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Abstract

We address a Boundary Integral Equation (BIE) approach for the analysis of gas
dissipation in near-vacuum for Micro Electro Mechanical Systems (MEMS). Inspired by
an analogy with the radiosity equation in computer graphics, we discuss an efficient way to
compute the visible domain of integration. Moreover, we tackle the issue of near singular
integrals by developing a set of analytical formulas for planar polyhedral domains. Finally

a validation with experimental results taken from the literature is presented.
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1. Introduction

Microsystems are experiencing an important increase of commercial suc-
cess but still pose several scientific challenges. MEMS typically consist of
a collection of fixed parts and moving shuttles separated by variable gaps
of few microns. One important issue in the design of these devices is rep-
resented by the accurate evaluation of mechanical dissipation. Indeed the
quality factor @), a key element in quantifying the performance of devices
in industrial environments, is proportional to the ratio between the energy
stored in the system and the dissipation.

Several MEMS applications like gyroscopes, resonators or magnetome-
ters, contain parts in perpetual motion close to their mechanical resonance,
so that it often makes sense to assume that the movement is proportional
to the mechanical eigenmode. This permits to obtain a 1D reduced order
model:

(1) M(t) + Bq(t) + Kq(t) = F(t),

[ IRl © 2016 Patrick Fedeli,Attilio Frangi, licensee De Gruyter Open.
This work is licensed under the Creative Commons Attribution-NonCommercial-NoDerivs 3.0 License.

Brought to you by | Politecnico di Milano - Biblioteca Delle Ingegnerie Bovisa
Authenticated | patrick.fedeli@polimi.it author's copy
Download Date | 4/10/17 12:13 PM


mailto: patrick.fedeli@polimi.it
http://www.ams.org/mathscinet/msc/msc2010.html
http://creativecommons.org/licenses/by-nc-nd/3.0/

P. Fedeli, A. Frangi

where M is the generalised mass, B the damping coefficient and K the
generalised stiffness. In terms of these parameters, the quality factor can
be simply computed as

2 fM

(2) Q="%—

While techniques for obtaining K and M are trivial, or anyway well estab-
lished, the numerical estimation of B is a complicated task.

In order to reduce dissipation, these resonating MEMS are packaged
in near-vacuum with a getter. Anyway, among the different sources, gas
damping often provides a meaningful contribution. The length scale and
the working pressure are such that the collisions between molecules can be
neglected; this regime is known as free-molecule flow [1-6].

The deterministic model implemented, proposed in [7,8], is an appli-
cation of the collisionless Boltzmann equation which rests on the following
assumptions: i) the mean free-molecule path is much larger than the typical
dimension d of the flow (i.e. Kn>>1); ii) molecules and solid surfaces interact
according the diffuse-reflection model which basically states that molecules
are re-emitted by the walls according to the wall equilibrium Maxwellian;
iii) perturbations are small so that quadratic terms in the expansion of
variables can be neglected. While details of the derivation can be found
in [8], only the final equations are presented herein. Let J(x,t) denote the
first order perturbation of the flux of incoming molecules at point x of the
MEMS surface. This scalar unknown is governed by the following integral
equation:

(3)  J(x) =vAGalx, 1)~
% /S+ J(y:t)(r - n(x))(r-n(y)) %Tg(z’wr)der
. / (k- 8(y.0) (r- 1) (v n(y)) 75 Tu(ior)ds,

where r = ||y — x||; n is the outward normal to the surface; ST de-
notes the portion of surface visible from x; @ = w/v/2RTy and g(y,t) =
g(y,t)/v2RTy are the normalised angular and linear velocity of surfaces
(R is the universal gas constant divided by the molar mass and Ty is the
package temperature), g, = g - n being its projection along n; T, (iwr) is
the transcendental function [9]

(4) T, (ior) = / u"exp <—u2 - W) du.
0 u
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Integral equations for free-molecule flow in MEMS

Moreover, if frequency f of perturbations is small with respect to thermal
velocity, i.e. d X @ < 1, the integral terms can be further simplified using the
identities 73(0) = 1/2 and T4(0) = 34/7/8. This corresponds to the quasi-
static assumption which holds if the average collision period of a molecule
is small with respect to the duration of one oscillation.

A posteriori a second integral equation provides the distribution of per-
turbation forces t on the structure:
t(x,t) 1 1 1

ORI =—J(x,t)n(x) + ﬁf]n(x,t)n(x) + 2\/7;@}()(,75)—

# /S ) r<r . n(x)) (r : n(y)) %J(y, )Ty (icor)dS+
2 () ot o) s

S+

()

e

where g; = g — gon. As for Equation (3), also Equation (5) simplifies in the
quasi-static case since T4(0) = 3y/7/8 and T5(0) = 1.

In Equations (3),(5) the velocity g of the deformable MEMS is assumed
to be proportional to a given vector shape function: g(y,t) = ¥ (y)q(t).
Hence one has that t(x,t) = f(x)q(t), where f(x) is directly provided by
Equation (5). The equivalent damping term in the 1D reduced order model
finally becomes:

/S t(x, t)p(x)dS = ( /S f(x)¢(x)d5)q = Bq,

where the integral is extended over the whole surface of the MEMS.
The constant B can be conveniently expressed as

(6) B = Bpo\/2RTy = Bpo/2/(RTy),

where B is a coefficient with the dimensions of a surface depending only on
the problem geometry.

It is worth stressing that Equation (3) is very similar to the radiosity
equation of Computer Graphics, which is a tool for the generation and
manipulation of images on computer screens. One of the key elements is
the presence of the visibility operator limiting the integration to the visible
portion of surfaces. Basically, given a set of 3D objects and a viewing point,
the objective is to determine which lines or surfaces of the objects are
visible [10-12]. Inspired by this analogy, in the present implementation we
propose an efficient way to compute the domain of integration adapting
some typical techniques of Computer Graphics, where the viewing point
corresponds to the source object. Moreover, when integrating over visible
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“close” portions of the surface, issues associated to the singular nature of
integral kernels require particular care. In this case we develop analytical
formulas valid for triangles and piecewise constant representation of the
unknown field. We discuss these issues in Section 2, while in Section 3 we
present two benchmarks with experimental results taken from the literature.

2. Numerical implementation

Excluding specific cases where an analytical expression for t is available,
Equations (3),(5) must be solved numerically.

Since due to technological constraints the vast majority of MEMS is
composed by piecewise planar surfaces, the structure is initially represented
as the collection of non-overlapping large planar “parent” quadrangles, as
illustrated in Figure 1-a. Each quadrangle is then meshed with “children”
triangles (Figure 1-b), typically using the free software GMSH [13]. Con-
formity between the different quadrangles is not required. This two-level
geometrical representation considerably simplifies testing the visibility con-
dition as discussed next. In the present implementation J is modeled as

Figure 1. Example of comb-finger device, a typical MEMS structure: a) quadrangular
discretization, b) triangular mesh with 62526 elements and c) force per unit surface in
the direction of the shuttle velocity.

piecewise constant over each triangle; Equation (3) is then collocated at
the center of each triangle and the system of equations is solved by an
iterative GMRS (Generalized minimal residual method) solver. The final
output of the simulation is the constant B (see Equation (6)), obtained
through a post-processing of the force t (Figure 1-c).

Recent improvements in the procedure for testing the visibility condi-
tion, the introduction of analytical formulas to compute the near-singular
integrals and a large-scale OpenMP parallel implementation allow to simu-
late almost realistic MEMS structures on standard hardware. Figure 2 col-
lects a convergence study performed on the test geometry depicted in Fig-
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ure 1, which represents a portion of a realistic comb-finger MEMS [18].
The relative error is computed with respect to the “reference* numerical
solution obtained on a fine mesh with 250000 elements.
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Figure 2. Convergence of the solution for different levels of mesh refinement.

2.1. Testing the visibility condition

Given a source point x, the integral in Equations (3) and (5) must be
limited to the portion ST of the surface which is visible from x. A fast
and reliable procedure for testing the visibility condition clearly represents
one of the major issues in the numerical implementation of the method. A
four-level algorithm has been devised. Each quadrangle (and its children) is
endowed with an outward normal vector n defining the positive side exposed
to collisions with molecules. Clearly, visibility is tested for the positive sides
of the quadrangles (triangles) and this is left implicit in what follows.

Two quadrangles can be either invisible, or partially visible, or totally
visible (visible for simplicity). One can conceive a symmetric visibility ma-
trix for quadrangles. Its entries are: set to zero if two quadrangles are in-
visible; set to one if they are visible; left unspecified otherwise (partial vis-
ibility). Since the number of quadrangles is much smaller than the number
of triangles, establishing the visibility between quadrangles has a limited
cost, and visibility (or invisibility) transfers immediately to the children.
On the contrary, if two parents are only partially visible, the condition has
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to be tested for every child triangle at a much higher cost. An application
of tree-structures to quadrangles, like in fast integral approaches, could
greatly optimize this phase and is currently under investigation.

Level 1. This level rapidly identifies quadrangles which are clearly in-
visible. Considering a given source quadrangle, its plane divides the space
in a positive and a negative half-spaces (according to its positive side) as
illustrated in Figure 3-a. If a target quadrangle has the four vertices in the
negative half-space, then the target is invisible from the source and both
entries of the visibility matrix are filled with a zero. This procedure is often
called “hidden surface removal”.

‘\\ i it adow volume

Negative half-space|

Figure 3. Algorithms for invisibility: a) Hidden Surface Removal, b) Shadow Volume.

Level 2. If two quadrangles have not been identified as invisible in Level
1, they are analysed in Level 2 using a shadow volume technique [14], often
used in computer graphics to add shadows to a rendered scene. Let us
consider a source quadrangle and a target quadrangle. The aim of this
phase is to test if any other “obstacle” quadrangle can generate a shadow
(Figure 3-b) making the target invisible from the source. The shadow vo-
lume is constructed projecting a ray from each vertex of the source through
each vertex of the obstacle. These projections will together form a set of
four “pyramids”, one for each source vertex, and their intersection is the
volume of total-shadow. If a target surface has all the vertices inside the
total-shadow volume, then it is invisible to the source.

Level 3. If two quadrangles have not been identified as invisible in the
first two phases, they are addressed in Level 3 to verify whether they are
totally visible using an algorithm based on 3D Delaunay triangulation (or
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tetrahedralization) [15]. Triangulation of a given set P of n points in 3-
dimensional space is a decomposition into tetrahedra of the convex hull of
P such that: i) vertices of tetrahedra belong to P; ii) intersection of two
tetrahedra is either or a vertex or an edge or a face.

S1

Figure 4. 3D Delaunay triangulation starting from source and target quadrangles.

Given a source quadrangle S; and a target quadrangle S5, the set P is
populated with their 8 vertices and the Delaunay triangulation is built, as
depicted in Figure 4. If all the other quadrangles don’t intersect the convex
hull, then the source and target are fully visible.

Level 4. When two children belong to partially visible parents, a point-
to-point test visibility based on an image-space approach has to be applied.
Drastically simplifying reality, two triangles are said to be visible if the
segment (a sort of ray of view) that connects the centers of mass of two
element does not encounter obstacles. This assumption is totally acceptable
if a sufficiently fine mesh is adopted (as reported in Figure 2).

2.2. Analytic evaluation of integrals for polygonal elements

The integral terms in Equations (3) and (5) are computed according
to the following strategy. If the source point and target triangle are well-
separated, all the integrals are regular and are evaluated using standard
Gauss-Hammer quadrature rules with a variable number of points according
to the distance between the target and the source. On the contrary, when
the source and the target are close, all the integrals are evaluated by means
of the analytical formulas developed herein. For a given element E with
center of mass y, a generalized pyramid is defined by connecting the source
point x and the nodes of E. Moreover each edge e of the element and the
source point x define a triangle of normal N and angle A« at vertex x (see
Figure 5).
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Figure 5. Generalised pyramid and notation adopted for the analytical integration pro-
cedure.

The first integral term of Equation (3) for element E becomes:

7 /E (r-n(x))(r-n(y))%dsy = ni(x) / Ttk dS,

E7’4

TiTL 1
(8) /E nkdSy = 2Ze:AaNi,

which is known as Lambert formula.
The second integral term of Equation (3), which is equal to the first one
in Equation (5), for a constant g becomes:

(9) /E(r . g) (r . n(x)) (r . n(y)) %dSy = ginj(x) /E n‘:‘érk nkds,

r

and

ririTL T
(10) 3\/E J nkdsy = Zde / poc} ds — 5ij97

rd

where € is the solid angle at the vertex x of the generalised pyramid. The
integral term in the rhs of Equation (10) can be easily evaluated analytically.
Indeed, with reference to Figure 5, if s is an abscissa running along edge
e, with s = 0 at the minimum distance from x, then r = dp + s and
=V 1 &

The second integral term of Equation (5) gives for a constant g:

/E r(r . g) (r : n(x)) (r : n(y)) T%dS = gmj(x)em/E %nkd&y
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and, using Lambert formula:
(12)

rsriTeTm lily
S/E Jriﬁ”kdsy - Z [Aa(Njéim + Nibjm) + Qde/e T4j ds} :

e

Finally, the integral term in the rhs of Equation (12) can be integrated
as before introducing the abscissa s running along the edges.

2.3. Parallel implementation

16

-e-Visibility testing
14 |-+ System solution
~o—Force computation >
12 [ |—Total simulation i
Linear * i

O L 1 | 1 1 1 1
0 2 4 6 8 10 12 14 16

Processes

Figure 6. Speed-up of the three parallelized routines and for the total simulation ob-
tained with the super-computer Galileo of Cineca.

A large-scale OpenMP parallel implementation [16] has been developed
for three fundamental routines: point-to-point visibility test in Level 4 de-
scribed in Section 2.1; iterative GMRES solution of the linear system ob-
tained collocating Equation (3); force computation from Equation (5).

The speed-up, defined as the ratio between the wall-clock time for serial
execution and the wall-clock time for parallel one, is used as an indicator of
performance. In Figure 6 the speed-up obtained for the three parallel rou-
tines during the simulation of the example in Figure 1 is reported, showing
a good scalability of the problem. Since the visibility test and the solution
of the linear system are the most demanding parts of the code, the overall
speed-up is similar to that of these routines.

3. Experimental validation

Validations of the proposed tool have been performed using several ex-
perimental data for MEMS described in the literature. Limiting our atten-
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tion to the quasi static case, as discussed in Section 1, among the different
options we consider two MEMS working in the free-molecule flow: a tilting
resonator and a classical Tang resonator.

3.1. Rotational resonator

Figure 7. Tilting resonator from [7]: layout.

10° - T
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p [mbar]

Figure 8. Tilting resonator from [7]: comparison between experimental and numerical
quality factors.

The first structure (Figure 7) is the tilting perforated mass addressed
in [7] with a small-scale implementation of the integral approach. The mass
is attached to the central circular anchor by means of four deformable beams
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and is suspended over a substrate. Electrodes placed on the substrate induce
a tilting movement around the axis drawn in the picture. In this case only
the contribution from holes in the mass has been considered, and the tilting
motion is described by setting 1) = xe,, where x denotes the distance from
the rotation axis and z is the out-of-plane direction.

The integral approach provides a very good matching with the exper-
imental data in the wide pressure range where free-molecule regime (Fig-
ure 8) is expected to develop.

3.2. Tang resonator

The Tang resonator of Figure 9 has been addressed in [17] using a
simplified BGK model of the Boltzmann equation. The resonator consists
of: two fixed arrays of fingers (stators) attached to the substrate on the
upper and lower sides; a shuttle in the middle oscillating in the direction of
the comb-fingers; springs connecting the shuttle to fixed blocks in order to
constrain any motion along the other directions. Due to the quite unusual
layout of springs, the overall flow is a combination of Couette type (in the
comb-fingers and between the shuttle and the substrate) and Poiseuille type
of flow (between the pairs of flexible springs). Moreover, springs are highly
deformable and hence cannot be treated as rigid structures. Also in this
case the agreement between the numerical prediction and the experimental
data is remarkable (Figure 10).

4. Conclusions

We have discussed some numerical issues associated to a large-scale
implementation of a Boundary Integral Equation approach proposed by
the authors for the deterministic analysis of microstructures working in the
free molecule flow.

We have focused first on techniques for assessing the visibility conditions
based on a two level geometrical representation of the structure surface,
consisting of large parent quadrangles and children triangles. An application
of tree-structure techniques to quadrangles, like in fast integral approaches,
could greatly optimize this phase and is currently under investigation. Next
we have detailed the analytical integration formulas that we have developed
to address near singular integrals. The application of multipole-expansions
to the kernels of the BIE could further improve the overall performance.

Finally, we have benchmarked the proposed approach against experi-
mental data taken from the literature confirming the expected accuracy of
the formulation.

77

Brought to you by | Politecnico di Milano - Biblioteca Delle Ingegnerie Bovisa
Authenticated | patrick.fedeli@polimi.it author's copy
Download Date | 4/10/17 12:13 PM



P. Fedeli, A. Frangi

Figure 9. Tang resonator from [17]: layout.
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Figure 10. Tang resonator from [17]: comparison between experimental and numerical

quality factors.
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