 
to 2012 were used. Examination of the full database of 47,592 crash events, including property damage 
only crashes, reveals 9,785 injury crashes occurring along road segments only. Of these, 1,621 were found 
to be associated with a dataset of traffic flows aggregated in 5 minutes for the 35 minutes across each crash 
event, and to weather data recorded by the official weather station of Turin. Two different approaches, a 
back-propagation neural network model and a generalized linear mixed model were used. Results show the 
impact of flow and other variables on the SL that may characterize a crash; differences in the significant 
variables and performance of the two modelling approaches are also commented on in the manuscript.

of the research studies have been focused on the 
likelihood of a crash without considering the crash 
outcome severity.

One of the main obstacles to investigations of 
this type is the limited availability of comprehen-
sive crash databases, and associated robust weather 
and traffic databases. Nowadays, however, a con-
tinuous flow of environmental and traffic data 
is collected by local road agencies with sensors 
of increasing quality and performance (Chong & 
Kumar 2003, Nekovee 2005). Contrary to what 
happened in the past, data are now frequently 
collected in intervals of shorter duration. Hence, 
available databases can be associated and merged 
with others containing data collected over several 
years of observations, thus supporting new robust 
inferences (El Faouzi et al. 2011).

To obtain reliable models and convincing results, 
the availability of high quality data representing 
the characteristics of drivers, together with traffic, 
weather, and pavement conditions is fundamental. 
Unfortunately, data describing every significant 
factor affecting crashes needs work to associate 
the available contrasting information that could be 
long, arduous, and sometimes unproductive.

The paper aims to bridge these gaps by providing 
knowledge on factors contributing to crash severity 
in an urban road network, considering only those 

1 INTRODUCTION

Road crashes are events that depend on a variety of 
factors characterising human behaviour, weather, 
road pavement, vehicle stability and performance. 
Crash events show different magnitudes when 
evaluated with respect to the effects on road users 
(crash severity), and the knowledge of the contrib-
uting factors that affect the severity should be used 
to improve road safety through the action of trans-
port policy makers, designers and road agencies.

Traffic volume, weather conditions, and road 
characteristics affect crash severity in a multifac-
eted way (Wang et al. 2013). Specifically, Theo-
filatos & Yannis (2014) pointed out that the few 
papers available mainly deal with roads operating 
under uninterrupted flow conditions, and recur 
mainly to logit modelling (Al-Ghamdi 2002, Golob 
et al. 2008, Christoforou et al. 2010, Jung et al. 
2010, Xu et al. 2013, Yu & Abdel-Aty 2013). Ear-
lier, Shankar et al. (1996) stated that crash severity 
investigations had been historically limited to the 
localization of fatalities, even though the estimation 
of the other severity levels (i.e., property damage 
only—PDO –, possible injury, non-incapacitating 
injury) could help in understanding the benefits 
of safety-improvement projects. Seventeen years 
later, Xu et al. (2013) again underlined that most 
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influencing crashes along road segments. Data on 
crashes, traffic and the weather database of Turin’s 
road network (Italy) were collected and used to 
calibrate and validate predictive models of crash 
severity. The Back Propagation Neural Networks 
(BPNN), a robust tool used to investigate complex 
phenomena without assuming any preliminary 
hypotheses on the model, was used. But BPNN can-
not give an analytical formulation of the mathemat-
ical functions linking the variables that significantly 
affect a certain phenomenon, thus only a sensitivity 
analysis of the model can be performed. A General-
ized Linear Mixed Model (GLMM) was also used 
(with its analytical formulation) to compare and 
assess results with those obtained by BPNN.

2 DATABASE FORMATION

2.1 Crash classification

Crash data were provided by the Istituto Nazionale di 
Statistica (National Statistics Institute, ISTAT). The 
ISTAT database contains details on crash dynam-
ics and location, on the vehicles, and on gender and 
age of people involved, in accordance with current 
Italian legislation, specifically articles number 582, 
583 and 590 of the Italian Penal Code 2015 (Repub-
blica Italiana 2015). The Italian law considers a road 
accident to be a crash when it results in at least one 
injury, and crash consequences are classified into 
the following five Severity Levels (SL):

– Very Slight Injuries (VSI), when the most seri-
ously injured person has a prognosis of less than 
20 days;

– Slight Injuries (SLI), when the prognosis is 
between 21 and 40 days;

– Severe Injuries (SEI), if  the event causes an ill-
ness that endangers the life of the injured party, 
and/or the event results in permanent damage to 
the brain or any body organ;

– Guarded Prognosis (GPR), if  the doctor can-
not determine the disability, and issues a report 
of “guarded prognosis” (pending resolution of 
prognosis, the road crash must be considered 
and treated as a determining factor); and

– fatalities (FAT), including injured persons who 
die within 30 days of the crash.

The dearth of information in the ISTAT data-
base was overcome by including crash data col-
lected by Turin’s Municipal Police (TMP). All the 
records of the ISTAT database were matched up to 
the TMP database and implemented with the fol-
lowing information: (a) historical data (time, near-
est minute, day, month and year of the crash event); 
(b) locality data (street name, house number); and 
(c) generic information concerning crash SL.

Table 1 shows the number of crashes per year 
and SL, and evidences the decrease in all the SL 
classes between 2006 and 2012. Assuming the year 
2006 as a reference point, the following years wit-
nessed a decrease in crash occurrence across all 
severity classes.

2.2 Traffic data

Traffic data were provided by the 5T Company 
(Telematics, Technologies for Traffic and Transport 
in Turin), which monitors and controls over 300 
urban traffic lights in Turin, and collects traffic data. 
5T uses induction-loop traffic sensors located along 
the exiting lanes of the monitored intersections to 
collect vehicle flow data at 5 minute intervals. It is 
worth noting that from 2006 to 2012, the number of 
traffic sensors available varied from 662 to 1051 due 
to the installation of new ones and the elimination of 
some of the damaged ones. Figure 1a shows the por-
tion of the road network monitored by 5T in 2006.

2.3 Weather data

The Environmental Protection Agency of the Pied-
mont Region (ARPA Piedmont) provided data on 
weather conditions. The Turin weather station 
considered in the paper is located in the city cen-
tre (238 m a.s.l., 1.5 m off the ground, latitude 
45°.066667, longitude 7°.683333), and collects 
temperature, atmospheric pressure, wind speed 
and direction, solar radiation, and rainfall intensity 
data on an hourly basis. The maximum distance 
between the weather station and the farthest crash 
location included in the database was 9.6 km. Each 
crash record was associated with the weather data 
recorded at the time of the crash.

2.4 Database formation

Only crashes that occurred along segments pro-
vided with valid and reliable traffic data were 
extracted from the main database and used. The 
database adopted for modelling is a subset (and 

Table 1. Injury crash records along segments of the 

urban road network of Turin (Italy, 2006–2012).

Year VSI SLI SEI GPR FAT Total

2006 1317  173  36  33  22 1581

2007 1303  205  69  42  29 1648

2008 1128  152  41  33  12 1366

2009 1061  160  34  27  21 1303

2010 1198  169  46  31  19 1463

2011 1037  171  51  18  18 1295

2012  917  141  44  13  14 1129

2006-‘12 7961 1171 321 197 135 9785
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a random sample) of the total number of crashes 
that occurred and were recorded in the official 
database. Figure 1b shows all the crash records in 
2006, while Figure 1c shows only crashes associ-
ated with traffic flow data.

3 DATA ANALYSIS AND TREATMENT

3.1 Variables 

Table 2 lists the independent variables, their num-
bering and labels, the type of variable, the unit of 
measurement, and the range. The variables refer-
ring to the road are:

– road type (C1), which indicates the organization 
of the carriageways and the directions served 
(0  unknown; 1  one carriageway, one way; 
2  one carriageway, two ways; 3  two carriage-
ways, two ways; 4  more than two carriageways, 
two ways);

– pavement conditions (C2), which have been dis-
tinguished with a numerical variable indicating 
the presence of water, snow or ice (0  unknown, 
1  dry, 2  wet, 3  slippery, 4  icy/frozen, 
5  snowy); and

– the road signage (C3), which indicates if  it was 
absent (0), if  it was composed of vertical signs 
only (1), horizontal markings only (2), if  both 
were present (3), or if  a temporary construction 
signage was present (4).

 The variables that reflect the characteristics of 
vehicles A and B involved in the crash are:

– vehicle type (C4 and C6), ranging from 0 (pas-
senger cars) to 20 (quad), also including the case 
of vehicles that fled the crash scene (19); and

– vehicle category (C5 and C7), from 0 to 8, in 
which 1 represents cars, 2 buses, 3 trams, 4 heavy 
vehicles, 5 industrial vehicles, 6 bikes, 7 motor-
cycles, 8 vehicles that fled the crash scene and 0 
unclassified vehicles.

 In modelling, variables describing roads and 
vehicles were assumed as categorical. The vari-
ables describing drivers involved in the crashes 
were assumed as numerical. They are:

– age (C8 and C11), which ranges from a minimum 
of 10 (driver B) to a maximum of 89 (driver A); 
this variable also assumed the null value in cases 
of unknown/unrecorded age;

– age class (C9 and C12), which groups the ages 
into 6 intervals ranging from 0 to 5: 0 in the case 
of unknown/unrecorded data, 1 for very young 
drivers (15–19 years old), 2 for young drivers (20 
24 years old), 3 for adults (25–64 years old), 4 for 
elderly drivers (from 65 to 79), and finally 5 for 
very old drivers (over 80); and

– sex of drivers (C10 and C13), which assumes the 
value 0 in cases of unknown/unrecorded data, 1 
for males, and 2 for females.

In Table 2, the lowest values for ‘age of driver 
A’ refer to scooter drivers, while those for driver 
B refer to pedestrians or cyclists. Air temperature 
(C14), wind speed (C15), solar radiation (C16), 
and rainfall precipitation (C18) were assumed 
as numerical with values that correspond to the 
measured values. The lighting condition (C17) was 
assumed as a Boolean variable (0  dark, 1  light). 
The Traffic Flow (TF) variables (C20 C25) are 
numerical and represent the volume of vehicles per 
hour (veh/h) measured every 5 min across the crash 
event, according to the time scale reported in Fig-
ure 2. Finally, the standard deviation (C26) for the 
seven flow values was added to the list to take into 
account flow fluctuations for the 35 min period 
before and after the crash. Finally, the output vari-
able indicating the SL (C27) was assumed numeri-
cal and ranging from 2 (VSI) to 6 (FAT).

Figure 1. (a) Turin’s traffic monitoring network operated 

by 5T in 2006 (highlighted in black); (b) spatial distribu-

tion of road crashes that occurred in 2006; and (c) crashes 

which were associable to 5 min traffic flow (487 in total).
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A criticism may be made of the use of all seven 
flow values (TF1-TF7). In fact, some of these values 
(in particular TF5-TF7) refer to intervals after the 
crash and therefore were caused by the crash itself. 
Nevertheless, the reason for using them is that they 
belong to the same time series and the interrupted 
nature of flow in urban roads makes each interval 
(though not as long as 5 minutes) a story apart, even 
when there is no crash. In addition, results will show 
that they play a different role in the models.

3.2 Database information content

The Principal Component Analysis (PCA) (Lebart 
et al. 1977) was used to investigate the informa-
tion content of the database. Table 3 reports the 

variance explained by the first eight components. 
They account for about 81% of the total variance 
for both databases, while the first two components 
account for about 61%. The variables most linked 
to the first component are road type, road signage, 
and age of driver A, whereas those linked to the 
second component are light/dark, light radiation, 
and air temperature. Finally, traffic flows (TF1-
TF7) are mainly linked to the third component. 
This means that the set of variables relating to road 
and driver can explain about 45% of the variance; 
those related to meteorological conditions about 
16%, and those related to flow about 8%.

3.3 Data treatment

According to Table 1, the five SLs contained in the 
database were not equally represented and the dataset 
resulted imbalanced. This is not a problem for mod-
elling approaches such as logistic regression, but it is 
for machine learning tools, and especially Artificial 
Neural Networks (ANN). With imbalanced datasets, 
ANN could not find the correct relationships between 
input and output for all categories present in the data-
set. Over-sampling (with data duplication) or under-
sampling (with data cancellation) techniques present 
advantages and disadvantages: under-sampling can 
remove important data and over-sampling can lead to 
over-fitting problems. Studies on imbalanced datasets 
have shown over-sampling to be more advantageous 
and useful than under-sampling (Chawla 2010).

The “focused re-sampling” method proposed by 
Japkowicz (2000), which consisted of an oversam-
pling of those examples that occurred in the minor-
ity classes (specifically FAT, GPI, and SEI), was 
used. This approach implies duplication of the entire 
subset of data until their count is of the same mag-
nitude as the most populated class. This approach 
avoids other possible biases in re-sampling data.

Another task performed was data normaliza-
tion. Feature scaling, also called unity based nor-
malization, was used for its simplicity. Let Xmin 
and Xmax be the two extreme values (minimum and 
maximum) of a variable X, the normalized vari-
able X’ (according to feature scaling) is:

Table 2. Number and labels of variables.

# Code Description Type u.m.

Range

min max

 1 C1 Road type C _ 0 4

 2 C2 PC C _ 0 5

 3 C3 Road signage C _ 0 4

 4 C4 Veh. A type C _ 0 20

 5 C5 Veh. A cat. C _ 0 8

 6 C6 Veh. B type C _ 0 20

 7 C7 Veh. B cat. C _ 0 8

 8 C8 Dr. veh. A age N _ 16 89

 9 C9 Dr. veh. A cl. age N _ 0 5

10 C10 Dr. veh. A sex N _ 0 2

11 C11 Dr. veh. B age N _ 10 86

12 C12 Dr. veh. B cl. age N _ 0 5

13 C13 Dr. veh. B sex N _ 0 2

14 C14 Air temp. N °C 7.5 35.3

15 C15 Wind speed N m/s 0 9.95

16 C16 Light radiation N W/m2 0 996

17 C17 Light/dark B _ 0 1

18 C18 Rainfall N mm/h 0 12.8

19 C19 TF1 (*) N veh/h 0 730

20 C20 TF2 (*) N veh/h 0 750

21 C21 TF3 (*) N veh/h 0 765

22 C22 TF4 (*) N veh/h 0 775

23 C23 TF5 (*) N veh/h 0 570

24 C24 TF6 (*) N veh/h 0 565

25 C25 TF7 (*) N veh/h 0 494

26 C26 Flow st. dev. N veh/h 0 193

27 C27 SL N – 2 6

Notes: PC  pavement conditions, TF  traffic flow, 

Dr.  driver, veh.  vehicle, cl.  class, N  numerical, 

B  Boolean, C  categorical.

Figure 2. Time scale used to aggregate Traffic Flows 

(TF) across the crash event.

Table 3. Percentage of variance explained by the first 

eight components in PCA.

Component Simple value Cumulative value

1 44.72 44.72

2 16.34 61.06

3  8.32 69.38

4  6.72 76.10

5  4.91 81.01

6  4.38 85.38

7  3.49 88.88

8  2.28 91.16
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min

max min

X X
X'

X Xmax

 (1)

All the input variables were then normalized 
according to eq. 1, hence with values falling within 
the range [0,1]. The output variable (the output) is 
numerical, ranging from 2 to 6.

4 DATA MODELLING AND RESULTS

4.1 Back-Propagation Neural Networks (BPNN)

The BPNN used in this work is an example of an 
Artificial Neural Network (ANN) model, ANN 
models have a classical multilayer topology with 
feed-forward connections. Cybenko (1989), and 
Hornik (1991), described the capability of ANN in 
approximating any function belonging to the Leb-
esgue two space (L2 space) with minimum error. 
Applications regarding transport, planning, con-
trol fields, and crash analysis are numerous start-
ing from the 90’s (Dougherty 1995, Mussone 1999, 
Mussone et al. 1999). Other contributions have 
faced the problem of crash prediction or sever-
ity (Abdelwahab & Abdel-Aty 2001, Chong et. al. 
2004, Delen et al. 2006, Baluni & Raiwani 2014).

The downside in using the BPNN approach is 
that the relationships between variables are in a 
black box (the hidden layer of Figure 3), and no 
analytical formulation between input and out-
put can be directly obtained. The effects of inde-
pendent (input) variables can be interpreted only 
through a sensitivity analysis of the model.

The BPNN models were calibrated and validated 
with the Levenberg-Marquardt training algorithm. 
Performances were evaluated according to Mean 
Squared Errors (MSE) through the three phases 
of train, test, and validation. The model was con-
structed with an input layer including the 26 inde-

pendent variables listed in Table 2, the hidden layer, 
and the output layer corresponding to the SL, tested 
with one neuron. All categorical variables are coded 
in binary format to reduce connection between their 
values. Finally, the best model was found to be made 
up of 25 neurons in the hidden layer for the model. 
It has a MSE lower than 0.08, which means that 
there are only 8 errors to each 100 classifications.

4.2 Generalized Linear Mixed Model (GLMM)

For the analysis of multilevel data, random clus-
ters and/or subject effects should be included in the 
regression model to account for the correlation of 
data. The resulting model is a mixed model includ-
ing fixed and random effects. Mixed models for 
continuous normal outcomes have been proposed 
for non-normal data and are generically classified 
as Generalized Linear Mixed Models (GLMMs). 
The extension of the methods from dichotomous 
responses to ordinal response data was actively 
pursued in the reviews of Agresti & Natarajan 
(2001).

The GLMM model is a regression model of a 
response variable that contains both fixed and ran-
dom effects and comprises data, a model descrip-
tion, fitted coefficients, co-variance parameters, 
design matrices, residuals, residual plots, and other 
diagnostic information. Fixed-effects terms usu-
ally refer to the conventional linear regression part 
of the model. Random effects terms are associated 
with individual experimental units taken at ran-
dom from a population, and account for variations 
between groups that might affect the response. The 
random effects have prior distributions, whereas the 
fixed effects do not.

The GLMM model structure is:

y b Distr
w

i ib Distr
i

,
2

 (2)

g X bZX  (3)

where, yi  the i-th element (dependent variable) of 
the y response vector, b  the random-effects vector 
(complement to the fixed ), Distr  a specified con-
ditional distribution of y given b,   the conditional 
mean of y given b, and i is its i-th element, 2  the  
variance or dispersion parameter, w  the effec-
tive observation weight vector (wi is the weight for 
observation i), g( )  link function that defines the 
relationship between the mean response  and the 
linear combination of the predictors, X  fixed-
effects design matrix (of independent variables), 

  fixed-effects vector, Z  random-effects design 
matrix (of independent variables), and   model 
offset vector (residuals). The model for the mean 
response  is:

Figure 3. Back-propagation Neural Network structure 

for SL modelling adopted in this investigation.
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1 ˆg 1  (4)

where g–1  inverse of the link function g( ), and 
ˆ   linear predictor of the fixed and random effects 

of the generalized linear mixed-effects model:

 (5)

According to the Wilkinson notation, the 
GLMM model has the following structure:

y  fixed  (random1|group1)  ...  (random N| 
group N) (6)

where, the terms “fixed” and “random” are associ-
ated with independent variables and contain fixed 
and random effects, N  number of grouping vari-
ables in the model. Grouping variables are utility 
variables used to group, or categorize, observa-
tions, and are useful for summarizing or visualiz-
ing data by group.

For the SL output, a log link function and the 
Probability Mass Function (PMF) for the Pois-
son distribution was used. The fit method was 
the ‘Laplace’ one. Finally, the best performance 
was calculated through the minimization of the 
log-likelihood index; other indexes (i.e., Akaike’s 
information criterion—AIC, Bayesian information 
criterions—BIC, and the Deviance parameter) were 
also estimated to control the minimization process.

According to eq. 6 notation, the GLMM model 
that gives the best performance was:

C27  1  C8  C9  C11  C14  C16  C18  
 C21  C24  C25  (1 | C1)  (1 | C2)  
 (1 | C3)  (1 | C4) (7)

where Cx identifies the x-th variable (Table 2). In 
Table 4 the fixed effect coefficients are drawn with 
a 95% confidence interval. The p values are lower 
than 0.001, with the exception of C9 (driver vehicle 
A age) and C18 (rainfall intensity) which are lower 
than 0.05. The Standard Error of estimates (SE) is 
generally much lower than the estimates, and lower 
and upper bonds of CI never include zero. Table 4 
also reports the estimates for random parameters.

The effect of flows (C21, C24, C25) on SL has 
a different sign, positive for C21 (TF4), which 
anticipates the crash event, and for C24 (TF6), 
and negative for C25 (TF7). When flow after the 
crash (C25) increases, it is more likely that the SL 
decreases. The grouping variables are road type 
(C1), pavement condition (C2), road signage con-
dition (C3) and vehicle A type (C4). The driver 
vehicle A age (C9) as well as the class age of vehi-
cle B driver (C11) are negatively related to the SL. 
Furthermore, also light radiation (C16) and rain-
fall intensity (C18) are inversely related to the SL.

5 DISCUSSION

5.1 Sensitivity analysis of BPNN

In the case of the BPNN model, a sensitivity analy-
sis was carried out to assess how output changes 
by varying input normalized variable values in the 
range [0,1] one by one. With this aim in mind, a 
first set of scenarios, referring to a particular set of 
input variables, was prepared. In addition to basic 
scenarios where variables are all zero or 1, another 
six scenarios were considered to study particular 
combinations of variable values (in Figure 4, from 
4a to 4f). These scenarios aim to consider some 
possible and typical crash situations involving 
male or female drivers, during daytime or at night-
time, with rainy weather or dry road surface, or 
with elder drivers.

The effect of flow varies a lot for scenario and 
flow itself. When TF4 is high (Figure 4a), the SL 
is generally high for most of the scenarios, except 
for elderly drivers. On the other hand, the effect of 
TF7 (Figure 4b) depends very much on the par-
ticular scenario, though, generally, a higher SL is 
related to a higher flow. Low light radiation (night-
time to dawn) has a strong effect on young male 
drivers with dry pavement, while middle radia-
tion has a strong effect on young female drivers in 
rainy conditions. Generally, a low radiation is more 
related to high SL than a high radiation.

5.2 Model output comparison

According to Powers (2011), the two model outputs 
were evaluated by confusion matrixes representing, 
for each output, the number of predicted cases (aij) 
on the reference databases. In this case, the output 
coincides to the SL, and aij are calculated on the 
resampled databases obtained according to what 
reported in Section 3.3.

There is s also interest in the measurement of its 
precision (the percentage of correct data predicted 
in respect of the total predicted) and its recall (the 
percentage of corrected data predicted in respect of 
the total to be predicted) capability. The main goal 
of learning is to improve the recall measurement 
without hurting the precision one. Tables 5 and 6 
include the percentage of the predicted crashes to 
the total predicted for each SL, the “a priori” rate 
(PR), which expresses the complement of the recall 
rate, and the “a Posteriori” rate (PO) which is the 
complement of the precision rate, according to the 
following equations (n is the matrix dimension):

PRi  1 - aii/(ai1 … ain) (8)

POi  1 - aii/(a1i ... ani) (9)

Furthermore, comments on results are sup-
ported by the estimation of their accuracy (A):
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Table 4. Fixed effects coefficients estimates and Random effects covariance parameters at 95% CIs) for the GLMM 

segment model.

Variable Estimate SE p-value Lower Upper

Intercept  1.24210 0.2019 <10–3  0.84629  1.63790

C8  0.00594 <10–3 <10–3  0.00428  0.00759

C9 0.06953 0.018 <10–3 0.10540 0.03367

C11 0.00620 <10–3 <10–3 0.00707 0.00534

C14  0.00497 <10–3 <10–3  0.00318  0.00675

C16 0.00016 <10–4 <10–3 0.00023 0.00010

C18 0.07152 0.0203 <10–3 0.11142 0.03163

C21  0.00056 <2 10–4 0.002  0.00020  0.00092

C24  0.00111 <3 10–4 <10–3  0.00062  0.00161

C25 0.00242 <3 10–4 <10–3 0.00284 0.00199

Group variable      Estimate

C1 (Intercept)       0.13646

C2 (Intercept)       0.38224

C3 (Intercept)       0.19893

C4 (Intercept)       0.11375

Indexes

LogLikelihood      11465

AIC       22959

BIC       23053

Deviance       22931

R2 adjusted       0.3107

Figure 4. Effect of TF4 (a) and TF7 (b) (variables 22 

and 26) on SL (BPNN model) for different flow values 

(0.1, 0.5, 0.9).

A  (a11 a22  … ann)/ aij (10)

Table 5 reports the confusion matrices for the 
model calibrated through the BPNN. SL values 
lower than 2 (corresponding to the PDO crash type) 
and greater than 6 (which are unrealistic values) have 
also been included in the tables considering that the 
model output can fall outside the range of numeri-
cal values associated with each SL. The accuracy of 
90% is certainly very high for BPNN model. PR and 
PO rates are low with the exception of SL 2 and 3. 
SL 2 is the more difficult to predict while SL 3 has 
the largest number of wrong cases assigned to it.

Table 6 contains the confusion matrices for the 
GLMM model. In this case, the capacity of SL pre-
diction is significantly lower than the one for BPNN 
as indicated by the accuracy of 33%. GLMM has a 
superior capacity to provide results within the SL 
limits of 2 and 6, as confirmed by the absence of 
values that fall outside of the two limits. PR and PO 
rates are lower than the corresponding values for 
BPNN, showing a greater difficulty in predicting SL 
than the neural network modelling approach.

Comparisons with GLMM show a marked 
superiority of BPNN modelling as regards per-
formance measured through confusion matrices. 
GLMMs, on the other hand, clearly show what 
variables are significant and their effect (sign and 
value of coefficients) though this is limited to the 
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linear effect of variables without considering their 
possible reciprocal interaction.

6 CONCLUSIONS

The paper aims to achieve two goals: the eval-
uation of  the crash Severity Level (SL) on 
urban road segments using environmental vari-
ables (some of  which, like short-term flow, are 
innovative for this type of  research), and the 
comparison of  two different techniques for cal-
culating SL, the Back-Propagation Neural Net-
work model (BPNN) and the Generalized Linear 
Mixed Model (GLMM).

The results presented here provide new insights 
into urban roads and fill a gap in the knowledge 
acquired from the number of studies on rural free-
ways and expressways reported in literature.

From the use of the confusion matrixes tech-
nique, BPNN models evidenced their superiority 

in the prediction of the SL when compared to the 
GLMMs. This is attributable to their greater capabil-
ity of accurately approximating any continuous and 
non-linear function. On the other hand, GLMMs 
(like any analytical model) allow a readier inter-
pretation of model results. Other pros and cons in 
their use derive from the intrinsic characteristics of 
statistical and neural network methods, as clearly 
underlined by Karlaftis and Vlahogianni (2011). 
The authors suspect that the most significant limit 
of  GLMMs for these applications is related to the 
constrained linearity of  their functions. In addi-
tion, missing data may have contributed to the 
fact that the BPNNs, which are known to be capa-
ble of  overcoming this problem, achieved better 
results.

However, both approaches (BPNN and 
GLMM), though with significant differences, indi-
cate that flows have a relevant role in predicting 
severity: this role is not limited to the flow when the 
crash occurred (TF4), but also involves other flow 

Table 5. BPNN model confusion matrix for segments (row percentage values in brackets), and “a Priori” (PR) and 

“a Posteriori” (PO) rates.

Real SL

Predicted SL

CD

PR 

(%)<2 2 3 4 5 6  6

2 21 

2%

859 

65%

257 

20%

71 

5%

39 

3%

60 

5%

7 

0%

1314 35%

3 18 

1%

150 

12%

1056 

86%

6 

1%

0 0 0 1230 14%

4 0 0 0 1250 

94%

0 0 0 1250 0%

5 0 0 0 0 1287 

100%

0 0 1287 0%

6 0 0 0 0 0 1311 

100%

0 1311 0%

PO – 15% 20% 6% 3% 4% – – –

Notes: CD  crash data in the resampled database.

Table 6. GLMM model confusion matrix (row percentage values in brackets), and “a Priori” (PR) and “a Posteriori” 

(PO) rates.

Real RSL

Predicted PSL

CD

PR 

(%)<2 2 3 4 5 6 6

2 0 79 

52%

534 

41%

593 

45%

100 

8%

8 

1%

0 1314 94%

3 0 72 

48%

444 

36%

588 

48%

102 

8%

24 

2%

0 1230 64%

4 0 0 300 

24%

850 

68%

100 

8%

0 0 1250 32%

5 0 0 393% 702 

55%

507 

39%

39 

3%

0 1287 61%

6 0 0 0 483 

37%

621 

47%

207 

16%

0 1311 84%

PO – 48% 66% 74% 65% 26% – – –
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data recorded before (TF1-TF3) and after (TF5-
TF7) the crash. GLMM model shows the relevance 
of TF3, TF6, and TF7 only, but the BPNN model 
evinces more complex relationships for all seven 
variables. Weather variables also (i.e., rainy condi-
tion and light radiation) show a strong relation in 
some scenarios.

In future research, generalized non-linear mod-
els will be used to consider the higher order effects 
and the interaction between variables. Moreover, 
a mixed approach using both short-term flow and 
AADT values will be investigated to derive models 
over a mid-to-long term period and investigate the 
relationship between them.
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