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Abstract: A system-level degradation modeling is proposed for the reliability 

assessment of digital Instrumentation and Control (I&C) systems in Nuclear Power 

Plants (NPPs). At the component level, we focus on the reliability assessment of a 

Resistance Temperature Detector (RTD), which is an important digital I&C component 

used to guarantee the safe operation of NPPs. A Multi-State Physics Model (MSPM) is 

built to describe this component degradation progression towards failure and Monte 

Carlo (MC) simulation is used to estimate the probability of sojourn in any of the 

previously defined degradation states, by accounting for both stochastic and 

deterministic processes that affect the degradation progression (e.g., the RTD drift 

phenomenon is dependent on the air gap size between the sensing element tip and the 

thermowell bottom, and on the RTD age that can be considered as stochastic and 

deterministic processes, respectively). The MC simulation relies on an integrated 

modeling of stochastic processes with deterministic aging of components that results to 

be fundamental for estimating the joint cumulative probability distribution of finding 

the component in any of the possible degradation states. 

The results of the application of the proposed degradation model to a digital I&C 

system of literature are compared with the results obtained by a Markov Chain Model 

(MCM). The integrated stochastic-deterministic process here proposed to drive the MC 

simulation is viable to integrate component-level models into a system-level model that 

would consider inter-system or/and inter-component dependencies and uncertainties. 

Keywords: Multi-State Physics Modeling; Digital I&C System; System-Level Model; 

Component-Level Model; Degradation State Probability. 
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ABBREVIATIONS 

PSA Probabilistic Safety Analysis 

NPP Nuclear Power Plant 

I&C Instrumentation and Control 

MSPM Multi-State Physics Model(ing) 

MCM Markov Chain Model 

MC Monte Carlo 

RTD Resistance Temperature Detector 

RPS Reactor Protection System 

BPL Bistable Processor Logic 

LCL Local Coincidence Logic 

PTS Partial Tripping Signal 

ESS Emergency Shutdown Signal 

RTB Reactor Trip Breaker 

CDF Cumulative Distribution Function 

PDF Probability Density Function 

 

NOTATIONS 

𝛾𝑌 Failure threshold 

Y Physical variable 

G Limit-state function 

�̅� Vector of system parameters 

S Safety domain 

F Failure domain 

𝜕𝐹 Failure boundary 

t Time 

�̅� Vector of physical parameters 

�̅�𝒎 Vector of m-dimensional manufacturing features 

�̅�𝒌 Vector of k-dimensional stochastic parameters 

�̅�𝒍 Vector of l-dimensional external parameters 

휀(𝑡) Error term 

�̅�(𝑡, �̅�) State probability vector obtained from MSPM 

𝑝𝑗(𝑡, �̅�) State probability of state j in MSPM 

𝑀𝑖 + 1 Number of states in i-th component/module-level MSPM 

𝐶𝑗
𝑖 Degradation state j of component (module) i 

𝜆(𝑗,𝑘)
𝑖 (𝑡, �̅�) Failure rate of component (module) i from state 𝐶𝑗

𝑖 to 𝐶𝑘
𝑖  

𝜇(𝑗,𝑘)
𝑖 (𝑡, �̅�) Repair rate of component (module) i from state 𝐶𝑘

𝑖  to 𝐶𝑗
𝑖 

𝜎 RTD measurement accuracy 

𝜏 RTD response time 

𝛿 RTD air gap size 

𝛼𝑡 Scale factor 

PS(t,δ) CDF of the RTD New-to-drift failure mode 

δ0 Initial air gap size 

dt Time interval 

dδt Noise of air gap size 

tm Mission time 

NM Simulation times 

pS(t|δ) Conditional PDF given air gap size interval 

PS(t|δ) Conditional CDF given air gap size interval 

λS(t|δ) Conditional failure rate given air gap size interval 

RS(t|δ) Conditional reliability of RTD given air gap size interval 

λS Failure rate in RTD-MCM 

μS Repair rate in RTD-MCM 
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PS(t) Unreliability obtained from RTD-MCM 

N+1 Number of layers in system-level MSPM 

Ll Layer l in system-level MSPM 

Ml+1 Number of degradation states of layer l 

𝐿𝑚
𝑙  Degradation state m of layer l 

𝜇𝐿𝑚
𝑙 →𝐿0(𝑡, �̅�) Repair rate from state 𝐿𝑚

𝑙  to state L0 

𝜆𝐿𝑚
𝑙 →𝐿𝑛

𝜔(𝑡, �̅�) Failure rate from state 𝐿𝑚
𝑙  to state 𝐿𝑛

𝜔 

𝜆𝐿𝑚
𝑙 →𝐿𝑁(𝑡, �̅�) Failure rate from state 𝐿𝑚

𝑙  to system failure state 𝐿𝑁 

λB BPL failure rate 

λL LCL failure rate 

β Common cause factor 

λBC BPL common cause failure rate 

λLC LCL common cause failure rate 

λR RTB failure rate 

P(t|δ) RPS unreliability obtained from RPS-MSPM 

P(t) RPS unreliability obtained from RPS-MCM 

 

 

1. Introduction 

In support to the implementation of risk-informed decision-making approaches, 

Probabilistic Safety Analysis (PSA) of modernizing Nuclear Power Plants (NPPs) 

demands for detailed dynamic models of digital Instrumentation and Control (I&C) 

systems that can adequately represent digital components failure modes and quantify 

their contribution to the overall risk of the NPPs (Aldemir et al., 2007; Aldemir et al., 

2006). 

To this aim, dynamic methods are being increasingly integrated into existing PSA 

frameworks for digital I&C systems reliability assessment, such as: Dynamic 

Flowgraph Methodology (DFM) (Guarro et al., 2012; Aldemir et al., 2006; Aldemir et 

al., 2009), Markov/cell-to-cell mapping technique (CCMT) (Aldemir et al., 2006; 

Aldemir et al., 2009; Zhou et al., 2014), Petri Net (Lee et al., 2006; Kim and Kim, 2014), 

Bayesian Networks (Boudali and Dugan, 2006; Broy et al., 2011), Dynamic Fault Tree 

(DFT) (Dehlinger and Dugan, 2008), Dynamic Event Tree (DET) (Bucci et al., 2006) 

and Fuzzy C-Means (FCM) clustering method (Di Maio et al., 2011; Zio and Di Maio, 

2009). On a system level, these methods can be used to tackle the twofold purpose of 

PSA: on one side, the identification of the system failure domain and, on the other side, 

the quantification of the system failure probability. 
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With respect to the latter, given a failure threshold 𝛾𝑌  not to be exceeded by a 

safety-relevant physical variable 𝑌 during the system operation, a limit-state function 

G can be defined as: 

 𝐺 = 𝐺(�̅�, 𝛾𝑌) = 𝑌(�̅�) − 𝛾𝑌 (1) 

where �̅� = {𝑋1, 𝑋2, ⋯ , 𝑋𝑛} defines the system parameters and operational conditions. 

This leads to the definition of a system safety domain 𝑆 = {�̅�: 𝐺(�̅�, 𝛾𝑌) < 0} and of a 

system failure domain 𝐹 = {�̅�: 𝐺(�̅�, 𝛾𝑌) > 0}, that are partitioned by a system failure 

boundary 𝜕𝐹 = 𝐺(�̅�, 𝛾𝑌) = 0, for a given 𝛾𝑌. 

The identification of the failure domain F is crucial especially when the system 

dynamics is complex and its component reliability assessment cannot be described by 

a Boolean, discrete and abrupt physics of failure, but rather by a multi-valued, and 

continuous degradation model as it is for digital I&C systems (Li et al., 2012; Lin et al., 

2015; Lisnianski and Levitin, 2003). The biggest challenge to be overcome for devising 

realistic and effective degradation models consists in the collection of component 

reliability data that are, often, affected by multiple and competing failure modes that 

are difficult to be untangled and reduced to a single-lumped failure criterion analysis 

that would leverage the degradation modeling task. To avoid simplification and 

overlooking of failure interdependencies, we propose to resort to a Multi-State Physics 

Modeling (MSPM) approach at the component level, which can be easily upscaled for 

system-level degradation modeling. The MSPM approach is based on the structure of 

Markov (or semi-Markov) modeling for the quantification of components reliability 

measures (Unwin et al., 2011; Unwin et al., 2012; Rocco and Zio, 2013; Fleming et al., 

2010). Recently, the MSPM approach has been proposed for modeling nuclear 

component degradation by accounting for both the effects of stochastic parameters 

affecting the degradation and the environmental parameters with their uncertainties 

(Lin et al., 2015; Di Maio et al., 2015). 

In this study, a component-level MSPM model for a digital I&C system is 

developed by integrating in the model both the stochastic and the deterministic 

processes that affect component degradation. The physical variable 𝑌 to be considered 

for the failure domain F identification is given in Eq. (2) (Kaiser and Gebraeel, 2009): 
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 𝑌 = 𝑌(�̅�) = 𝑓(𝑡, �̅�) + 휀(𝑡) = 𝑓(𝑡, �̅�𝑚, �̅�𝑘, �̅�𝑙  ) + 휀(𝑡) (2) 

where t is the deterministic aging time, �̅� is a collection of physical parameters affecting 

the degradation process that can be seen as composed by �̅�𝑚 = {𝜑1, ⋯ , 𝜑𝑚} which is 

a vector of m-dimensional manufacturing features that affect the degradation (e.g., 

burn-in, contamination, etc.), �̅�𝑘 = {𝜃1, ⋯ , 𝜃𝑘}  which is a vector of k-dimensional 

stochastic parameters that account for the components variability (e.g., nominal 

frequency stability, calibration error after maintenance, etc.), �̅�𝑙 = {𝛽1, ⋯ , 𝛽𝑙} which is 

a vector of l-dimensional external parameters that capture the variability of time-

varying operating and environmental conditions (e.g., temperature, flux, etc.), and 휀(𝑡) 

that is an error term that captures noise and disturbances. In principle, a component 

response surface to any possible different setting of degradation features (stochastic and 

external parameters, and error terms) can be built (with infinite computational resources) 

such that the safety domain S can be partitioned from the failure domain F by setting a 

failure threshold 𝛾𝑌. 

In this work, a Monte Carlo (MC) simulation is used to estimate the transition 

probabilities among the degradation states of MSPM and drive, by random walks, the 

stochastic process of the evolution of the air gap size in time and the deterministic 

evolution of the component aging on the response surface for the identification of the 

limit surface of the drift event of a Resistance Temperature Detector (RTD) that is 

embedded into a digital I&C system of a NPP. 

Finally, as for traditional PSA (where system-level models are developed by 

combining or replacing subsystem or component models in the overall structure of a 

Fault Tree (FT) or an Event Tree (ET) (Aldemir et al., 2007; Aldemir et al., 2009; Gulati 

and Dugan, 1997)), the system failure probability of the digital I&C system is quantified 

by upscaling the component-level MSPM into a system-level model that considers the 

inter-system or/and inter-component dependencies and the aleatory or/and epistemic 

uncertainties affecting each component behavior. 

The rest of paper is as follows. Section 2 presents the illustration of component-

level MSPM for a digital I&C component (e.g., sensor, reactor trip breaker, CPU, etc.) 
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and the comparison of the results obtained by the Markov Chain method. Section 3 

presents the system-level MSPM framework of a digital I&C system in a NPP. In 

section 4 conclusions are drawn. 

2. The Component-Level MSPMs 

In this study, the digital I&C System of reference, whose reliability assessment is 

required for the failure domain identification and the related risk quantification of a 

NPP, is a typical NPP Reactor Protection System (RPS). Its objective is to trigger 

reactor emergency shutdown as soon as an anomaly is detected in the measurements of 

some relevant signals (i.e., primary coolant pressure, temperature, etc.). As shown in 

Fig. 1, this digital I&C system is composed of two redundant channels (A and B). Each 

channel consists of one signal sensor (S-A and S-B), one Bistable Processor Logic (BPL) 

subsystem (BPL-A and BPL-B), and one Local Coincidence Logic (LCL) subsystem 

(LCL-A and LCL-B). 

An independent signal sensor and an independent BPL is installed in each channel. 

If any of the two redundant measured signals exceeds a safety threshold value, a Partial 

Tripping Signal (PTS) is measured from the corresponding BPL, e.g. a PTS from BPL-

A is measured because S-A exceeds the tripping value. The signal processing proceeds 

only if both channels produce the PTS: each PTS from a BPL is sent to both LCL-A 

and LCL-B, which process information by an “AND” gate. In other words, an 

Emergency Shutdown Signal (ESS) is produced only when receiving two PTSs from 

different BPLs; ESSs, then, activates the Reactor Trip Breaker (RTB), when at least one 

ESS is triggered, i.e., the information is processed by an “OR” gate. Once the RTB is 

activated, the power supply system and Control Rod Drive Mechanism (CRDM) which 

are connected with the RTB come into use to control the power of the reactor. 



7 
 

BPL-A BPL-B

LCL-A LCL-B

1
2

S-A S-B

Power supply 

system
CRDM

RTB

BPL Module

LCL Module

RTB Module  

Fig. 1 A typical RPS (Wang et al., 2015) 

The system can be decomposed into modules to reduce the complexity of system-

level modeling based on the functions the embedded components are devised for and 

the failure effects they produce on the system. According to the RPS scheme of Fig. 1, 

the RPS modules are identified: 

 The BPL Module, consists of two groups of components: sensor and BPL (i.e., 

“S-A and BPL-A” and “S-B and BPL-B”); these components are connected 

in series and their failure effects on the system can be combined. 

 The LCL Module consists of the two LCLs (i.e., LCL-A and LCL-B). Since 

the ESS is triggered only when both LCLs simultaneously receive two PTSs 

from the two BPLs, this module is highly dependent of the BPL module. 

 The RTB Module. 

Without loss of generality, let us consider and build the component-level MSPM 

of the module “S-A and BPL-A”. It is worth mentioning that, for a comprehensive and 
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exhaustive analysis, a component-level MSPM of each module shown in Fig. 1 should 

be built with great detail and embedded into the system-level MSPM, as we shall see 

in Section 3. 

Each component-level model is a MSPM where the dynamics of component 

degradation is represented by transitions among a finite number M of degradation states 

at any time instant t and any value of the affecting parameters �̅� (Li et al., 2012; Di 

Maio et al., 2015); similarly to a Markov Chain Model (MCM), a state probability p is 

assigned to each degradation state, that is collectively represented by a state probability 

vector �̅�(𝑡, �̅�) = {𝑝0(𝑡, �̅�), 𝑝1(𝑡, �̅�), ⋯ 𝑝𝑗(𝑡, �̅�), ⋯ , 𝑝𝑀(𝑡, �̅�)} for all the M states.  

 In general terms, we model each i-th component with a graph with Mi+1 nodes, 

each of which identifies a state of the component degradation progression. 

Herein, “𝐶0
𝑖” and “𝐶𝑀

𝑖 ” represent the “New” and “Failed” states of the i-th 

component in the system, whereas any other state “𝐶𝑗
𝑖”, 𝑗 = 1,2, ⋯ , 𝑀𝑖 is an 

intermediate degradation state, where the component is partially functioning. 

 State “𝐶0
𝑖” is selected as the initial state at time t=0, i.e., the component is 

“New” at t=0. 

 𝜆(𝑗,𝑘)
𝑖 (𝑡, �̅�),  𝑗 = 1,2, ⋯ , 𝑀𝑖 , 𝑘 = 1,2, ⋯ , 𝑀𝑖 , 𝑎𝑛𝑑 𝑗 ≠ 𝑘 is the transition rate 

of the i-th component degradation model from state “𝐶𝑗
𝑖” to state “𝐶𝑘

𝑖 ”, with 

respect to the time and the degradation affecting factor vector �̅�. 

 Components can be repaired even if not “Failed”, i.e., repair rate 𝜇(𝑗,𝑘)
𝑖 (𝑡, �̅�),  

𝑗 = 1,2, ⋯ , 𝑀𝑖 , 𝑘 = 1,2, ⋯ , 𝑀𝑖 , 𝑎𝑛𝑑 𝑗 ≠ 𝑘  can be foreseen between the 

intermediate transition states “𝐶𝑗
𝑖” and “𝐶𝑘

𝑖 ”. 

An example of MSPM of a generic single component i is sketched in Fig. 2, below. 

... ... ...
0

iC
i

jC i

kC i

MC

   ,
,i

j k
t 

   ,
,i

k j
t 

 

Fig. 2 MSPM degradation model of single component i 
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2.1 The Sensor MSPM 

Different types of sensors are employed for measuring temperatures, pressures, 

levels and flows in NPP safety systems, such as Resistance Temperature Detectors 

(RTDs) (Montalvo et al., 2014; Hashemian, 2011; Yun et al., 2012), pressure 

transmitters (Hashemian, 2011), eddy current sensors (García-Martín et al., 2011; 

Uchanin and Najda, 2011) and optical fiber sensors (Ferdinand et al., 2013). Without 

loss of generality, we assume that the S-A and S-B of the digital I&C system of Fig. 1 

are RTDs. We focus on RTDs because they are critical components, whose effectiveness 

in promptly detecting anomalous temperature changes greatly support plant operators 

in the monitoring of NPP operational conditions and guide counteracting measure to 

avoid system failure. This is why RTDs must properly generate accurate and timely 

data (Baraldi et al., 2015). The NPP plant power level is, indeed, set based on the 

information gathered from RTDs: the better the performance of these process 

instrumentations in terms of measurement accuracy, the larger the power rate with 

enough margin from the system failure domain F (hence, the better the plant economics) 

(Yun et al., 2012).  

To build the RTD-MSPM model (as sketched in Fig. 3), the sensor failure modes 

have to be identified (e.g., bias (Uren et al., 2015), drift (Uren et al., 2015; Garvey and 

Hines, 2006), performance degradation (Fernandeza et al., 2015), freezing (Boskovic 

and Mehra, 2002), and calibration error (Castello et al., 2014)) and assumptions are 

made for the subsequent quantitative analysis: 

 Six degradation states, besides the sensor functioning state ( 0

RTDC ), are set and 

organized into RTD-MSPM model: 1

RTDC   corresponds to Bias, 2

RTDC  

corresponds to Drift, 3

RTDC  corresponds to (performance) Degradation, 4

RTDC  

corresponds to Freezing, 5

RTDC   corresponds to Calibration Error and 6

RTDC  

corresponds to Complete Failure. Transitions can occur between state 0

RTDC  

and any of the other degradation states, with transition rate 
   0,

,RTD

j
t   (here j 
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= 1, 2, 3, 4, 5, 6) and between degradation states with transition rate 

   ,
,RTD

j k
t   (here j, k = 1, 2, 3, 4, 5, 6 and 𝑗 ≠ 𝑘). It is assumed that repair is 

just carried out from each degradation state to state 0

RTDC , with repair rate 

   ,0
,RTD

j
t  . 

 The initial state at time t=0 is sensor functioning state 0

RTDC . 

2

RTDC

1

RTDC

0

RTDC

3

RTDC

4

RTDC

5

RTDC

6

RTDC

   0,
,RTD

j
t 

   ,
,RTD

j k
t 

   ,0
,RTD

j
t 

 

Fig. 3 Schematic diagram of the RTD-MSPM 

The RTD-MSPM is further simplified as in Fig. 4, where 0

RTDC   is the RTD 

functioning state and 2

RTDC  is the RTD failure degradation state due to drift with failure 

rate 
   0,2

,RTD t    and repair rate 
   2,0

,RTD t   . This simplification is due to the 

experimental evidence that the main failure mode to be considered for RTDs is drift 

(Balaban et al., 2009). Overtime exposure to high temperatures can cause a drift in the 

measurements up to several degrees per year; shock and vibration generate strain in 

resistive wires of the RTDs and change their characteristics. In what follows, the 

quantitative analysis on the RTD-MSPM is done. 

   0,2
,RTD t 

   2,0
,RTD t 

0

RTDC 2

RTDC

 

Fig. 4 Drift case of RTD-MSPM model 
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2.2 Estimation of the RTD-MSPM Parameters 

RTDs contain a sensing element whose resistance changes with fluid temperature. 

Well-type RTDs are assembled into thermowells containing the sensing elements, 

sheaths and insulation materials, whereas wet-type RTDs are designed for direct 

immersion into the fluid (Yun et al., 2012). Two types of RTDs are shown in Fig. 5 

(Hashemian, 2011). 

Wet-type RTD Well-type RTD  

Fig. 5 Two types of RTDs (Hashemian, 2011) 

The performance of RTDs is characterized by their measurement accuracy 𝜎 and 

response time 𝜏. The former characterizes the RTD accuracy in measuring a sudden 

temperature change (Wei et al., 2013), whereas the latter is a pivotal indicator that 

measures how quickly the RTD responds to a sudden and significant temperature 

change (Yun et al., 2012). On one hand, being 𝜏 the time the RTD needs for reaching 

63.2% of a sudden temperature change, 𝜏 is also representative of 𝜎; on the other hand, 

since some failure modes might affect the fluid temperature and some others such as 

bias, freezing, loss of signal showing constant measured values even if the RTD is 

degraded and, thus, 𝜏 cannot be considered as performance metric, both 𝜏 and 𝜎 are to 

be simultaneously considered for defining the RTD failure domain. 

Under normal reactor operation conditions, effects of intrinsic properties (intrinsic 

shape and material properties, for example) are negligible on its own performance 

because they cannot be altered once the RTD is manufactured, such as 𝜏  and 휀 

(Hashemian, 1994). Instead, component aging t and uncertainty of air gap size 𝛿 
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between the bottom of the thermowell and the RTD sensing tip due to contamination, 

metallurgical changes, moisture or dirt entering, mechanical shock, etc. are more likely 

to cause RTD drift (Hashemian, 2011; Swanson, 2007). 

Aging can affect RTD performance with different degradation modes; for example, 

the sensing element resistance increases under tensile stress and decreases with 

compression stress that varies with time t, resulting in off-calibration, increase in 𝜏, 

reduced insulation resistance, erratic output, wiring problems, etc. Among these, sensor 

off-calibration and 𝜏  changes are the most relevant features to be monitored 

(Hashemian, 2011). 

Moreover, we assume 𝜏  to heavily depend on air gap size 𝛿  between the RTD 

sensing tip and the bottom of the thermowell (Hashemian, 2013), even though also 

debris, dirt, and metal shavings entering the thermowell during installation, and/or 

moisture entering the insulation material during operation can, also cause an off-design 

of air gap that prevents the RTD from reaching the very bottom of its thermowell. 

Moreover, RTD movement in the thermowell due to vibration, thermal, or mechanical 

shock can cause the RTD sensing tip to displace away from the bottom of the 

thermowell (Hashemian, 2011) and calibration drift (Yun et al., 2012). 

In conclusion, in what follows, 𝜏 is identified as the RTD drift physical variable Y 

being degrading due to t and 𝛿, as in Eq. (3): 

 𝑌 = 𝜏(𝑡, 𝛿) (3) 

Given a RTD failure threshold 𝛾𝑌 not to be exceeded by 𝜏(𝑡, 𝛿) during operation, then, 

its limit-state function can be formulated as: 

 𝐺 = 𝑌 − 𝛾𝑌 = 𝜏(𝑡, 𝛿) − 𝛾𝑌 (4) 

To partition the RTD safety domain S from its failure domain F, we firstly build a 

physical mathematical relationship between 𝜏, t and 𝛿 based on the experimental data 

listed in Table 1 and 2 (Hashemian, 2011; Yun et al., 2012). 

 

Table 1 Experimental data for τ at fixed t and δ=0 (Yun et al., 2012) 

Aging Time t [yr] 0 2 4 5 6 

Response Time 𝜏 [s] 2.1 4.4 4.8 5.0 5.2 

Variance 1.67 0.77 0.72 0.77 0.67 
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Table 2 Experimental data for τ at t=0 and fixed δ (Hashemian, 2011; Yun et al., 2012) 

Air gap size 𝛿 [mm] 0 0 0.2 0.4 0.5 0.6 0.8 1.0 1.0 1.5 2.0 

Response time t [s] 0.9 3.3 4.1 5.0 2.94 5.9 6.5 3.33 7.5 3.48 3.58 

 

Fig. 6 shows the trend of 𝜏 as long as t increases, independently from the air gap 

contamination (i.e., 𝛿 = 0) when data in Table 1 are used as interpolation data. Fig. 7 

shows the trend of 𝜏 as a function of 𝛿, when the RTD is new and data in Table 2 are 

used as interpolation data (i.e., aging t=0) (Yun et al., 2012). 

 

Fig. 6 𝜏(𝑡, 0) 

 

Fig. 7 𝜏(0, 𝛿) 

 

The function 𝜏(𝑡, 𝛿) as it is plotted in Fig. 8 is obtained by resorting to Eq. (5): 

 𝜏(𝑡, 𝛿) = 𝛼𝑡 ∙ 𝜏(𝑡 − 1, 𝛿) (5) 

where 𝜏(0, 𝛿)  is the curve of Fig. 7 and the factor 𝛼𝑡  accounts for the changes of 

response time 𝜏 with the increase of t, by scaling the 𝜏(𝑡, 0) using the scale factor αt: 
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𝛼𝑡 =

𝜏(𝑡)

𝜏(𝑡 − 1)
 

(6) 

where, 𝛼1 = 𝜏(1) 𝜏(0)⁄ . Table 3 reports the estimate of 𝛼𝑡 for six discrete aging times 

t.  

Table 3 Estimate of scale factors at six discrete aging times 

Aging time t [yr] 0 1 2 3 4 5 6 

Response time 𝜏 [s] 2.1040 3.5750 4.3818 4.7367 4.8525 4.9415 5.2163 

Weighting factor 𝛼𝑡 / 1.70 1.23 1.08 1.02 1.02 1.06 

 

Fig. 8 𝜏(𝑡, 𝛿) 

As mentioned in (Hashemian, 2011), the τ of a well-type RTD usually ranges in 

[4s, 8s]; hence, the RTD failure threshold 𝛾Y is here set equal to 8s. The Cumulative 

Distribution Function (CDF) PS(t, δ) of the RTD new-to-drift-failure mode that can 

account for the stochasticity of the process and of the uncertainties affecting the 

degradation (for example, the initial air gap size δ0 and the noise affecting the air gap 

size δt due to the vibration) can be found by running NM Monte Carlo simulations, as 

follows (see Table 4 for the list of parameters): 

 For each trial, at the initial time t=0, we sample the value of 𝛿0  from the 

uniform distribution U(0,1) as initial air gap size. 

 At each t that increases with the time step dt, the value dδt is sampled from a 

normal distribution N(0,0.025t); thus, δ = δ0 +dδt. 

 At each t within the mission time [t0,tm], τ is estimated using the curve τ(t, δ) 

of Fig. 8. If the value of τ exceeds the threshold 𝛾𝑌, the RTD is assumed to 
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fail at time t with air gap size δ.  

Table 4 Setting of Parameters for Monte Carlo Simulation 

Parameter Description Unit Value Distribution 

NM Simulation Times / 104 / 

𝛾𝑌 Response Time Threshold s 8 / 

dt Time interval yr 1/100  

t0 Initial time yr 0 / 

tm Mission time yr 6 / 

δ0 Initial Air Gap Size mm / U(0, 1) 

dδt Noise of Air Gap Size mm / N(0, 0.025t) 

 

Pictorially, we can show the evolution of 𝜏(𝑡, 𝛿) for each trial, as sketched in Fig. 

9: for a sampled δ0 (equal to 0.12mm), the air gap size oscillates during the RTD life 

around δ0 (see in Fig. 9(a)); on the other hand, the response time τ, stochastically 

changes with the increase of time t (in Fig. 9(b)) and, thus, the transition between states 

𝐶0
𝑅𝑇𝐷 and 𝐶2

𝑅𝑇𝐷 (see Fig. 4) of drift failure mode is determined when the response time 

τ reaches the failure threshold 𝛾𝑌, as shown in Fig. 9(c). 

 

Fig. 9 One trial of MC simulation: (a) the stochastic path of air gap size δ changing with the 

aging t; (b) the evolution of response time τ with the aging t; (c) the simulated path response time 

τ with respect to δ and t on the safety domain of the fitting curved surface 
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After the NM trials of MC simulations have been run, the conditional Probability 

Density Function (PDF) pS(t|δ) and conditional Cumulative Distribution Function (CDF) 

PS(t|δ) of the RTD New-to-drift transition of Fig. 4 can be empirically built (shown in 

Fig. 10 and 11, respectively) and used to calculate the conditional failure rate λS(t|δ): 
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Fig. 10 Conditional probability density function of RTD New-to-drift failure mode 

  

 

Fig. 11 Conditional cumulative distribution function of RTD New-to-drift failure mode   
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Fig. 12 Conditional failure rate of RTD New-to-drift failure mode 

 

It is worth mentioning that the conditional CDF PS(t|δ) of Fig. 11 describing the 

uncertain timing of RTD New-to-drift failure mode shows a sharp increase in [0.5, 1.5] 

yr, after which it starts to level off to reach PS(t|δ) at 5.8yr. Therefore, the failure rate 

λS(t|δ) of Fig. 12 shows the typical infant mortality and wear out periods, and tends to 

be constant in the useful life, which coincides with a general bath-tub curve, but with 

non-constant values along life. 

2.3 Comparison with Markov Chain Model 

The results shown in Section 2.2 are compared with those of a MCM to describe 

a component failure in a binary-state modeling framework and neglecting any physical 

modeling of component degradation features. The equivalent of the RTD-MSPM of Fig. 

4 is shown in the RTD-MCM of Fig. 13, where states “0” and “1” represent no-failure 

state and failure state respectively, and the transition rates between them 𝜆𝑆 and 𝜇𝑆 are 

constant values ( 𝜆𝑆 is equal to 1E-4/hr and 𝜇𝑆 to 0 (US: EPRI, 2008)). Therefore, the 

RTD unreliability (i.e., failure state probability) PS(t) can be calculated by means of 

MCM quantitative analysis and is plotted in Fig. 14.  

0 1

S

S  

Fig. 13 Schematic diagram of RTD-MCM (without repair) 
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Fig. 14 shows the results obtained from MSPM compared with those from MCM. 

The PS(t|δ) (obtained by MSPM) is close to the PS(t) (obtained by MCM), which, 

however, overestimates the unreliability of the RTD. The degradation process modeling 

in the MSPM is more realistic than in MCM, and the latter is not able to guarantee the 

drift onset beyond a threshold value (especially at low aging). 

 

Fig. 14 Failure state probability obtained from MSPM and MCM approaches 

3. The System-Level MSPM for a Digital I&C System 

In Section 2 we have shown how it is possible to resort to a MSPM framework to 

build a realistic model of a component/module that is embedded into a system. Now, 

the general framework of a MSPM approach is presented, when all the components of 

a Digital I&C system are considered. As shown in Fig. 15, we propose a modular 

scheme that integrates the component-level and/or subsystem-level models into a 

system-level structure (Gulati and Dugan, 1997; Wang et al., 2015). Attention should 

be paid to the definition of system failure modes and to the identification of the 

component degradation states with their dependencies and the uncertainties, as well as 

on the inter-component dependencies by a qualitative and quantitative screening of the 

system behavior (i.e., by Failure Modes and Effects Analysis (FMEA) (Zio, 2007)). In 

this work, the components degradation process, their failure modes and the overall 

system behavior is modelled by implementing physics model at both component level 

or/and subsystem level, which consider inter-component and intra-components 
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dependencies and uncertainties. 

 

Component-Level Modeling: MSPMs of the 

single components in the Digital I&C system

System-Level Modeling: Integrated MSPMs of 

the overall Digital I&C system

MSPM 1

MSPM i

MSPM N

 

Dynamics of 

component 1

Dynamics of 

component i

Dynamics of 

component N

 
 

MSPM 1

MSPM i

MSPM N

 
 

 

Fig. 15 General framework of a component- and system-level MSPM-based approach for a digital 

I&C systems 

With respect to the inter-component degradation physics, the following 

assumptions hold for each i-th component degradation MSPM. Provided that we are 

able to build, for each i-th component, its component-level MSPM, the system-level 

MSPM can be built, as shown in Fig. 16, where: 

 Inter-components operating logic determines the layout of the N+1 layers, 

where layer “L0” and layer “LN” are the “System functioning (L0)” and 

“System failure (LN)” states, respectively. Any intermediate layer “Ll”, 𝑙 =

1, ⋯ , 𝑁 − 1 represents the module or submodule operating logic, where the 

component can be grouped in subsystems for similarity of task, location, 

characteristics, etc. (Inter-components (e.g., cascading failures) and intra-

components (e.g., components common cause failures) dependencies and 

uncertainties should be accounted for in detail for the sake of the model 

accuracy). 

 𝐿𝑚
𝑙 , 𝑚 = 1,2, ⋯ , 𝑀𝑙 , is the system degradation state at progression level m, 

for the module failure mode l. 

 All states 𝐿𝑚
𝑙   are repairable states with repair rate 𝜇𝐿𝑚

𝑙 →𝐿0(𝑡, �̅�)  to L0 
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(indicated by the dashed lines in Fig. 16) and failure rate 𝜆𝐿𝑚
𝑙 →𝐿𝑛

𝜔(𝑡, �̅�), 𝑙, 𝜔 =

1, ⋯ , 𝑁 − 1 , 𝑚 = 1,2, ⋯ , 𝑀𝑙 , and 𝑛 = 1,2, ⋯ , 𝑀𝜔  for the transition from 

state 𝐿𝑚
𝑙  to any other state 𝐿𝑛

𝜔 belonging to any layer 𝜔 ≠ 𝑙 (indicated by solid 

lines in Fig. 16). 

 States 𝐿𝑚
𝑙  lead to LN (i.e., system failure due to different failure modes) with 

failure rate 𝜆𝐿𝑚
𝑙 →𝐿𝑁(𝑡, �̅�). 

 

L
0
: System functioning state

L
1
: 1-st intermediate degradation layer

L
l
: l-th intermediate degradation layer

 

L
N
: System failure state 
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Fig. 16 The system-level MSPM degradation model 

The construction of the system-level MSPM for the RPS of Fig. 1, thus, proceeds 

as follows: 
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 Identification of system modules: BPL, LCL and RTB (see section 2). 

 Definition of the (N+1) = 5 layers. 

The layers of the system-level MSPM of the RPS (see Fig. 17) are, therefore: 

a) Layer L0 is the “RPS functioning (L0)” state. 

b) Layer L1 models the degradation of the system due to either the 

submodule “S-A and BPL-A” or the submodule “S-B and BPL-B” failure, 

since the two submodules perform the same function in the system and 

the logic of such that the system goes into failure if at least one submodule 

fails. Due attention has to be, therefore, paid to the modeling the logic 

that process the PTSs. In layer L1, states 𝐿1
1 , ⋯ , 𝐿𝑚

1 , ⋯ , 𝐿𝑀
1  are states of 

the degradation of this module (shown in Fig. 17). 

c) Layer L2 models the degradation of the LCL module. Due to the 

operational logic of this module, the system goes into failure state only if 

both LCL-A and LCL-B fail, namely, the LCL module goes into state 

𝐿𝐴𝑁𝐷
2  that is shown in Fig. 17. States 𝐿1

2 , ⋯ , 𝐿𝑚
2 , ⋯ , 𝐿𝑀

2  are states of the 

degradation of LCL module. 

d) Layer L3 models the degradation of the RTB, from which the shutdown 

signal is directly sent to the power supply system and to the CRDM. 

States 𝐿1
3 , ⋯ , 𝐿𝑚

3 , ⋯ , 𝐿𝑀
3  are the states of degradation of the RTB. 

e) Layer L4 is the “RPS failure (L4)” state. 

 Identification of possible cascading failures affecting more than one 

layer/module. 

 Identification of possible common cause failures among components 

belonging to different layers/modules. 

 Quantification of the uncertainties in the probabilities of transition between 

states and layers/modules. 

For completeness sake, in Fig. 17, 𝜇𝐿𝑚
𝑙 →𝐿0(𝑡, �̅�)  (l = 1, 2, 3, 4) is the repair 

transition rate from the state m of the l-th layer to the “RPS functioning (L0)” state, as 

a function of time t and of the factors �̅� affecting the degradation, 𝜆𝐿0→𝐿𝑚
𝑙 (𝑡, �̅�)  is the 
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failure transition rate from the “RPS functioning (L0)” state to the state m of the l-th 

layer, 𝜆𝐿𝑚
𝑙 →𝐿𝑛

𝜔(𝑡, �̅�) (ω = 1, 2, 3, 4) is the failure transition rate from the state m of the 

l-th layer to the state n of the ω-th layer, and 𝜆𝐿𝑀
1 →𝐿4(𝑡, �̅�) , 𝜆𝐿𝐴𝑁𝐷

2 →𝐿4(𝑡, �̅�) , and 

𝜆𝐿𝑀
3 →𝐿4(𝑡, �̅�) are failure rates from the worst degradation states of each layer/module to 

the RPS failure state L4. 

L
0
: RPS functioning state

L
1
: Degradation states of BPL module

L
2
: Degradation states of LCL module 

L
3
: Degradation states of RTB module

L
4
: RPS failure state
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Fig. 17 The system-level degradation model of the RPS digital I&C system 

The objective of the system-level degradation modeling effort is the quantification 
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of the state probability vector �̅�(𝑡, �̅�) = {𝑝𝐿0(𝑡, �̅�), 𝑝𝐿1
1 (𝑡, �̅�), ⋯ , 𝑝𝐿𝑚

𝑙 (𝑡, �̅�), ⋯ ,

𝑝𝐿𝑀
4 (𝑡, �̅�), 𝑝𝐿5(𝑡, �̅�)}, which can be obtained by Monte Carlo simulation to generate 

random walks across layers and within the MSPM describing each module, as 

illustrated in section 2. Without loss of generality, we will present a system-level MSPM 

where only the RTD-MSPM of section 2.1 is considered, whereas all the other 

components are assumed to obey a binary behavior (safe/failed). Therefore, the RPS 

system-level MSPM sketched in Fig. 19, whose states are described in Table 5, can be 

built: 

 State 𝐿0 is assumed as the system initial state, where all the components are 

new at t=0. 

 State 𝐿1
1  corresponds to the onset of the RTDs New-to-drift failure mode that 

may lead to system failure state 𝐿4 when its response time exceeds the failure 

threshold (solid edges with transition rates represent the stochastic phenomena 

herein modeled).  

 Absorbing states 𝐿2
1  , 𝐿3

1  , 𝐿2
2   and 𝐿𝐴𝑁𝐷

2  , deterministically lead without any 

stochasticity to the RPS system failure. 

 Time-varying transition rates of the RTD sensors are taken from those of the 

RTD-MSPM of Section 2.2 (see Fig. 12), whereas the transition rates of 

binary-state components (i.e., BPLs, LCLs and RTB) are taken from public 

databases (BPL and LCL failure rates 𝜆𝐵 and 𝜆𝐿 are equal to 1E-6/hr and 5E-

6/hr respectively (US: EPRI, 2008), with the common cause factor β=0.1; 

whereas RTB failure rate 𝜆𝑅 is equal to 4.3E-8/hr (IAEA, 1992)). 

Table 5 Identification of states in RPS system-level MSPM 

State Description 

𝐿0 RPS functioning state. 

𝐿1
1  Drift onset in one or the other RTD sensor. 

𝐿2
1  Either one or the other BPL fails to send out PTSs. 

𝐿3
1  Common cause failure of BPL-A and BPL-B. 

𝐿1
2  Either one or the other LCL fails to produce the ESS. 

𝐿2
2  Common cause failure of LCL-A and LCL-B. 

𝐿𝐴𝑁𝐷
2  Both LCLs fail to produce the ESS. 

𝐿1
3  RTB fails during operation. 

𝐿4 RPS failure state. 



24 
 

 

L0: RPS functioning state

0L

1

1L
1

2L

L2: States of LCL module

L3: States of RTB module

L4: RPS failure state

2

1L
2

ANDL

4L

L1: Degradation states of BPL module

2 B

2 L 2 B

LC BC

L

 2 S t 

 2 S t 

3

1L

R

R

1

3L

2

2L

 

Fig. 19 The RPS system-level MSPM integrating RTD New-to-drift failure mode 

 

After NM trials of the Monte Carlo simulation, whose flowchart is shown in Fig. 

20 (where the inner shadowed loop corresponds to the Monte Carlo simulation adopted 

in Section 2.2 for the estimation of the RTD drift onset time), the calculated RPS 

unreliability 𝑃(𝑡|𝛿) is plotted in Fig. 21, and compared with  the system unreliability 

P(t) obtained by solving a binary-states homogeneous continuous-time discrete-state 

Markov Chain Model (i.e., the RPS-MCM), where also the RTDs are assumed to have 

a constant transition rate equal to 1E-4/hr (US: EPRI, 2008). It can be seen that the 

RTD-MCM overestimates the system unreliability, which makes the design over 

conservative, or the maintenance over demanding, especially at the early stage of the 
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system life.  

Sample the initial air gap size

δ0 ~ U(0,1)

Sample noise dδt ~ N(0,0.025t), 

and set δt = δ0 +dδt

Calculate the response time 

τ(t,δ)

YES

NO

t = t + dt

τ(t,δ) > γY

Sort components failure times

YES

NO

Record the sensor failure time

Sample the BPLs, LCLs and 

RTB transition times (from 

safe to failed, or vice versa)

Set t=0

System failure state

YES

Increase the unreliability 

counter at time = 

min(components failure times)

Simulation runs > Nm

Build the unreliability curve

NO

YES

NO

Increase the reliability counter 

at time tm

t = min(components failure times)

min(components failure times) > tm

Retrieve δt that has been 
previously simulated at time t

 

Fig. 20 The flowchart of the Monte Carlo Simulation for the system-level MSPM 



26 
 

 

Fig. 21 System unreliability obtained from RPS-MSPM and RPS-MCM framework 

4. Conclusions 

A MSPMs framework has been proposed for reliability modeling and assessment 

of digital I&C systems in NPPs. The designers and operators efforts needed to gather 

the necessary, and quite detailed, physics of failure data that are to be treated within the 

MSPM framework makes the method primarily applicable to critical NPPs components. 

Indeed, in this work a RTD was considered to develop the component-level MSPM 

model, being a typical signal input source of digital I&C systems that critically affects 

its reliability. Monte Carlo simulation has been used for estimating the degradation state 

probability (i.e. drift-failure state probability) in the RTD-MSPM, by sampling the 

stochastic evolution of the air gap size, under deterministic aging. The comparison of 

MCM and MSPM results shows that with realistic assumptions and available 

knowledge, MSPM provides a better and more complete representation of the 

component degradation progression.  

The modular modeling approach proposed has been applied to develop a system-

level MSPM model taking for a typical Reactor Protection System (RPS) as benchmark.  

The results of the illustrative application demonstrate that the proposed MSPM 

approach can well explain environmental conditions, aging and degradation of failure 

events, besides timing and sequencing which can also be solved by traditional dynamic 

methods (e.g., MCM).  
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