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Abstract. A new formulation to model the mechanical response of metallic strands undergo-
ing a combination of axial load and planar bending is developed. Each wire of the strand is 
modeled as an elastic curved thin rod. A kinematic model is then introduced to relate the gen-
eralized strain variables of the strand to those of the wires. The stress-strain state of the wires 
is evaluated starting from the analysis of the internal contact conditions. Friction is modeled 
through the classic Amontons-Coulomb law and the elastic tangential compliance of contact 
patches is accounted for. A non-holonomic material constitutive law in terms of the cross sec-
tional generalized stresses and strains of the Euler-Bernoulli beam theory is obtained and 
implemented within a corotational beam element explicitly conceived for nonlinear static and 
dynamic analyses of flexible structures. Numerical applications are presented to highlight the 
role of the tangential compliance mechanism on the hysteretic bending behavior of a typical 
steel strand. 
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1 INTRODUCTION 

Metallic strands can be regarded as composite elements which are made of helical wires 
twisted around a straight core and grouped in concentric layers. They are widespread struc-
tural members, used in many engineering applications, e.g. overhead electrical lines, tensile 
structures, guyed masts and towers. 

 When a strand is bent, wires tend to slip relatively one to each other, as a consequence 
of the axial force gradient generated along their length. The relative displacements are con-
trasted by friction forces, which are a function of the geometry of the internal structure, the 
material properties of the wires and the intra- and inter-layer contact pressures. If the forces 
which tend to activate sliding are greater than the friction ones, then a generic wire can ex-
perience relative displacements with respect to the neighbors. Interwire sliding phenomena 
makes the bending behavior of strands inherently non-linear and can significantly affect both 
the local response of the elements under cyclic loading (e.g. leading to the occurrence of fret-
ting fatigue and wear [11, 18]) as well as the overall structural response. In fact, bending vi-
brations of metallic strands are characterized by an hysteretic damping mechanism, as it can 
be inferred from both quasi-static [17] as well as dynamic tests [21]. 

 In the present paper, a new formulation to model the mechanical response of metallic 
strands undergoing a combination of axial load and planar bending is developed. Each wire of 
the strand is modeled as an elastic curved thin rod. A kinematic model is then introduced to 
relate the generalized strain variables of the strand to those of the wires. The stress-strain state 
of the wires is then evaluated starting from the analysis of the internal contact conditions. 
Friction is modeled through the classic Amontons-Coulomb law and the elastic tangential 
compliance of contact patches is accounted for, aiming at extending a previous authors’ 
model taking into account the gross sliding only [3, 5, 7-9]. A non-holonomic material consti-
tutive law in terms of the cross sectional generalized stress and strains of the Euler-Bernoulli 
beam theory is obtained, which can be exploited to describe cables as structural members re-
acting to a generic combination of axial force and bending. The sectional constitutive law is 
then implemented within a corotational beam element, previously developed and able to deal 
with large displacements and rotations and explicitly conceived for the nonlinear static and 
dynamic analysis of flexible structures [3, 6, 10]. 

The new mechanical model developed in this work is presented with reference to a simple 
strand made of a single layer of wires, in order to focus on the most important aspects of the 
proposed approach, while avoiding additional difficulties and cumbersome calculations 
stemming from a more complex internal geometry. 

Numerical applications of the proposed cross sectional and finite element formulations are 
then presented for the case of a well documented steel strand, extensively studied in literature 
both for a combination of axial-torsional loads [4, 15, 16, 19, 20] as well as under the com-
bined action of axial load and planar bending [9]. 

Within this context, systematic comparisons are carried out among the predictions of the 
new formulation and those of the model previously developed by the author and neglecting 
the interwire tangential contact compliance. The aim is to assess the effects of the tangential 
contact compliance on the hysteretic bending behavior of the strand. The latter, in turn, plays 
a key role in the modeling of the flexural vibrations of metallic strands.  
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2 GEOMETRY OF THE STRAND 

A strand made of a single layer of six round wires, wrapped around an initially straight 
core wire, is considered in this work (Figure 1). The core and external wires have diameters d0 
and d1, respectively. Each wire can be described as a curved thin rod, defined by the position 
of the centerline within a reference system attached to the strand centerline (axes {xi} ( i=1, 2, 
3)) as depicted in Figure 1. The centerline of the external wires is a circular helix spanned by 
the position vector:  

 ( ) ( ) ( ) ( ) ( )0 1 2 3cos sin
tan

R
R Rθ θ θ θ θ

α
= − + +x e e e  (1) 

where: {ei} are the unit vectors of the axes {xi}, R is the helix radius, i.e. the distance meas-
ured on the plane (x2, x3) from the centroid of the wire to that of the strand, α is the lay angle, 
i.e. the constant angle which the tangent vector to the helix defines with the strand centerline 
(axis x1), and θ is the swept angle, i.e. the angle which the projection of the position vector x 
on the plane x1=0 makes with the axis x1 (see Figure 1(b)). The symbol θ0 is adopted to denote 
the value of the swept angle at the strand cross section identified by the coordinate: x1=0. 

The external wires are assumed in contact with the core, but not among them. This condi-
tion, commonly referred to as radial contact condition (e.g. [1]), is typical of metallic strands. 

As a consequence the helix radius in the reference (undeformed) configuration of the 
strand is the sum of the wire radii: R=0.5(d0+d1). The lay angle must be smaller than the 
maximum value αmax, that causes contact among the wires of a layer (see e.g. [2]). 

 

 
Figure 1: Geometry of the strand. (a) Side view. (b) Cross section. 

 

3 MECHANICAL MODEL OF THE STRAND 

The response of the strand to a constant axial force Fs and bending moment distribution Ms 
is first studied. The geometric nonlinearities, which typically affect the behavior of such slen-
der structural elements, then, are fully considered within the framework of the corotational 
beam element formulation. 

A “two-stage” approach is adopted in this work to tackle the axial-bending problem. As 
outlined e.g. in [1], the solution of the bending problem is superimposed on the initial state of 
stress and deformation due to the axial load. The axial force in a generic wire of the layer 
(tangent to the wire centerline), hence, can be expressed through the sum of a first contribu-
tion due to the axial load (Fw1,a) and a second one due to the bending of the strand (Fw1,b):  

 1 1, 1,w w a w bF F F= +  (2) 
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3.1 Solution of the axial problem  

The axial response of small-diameter metallic strands is substantially linear for a broad 
range of loads corresponding to typical service conditions (see e.g. the experimental results in 
[19] and the numerical simulations in [4, 9]). Accordingly, geometric nonlinearities due to the 
variation of the internal strand geometry, such as the contraction of the wire diameters (Pois-
son’s effect) and the wire flattening (normal deformation of internal contact surfaces), can be 
practically neglected without significantly affecting the results. 

A model for the linear coupled axial-torsional response of strands has been presented in [3, 
9]. Whenever an axial load Fs is applied to the simple strand considered in the present paper, 
the axial elongation of the strand can be evaluated (under the assumption of zero torsional ro-
tations of the cross sections) as: 

 s
s

s

F

EA
ε =  (3) 

where EAs is the direct axial stiffness of the strand. By denoting as EA0 and EA1 the axial 
stiffness of the core and external wires, respectively, the strand stiffness EAs is given by: 

 ( )3
0 16 cossEA EA EA α= +  (4) 

The axial force in the wires of the layer, then, can be expressed as:  

 ( )2 1
1, cosw a s

s

EA
F F

EA
α=  (5) 

The axial force Fw1,a is the same for all wires of the layer and constant along their length.  

3.2 The contact model  

The external wires are in contact with the core along a continuous helix (linear contact) 
with the same pitch of the wire centerline (see [8, 9] for more details). A system of radial (P) 
and tangential (T) forces per unit length of the wire centerline is first defined to model the in-
teraction between a generic wire and the core, as shown in Figure 2. Then, the indefinite equi-
librium equations of the wire in radial and tangential direction are written as:  

 

1, 1,

1,

0

0,   with:  

w a w b

w b

F F
P

dF
T T P

dS

ρ

µ

+
− =


 − = ≤

 (6a, b) 

where ρ is the curvature radius of the wire centerline, which can be evaluated starting from 
equation (1) as: ρ = R/sin2(α) and µ is the friction coefficient of the contact interface. 

The radial contact force P can be obtained by solving equation (6a). By neglecting the con-
tribution Fw1,b/ρ due to the bending of the strand, the following expression is obtained:  

 1,w aF
P

ρ
≃  (7) 

While introducing a great simplification in the analysis of the interwire contact conditions, 
the approximation introduced in (7) doesn’t affect significantly the solution of the bending 
problem, as it has been shown numerically in [3] and analytically in [8] for the more general 
case of multi-layer metallic strands. 
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Figure 2: Equilibrium of an infinitesimal segment of the wire. 

The tangential force T is related to the gradient of the wire axial force through the tangen-
tial equilibrium equation (6b). Since the term Fw1,a stemming from the solution of the axial 
problem is constant along the length of the wire (see equation (5)), only the gradient of the 
bending contribution Fw1,b to the total wire axial force is present in (6b).  

The axial force gradient gives the wires the trend to slip with respect to the underlying core. 
This relative displacement is contrasted by the tangential contact force T, whose values are 
bounded by the Amontons-Coulomb inequality: T ≤ µP. As long as T < µP, the sliding be-
tween the wire and the core is prevented (no-sliding regime). Relative displacements between 
the wire centerline (which will be denoted in the following as ut) and the core, however, are 
present also in the no-sliding regime because of the tangential compliance of the contact sur-
face. Goudreau et al. [12] studied the tangential compliance mechanism between the external 
wires and the core of a strand by exploiting the solution of the Hertzian contact problem for 
two parallel cylinders, made of the same material and pressed together. Accordingly, they in-
troduced a non-linear relation between the relative displacement ut and the tangential force 
per unit length T, herein re-stated as follows:  

 ( )
2

3

1 1 ,   with:  gs
t t

T
u u P T P

P
µ

µ

 
  = − − ≤    

 

 (8) 

where ut 
gs(P) is the value of the relative displacement at the onset of gross sliding. The dis-

placement ut 
gs is a function of the normal contact force P. By denoting as CTi(P) the initial 

value of the tangential compliance of the contact surface, ut 
gs can be expressed as:  

 
( )3

2
Tigs

t

C P
u

Pµ
=  (9) 

The initial tangential compliance, in turn, depends upon the normal contact compliance 
Cn(P) of the surface, according to the following relation, first proposed by Hobbs and Raoof  
[13] and later adopted also by Goudreau et al.:  

 ( ) ( )
( )2 1

n
Ti

C P
C P

ν
=

−
 (10) 

where ν is the Poisson coefficient of the material. A closed-form expression of the normal 
contact compliance Cn(P) has been also derived by Goudreau et al. for the special case of 
v=0.3, herein re-written, by denoting as E the Young modulus of the material, as:  
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Ed d
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  = + +      

 (11) 

A linear approximation of the model by Goudreau et al. is adopted in this work to charac-
terize the tangential compliance between wires and core in the no-sliding regime. Based on 
the initial value of the tangential compliance, the following relation is introduced:  

 ( )
1

t
Ti

T u P
C P

µ≤≃  (12) 

3.3 Solution of the bending problem  

The nonlinear bending of multilayer strands has been studied in [3, 5, 7-9], starting from a 
description of the wire kinematics which accounts for the possible activation of gross-sliding 
phenomena, but neglects the effects of the tangential contact compliance. The aforementioned 
kinematic model will be augmented to account for the tangential compliance with the core 
wire.  

By recalling equation (1) and assuming all wires as linearly elastic, the axial strain of a ge-
neric wire, εw1, can be expressed as the sum of the strain due to the axial load and to the 
bending, i.e.:  

 1, 1,1
1 1, 1,

1 1 1

w a w bw
w w a w b

F FF

EA EA EA
ε ε ε= = + = +  (13) 

Two limit kinematic hypothesis can be introduced to evaluate εw1,b, which will be referred 
in the following as: full-stick and full-slip assumption. In the first case the tangential force T, 
due to the friction between the wire and the core, is assumed to be large enough to prevent the 
gross-sliding and the effect of the tangential compliance is neglected. As a consequence, the 
wire behaves as a part of an ideal planar cross section and the term εw1,b can be simply evalu-
ated according to the well-known Euler-Bernoulli kinematic model:  

 ( ) ( )2
1, cos sinfull stick

w b sRε α θ χ− =  (14) 

where χs is the bending curvature with respect to the axis x2 (see Figure 1). 
In the second case, instead, the wire is free to slide with respect to the core and can be con-

sidered as individually bent. Under the full-slip assumption, hence, the term εw1,b is identically 
equal to zero. By neglecting the tangential compliance, hence, the following incremental al-
ternatives can be introduced to account for the possible transition between the no-sliding and 
the gross-sliding regime:  

 
1, 1,

1,

1, 0

no sliding full stick
w b w b

w b gross sliding
w b

ε ε
ε

ε

− −

−

 == 
=

ɺ ɺ

ɺ

ɺ

 (15a, b) 

where a dot is adopted to denote the derivative with respect to a time variable t. 
Equation (15a) can be modified in order to account for the effect of the tangential compli-

ance between the external wires and the core, based on the solution of the bending problem in 
no-sliding regime which will be detailed in the following.  

By recalling the definition of the relative displacement ut introduced in Section 3.2, the 
term εw1,b can be evaluated as:  
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 1, 1,
no sliding full stick t
w b w b

du

dS
ε ε− −= +  (16) 

By observing that sin(α)dS= Rdθ  (see e.g. [8]), from equations (6b), (12), (13) and (16) 
it’s easy to derive the following equation for the axial force Fw1,b in the no-sliding regime:  

 
( )

( ) ( ) ( )
( ) ( )

2 3 22
1,

1,2 2 2
1

cos
sin

sin sin

no sliding
w b sno sliding

w b
Ti Ti

d F RR
F

d C EA C

θ α χ
θ θ

θ α α

−
−− = −  (17) 

The equation above can be easily solved under the assumption of constant curvature of the 
strand. The following expression is obtained: 

 ( ) ( )
( ) ( ) ( )

2
1

1, 2
1
2

cos   
sin

sin
1

sno sliding
w b

Ti

R EA
F

C P EA

R

α χ
θ θ

α
− =

+
 (18) 

Once the function ( )1,
no sliding

w bF θ−  is known, the corresponding axial strain can be evaluated 

and used in (15, a).  
A numerical strategy to evaluate the wire axial force ( )1,w bF θ , accounting for the possible 

transition between no-sliding and gross-sliding regime has been developed by the author in [3, 
5, 7-9] and is adopted also in this work. The numerical procedure is based on a classic Return-
Map algorithm, based on a “no-sliding prediction” and a “gross-sliding correction” (accord-
ing to the alternative kinematic equations previously discussed). The Return-Map algorithm 
delivers the value of the gradient of the wire axial force which satisfies equation (16b), over a 
discrete set of control points defined along the pitch of the wire. Then, the wire axial force is 
obtained through numerical integration along the wire length.  

Finally, starting from the knowledge of the wire axial force in all the wires of the layer the 
cross sectional moment of the strand can be evaluated, through simple equilibrium considera-
tions, as: 

 min
ind add add

s s s s sM M M EI Mχ= + = +  (20) 

The first term, Ms
ind, in (20) is linear and stems from the individual bending of the wires. It 

can be simply calculated as the product of the strand curvature and the minimum bending 
stiffness of the strand EImin. The latter can be evaluated by modeling the strand as a bundle of 
elastic curved thin rods, individually bent. The following expression can be obtained from [8]:  

 ( )3
min 0 16cosEI EI EIα= +  (21) 

The second term in (20), instead, accounts for the additional moment due to the bending 
contribution ( )1,w bF θ  to the total axial force of the wires and can be evaluated (see e.g. [8]) as: 

 ( ) ( ) ( )
6

1,
1

cos sinadd
s w b i i

i

M R Fα θ θ
=

=∑  (22) 

3.4 The corotational beam element 

The equations (3) and (20) fully define the relation between generalized stress and strain 
variables of the strand cross section, herein regarded as a plane Euler-Bernoulli beam. The 
proposed constitutive equations have been implemented within a corotational beam element 
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previously developed [3, 6, 10] to study the static and dynamic response of flexible structures 
taking into account geometrical and material nonlinearities. 

 

4 NUMERICAL APPLICATION 

The proposed strand mechanical model and beam finite element formulation are applied in 
this section to investigate the bending response of a strand made of steel wires, already stud-
ied in [9]. The geometric and material properties of the element are listed in Table 1.  

 
d0 (mm)  d1 (mm) αααα    (deg) E (GPa)  νννν    (-)  
3.94 3.73  11.8  188  0.3  

 

Table 1: Geometric and material parameters from [15]. 

The wire axial force in the no-sliding regime is shown in Figure 3 in terms of the 
amplification factor qF of the force equivalent to 1,

no sliding
w bF −  but obtained (under the full-stick 

assumption) by neglecting the tangential compliance. The factor qF is plotted in Figure 3 as a 
function of the non-dimensional axial load parameter η, defined as the ratio between the axial 
load Fs and the Rated Tensile Strength of the element (here 137 kN – see [19]). From Figure 3, 
it can be observed that the inclusion of the tangential compliance mechanism in the strand 
mechanical model leads to a reduction of 10% of the maximum value which can be attained 
by the wire axial force Fw1,b in the no-sliding regime with respect to the full-stick solution. 
The value of qF depends on the non-dimensional loading parameter η. By increasing the axial 
load, indeed, the tangential compliance is reduced, as predicted by equations (10) and (11). As 
a consequence the axial force Fw1,b tends toward the full-stick solution 1,

full stick
w bF −  for increasing 

values of axial load. However, it’s worth noting that the ratio qF: (a) doesn’t reach the unit 
value, even for very large values of the axial load, close to the RTS of the strand (for which, 
however, the assumption of linearly elastic material adopted in the proposed formulation 
ceases to be valid), and (b) is only slightly dependent on the axial load for the particular 
strand under consideration (variations of qF are in the order of 3% for axial loads ranging 
from zero to the RTS value). 

 
Figure 3: Ratio qF vs. the non-dimensional axial load η. 
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Figure 4 shows a comparison among the moment-curvature diagrams of the strand cross 
section obtained with the proposed formulation, accounting for the tangential compliance of 
the internal contact surfaces, and those obtained by considering a full-stick initial behavior of 
the wires. Results are plotted for different values of the axial load parameter η in the range 
0.1-0.25 (Figure 4(a)) and for different values of the friction coefficient µ in the range 0.3-0.7 
(Figure 4(b)), in order to cover the interval of values typically considered in literature (e.g.: [8, 
9, 14, 17]). 

 

 
Figure 4: Moment-curvature diagrams. (a) Variation of the non-dimensional axial load η. (b) Variation of the 

friction coefficient µ. 

The moment-curvature diagrams obtained with or without accounting for the tangential 
compliance mechanism are very similar, for the special strand considered in this work. In par-
ticular, the two models exhibit a similar dependency on the axial loading parameter η and on 
the friction coefficient µ. These parameters strongly influence the hysteretic bending behavior 
of metallic strands, as it has been extensively discussed e.g. in [8, 9]. The major effect of the 
tangential compliance between the core and the external wires is recognized in a reduction of 
about 10% of the value of the initial bending stiffness (i.e. the maximum bending stiffness of 
the strand section: EImax) of the cross section.  

A typical experimental test setup for the characterization of the hysteretic bending behavior 
of metallic strands has been numerically simulated, in order to investigate the effect of the 
tangential contact compliance on the overall behavior of a strand specimen. A schematic rep-
resentation of the numerical test setup is reported in Figure 5. The specimen is first loaded in 
the axial direction and then subjected to a transverse quasi-static load F. A mesh of 32 equally 
spaced corotational beam finite elements is adopted to represent the strand. Mesh refinements 
have been also considered in preliminary calculations to check the accuracy of the numerical 
model. A friction coefficient equal to 0.5 has been assumed in all the analyses.  

Figures 6(a) and 6(b) show the load-displacement curves of the strand for a monotonically 
increasing vertical load and two different values of axial load, namely: η=0.1 (Figure 6(a)) 
and η=0.2 (Figure 6(b)). The load-displacement curves obtained both with and without con-
sidering the tangential compliance are plotted in Figures 6(a) and 6(b), together with the ref-
erence elastic solutions (plotted with red dashed lines) calculated under the full-stick 
( max

full stickEI − ) and the full-slip ( minEI ) kinematic assumptions. The main effect of the tangential 
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compliance mechanism can be recognized in a reduction of the initial stiffness of the load-
displacement curves, of about 10% for the slacker strand (η=0.1) and 1% in the other case 
(η=0.2). The influence of the tangential compliance mechanism on the specimen behavior, 
hence, is similar to the influence on the cross sectional response. However, a more pro-
nounced dependency on the value of the axial load is observed for the overall specimen re-
sponse than for the individual cross section behavior.  

 

 
Figure 5: Structural scheme of the setup. 

Additional numerical tests under cyclic vertical loading have shown that, for the special 
strand considered in this paper, the tangential compliance mechanism affects very slightly 
both the shape as well as the area of the hysteresis loops.  

 

 
Figure 6: Bending behavior of the strand. (a) Monotonic loading. Load vs. displacement curve, µ=0.5 and 

η=0.10. (b) Monotonic loading. Load vs. displacement curve, µ=0.5 and η=0.20.  

5 CONCLUSIONS  

A new mechanical model to study the mechanical response of metallic cables undergoing a 
combination of axial load and planar bending has been developed for a single-layer strand. 
The proposed formulation is based on a detailed analysis of the internal contact conditions 
between the external wires and the core of the strand. Friction is modeled through the classic 
Amontons-Coulomb law and the elastic tangential compliance of contact patches is accounted 
for, aiming at extending a previous authors’ model taking into account the gross sliding only. 
A nonlinear and non-holonomic relation between the sectional generalized stress and strains 
of the Euler-Bernoulli beam theory is formulated and implemented in a corotational beam 
element suitable for nonlinear static and dynamic analyses of flexible structures. 

The proposed strand mechanical model and finite element formulation have been applied 
to characterize the hysteretic bending behavior of a common structural steel strand. Numerical 
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analyses have been carried out to show the influence of the tangential contact compliance 
mechanism between the external wires and the core, both on the cross sectional behavior as 
well as on the overall response of a strand specimen tested on a typical experimental test rig.  

For the particular strand considered in this work, it is found that the tangential contact 
compliance mainly influence the initial bending stiffness of the strand, while it has only a 
small effect on the shape of the cross sectional moment-curvature diagrams and on the overall 
hysteretic behavior. Ongoing research is devoted to the extension of the proposed formulation 
to other strand geometries, including the case of multi-layer elements.  
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