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We are interested in stochastic control problems coming from mathe-
matical finance and, in particular, related to model uncertainty, where the un-
certainty affects both volatility and intensity. This kind of stochastic control
problem is associated to a fully nonlinear integro-partial differential equation,
which has the peculiarity that the measure (λ(a, ·))a characterizing the jump
part is not fixed but depends on a parameter a which lives in a compact set A

of some Euclidean space Rq . We do not assume that the family (λ(a, ·))a is
dominated. Moreover, the diffusive part can be degenerate. Our aim is to give
a BSDE representation, known as a nonlinear Feynman–Kac formula, for the
value function associated with these control problems. For this reason, we in-
troduce a class of backward stochastic differential equations with jumps and
a partially constrained diffusive part. We look for the minimal solution to this
family of BSDEs, for which we prove uniqueness and existence by means of a
penalization argument. We then show that the minimal solution to our BSDE
provides the unique viscosity solution to our fully nonlinear integro-partial
differential equation.

1. Introduction. Recently, Kharroubi and Pham [27] introduced a new class
of backward stochastic differential equations (BSDEs) with nonpositive jumps
in order to provide a probabilistic representation formula, known as a nonlinear
Feynman–Kac formula, for fully nonlinear integro-partial differential equations
(IPDEs) of the following type (we use the notation x.y to denote the scalar prod-
uct in R

d ):
∂v

∂t
+ sup

a∈A

[
b(x, a).Dxv + 1

2
tr

(
σσ�(x, a)D2

xv
) + f

(
x, a, v, σ�(x, a)Dxv
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+
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E

(
v
(
t, x + β(x, a, e)
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)
λ(de)

]

(1.1)
= 0 on [0, T ) ×R

d,

v(T , x) = g(x), x ∈R
d,
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where A is a compact subset of Rq , E is a Borelian subset of Rk \ {0}, and λ is a
nonnegative σ -finite measure on (E,B(E)) satisfying the integrability condition∫
E(1 ∧ |e|2)λ(de) < ∞. Notice that the case f = f (x, a) is particularly relevant,

as (1.1) turns out to be the Hamilton–Jacobi–Bellman equation of a stochastic
control problem where the state process is a jump-diffusion with drift b, diffu-
sion coefficient σ (possibly degenerate), and jump size β , which are all controlled;
a special case is the Hamilton–Jacobi–Bellman equation associated to the uncer-
tain volatility model in mathematical finance, which takes the following form:

∂v

∂t
+ G

(
D2

xv
) = 0 on [0, T ) ×R

d, v(T , x) = g(x), x ∈R
d,(1.2)

where G(M) = 1
2 supc∈C[cM] and C is a set of symmetric nonnegative matrices of

order d . As described in [30], the unique viscosity solution to (1.2) is represented
in terms of the so-called G-Brownian motion B under the nonlinear expectation
E(·) as follows:

v(t, x) = E
(
g(x + BT − Bt)

)
.

It is, however, not clear how to simulate G-Brownian motion. On the other hand,
when C can be identified with a compact subset A of a Euclidean space R

q , we
have the probabilistic representation formula presented in [27], which can be im-
plemented numerically as shown in [24] and [25]. We recall that the results pre-
sented in [27] were generalized to the case of controller-and-stopper games in [6]
and to non-Markovian stochastic control problems in [15].

In the present paper, our aim is to generalize the results presented in [27], pro-
viding a probabilistic representation formula for the unique viscosity solution to
the following fully nonlinear integro-PDE of Hamilton–Jacobi–Bellman type:

∂v

∂t
+ sup

a∈A

[
b(x, a).Dxv + 1

2
tr

(
σσ�(x, a)D2

xv
) + f

(
x, a, v, σ�(x, a)Dxv

)

+
∫
E

(
v
(
t, x + β(x, a, e)

) − v(t, x) − β(x, a, e).Dxv(t, x)
)
λ(a, de)

]

(1.3)
= 0 on [0, T ) ×R

d,

v(T , x) = g(x), x ∈ R
d,

where λ is a transition kernel from (A,B(A)) into (E,B(E)); namely, λ(a, ·) is a
nonnegative measure on (E,B(E)) for every a ∈ A, and λ(·,E′) is a Borel measur-
able function for every E′ ∈ B(E). We do not assume that the family of measures
(λ(a, ·))a∈A is dominated. Moreover, the diffusion coefficient σ can be degenerate.

Our motivation to study of equation (1.3) comes from mathematical finance
and, in particular, from model uncertainty, when uncertainty affects both volatility
and intensity. This topic was studied by means of second order BSDEs with jumps
(2BSDEJs) in [22] and [23], to which we refer for the wellposedness of these kinds
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of backward equations; see also [34]; however, notice that with respect to [23], we
are able to treat PDEs with degenerate diffusion coefficient; moreover, as in [27],
the advantage of our probabilistic representation might be the development of an
efficient numerical scheme for equation (1.3), as in [24] and [25] for equation (1.1)
starting from the representation derived in [27]. Model uncertainty is also strictly
related to the theory of G-Lévy processes and, more generally, of nonlinear Lévy
processes; see [16] and [28]. In this case, the associated fully nonlinear integro-
PDE, which naturally generalizes equation (1.2), takes the following form:

∂v

∂t
+ sup

(b,c,F )∈�

[
b.Dxv + 1

2
tr

(
cD2

xv
)

+
∫
E

(
v(t, x + z) − v(t, x) − Dxv(t, x).z1{|z|≤1}

)
F(dz)

]

(1.4)
= 0 on [0, T ) ×R

d,

v(T , x) = g(x), x ∈ R
d,

where � denotes a set of Lévy triplets (b, c,F ); here b is a vector in R
d , c is a

symmetric nonnegative matrix of order d and F is a Lévy measure on (Rd,B(Rd)).
From [16] and [28], we know that the unique viscosity solution to equation (1.4) is
represented in terms of the so-called nonlinear Lévy process X under the nonlinear
expectation E(·) as follows:

v(t, x) = E
(
g(x +XT −Xt )

)
.

If we are able to describe the set � by means of a parameter a which lives in a
compact set A of an Euclidean space Rq , then (1.4) can be written in the form (1.3).
Therefore, v is also given by our probabilistic representation formula, in which the
forward process is possibly easier to simulate than a nonlinear Lévy process.

More generally, we expect that the viscosity solution v to equation (1.3), when
f = f (x, a), should represent the value function of a stochastic control problem
where, roughly speaking, the state process X is a jump-diffusion process, which
has the peculiarity that we may control the dynamics of X changing its jump in-
tensity, other than acting on the coefficients b, σ and β of the SDE solved by X.
We refer to this problem as a stochastic optimal control problem with (nondom-
inated) controlled intensity. Unfortunately, we did not find any reference in the
literature for this kind of stochastic control problem. For this reason, and also be-
cause it will be useful to understand the general idea behind the derivation of our
nonlinear Feynman–Kac formula, we describe it here, even if only formally. Let
(�̄, F̄, P̄) be a complete probability space satisfying the usual conditions on which
a d-dimensional Brownian motion W̄ = (W̄t )t≥0 is defined. Let F̄ = (F̄t )t≥0 de-
note the usual completion of the natural filtration generated by W̄ and Ā the class
of control processes α, that is, of F̄-predictable processes valued in A. Let also
�′ be the canonical space of the marked point process on R+ × E (see Section 2
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below for a definition), with canonical right-continuous filtration F
′ and canonical

random measure π ′. Then consider (�,F,F= (Ft )t≥0), defined as � := �̄ × �′,
F := F̄ ⊗ F ′∞ and Ft := ⋂

s>t F̄s ⊗ F ′
s . Moreover, we set W(ω) := W̄ (ω̄),

π(ω, ·) := π ′(ω′, ·), and A := {α :α(ω) = ᾱ(ω̄),∀ω ∈ �, for some ᾱ ∈ Ā}. Sup-
pose that for every α ∈ A we are able to construct a measure P

α on (�,F) such
that W is a Brownian motion, and π is an integer-valued random measure with
compensator 1{t<T∞}λ(αt , de) dt on (�,F,F,Pα), where T∞ denotes the supre-
mum of the jump times of the marked point process associated to π . Then, con-
sider the stochastic control problem with value function given by (Eα denotes the
expectation with respect to P

α)

v(t, x) := sup
α∈A

E
α

[∫ T

t
f

(
Xt,x,α

s , αs

)
ds + g

(
X

t,x,α
T

)]
,(1.5)

where Xt,x,α has the controlled dynamics on (�,F,F,Pα)

dXα
s = b

(
Xα

s ,αs

)
ds + σ

(
Xα

s ,αs

)
dWs +

∫
E

β
(
Xα

s−, αs, e
)
π̃(ds, de),

starting from x at time t , with π̃(dt, de) = π(dt, de) − 1{t<T∞}λ(αt , de) dt the
compensated martingale measure of π . As mentioned above, even if we do not ad-
dress this problem here, we expect that the above partial differential equation (1.3)
turns out to be the dynamic programming equation of the stochastic control prob-
lem with value function formally given by (1.5). Having this in mind, we can now
begin to describe the intuition, inspired by [26] and [27], behind the derivation of
our Feynman–Kac representation formula for the HJB equation (1.3) in terms of a
forward backward stochastic differential equation (FBSDE).

The fundamental idea concerns the randomization of the control, which is
achieved by introducing on (�̄, F̄, P̄) a q-dimensional Brownian motion B̄ =
(B̄t )t≥0, independent of W̄ . Now F̄ denotes the usual completion of the natural
filtration generated by W̄ and B̄ . We also set B(ω) := B̄(ω̄), for all ω ∈ �, so
that B is defined on �. Since the control lives in the compact set A ⊂ R

q , we can
not directly use B to randomize the control, but we need to map B on A. More
precisely, we shall assume the existence of a continuous surjection h :Rd → A.
Then, for every (t, x, ã) ∈ [0, T ] × R

d × R
q , we consider the forward stochastic

differential equation in R
d ×R

q ,

Xs = x +
∫ s

t
b(Xr, Ir) dr +

∫ s

t
σ (Xr, Ir) dWr

(1.6)
+

∫ s

t

∫
E

β(Xr−, Ir , e)π̃(dr, de),

Is = h(ã + Bs − Bt),(1.7)

for all t ≤ s ≤ T , where π̃(ds, de) = π(ds, de) − 1{s<T∞}λ(Is, de) ds is the com-
pensated martingale measure of π , which is an integer-valued random measure
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with compensator 1{s<T∞}λ(Is, de) ds. Unlike Kharroubi and Pham [27], we use
a Brownian motion B to randomize the control, instead of a Poisson random mea-
sure μ on R+ ×A. On one hand, the Poisson random measure turns out to be more
convenient when dealing with a general compact set A, since μ is already sup-
ported by R+ × A, so that we do not have to impose the existence of a continuous
surjection h from the entire space R

q onto A, as we did here. On the other hand,
the choice of a Brownian motion B is more convenient when deriving a martingale
representation theorem for our model. Indeed, in contrast with [27], the intensity
of the measure π depends on the process I . Therefore it is natural to expect a de-
pendence between π and the noise used to randomize the control. The advantage
of B with respect to μ is given by the fact that B is orthogonal to π , since B is a
continuous process; see the bottom of page 183 in [21] for a definition of orthog-
onality between a martingale and a random measure. Thanks to this orthogonality
we are able to derive a martingale representation theorem in our context, which is
essential for the derivation of our nonlinear Feynman–Kac representation formula.

Let us focus on the form of the stochastic differential equation (1.6)–(1.7). We
observe that the jump part of the driving factors in (1.6) is not given, but depends on
the solution via its intensity. This makes the SDE (1.6)–(1.7) nonstandard. These
kinds of equations were first studied in [20] and have also been used in the finan-
cial literature; see, for example, [4, 9–11, 13]. Notice that in [4, 9] and [10], λ is
absolutely continuous with respect to a given deterministic measure on (E,B(E)),
which allows one to solve (1.6)–(1.7), bringing it back to a standard SDE, via a
change of intensity “à la Girsanov.” On the other hand, in the present paper, we
shall tackle the above SDE solving first equation (2.2) for any (t, ã) ∈ [0, T ]×R

q ,
then constructing a probability measure P

t,ã on (�,F) such that the random mea-
sure π(ds, de) admits λ(I t,ã

s , de) ds as compensator, and finally addressing (2.1).
In the Appendix, we also prove additional properties of π and (X, I). More pre-
cisely, we present a characterization of π in terms of Fourier and Laplace function-
als, which shows that π is a conditionally Poisson random measure (also known
as doubly stochastic Poisson random measure or Cox random measure) relative to
σ(I t,ã

s ; s ≥ 0). Moreover, we study the Markov properties of the pair (X, I).
Regarding the backward stochastic differential equation, as expected, it is driven

by the Brownian motions W and B , and by the random measure π ; namely, it
is a BSDE with jumps with terminal condition the g(X

t,x,ã
T ) and the generator

f (Xt,x,ã· , I t,ã· , y, z), as is natural from the expression of the HJB equation (1.3).
The backward equation is also characterized by a constraint on the diffusive part
relative to B , which turns out to be crucial and entails the presence of an increas-
ing process in the BSDE. In conclusion, for any (t, x, ã) ∈ [0, T ] ×R

d ×R
q , the

backward stochastic differential equation has the following form:

Ys = g
(
X

t,x,ã
T

) +
∫ T

s
f

(
Xt,x,ã

r , I t,ã
r , Yr ,Zr

)
dr + KT − Ks −

∫ T

s
Zr dWr

(1.8)

−
∫ T

s
Vr dBr −

∫ T

s

∫
E

Ur(e)π̃(dr, de), t ≤ s ≤ T ,Pt,ã a.s.
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and

|Vs | = 0, ds ⊗ dPt,ã a.e.(1.9)

We refer to (1.8)–(1.9) as backward stochastic differential equation with jumps and
partially constrained diffusive part. Notice that we could omit the term

∫ T
s Vr dBr

in equation (1.8) [together with constraint (1.9)], since V is required to be zero;
however, we keep it to recall that the solution to (1.8)–(1.9) has to be adapted
to the filtration generated by W , π̃ and also B . We also observe that the pres-
ence of the increasing process K in the backward equation does not guarantee the
uniqueness of the solution. For this reason, we look only for the minimal solu-
tion (Y,Z,V,U,K) to the above BSDE, in the sense that for any other solution
(Ȳ, Z̄, V̄ , Ū, K̄), we must have Y ≤ Ȳ . The existence of the minimal solution is
based on a penalization approach, as in [27]. We can now write the following non-
linear Feynman–Kac formula:

v(t, x, ã) := Y
t,x,ã
t , (t, x, ã) ∈ [0, T ] ×R

d ×R
q.

Observe that the function v should not depend on ã, but only on (t, x). The
function v turns out to be independent of the variable ã as a consequence of
constraint (1.9). Indeed, if v (and also h) were regular enough, then, for any
(t, x, ã) ∈ [0, T ] ×R

d ×R
q , we would have

V t,x,ã
s = Dhv

(
s,Xt,x,ã

s , I t,ã
s

)
Dãh(ã + Bs − Bt) = 0, ds ⊗ dPt,ã a.e.

This would imply (see Section 4.2 below) that v does not depend on its last argu-
ment. However, we do not know in general if the function v is so regular in order to
justify the previous passages. Therefore, the rigorous proof relies on viscosity so-
lutions arguments. In the end, we prove that the function v does not depend on the
variable ã. Moreover, v is a viscosity solution to (1.3). Actually, v is the unique
viscosity solution to (1.3), as it follows from the comparison theorem proved in
the Appendix. Notice that, due to the presence of the nondominated family of
measures (λ(a, ·))a∈A, we did not find in the literature a comparison theorem for
a viscosity solution to our equation (1.3). For this reason, we prove it in the Ap-
pendix, even though the main ideas are already contained in [3], in particular, the
remarkable Jensen–Ishii lemma for integro-partial differential equations.

The rest of the paper is organized as follows. In Section 2, we introduce some
notation and study the construction of the solution to the forward equation (1.6)–
(1.7). In Section 3, we give a detailed formulation of the BSDE with jumps and
a partially constrained diffusive part. In particular, Section 3.1 is devoted to the
existence of the minimal solution to our BSDE by a penalization approach. In
Section 4, we make the connection between the minimal solution to our BSDE and
equation (1.3). In the Appendix, we prove a martingale representation theorem for
our model, collect some properties of the random measure π and the pair (X, I)

and prove a comparison theorem for equation (1.3).
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2. Notation and preliminaries. Let (�̄, F̄, P̄) be a complete probability
space satisfying the usual conditions on which are defined a d-dimensional Brow-
nian motion W̄ = (W̄t )t≥0 and an independent q-dimensional Brownian motion
B̄ = (B̄t )t≥0. We will always assume that F̄ = (F̄t )t≥0 is the usual completion
of the natural filtration generated by W̄ and B̄ . Let us introduce some additional
notation:

(i) �′ is the set of sequences ω′ = (tn, en)n∈N ⊂ (0,∞] × E�, where E� =
E ∪ {�} and � is an external point of E. Moreover tn < ∞ if and only if en ∈ E,
and when tn < ∞, then tn < tn+1. �′ is equipped with the canonical marked point
process (T ′

n,α
′
n)n∈N, with associated canonical random measure π ′, defined as

T ′
n

(
ω′) = tn, α′

n

(
ω′) = en

and

π ′(ω′, dt, de
) = ∑

n∈N
1{T ′

n(ω′)<∞}δ(T ′
n(ω′),α′

n(ω′))(dt, de),

where δx denotes the Dirac measure at point x. Set T ′∞ := limn T ′
n. Finally, define

F
′ = (F ′

t )t≥0 as F ′
t = ⋂

s>t G′
s , where G′ = (G′

t )t≥0 is the canonical filtration, given
by G′

t = σ(π ′(·,F ) :F ∈ B([0, t]) ⊗ B(E)).
(ii) (�,F,F = (Ft )t≥0) is such that � := �̄ × �′, F := F̄ ⊗ F ′∞ and Ft :=⋂
s>t F̄s ⊗ F ′

s . Moreover, we set W(ω) := W̄ (ω̄), B(ω) := B̄(ω̄) and π(ω, ·) :=
π ′(ω′, ·). Finally, we set also Tn(ω) := T ′

n(ω
′), αn(ω) := α′

n(ω
′) and T∞(ω) :=

T ′∞(ω′).
Let P∞ denote the σ -field of F-predictable subsets of R+ × �. We recall that

a random measure π on R+ × E is a transition kernel from (�,F) into (R+ ×
E,B(R+) ⊗ B(E)), satisfying π(ω, {0} × E) = 0 for all ω ∈ �; moreover, an
integer-valued random measure π on R+ × E is an optional and P∞ ⊗ B(E)-
σ -finite, N ∪ {+∞}-valued random measure such that π(ω, {t} × E) ≤ 1 for all
(t,ω) ∈ [0, T ] × �; see [21], Chapter II, Definition 1.13.

Let A be a compact subset of some Euclidean space R
q . We are given some

measurable functions b :Rd ×A →R
d , σ :Rd ×A →R

d×d and β :Rd ×A×E →
R

d , where E is a Borelian subset of Rk \{0}, equipped with its Borel σ -field B(E).
Moreover, let λ be a transition kernel from (A,B(A)) into (E,B(E)); namely,
λ(a, ·) is a nonnegative measure on (E,B(E)) for every a ∈ A, and λ(·,E′) is
a Borel measurable function for every E′ ∈ B(E). Furthermore, we assume that
there exists a continuous surjection h :Rd → A.

REMARK 2.1. (i) The existence of such a function h is guaranteed whenever
A is connected and locally connected. This is indeed a consequence of the Hahn–
Mazurkiewicz theorem; see, for example, Theorem 6.8 in [33].

(ii) In the sequel we use the notation ã (resp. a) to denote a generic element in
the domain R

q (image A) of h.
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For any t ∈ [0, T ] and (x, ã) ∈ R
d × R

q , we consider the following forward
stochastic differential equation in R

d ×R
q :

Xs = x +
∫ s

t
b(Xr, Ir) dr +

∫ s

t
σ (Xr, Ir) dWr

(2.1)
+

∫ s

t

∫
E

β(Xr−, Ir , e)π̃(dr, de),

Is = h(ã + Bs − Bt),(2.2)

for all t ≤ s ≤ T , where π̃(ds, de) = π(ds, de) − λ(Is, de) ds is the compensated
martingale measure of π , which is an integer-valued random measure with com-
pensator λ(Is, de) ds.

As noted in the introduction, the above SDE (2.1)–(2.2) is nonstandard, in the
sense that the jump part of the driving factors in (2.1) is not given, but depends
on the solution via its intensity. When the intensity λ is absolutely continuous
with respect to a given deterministic measure on (E,B(E)), as in [4], [9] and
[10], we can obtain (2.1)–(2.2), starting from a standard SDE via a change of
intensity “à la Girsanov.” On the other hand, in the present paper, we shall tackle
the above SDE solving first equation (2.2), then constructing the random measure
π(ds, de) and finally addressing (2.1). The nontrivial part is the construction of
π , which is essentially based on Theorem 3.6 in [17], and also on similar results
in [13], Theorem 5.1, and [11], Theorem A.4. Let us first introduce the following
assumptions on the forward coefficients:

(HFC) (i) there exists a constant C such that
∣∣b(x, a) − b

(
x′, a′)∣∣ + ∣∣σ(x, a) − σ

(
x′, a′)∣∣ ≤ C

(∣∣x − x′∣∣ + ∣∣a − a′∣∣),
for all x, x′ ∈ R

d and a, a′ ∈ A;
(ii) there exists a constant C such that

∣∣β(x, a, e)
∣∣ ≤ C

(
1 + |x|)(1 ∧ |e|),∣∣β(x, a, e) − β

(
x′, a′, e

)∣∣ ≤ C
(∣∣x − x′∣∣ + ∣∣a − a′∣∣)(1 ∧ |e|),

for all x, x′ ∈ R
d , a, a′ ∈ A and e ∈ E;

(iii) the following integrability condition holds:

sup
a∈A

∫
E

(
1 ∧ |e|2)

λ(a, de) < ∞.

Inspired by Jacod and Protter [20], we give the definition of weak solution to
equation (2.1)–(2.2).

DEFINITION 2.2. A weak solution to equation (2.1)–(2.2) with initial condi-
tion (t, x, ã) ∈ [0, T ]×R

d ×R
q is a probability measure P on (�,F) satisfying:
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(i) P(dω) = P̄(dω̄) ⊗ P
′(ω̄, dω′), for some transition kernel P′ from (�̄, F̄)

into (�′,F ′∞);
(ii) under P, π is an integer-valued random measure on R+ × E with F-

compensator given by 1{s<T∞}λ(Is, de) ds and compensated martingale measure
given by π̃(ds, de) = π(ds, de) − 1{s<T∞}λ(Is, de) ds;

(iii) we have

Xs = x +
∫ s

t
b(Xr, Ir) dr +

∫ s

t
σ (Xr, Ir) dWr +

∫ s

t

∫
E

β(Xr−, Ir , e)π̃(dr, de),

Is = h(ã + Bs − Bt),

for all t ≤ s ≤ T , P almost surely. Moreover, (Xs, Is) = (x,h(ã)) for s < t , and
(Xs, Is) = (XT , IT ) for s > T .

Consider a probability measure P on (�,F) satisfying condition (i) of Defini-
tion 2.2. For every (t, ã) ∈ [0, T ] × R

q let us denote by I t,ã = {I t,ã
s , s ≥ 0} the

unique process on (�,F,F,P) satisfying I t,ã
s = h(ã + Bs − Bt) on [t, T ], with

I t,ã
s = h(ã) for s < t and I t,ã

s = I
t,ã
T for s > T . We notice that the notation I t,ã can

be misleading, since ã is not the initial point of I t,ã at time t , indeed I
t,ã
t = h(ã).

Now we proceed to the construction of a probability measure on (�,F) for which
conditions (i) and (ii) of Definition 2.2 are satisfied. This result is based on Theo-
rem 3.6 in [17], and we borrow also some ideas from [13], Theorem 5.1, and [11],
Theorem A.4.

LEMMA 2.3. Under assumption (HFC), for every (t, ã) ∈ [0, T ] × R
q there

exists a unique probability measure on (�,F), denoted by P
t,ã , satisfying condi-

tions (i) and (ii) of Definition 2.2, and also condition (ii)′ given by

(ii)′ 1{s<T∞}λ(I t,ã
s , de) ds is the (F̄ ⊗F ′

s)s≥0-compensator of π .

PROOF. The proof is essentially based on Theorem 3.6 in [17], after a re-
formulation of our problem in the setting of [17], which we now detail. Let
F̂ = (F̂s)s≥0 where F̂s := F̄ ⊗ F ′

s . Notice that in F̂s we take F̄ instead of F̄s .
Indeed, in [17] the σ -field F̄ represents the past information and is fixed through-
out (we come back to this point later). Take (t, ã) ∈ [0, T ] ×R

q , and consider the
process I t,ã = (I t,ã

s )s≥0. Set

ν(ω,F ) =
∫
F

1{s<T∞(ω)}λ
(
I t,ã
s (ω), de

)
ds

for any ω ∈ � and any F ∈ B(R+) ⊗ B(E). Now we show that ν satisfies the
properties required in order to apply Theorem 3.6 in [17]. In particular, since λ is
a transition kernel, we see that ν is a transition kernel from (�,F) into (R+ ×
E,B(R+) ⊗ B(E)); moreover, ν(ω, {0} × E) = 0 for all ω ∈ �, and therefore ν

is a random measure on R+ × E. Furthermore, for every E′ ∈ B(E), the process
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ν((0, ·] × E′) = (ν((0, s] × E′))s≥0 is F̂-predictable; hence ν is an F̂-predictable
random measure. In addition, ν({s} × E) ≤ 1, indeed ν is absolutely continuous
with respect to the Lebesgue measure ds and therefore ν({s} × E) = 0. Finally,
we see by definition that ν([T∞,∞) × E) = 0. In conclusion, it follows from
Theorem 3.6 in [17] that there exists a unique probability measure on (�,F),
denoted by P

t,ã , satisfying condition (i) of Definition 2.2, and for which ν is the
F̂-compensator of π ; that is, the process(

ν
(
(0, s ∧ Tn] × E′) − π

(
(0, s ∧ Tn] × E′))

s≥0(2.3)

is a (Pt,ã, F̂)-martingale, for any E′ ∈ B(E) and any n ∈ N. Therefore condition
(ii)′ is also satisfied.

To conclude, we need to prove that ν is also the F-compensator of π . Since ν

is an F-predictable random measure, it follows from (2.6) in [17] that it remains
to prove that process (2.3) is a (Pt,ã,F)-martingale. We solve this problem by
reasoning as in [13], Theorem 5.1, point (iv). Basically, for every T ∈ R+ we
repeat the above construction with F̄T in place of F̄ , changing what in [17] is
called the past information. More precisely, let T ∈ R+, and define F̂T = (F̂T

s )s≥0,
where F̂T

s := F̄T ⊗F ′
s . Let

νT (ω,F ) =
∫
F

1{s≤T }1{s<T∞(ω)}λ
(
I t,ã
s (ω), de

)
ds.

Proceeding as before, we conclude that there exists a unique probability measure
on (�, F̄T ⊗ F ′∞), denoted by P

t,ã,T , whose restriction to (�̄, F̄T ) coincides
with the restriction of P̄ to this measurable space, and for which νT is the F̂

T -
compensator of π ; that is,(

νT (
(0, s ∧ Tn] × E′) − π

(
(0, s ∧ Tn] × E′))

s≥0

is a (Pt,ã,T , F̂T )-martingale, for any E′ ∈ B(E) and any n ∈ N. This implies that
νT ((0, T ∧ Tn] × E′) − π((0, T ∧ Tn] × E′) is F̂T

T -measurable, and therefore FT -
measurable. Notice that

νT (
(0, s ∧ Tn] × E′) = ν

(
(0, s ∧ T ∧ Tn] × E′);

hence ν((0, T ∧ Tn] × E′) − π((0, T ∧ Tn] × E′) is FT -measurable. As T ∈ R+
is arbitrary, we see that the process (2.3) is F-adapted. Since (2.3) is a (Pt,ã, F̂)-
martingale, with Fs ⊂ F̂s , then it is also a (Pt,ã,F)-martingale. In other words,
ν is the F-compensator of π . �

REMARK 2.4. Notice that, under assumption (HFC) and if, in addition,
λ satisfies the integrability condition [which implies the integrability condition
(HFC)(iii)]

sup
a∈A

∫
E

λ(a, de) < ∞,(2.4)



1218 S. CHOUKROUN AND A. COSSO

then T∞ = ∞, Pt,ã a.s., and the compensator ν is given by

ν(ω,F ) =
∫
F

λ
(
I t,ã
s (ω), de

)
ds

for any F ∈ B(R+) ⊗ B(E) and for P
t,ã almost every ω ∈ �. Indeed, for any

T ≥ 0, we have (we denote by E
t,ã the expectation with respect to P

t,ã)

E
t,ã

[∑
n∈N

1{Tn≤T }
]

= E
t,ã

[∫ T

0

∫
E

π(ds, de)

]
= E

t,ã

[∫ T

0

∫
E

ν(ds, de)

]
.

Therefore

E
t,ã

[∑
n∈N

1{Tn≤T }
]

= E
t,ã

[∫ T

0

∫
E

1{s<T∞}λ
(
I t,ã
s , de

)
ds

]

≤ T sup
a∈A

∫
E

λ(a, de) < ∞,

where we use condition (2.4). Hence P
t,ã a.s.,∑

n∈N
1{Tn≤T } < ∞ ∀T ≥ 0.

From the arbitrariness of T , this implies that T∞ = ∞, Pt,ã almost surely.

LEMMA 2.5. Under assumption (HFC), for every (t, x, ã) ∈ [0, T ] × R
d ×

R
q there exists a unique (up to indistinguishability) process Xt,x,ã = {Xt,x,ã

s , s ≥
0} on (�,F,F,Pt,ã), solution to (2.1) on [t, T ], with Xt,x,ã

s = x for s < t and

Xt,x,ã
s = X

t,x,ã
T for s > T . Moreover, for any (t, x, ã) ∈ [0, T ] × R

d × R
q there

exists a positive constant C̃ such that

E
t,ã

[
sup

t≤s≤T

∣∣Xt,x,ã
s

∣∣2]
≤ C̃

(
1 + |x|2)

,(2.5)

where C̃ depends only on T , |b(0,0)|, |σ(0,0)|, supa∈A |a|, supa∈A

∫
E(1 ∧

|e|2)λ(a, de) and the Lipschitz constants of b, σ .

PROOF. Since hypotheses (14.15) and (14.22) in [19] are satisfied under
(HFC), the claim follows from Theorem 14.23 in [19]. Concerning estimate (2.5),
taking the square in (2.1) (using the standard inequality (x1 + · · · + x4)

2 ≤
4(x2

1 + · · · + x2
4), for any x1, . . . , x4 ∈ R) and then the supremum, we find

sup
t≤u≤s

∣∣Xt,x,ã
u

∣∣2 ≤ 4|x|2 + 4 sup
t≤u≤s

∣∣∣∣
∫ u

t
b
(
Xt,x,ã

r , I t,ã
r

)
dr

∣∣∣∣
2

+ 4 sup
t≤u≤s

∣∣∣∣
∫ u

t
σ

(
Xt,x,ã

r , I t,ã
r

)
dWr

∣∣∣∣
2

(2.6)

+ 4 sup
t≤u≤s

∣∣∣∣
∫ u

t

∫
E

β
(
X

t,x,ã
r− , I t,ã

r , e
)
π̃(dr, de)

∣∣∣∣
2

.
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Notice that, from the Cauchy–Schwarz inequality we have

E
t,ã

[
sup

t≤u≤s

∣∣∣∣
∫ u

t
b
(
Xt,x,ã

r , I t,ã
r

)
dr

∣∣∣∣
2]

≤ TE
t,ã

[∫ s

t

∣∣b(
Xt,x,ã

r , I t,ã
r

)∣∣2 dr

]
.(2.7)

Moreover, from the Burkholder–Davis–Gundy inequality there exists a positive
constant C̄ such that

E
t,ã

[
sup

t≤u≤s

∣∣∣∣
∫ u

t
σ

(
Xt,x,ã

r , I t,ã
r

)
dWr

∣∣∣∣
2]

(2.8)

≤ C̄E
t,ã

[∫ s

t
tr

(
σσ�(

Xt,x,ã
r , I t,ã

r

))
dr

]
.

Similarly, since the local martingale Mu = ∫ u
t

∫
E β(X

t,x,ã
r− , I t,ã

r , e)π̃(dr, de), t ≤
u ≤ s, is such that [M]u = ∫ u

t

∫
E |β(X

t,x,ã
r− , I t,ã

r , e)|2π(dr, de), from the
Burkholder–Davis–Gundy inequality, we obtain

E
t,ã

[
sup

t≤u≤s

∣∣∣∣
∫ u

t

∫
E

β
(
X

t,x,ã
r− , I t,ã

r , e
)
π̃(dr, de)

∣∣∣∣
2]

≤ C̄E
t,ã

[∫ s

t

∫
E

∣∣β(
X

t,x,ã
r− , I t,ã

r , e
)∣∣2π(dr, de)

]
(2.9)

= C̄E
t,ã

[∫ s

t

∫
E

∣∣β(
X

t,x,ã
r− , I t,ã

r , e
)∣∣2λ(

I t,ã
r , de

)
dr

]
.

In conclusion, taking the expectation in (2.6) and using (2.7)–(2.9), we find (de-
noting by C̃ a generic positive constant depending only on T , |b(0,0)|, |σ(0,0)|,
supa∈A |a|, supa∈A

∫
E(1 ∧ |e|2)λ(a, de) and the Lipschitz constants of b, σ )

E
t,ã

[
sup

t≤u≤s

∣∣Xt,x,ã
u

∣∣2]
≤ 4|x|2 + C̃

(
1 +

∫ s

t
E

t,ã
[

sup
t≤u≤r

∣∣Xt,x,ã
u

∣∣2]
dr

)
.

Then applying Gronwall’s lemma to the map r �→ E
t,ã[supt≤u≤r |Xt,x,ã

u |2], we end
up with estimate (2.5). �

3. BSDE with jumps and partially constrained diffusive part. Our aim is
to derive a probabilistic representation formula, also called a nonlinear Feynman–
Kac formula, for the following nonlinear IPDE of HJB type:

−∂u

∂t
(t, x) − sup

a∈A

(
Lau(t, x) + f

(
x, a,u,σ�(x, a)Dxu

))
(3.1)

= 0, (t, x) ∈ [0, T ) ×R
d,

u(T , x) = g(x), x ∈ R
d,(3.2)
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where

Lau(t, x) = b(x, a).Dxu(t, x) + 1

2
tr

(
σσ�(x, a)D2

xu(t, x)
)

+
∫
E

(
u
(
t, x + β(x, a, e)

) − u(t, x) − β(x, a, e).Dxu(t, x)
)
λ(a, de),

for all (t, x, a) ∈ [0, T ] ×R
d × A. Let us first introduce some additional notation.

Fix a finite time horizon T < ∞, and set PT the σ -field of F-predictable subsets
of [0, T ] × �. For any (t, ã) ∈ [0, T ] ×R

q , we denote by:

• Lp

t,ã
(Fs), p ≥ 1, s ≥ 0, the set of Fs -measurable random variables X such that

E
t,ã[|X|p] < ∞;

• S2
t,ã

, the set of real-valued càdlàg adapted processes Y = (Ys)t≤s≤T such that

‖Y‖2
S2

t,ã

:= E
t,ã

[
sup

t≤s≤T

|Ys |2
]
< ∞;

• Lp

t,ã
(t, T ), p ≥ 1, the set of real-valued adapted processes (φs)t≤s≤T such that

‖φ‖p

Lp

t,ã
(t,T )

:= E
t,ã

[∫ T

t
|φs |p ds

]
< ∞;

• Lp

t,ã
(W), p ≥ 1, the set of Rd -valued PT -measurable processes Z = (Zs)t≤s≤T

such that

‖Z‖p

Lp

t,ã
(W)

:= E
t,ã

[(∫ T

t
|Zs |2 ds

)p/2]
< ∞;

• Lp

t,ã
(B), p ≥ 1, the set of Rq -valued PT -measurable processes V = (Vs)t≤s≤T

such that

‖V ‖p

Lp

t,ã
(B)

:= E
t,ã

[(∫ T

t
|Vs |2 ds

)p/2]
< ∞;

• Lp

t,ã
(π̃), p ≥ 1, the set of PT ⊗B(E)-measurable maps U : [t, T ]×�×E → R

such that

‖U‖p

Lp

t,ã
(π̃)

:= E
t,ã

[(∫ T

t

∫
E

∣∣Us(e)
∣∣2λ(

I t,ã
s , de

)
ds

)p/2]
< ∞;

• K2
t,ã

, the set of nondecreasing predictable processes K = (Ks)t≤s≤T ∈ S2
t,ã

with
Kt = 0, so that

‖K‖2
S2

t,ã

= E
t,ã[|KT |2]

.

REMARK 3.1. Equivalence relation in Lp

t,ã
(π̃). When U1,U2 ∈ Lp

t,ã
(π̃),

with U1 = U2, we mean ‖U1 − U2‖Lp

t,ã
(π̃) = 0, that is, U1 = U2 ds ⊗ dPt,ã ⊗
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λ(I t,ã
s , de) a.e. on [t, T ] × � × E, where ds ⊗ dPt,ã ⊗ λ(I t,ã

s , de) is the measure
on ([t, T ] × � × E,B(t, T ) ⊗F ⊗B(E)) given by

ds ⊗ dPt,ã ⊗ λ
(
I t,ã
s , de

)
(F ) = E

t,ã

[∫ T

t

∫
E

1F (s,ω, e)λ
(
I t,ã
s (ω), de

)
ds

]
,

for all F ∈ B(t, T ) ⊗F ⊗B(E). See also the beginning of Section 3 in [8].

The probabilistic representation formula is given in terms of the following
BSDE with jumps and a partially constrained diffusive part, for any (t, x, ã) ∈
[0, T ] ×R

d ×R
q , Pt,ã a.s.:

Ys = g
(
X

t,x,ã
T

) +
∫ T

s
f

(
Xt,x,ã

r , I t,ã
r , Yr ,Zr

)
dr + KT − Ks −

∫ T

s
Zr dWr

(3.3)

−
∫ T

s
Vr dBr −

∫ T

s

∫
E

Ur(e)π̃(dr, de), t ≤ s ≤ T

and

|Vs | = 0, ds ⊗ dPt,ã a.e.(3.4)

We look for the minimal solution (Y,Z,V,U,K) ∈ S2
t,ã

× L2
t,ã

(W) × L2
t,ã

(B) ×
L2

t,ã
(π̃) × K2

t,ã
to (3.3)–(3.4), in the sense that for any other solution (Ȳ, Z̄, V̄ ,

Ū, K̄) ∈ S2
t,ã

× L2
t,ã

(W) × L2
t,ã

(B) × L2
t,ã

(π̃) × K2
t,ã

to (3.3)–(3.4), we must have

Y ≤ Ȳ . We impose the following assumptions on the terminal condition g :Rd →
R and on the generator f :Rd × A ×R×R

d →R:

(HBC) There exists some continuity modulus ρ (viz., ρ : [0,∞) → [0,∞) is
continuous, nondecreasing, subadditive, and ρ(0) = 0) and a constant C such that∣∣f (x, a, y, z) − f

(
x′, a′, y′, z′)∣∣ + ∣∣g(x) − g

(
x′)∣∣

≤ ρ
(∣∣x − x′∣∣ + ∣∣a − a′∣∣) + C

(∣∣y − y′∣∣ + ∣∣z − z′∣∣)
for all (x, a, y, z), (x′, a′, y′, z′) ∈ R

d × A ×R×R
d .

PROPOSITION 3.2. Let assumptions (HFC) and (HBC) hold. For any (t, x,

ã) ∈ [0, T ]×R
d ×R

q , there exists at most one minimal solution on (�,F,F,Pt,ã)

to the BSDE (3.3)–(3.4).

PROOF. Let (Y,Z,V,U,K) and (Ỹ, Z̃, Ṽ , Ũ, K̃) be two minimal solutions
to (3.3)–(3.4). The uniqueness of the Y component is clear by definition. Regarding
the other components, taking the difference between the two backward equations,
we obtain

0 =
∫ s

t

(
f

(
Xt,x,ã

r , I t,ã
r , Yr ,Zr

) − f
(
Xt,x,ã

r , I t,ã
r , Yr , Z̃r

))
dr + Ks − K̃s

−
∫ s

t
(Zr − Z̃r ) dWr −

∫ s

t
(Vr − Ṽr ) dBr −

∫ s

t

∫
E

(
Ur(e) − Ũr (e)

)
π̃(dr, de),
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for all t ≤ s ≤ T , Pt,ã almost surely. Identifying the Brownian and finite variation
parts and recalling that W and B are independent, we deduce Z = Z̃ and V = Ṽ .
Therefore, we obtain the identity∫ s

t

∫
E

(
Ur(e)− Ũr (e)

)
π(dr, de) =

∫ s

t

∫
E

(
Ur(e)− Ũr (e)

)
λ
(
I t,ã
r , de

)
dr +Ks − K̃s,

where the right-hand side is a predictable process, and therefore it has no totally in-
accessible jumps; see, for example, [21], Chapter I, Proposition 2.24. On the other
hand, the left-hand side is a pure-jump process with totally inaccessible jumps,
unless U = Ũ . As a consequence, we must have U = Ũ , from which it follows
that K = K̃ . �

To guarantee the existence of the minimal solution to (3.3)–(3.4) we shall need
the following result.

LEMMA 3.3. Let assumptions (HFC) and (HBC) hold. Then, for any initial
condition (t, x, ã) ∈ [0, T ] × R

d × R
q , there exists a solution {(Ȳ t,x,ã

s , Z̄t,x,ã
s ,

V̄ t,x,ã
s , Ū t,x,ã

s , K̄t,x,ã
s ), t ≤ s ≤ T } on (�,F,F,Pt,ã) to the BSDE (3.3)–(3.4), with

Ȳ t,x,ã
s = v̄(s,Xt,x,ã

s ) for some deterministic function v̄ on [0, T ] × R
d , satisfying

the linear growth condition

sup
(t,x)∈[0,T ]×Rd

|v̄(t, x)|
1 + |x| < ∞.

PROOF. The proof is similar to the proof of Lemma 5.1 in [27], but for the fact
that here we look for a function v̄ satisfying a linear growth condition, rather than
a more general polynomial growth condition. For this reason, we consider the mol-
lifier η(x) = c̄ exp(1/(|x|2 − 1))1{|x|<1}, where c̄ > 0 is such that

∫
Rd η(x) dx = 1,

and we introduce the smooth function

v̄(t, x) = C̄eρ(T −t)

(
1 +

∫
Rd

η(x − y)|y|dy

)
∀(t, x) ∈ [0, T ] ×R

d ×R
q,

for some positive constants C̄ and ρ. We can now proceed as in Lemma 5.1 in [27]
to conclude that, for C̄ and ρ large enough, the function v̄ is a classical supersolu-
tion to (3.1)–(3.2). �

3.1. Existence of the minimal solution by penalization. In this section we
prove the existence of the minimal solution to (3.3)–(3.4). We use a penaliza-
tion approach and introduce the indexed sequence of BSDEs with jumps, for any
(t, x, ã) ∈ [0, T ] ×R

d ×R
q , Pt,ã a.s.,

Yn
s = g

(
X

t,x,ã
T

) +
∫ T

s
f

(
Xt,x,ã

r , I t,ã
r , Y n

r ,Zn
r

)
dr + Kn

T − Kn
s −

∫ T

s
Zn

r dWr

(3.5)

−
∫ T

s
V n

r dBr −
∫ T

s

∫
E

Un
r (e)π̃(dr, de), t ≤ s ≤ T ,
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for n ∈ N, where Kn is the nondecreasing continuous process defined by

Kn
s = n

∫ s

t

∣∣V n
r

∣∣dr, t ≤ s ≤ T .

PROPOSITION 3.4. Under assumptions (HFC) and (HBC), for every (t, x,

ã) ∈ [0, T ] × R
d × R

q and every n ∈ N, there exists a unique solution (Y n,t,x,ã,

Zn,t,x,ã, V n,t,x,ã,Un,t,x,ã) ∈ S2
t,ã

× L2
t,ã

(W) × L2
t,ã

(B) × L2
t,ã

(π̃) on (�,F,

F,Pt,ã), satisfying the BSDE with jumps (3.5).

PROOF. As usual, the proof is based on a fixed point argument. More
precisely, let us consider the function � : L2

t,ã
(t, T ) × L2

t,ã
(W) × L2

t,ã
(B) ×

L2
t,ã

(π̃) → L2
t,ã

(t, T ) × L2
t,ã

(W) × L2
t,ã

(B) × L2
t,ã

(π̃), mapping (Y ′,Z′,V ′,U ′)
to (Y,Z,V,U), defined by

Ys = g
(
X

t,x,ã
T

) +
∫ T

s
fn

(
Xt,x,ã

r , I t,ã
r , Y ′

r ,Z
′
r , V

′
r

)
dr −

∫ T

s
Zr dWr

(3.6)

−
∫ T

s
Vr dBr −

∫ T

s

∫
E

Ur(e)π̃(dr, de),

where

fn(x, a, y, z, v) = f (x, a, y, z) + n|v|.
More precisely, the quadruple (Y,Z,V,U) is constructed as follows: we con-
sider the martingale Ms = E

t,ã[g(X
t,x,ã
T ) + ∫ T

t fn(X
t,x,ã
r , I t,ã

r , Y ′
r ,Z

′
r , V

′
r ) dr|Fs],

which is square integrable under the assumptions on g and f . From the mar-
tingale representation Theorem A.1, we deduce the existence and uniqueness of
(Z,V,U) ∈ L2

t,ã
(W) × L2

t,ã
(B) × L2

t,ã
(π̃) such that

Ms = Mt +
∫ s

t
Zr dWr +

∫ s

t
Vr dBr +

∫ s

t

∫
E

Ur(e)π̃(dr, de).(3.7)

We then define the process Y by

Ys = E
t,ã

[
g
(
X

t,x,ã
T

) +
∫ T

s
fn

(
Xt,x,ã

r , I t,ã
r , Y ′

r ,Z
′
r , V

′
r

)
dr

∣∣∣Fs

]

= Ms −
∫ s

t
fn

(
Xt,x,ã

r , I t,ã
r , Y ′

r ,Z
′
r , V

′
r

)
dr.

By using representation (3.7) of M in the previous relation, and noting that YT =
g(X

t,x,ã
T ), we see that Y satisfies (3.6). Using the conditions on g and f , we deduce

that Y lies in L2
t,ã

(t, T ), and also in S2
t,ã

. Hence, � is a well-defined map. We

then see that (Y n,t,x,ã,Zn,t,x,ã, V n,t,x,ã,Un,t,x,ã) is a solution to the penalized
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BSDE (3.5) if and only if it is a fixed point of �. To this end, for any α > 0 let us
introduce the equivalent norm on L2

t,ã
(t, T ) × L2

t,ã
(W) × L2

t,ã
(B) × L2

t,ã
(π̃),

∥∥(Y,Z,V,U)
∥∥
α

:= E
t,ã

[∫ T

t
eα(s−t)

(
|Ys |2 + |Zs |2 + |Vs |2 +

∫
E

∣∣Us(e)
∣∣2λ(

I t,ã
s , de

))
ds

]
.

It can be shown, proceeding along the same lines as in the classical case (for which
we refer, e.g., to Theorem 6.2.1 in [31]), that there exists ᾱ > 0 such that � is a
contraction on L2

t,ã
(t, T )×L2

t,ã
(W)×L2

t,ã
(B)×L2

t,ã
(π̃) endowed with the equiv-

alent norm ‖·‖ᾱ . Then the claim follows from the Banach–Caccioppoli fixed-point
theorem. �

We can now prove our main result of this section. First, we need the following
two lemmas.

LEMMA 3.5. Suppose that assumptions (HFC) and (HBC) hold. Then, for
every (t, x, ã) ∈ [0, T ] ×R

d ×R
q , we have, for all n ∈ N,

Yn,t,x,ã
s ≤ Yn+1,t,x,ã

s ≤ Ŷ t,x,ã
s

for all 0 ≤ s ≤ T , Pt,ã a.s., where (Ŷ t,x,ã, Ẑt,x,ã, V̂ t,x,ã, Û t,x,ã, K̂t,x,ã) ∈ S2
t,ã

×
L2

t,ã
(W) × L2

t,ã
(B) × L2

t,ã
(π̃) × K2

t,ã
on (�,F,F,Pt,ã) is a generic solution to

the BSDE (3.3)–(3.4). In particular, the sequence (Y n,t,x,ã)n is upper bounded by
Ȳ t,x,ã , introduced in Lemma 3.3.

PROOF. Fix (t, x, ã) ∈ [0, T ] ×R
d ×R

q and n ∈ N, and observe that

fn(x, a, y, z, v) ≤ fn+1(x, a, y, z, v),

for all (x, a, y, z, v) ∈ R
d × A × R × R

d × R
q . Then the inequality Yn,t,x,ã

s ≤
Yn+1,t,x,ã

s , for all 0 ≤ s ≤ T , Pt,ã a.s., follows from the comparison Theorem A.1
in [27]. We should notice that Theorem A.1 in [27] is designed for BSDE with
jumps driven by a Wiener process and a Poisson random measure, while in our
case we have a general random measure π . Nevertheless, Theorem A.1 in [27]
can be proved proceeding along the same lines as in [27] to encompass this more
general case.

Similarly, since
∫ s
t |V̂ t,x,ã

r |dr = 0, it follows that (Ŷ t,x,ã, Ẑt,x,ã, V̂ t,x,ã, Û t,x,ã,

K̂t,x,ã) solves the BSDE (3.3) with generator fn, for any n ∈ N, other than with
generator f . Therefore, we can again apply the (generalized version, with the ran-
dom measure π in place of the Poisson random measure, of the) comparison The-
orem A.1 in [27], from which we deduce the claim. �
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LEMMA 3.6. Under assumptions (HFC) and (HBC), there exists a positive
constant C such that, for all (t, x, ã) ∈ [0, T ] ×R

d ×R
q and n ∈ N,

∥∥Yn,t,x,ã
∥∥2

S2
t,ã

+ ∥∥Zn,t,x,ã
∥∥2

L2
t,ã

(W)
+ ∥∥V n,t,x,ã

∥∥2
L2

t,ã
(B)

+ ∥∥Un,t,x,ã
∥∥2

L2
t,ã

(π̃)
+ ∥∥Kn,t,x,ã

∥∥2
S2

t,ã

(3.8)

≤ C

(
E

t,ã[∣∣g(
X

t,x,ã
T

)∣∣2] +E
t,ã

[∫ T

t

∣∣f (
Xt,x,ã

s , I t,ã
s ,0,0

)∣∣2 ds

]

+ ∥∥v̄(·,Xt,x,ã·
)∥∥2

S2
t,ã

)
,

where v̄ is the function introduced in Lemma 3.3.

PROOF. The proof is very similar to the proof of Lemma 3.3 in [27], so it
is not reported. We simply recall that the claim follows applying Itô’s formula to
|Yn,t,x,ã

s |2 between t and T , and exploiting Gronwall’s lemma and the Burkholder–
Davis–Gundy inequality in an usual way. �

THEOREM 3.7. Under assumptions (HFC) and (HBC), for every (t, x, ã) ∈
[0, T ] × R

d × R
q there exists a unique minimal solution (Y t,x,ã,Zt,x,ã, V t,x,ã,

U t,x,ã,Kt,x,ã) ∈ S2
t,ã

× L2
t,ã

(W)× L2
t,ã

(B)× L2
t,ã

(π̃)× K2
t,ã

on (�,F,F,Pt,ã) to
the BSDE with jumps and partially constrained diffusive part (3.3)–(3.4), where:

(i) Y t,x,ã is the increasing limit of (Y n,t,x,ã)n;
(ii) (Zt,x,ã, V t,x,ã,U t,x,ã) is the weak limit of (Zn,t,x,ã, V n,t,x,ã,Un,t,x,ã)n in

L2
t,ã

(W) × L2
t,ã

(B) × L2
t,ã

(π̃);

(iii) Kt,x,ã
s is the weak limit of (Kn,t,x,ã

s )n in L2
t,ã

(Fs), for any t ≤ s ≤ T .

PROOF. Let (t, x, ã) ∈ [0, T ]×R
d ×R

q be fixed. From Lemma 3.5 it follows
that (Y n,t,x,ã)n converges increasingly to some adapted process Y t,x,ã . We see that
Y t,x,ã satisfies the integrability condition E

t,ã[supt≤s≤T |Y t,x,ã
s |2] < ∞ as a con-

sequence of the uniform estimate for (Y n,t,x,ã)n in Lemma 3.6 and Fatou’s lemma.
Moreover, by Lebesgue’s dominated convergence theorem, the convergence also
holds in L2

t,ã
(t, T ). Next, by the uniform estimates in Lemma 3.6, the sequence

(Zn,t,x,ã, V n,t,x,ã,Un,t,x,ã)n is bounded in the Hilbert space L2
t,ã

(W)×L2
t,ã

(B)×
L2

t,ã
(π̃). Then we can extract a subsequence which weakly converges to some

(Zt,x,ã, V t,x,ã,U t,x,ã) in L2
t,ã

(W) × L2
t,ã

(B) × L2
t,ã

(π̃). Thanks to the martingale
representation Theorem A.1, for every stopping time t ≤ τ ≤ T , the following
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weak convergences hold in L2
t,ã

(Fτ ), as n → ∞:∫ τ

t
Zn,t,x,ã

s dWs ⇀

∫ τ

t
Zt,x,ã

s dWs,

∫ τ

t
V n,t,x,ã

s dBs ⇀

∫ τ

t
V t,x,ã

s dBs,

∫ τ

t

∫
E

Un,t,x,ã
s (e)π̃(ds, de) ⇀

∫ τ

t

∫
E

Ut,x,ã
s (e)π̃(ds, de).

Since

Kn,t,x,ã
τ = Y

n,t,x,ã
t − Yn,t,x,ã

τ −
∫ τ

t
f

(
Xt,x,ã

s , I t,ã
s , Y n,t,x,ã

s ,Zn,t,x,ã
s

)
ds

+
∫ τ

t
Zn,t,x,ã

s dWs +
∫ τ

t
V n,t,x,ã

s dBs +
∫ τ

t

∫
E

Un,t,x,ã
s (e)π̃(ds, de),

we also have the following weak convergence in L2
t,ã

(Fτ ), as n → ∞:

Kn,t,x,ã
τ ⇀ Kt,x,ã

τ

:= Y
t,x,ã
t − Y t,x,ã

τ −
∫ τ

t
f

(
Xt,x,ã

s , I t,ã
s , Y t,x,ã

s ,Zt,x,ã
s

)
ds

+
∫ τ

t
Zt,x,ã

s dWs +
∫ τ

t
V t,x,ã

s dBs +
∫ τ

t

∫
E

Ut,x,ã
s (e)π̃(ds, de).

Since the process (Kn,t,x,ã
s )t≤s≤T is nondecreasing and predictable and

K
n,t,x,ã
t = 0, the limit process Kt,x,ã remains nondecreasing and predictable with

E
t,ã[|Kt,x,ã

T |2] < ∞ and K
t,x,ã
t = 0. Moreover, by Lemma 2.2 in [29], Kt,x,ã and

Y t,x,ã are càdlàg, therefore Y t,x,ã ∈ S2
t,ã

and Kt,x,ã ∈ K2
t,ã

. In conclusion, we have

Y
t,x,ã
t = g

(
X

t,x,ã
T

) +
∫ T

t
f

(
Xt,x,ã

s , I t,ã
s , Y t,x,ã

s ,Zt,x,ã
s

)
ds + K

t,x,ã
T − K

t,x,ã
t

−
∫ T

t
Zt,x,ã

s dWs −
∫ T

t
V t,x,ã

s dBs −
∫ T

t

∫
E

Ut,x,ã
s (e)π̃(ds, de).

It remains to show that diffusion constraint (3.4) is satisfied. To this end, we con-
sider the functional F : L2

t,ã
(B) →R given by

F(V ) := E
t,ã

[∫ T

t
|Vs |ds

]
∀V ∈ L2

t,ã(B).

Notice that F(V n,t,x,ã) = E
t,ã[Kn,t,x,ã

T ]/n, for any n ∈ N. From estimate (3.8), we
see that F(V n,t,x,ã) → 0 as n → ∞. Since F is convex and strongly continuous
in the strong topology of L2

t,ã
(B), then F is lower semicontinuous in the weak

topology of L2
t,ã

(B); see, for example, Corollary 3.9 in [5]. Therefore, we find

F
(
V t,x,ã) ≤ lim inf

n→∞ F
(
V n,t,x,ã) = 0,
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which implies the validity of the diffusion constraint (3.4). Hence, (Y t,x,ã,Zt,x,ã,

V t,x,ã , Ut,x,ã,Kt,x,ã) is a solution to the BSDE with jumps and a partially con-
strained diffusive part (3.3)–(3.4). From Lemma 3.5, we also see that Y t,x,ã =
limYn,t,x,ã is the minimal solution to (3.3)–(3.4). Finally, the uniqueness of the
solution (Y t,x,ã,Zt,x,ã, V t,x,ã,U t,x,ã,Kt,x,ã) follows from Proposition 3.2. �

4. Nonlinear Feynman–Kac formula. We know from Theorem 3.7 that un-
der (HFC) and (HBC), there exists a unique minimal solution (Y t,x,ã,Zt,x,ã,

V t,x,ã,U t,x,ã,Kt,x,ã) on (�,F,F,Pt,ã) to (3.3)–(3.4). As we shall see below,
this minimal solution admits the representation Y t,x,ã

s = v(s,Xt,x,ã
s , I t,ã

s ), where
v : [0, T ] ×R

d × A →R is the deterministic function defined as

v
(
t, x, h(ã)

) := Y
t,x,ã
t , (t, x, ã) ∈ [0, T ] ×R

d ×R
q.(4.1)

Our aim is to prove that the function v given by (4.1) does not depend on its last
argument and that it is related to the fully nonlinear partial differential equation of
HJB type (3.1)–(3.2). Notice that we do not know a priori whether the function v

is continuous. Therefore, we shall adopt the definition of discontinuous viscosity
solution to (3.1)–(3.2). First, we impose the following conditions on h and A:

(HA) There exists a compact set Ah ⊂ R
q such that h(Ah) = A. Moreover, the

interior set
◦

Ah of Ah is connected, and Ah = Cl(
◦

Ah), the closure of its interior.
Furthermore, h(

◦
Ah) = ◦

A.

We also impose some conditions on λ, which will imply the validity of a com-
parison theorem for viscosity sub and supersolutions to the fully nonlinear IPDE
of HJB type (3.1)–(3.2) and also for penalized IPDE (4.5)–(4.6). To this end, let
us define, for every δ > 0 and (t, x, a) ∈ [0, T ] ×R

d × A,

I 1,δ
a (t, x, ϕ)

=
∫
E∩{|e|≤δ}

(
ϕ

(
t, x + β(x, a, e)

) − ϕ(t, x) − β(x, a, e).Dxϕ(t, x)
)
λ(a, de),

for any ϕ ∈ C1,2([0, T ] ×R
d), and

I 2,δ
a (t, x, q,u) =

∫
E∩{|e|>δ}

(
u
(
t, x + β(x, a, e)

) − u(t, x) − β(x, a, e).q
)
λ(a, de),

for any q ∈ R
d and any locally bounded function u. Let us impose the following

conditions on I 1,δ
a and I 2,δ

a :

(Hλ) (i) For any (t, x) ∈ [0, T ] ×R
d , we have

sup
a∈A

∫
E∩{|e|≤δ}

(
1 ∧ |e|2)

λ(a, de)
δ→0+−→ 0.
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(ii) Let ϕ ∈ C1,2([0, T ]×R
d). If the sequence {(tk, xk, ak)}k ⊂ [0, T ]×R

d ×A

converges to (t∗, x∗, a∗) as k goes to infinity, then

lim
k→∞ I 1,δ

ak
(tk, xk, ϕ) = I

1,δ
a∗

(
t∗, x∗, ϕ

)
,

for any δ > 0.
(iii) Let u : [0, T ] × R

d → R be u.s.c. (resp. l.s.c.) and locally bounded. If the
sequence {(tk, xk, qk, ak)}k ⊂ [0, T ] × R

d × R
d × A converges to (t∗, x∗, q∗, a∗)

and u(tk, xk) → u(t∗, x∗), as k goes to infinity, then

lim sup
k→∞

I 2,δ
ak

(tk, xk, qk, u) ≤ I
2,δ
a∗

(
t∗, x∗, q∗, u

)
(
resp. lim inf

k→∞ I 2,δ
ak

(tk, xk, qk, u) ≥ I
2,δ
a∗

(
t∗, x∗, q∗, u

))

for any δ > 0.

REMARK 4.1. Assumption (Hλ) is required for the proof of the comparison
Theorem C.4 [as well as for the comparison theorem to equation (4.5)–(4.6)].
Notice that conditions (i)–(iii) are inspired by the fourth and fifth Assumptions
(NLT) in [3]. We also observe that whenever I 1,δ

a and I 2,δ
a do not depend on a,

then (Hλ)(i)–(ii) are consequences of Lebesgue’s dominated convergence theo-
rem, while (Hλ)(iii) follows from Fatou’s lemma.

For a locally bounded function u on [0, T ) ×R
k , we define its lower semicon-

tinuous (l.s.c. for short) envelope u∗, and upper semicontinuous (u.s.c. for short)
envelope u∗ by

u∗(t, ξ) = lim inf
(s,η)→(t,ξ)

s<T

u(s, ξ) and u∗(t, ξ) = lim sup
(s,η)→(t,ξ)

s<T

u(s, ξ)

for all (t, ξ) ∈ [0, T ] ×R
k .

DEFINITION 4.2 [Viscosity solution to (3.1)–(3.2)].

(i) An l.s.c. (resp. u.s.c.) function u on [0, T ] ×R
d is called a viscosity super-

solution (resp. viscosity subsolution) to (3.1)–(3.2) if

u(T , x) ≥ (resp. ≤) g(x)

for any x ∈ R
d , and

−∂ϕ

∂t
(t, x) − sup

a∈A

(
Laϕ(t, x) + f

(
x, a,u(t, x), σ�(x, a)Dxϕ(t, x)

))

≥ (resp. ≤) 0

for any (t, x) ∈ [0, T ) ×R
d and any ϕ ∈ C1,2([0, T ] ×R

d) such that

(u − ϕ)(t, x) = min
[0,T ]×Rd

(u − ϕ)
(
resp. max

[0,T ]×Rd
(u − ϕ)

)
.
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(ii) A locally bounded function u on [0, T ) × R
d is called a viscosity solution

to (3.1)–(3.2) if u∗ is a viscosity supersolution, and u∗ is a viscosity subsolution
to (3.1)–(3.2).

We can now state the main result of this paper.

THEOREM 4.3. Assume that conditions (HFC), (HBC), (HA) and (Hλ) hold.
Then the function v in (4.1) does not depend on the variable a on [0, T )×R

d × ◦
A:

v(t, x, a) = v
(
t, x, a′) ∀a, a′ ∈ ◦

A,

for all (t, x) ∈ [0, T ) ×R
d . Let us then define by misuse of notation the function v

on [0, T ) ×R
d by

v(t, x) = v(t, x, a), (t, x) ∈ [0, T ) ×R
d,

for any a ∈ ◦
A. Then v is a viscosity solution to (3.1)–(3.2).

The rest of the paper is devoted to the proof of Theorem 4.3.

4.1. Viscosity property of the penalized BSDE. For every n ∈ N, let us intro-
duce the deterministic function vn defined on [0, T ] ×R

d × A by

vn

(
t, x, h(ã)

) := Y
n,t,x,ã
t , (t, x, ã) ∈ [0, T ] ×R

d ×R
q,(4.2)

where (Y n,t,x,ã,Zn,t,x,ã, V n,t,x,ã,Un,t,x,ã) is the unique solution to the BSDE
with jumps (3.5); see Proposition 3.4. As we shall see in Proposition 4.5, the iden-
tification Yn,t,x,ã

s = vn(s,X
t,x,ã
s , I t,ã

s ) holds. Therefore, sending n to infinity, it
follows from the convergence results of the penalized BSDE, Theorem 3.7, that
the minimal solution to the BSDE with jumps and a partially constrained diffusive
part (3.3)–(3.4) can be written as Y t,x,ã

s = v(s,Xt,x,ã
s , I t,ã

s ), t ≤ s ≤ T , where v is
the deterministic function defined in (4.1).

Now notice that from the uniform estimate (3.8), the linear growth conditions
of g, f and v̄, estimate (2.5) and the compactness of A, it follows that vn, and thus
also v by passing to the limit, satisfies the following linear growth condition: there
exists some positive constant Cv such that, for all n ∈ N,

∣∣vn(t, x, a)
∣∣ + ∣∣v(t, x, a)

∣∣ ≤ Cv

(
1 + |x|) ∀(t, x, a) ∈ [0, T ] ×R

d × A.(4.3)

As expected, for every n ∈ N, the function vn in (4.2) is related to a parabolic semi-
linear penalized IPDE. More precisely, let us introduce the function vh

n : [0, T ] ×
R

d ×R
q →R given by

vh
n(t, x, ã) := vn

(
t, x, h(ã)

)
, (t, x, ã) ∈ [0, T ] ×R

d ×R
q.(4.4)
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Then the function vh
n is related to the semi-linear penalized IPDE

−∂vh
n

∂t
(t, x, ã) −Lh(ã)vh

n(t, x, ã)

− f
(
x,h(ã), vh

n(t, x, ã), σ�(
x,h(ã)

)
Dxv

h
n(t, x, ã)

)
(4.5)

− 1

2
tr

(
D2

ãv
h
n(t, x, ã)

) − n
∣∣Dãv

h
n(t, x, ã)

∣∣
= 0 on [0, T ) ×R

d ×R
q,

vh
n(T , ·, ·) = g on R

d ×R
q.(4.6)

Let us provide the definition of the discontinuous viscosity solution to equation
(4.5)–(4.6):

DEFINITION 4.4 [Viscosity solution to (4.5)–(4.6)].

(i) A l.s.c. (resp. u.s.c.) function u on [0, T ] × R
d × R

q is called a viscosity
supersolution (resp. viscosity subsolution) to (4.5)–(4.6) if

u(T , x, ã) ≥ (resp. ≤) g(x)

for any (x, ã) ∈ R
d ×R

q , and

−∂ϕ

∂t
(t, x, ã) −Lh(ã)ϕ(t, x, ã) − f

(
x,h(ã), u(t, x, ã), σ�(

x,h(ã)
)
Dxϕ(t, x, ã)

)

− 1

2
tr

(
D2

ãϕ(t, x, ã)
) − n

∣∣Dãϕ(t, x, ã)
∣∣ ≥ 0 (resp. ≤ 0)

for any (t, x, ã) ∈ [0, T ) × R
d × R

q and any ϕ ∈ C1,2([0, T ] × (Rd × R
q)) such

that

(u − ϕ)(t, x, ã) = min
[0,T ]×Rd×Rq

(u − ϕ)
(
resp. max

[0,T ]×Rd×Rq
(u − ϕ)

)
.(4.7)

(ii) A locally bounded function u on [0, T ) × R
d × R

q is called a viscosity
solution to (4.5)–(4.6) if u∗ is a viscosity supersolution, and u∗ is a viscosity sub-
solution to (4.5)–(4.6).

Then we have the following result, which states that the penalized BSDE with
jumps (3.5) provides a viscosity solution to the penalized IPDE (4.5)–(4.6).

PROPOSITION 4.5. Let assumptions (HFC), (HBC), (HA) and (Hλ) hold.
Then the function vh

n in (4.4) is a viscosity solution to (4.5)–(4.6). Moreover, vh
n

is continuous on [0, T ] ×R
d ×R

q .

PROOF. We divide the proof into three steps.
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Step 1. Identification Yn,t,x,ã
s = vn(s,X

t,x,ã
s , I t,ã

s ) = vh
n(s,Xt,x,ã

s , ã+Bs −Bt).
Inspired by the proof of Theorem 4.1 in [12], we shall prove the identification
Yn,t,x,ã

s = vn(s,X
t,x,ã
s , I t,ã

s ) using the Markovian property of (X, I) studied in
Appendix B and the construction of (Y n,t,x,ã,Zn,t,x,ã, V n,t,x,ã , Un,t,x,ã) based on
Proposition 3.4. More precisely, for any (t, x, ã) ∈ [0, T ] ×R

d ×R
q , from Propo-

sition 3.4 we know that there exists a sequence (Y n,k,t,x,ã,Zn,k,t,x,ã, V n,k,t,x,ã,

Un,k,t,x,ã) ∈ L2
t,ã

(t, T ) × L2
t,ã

(W) × L2
t,ã

(B) × L2
t,ã

(π̃), converging to (Y n,t,x,ã,

Zn,t,x,ã, V n,t,x,ã,Un,t,x,ã) in L2
t,ã

(t, T )× L2
t,ã

(W)× L2
t,ã

(B)× L2
t,ã

(π̃), such that

(Y n,0,t,x,ã,Zn,0,t,x,ã, V n,0,t,x,ã,Un,0,t,x,ã) ≡ (0,0,0,0) and

Yn,k+1,t,x,ã
s = g

(
X

t,x,ã
T

) +
∫ T

s
f

(
Xt,x,ã

r , I t,ã
r , Y n,k,t,x,ã

r ,Zn,k,t,x,ã
r

)
dr

+ n

∫ T

s

∣∣V n,k,t,x,ã
r

∣∣dr −
∫ T

s
Zn,k+1,t,x,ã

r dWr

−
∫ T

s
V n,k+1,t,x,ã

r dBr −
∫ T

s

∫
E

Un,k+1,t,x,ã
r (e)π̃(dr, de),

for all t ≤ s ≤ T , Pt,ã almost surely. Let us define vn,k(t, x, ã) := Y
n,k,t,x,ã
t . We

begin by noting that for k = 0, we have

Yn,1,t,x,ã
s = E

t,ã

[
g
(
X

t,x,ã
T

) +
∫ T

s
f

(
Xt,x,ã

r , I t,ã
r ,0,0

)
dr

∣∣∣Fs

]
.

Then we see from Proposition B.3 that Yn,1,t,x,ã
s = vn,1(s,X

t,x,ã
s , I t,ã

s ), dPt,ã ⊗ds

almost everywhere. Proceeding as in Lemma 4.1 of [12] (in particular, relying
on Theorem 6.27 in [7]), we also deduce that there exist Borel measurable func-
tions z̃n,1 and ṽn,1 such that, respectively, Zn,1,t,x,ã

s = z̃n,1(s,X
t,x,ã
s− , I t,ã

s ) and

V n,1,t,x,ã
s = ṽn,1(s,X

t,x,ã
s− , I t,ã

s ), dPt,ã ⊗ ds almost everywhere. Since Zn,1,t,x,ã ∈
L2

t,ã
(W) and V n,1,t,x,ã ∈ L2

t,ã
(B), we notice that

E
t,ã

[∫ T

t

∣∣z̃n,1
(
s,X

t,x,ã
s− , I t,ã

s

)∣∣2 ds

]
< ∞,

(4.8)

E
t,ã

[∫ T

t

∣∣ṽn,1
(
s,X

t,x,ã
s− , I t,ã

s

)∣∣2 ds

]
< ∞.

Let us now prove the inductive step: consider k ≥ 1, and suppose that Yn,k,t,x,ã
s =

vn,k(s,X
t,x,ã
s , I t,ã

s ), Zn,k,t,x,ã
s = z̃n,k(s,X

t,x,ã
s− , I t,ã

s ) and V n,k,t,x,ã
s = ṽn,k(s,

X
t,x,ã
s− , I t,ã

s ), dPt,ã ⊗ds a.e., such that Et,ã[∫ T
t |z̃n,k(s,X

t,x,ã
s− , I t,ã

s )|2 ds] < ∞ and
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E
t,ã[∫ T

t |ṽn,k(s,X
t,x,ã
s− , I t,ã

s )|2 ds] < ∞. Then we have

Yn,k+1,t,x,ã
s

= E
t,ã

[
g
(
X

t,x,ã
T

)

+
∫ T

s
f

(
Xt,x,ã

r , I t,ã
r , vn,k

(
r,X

t,x,ã
r− , I t,ã

r

)
, z̃n,k

(
r,X

t,x,ã
r− , I t,ã

r

))
dr

+ n

∫ T

s

∣∣ṽn,k

(
r,X

t,x,ã
r− , I t,ã

r

)∣∣dr
∣∣∣Fs

]
.

Using again Proposition B.3 [notice that, by a monotone class argument, we can
extend Proposition B.3 to Borel measurable functions verifying an integrability
condition of the type in (4.8)], we see that Yn,k+1,t,x,ã

s = vn,k+1(s,X
t,x,ã
s , I t,ã

s ),
dPt,ã ⊗ ds almost everywhere. Now, we notice that it can be shown that
E[supt≤s≤T |Yn,k,t,x,ã

s − Yn,t,x,ã
s |] → 0, as k tends to infinity (e.g., proceeding as

in Remark (b) after Proposition 2.1 in [12]). Therefore, vn,k(t, x, ã) → vn(t, x, ã)

as k tends to infinity, for all (t, x, ã) ∈ [0, T ] ×R
d ×R

q , from which follows the
validity of the identification Yn,t,x,ã

s = vn(s,X
t,x,ã
s , I t,ã

s ) = vh
n(s,Xt,x,ã

s , ã + Bs −
Bt), dPt,ã ⊗ ds almost everywhere.

Step 2. Viscosity property of vh
n . We shall divide the proof into two substeps.

Step 2a. vh
n is a viscosity solution to (4.5). We now prove the viscosity su-

persolution property of vh
n to (4.5). A similar argument would show that vh

n it
is a viscosity subsolution to (4.5). Let (t̄, x̄, ¯̃a) ∈ [0, T ) × R

d × R
q and ϕ ∈

C1,2([0, T ] × (Rd ×R
q)) such that

0 = ((
vh
n

)
∗ − ϕ

)
(t̄, x̄, ¯̃a) = min

[0,T ]×Rd×Rq

((
vh
n

)
∗ − ϕ

)
.(4.9)

Let us proceed by contradiction, assuming that

−∂ϕ

∂t
(t̄, x̄, ¯̃a) −Lh( ¯̃a)ϕ(t̄, x̄, ¯̃a) − f

(
x̄, h( ¯̃a),ϕ(t̄, x̄, ¯̃a), σ�(

x̄, h( ¯̃a)
)
Dxϕ(t̄, x̄, ¯̃a)

)

− 1

2
tr

(
D2

ãϕ(t̄, x̄, ¯̃a)
) − n

∣∣Dãϕ(t̄, x̄, ¯̃a)
∣∣ =: −2ε < 0.

Using the continuity of b, σ , β , f and h, we find δ > 0 such that

−∂ϕ

∂t
(t, x, ã) −Lh(ã)ϕ(t, x, ã)

− f
(
x,h(ã), ϕ(t, x, ã), σ�(

x,h(ã)
)
Dxϕ(t, x, ã)

)
(4.10)

− 1

2
tr

(
D2

ãϕ(t, x, ã)
) − n

∣∣Dãϕ(t, x, ã)
∣∣ ≤ −ε,

for any (t, x, ã) ∈ [0, T ]×R
d ×R

q with |t − t̄ |, |x − x̄|, |ã − ¯̃a| < δ. We know that
there exists a sequence (tk, xk, ãk)k ∈ [0, T )×R

d ×R
q converging to (t̄, x̄, ¯̃a) such

that vh
n(tk, xk, ãk) → (vh

n)∗(t̄, x̄, ¯̃a) as k → ∞ and |tk − t̄ |, |xk − x̄|, |ãk − ¯̃a| < δ for
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all k ∈ N. We also notice that, using the continuity of ϕ, we have vh
n(tk, xk, ãk) −

ϕ(tk, xk, ãk) → 0 as k → ∞. Fix δ′ ∈ (0, δ), and define, for every k ∈ N,

τk := inf
{
r ≥ tk :

∣∣Xtk,xk,ãk
r − xk

∣∣ > δ′, |Br − Btk | > δ′} ∧ (
tk + δ′) ∧ T .

Since Xtk,xk,ãk is càdlàg, it is in particular right-continuous at time tk . There-
fore, τk > tk , P

tk,ãk almost surely. Then an application of Itô’s formula to
ϕ(r,X

tk,xk,ãk
r , ãk + Br − Btk ) between tk and τk , using also (4.10), yields

ϕ
(
τk,X

tk,xk,ãk
τk

, ãk + Bτk
− Btk

)

≥ ϕ(tk, xk, ãk) − n

∫ τk

tk

∣∣Dãϕ
(
r,Xtk,xk,ãk

r , ãk + Br − Btk

)∣∣dr

+
∫ τk

tk

Dãϕ
(
r,Xtk,xk,ãk

r , ãk + Br − Btk

)
dBr

−
∫ τk

tk

f
(
Xtk,xk,ãk

r , I tk,ãk
r , ϕ

(
r,Xtk,xk,ãk

r , ãk + Br − Btk

)
, σ�Dxϕ

)
dr

(4.11)
+ ε(τk − tk)

+
∫ τk

tk

(
Dxϕ

(
r,Xtk,xk,ãk

r , ãk + Br − Btk

))�
σ

(
Xtk,xk,ãk

r , I tk,ãk
r

)
dWr

+
∫ τk

tk

∫
E

(
ϕ

(
r,X

tk,xk,ãk

r− + β, ãk + Br − Btk

)

− ϕ
(
r,X

tk,xk,ãk

r− , ãk + Br − Btk

))
π̃(dr, de).

From (3.5) and the identification Y
n,tk,xk,ãk
r = vh

n(r,X
tk,xk,ãk
r , ãk + Br − Btk ), we

find

vh
n

(
τk,X

tk,xk,ãk
τk

, ãk + Bτk
− Btk

)

= vh
n(tk, xk, ãk) − n

∫ τk

tk

∣∣V n,tk,xk,ãk
r

∣∣dr

(4.12)
−

∫ τk

tk

f
(
Xtk,xk,ãk

r , I tk,ãk
r , Y n,tk,xk,ãk

r ,Zn,tk,xk,ãk
r

)
dr +

∫ τk

tk

Zn,tk,xk,ãk
r dWr

+
∫ τk

tk

V n,tk,xk,ãk
r dBr +

∫ τk

tk

∫
E

Un,tk,xk,ãk
r (e)π̃(dr, de).

Plugging (4.12) into (4.11), we obtain

ϕ
(
τk,X

tk,xk,ãk
τk

, ãk + Bτk
− Btk

) − vh
n

(
τk,X

tk,xk,ãk
τk

, ãk + Bτk
− Btk

)

≥ ϕ(tk, xk, ãk) − vh
n(tk, xk, ãk) + ε(τk − tk)

− n

∫ τk

tk

∣∣Dãϕ
(
r,Xtk,xk,ãk

r , ãk + Br − Btk

)∣∣dr(4.13)
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−
∫ τk

tk

f
(
Xtk,xk,ãk

r , I tk,ãk
r , ϕ

(
r,Xtk,xk,ãk

r , ãk + Br − Btk

)
, σ�Dxϕ

)
dr

+
∫ τk

tk

f
(
Xtk,xk,ãk

r , I tk,ãk
r , Y n,tk,xk,ãk

r ,Zn,tk,xk,ãk
r

)
dr

+ n

∫ τk

tk

∣∣V n,tk,xk,ãk
r

∣∣dr

+
∫ τk

tk

(
Dxϕ

(
r,Xtk,xk,ãk

r , ãk + Br − Btk

))�
σ

(
Xtk,xk,ãk

r , I tk,ãk
r

)
dWr

−
∫ τk

tk

Zn,tk,xk,ãk
r dWr +

∫ τk

tk

Dãϕ
(
r,Xtk,xk,ãk

r , ãk + Br − Btk

)
dBr

−
∫ τk

tk

V n,tk,xk,ãk
r dBr −

∫ τk

tk

∫
E

Un,tk,xk,ãk
r (e)π̃(dr, de)

+
∫ τk

tk

∫
E

(
ϕ

(
r,X

tk,xk,ãk

r− + β, ãk + Br − Btk

)

− ϕ
(
r,X

tk,xk,ãk

r− , ãk + Br − Btk

))
π̃(dr, de).

Let us introduce the predictable processes αk : [tk, T ]×� → R, βk : [tk, T ]×� →
R

d , and γ k : [tk, T ] × � → R
q given by

αk
r = f (X

tk,xk,ãk

r− , I
tk,ãk

r− , ϕ, σ�Dxϕ) − f (X
tk,xk,ãk

r− , I
tk,ãk

r− , Y
n,tk,xk,ãk

r− , σ�Dxϕ)

ϕ(r,X
tk,xk,ãk

r− , ãk + Br − Btk ) − Y
n,tk,xk,ãk

r−

× 1{ϕ �=Y
n,tk ,xk ,ãk
r− },

βk
r = f (X

tk,xk,ãk

r− , I
tk,ãk

r− , Y
n,tk,xk,ãk

r− , σ�Dxϕ) − f (X
tk,xk,ãk

r− , I
tk,ãk

r− , Y
n,tk,xk,ãk

r− ,Z
n,tk,xk,ãk
r )

|σ�Dxϕ(r,X
tk,xk,ãk

r− , ãk + Br − Btk ) − Z
n,tk,xk,ãk
r |

× σ�Dxϕ(r,X
tk,xk,ãk

r− , ãk + Br − Btk ) − Z
n,tk,xk,ãk
r

|σ�Dxϕ(r,X
tk,xk,ãk

r− , ãk + Br − Btk ) − Z
n,tk,xk,ãk
r |

1{σ�Dxϕ �=Z
n,tk ,xk ,ãk
r },

γ k
r = n

|Dãϕ(r,X
tk,xk,ãk

r− , ãk + Br − Btk )| − |V n,tk,xk,ãk
r |

|Dãϕ(r,X
tk,xk,ãk

r− , ãk + Br − Btk ) − V
n,tk,xk,ãk
r |

× Dãϕ(r,X
tk,xk,ãk

r− , ãk + Br − Btk ) − V
n,tk,xk,ãk
r

|Dãϕ(r,X
tk,xk,ãk

r− , ãk + Br − Btk ) − V
n,tk,xk,ãk
r |

1{Dãϕ �=V
n,tk ,xk ,ãk
r },

for all tk ≤ r ≤ T . Notice that αk , βk and γ k are bounded. Consider now the
probability measure P̂

tk,ãk equivalent to P
tk,ãk on (�,FT ), with Radon–Nikodym

density given by

dP̂tk,ãk

dPtk,ãk

∣∣∣∣
Fr

= Er

(∫ ·
tk

βk
u dWu +

∫ ·
tk

γ k
u dBu

)
,
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for all tk ≤ r ≤ T , where E(·) is the Doléans–Dade exponential. Notice that
the stochastic integrals with respect to π̃ in (4.13) remain martingales with re-
spect to P̂

tk,ãk , while the effect of the measure P̂
tk,ãk is to render the processes

W·−Wtk −∫ ·
tk

βk
u du and B·−Btk −∫ ·

tk
γ k
u du Brownian motions. As a consequence,

applying Itô’s formula to exp(
∫ r
tk

αk
u du)(ϕ − vh

n)(r,X
tk,xk,ãk
r , ãk + Br − Btk ) be-

tween tk and τk , using (4.13) and taking the expectation Ê
tk,ãk with respect to

P̂
tk,ãk , we end up with [recalling that vh

n ≥ (vh
n)∗]

Ê
tk,ãk

[
e

∫ τk
tk

αk
u du(

ϕ − (
vh
n

)
∗
)(

τk,X
tk,xk,ãk
τk

, ãk + Bτk
− Btk

)]

≥ Ê
tk,ãk

[
e

∫ τk
tk

αk
u du(

ϕ − vh
n

)(
τk,X

tk,xk,ãk
τk

, ãk + Bτk
− Btk

)]

≥ (
ϕ − vh

n

)
(tk, xk, ãk) + εÊtk,ãk

[∫ τk

tk

e
∫ r
tk

αk
u du

dr

]
.

Since τk > tk , P
tk,ãk a.s., it follows that τk > tk , P̂

tk,ãk a.s., therefore

Ê
tk,ãk [∫ τk

tk
e

∫ r
tk

αk
u du

dr] > 0, using also the boundedness of αk , uniform with respect
to k ∈ N. Recalling in addition that (ϕ − vh

n)(tk, xk, ãk) → 0 as k → ∞, we see
that there exists F ∈ F such that (ϕ − (vh

n)∗)(τk,X
tk,xk,ãk
τk

, ãk + Bτk
− Btk )1F > 0

and P̂
tk,ãk (F ) > 0. This is a contradiction to (4.9).

Step 2b. vh
n is a viscosity solution to (4.6). As in step 2a, we shall only prove

the viscosity supersolution property of vh
n to (4.6), since the viscosity subsolution

of vh
n to (4.6) can be proved similarly. Let (x̄, ¯̃a) ∈ R

d × R
q . Our aim is to show

that
(
vh
n

)
∗(T , x̄, ¯̃a) ≥ g(x̄).(4.14)

Notice that there exists (tk, xk, ãk)k ⊂ [0, T ) ×R
d ×R

q such that

(
tk, xk, ãk, v

h
n(tk, xk, ãk)

) k→∞−→ (
t̄ , x̄, ¯̃a,

(
vh
n

)
∗(t̄, x̄, ¯̃a)

)
.

Recall that vh
n(tk, xk, ãk) = Y

n,tk,xk,ãk
tk

and

Y
n,tk,xk,ãk
tk

= E
tk,ãk

[
g
(
X

tk,xk,ãk

T

)]

+
∫ T

tk

E
tk,ãk

[
f

(
Xtk,xk,ãk

s , I tk,ãk
s , Y n,tk,xk,ãk

s ,Zn,tk,xk,ãk
s

)]
ds(4.15)

+ n

∫ T

tk

E
tk,ãk

[∣∣V n,tk,xk,ãk
s

∣∣]ds.

Now we observe that from classical convergence results of diffusion processes
with jumps (see, e.g., [21], Chapter IX, Theorem 4.8), we have that the law of
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(Xt ′,x′,ã′
, I t ′,ã′

) weakly converges to the law of (Xt,x,ã, I t,ã). As a consequence,
we obtain

E
tk,ãk

[
g
(
X

tk,xk,ãk

T

)] k→∞−→ g(x̄).

Moreover, from estimates (2.5) and (3.8), it follows by Lebesgue’s dominated con-
vergence theorem that the two integrals in time in (4.15) go to zero as k → ∞.
In conclusion, letting k → ∞ in (4.15), we deduce that (vh

n)∗(T , x̄, ¯̃a) = g(x̄),
and therefore (4.14) holds. Notice that from this proof, we also have that for any
(x, ã) ∈ R

d × R
q , vh

n(t ′, x′, ã′) → vh
n(T , x, ã) = g(x), as (t ′, x′, ã′) → (T , x, ã),

with t ′ < T . In other words, vh
n is continuous at T .

Step 3. Continuity of vh
n on [0, T ] × R

d × R
q . The continuity of vh

n at T was
proved in step 2b. On the other hand, the continuity of vh

n on [0, T )×R
d ×R

q fol-
lows from the comparison theorem for viscosity solutions to equation (4.5)–(4.6).
We notice, however, that a comparison theorem for equation (4.5)–(4.6) does not
seem to be available in the literature. Indeed, Theorem 3.5 in [2] applies to semi-
linear PDEs in which a Lévy measure appears; instead, in our case λ depends on a.
We can not even apply our comparison Theorem C.4, designed for equation (3.1)–
(3.2), since in Theorem C.4 the variable a is a parameter while in equation (4.5)
is a state variable. Nevertheless, we observe that under assumption (Hλ), we can
easily extend Theorem 3.5 in [2] to our case, and since the proof is very similar to
that of Theorem 3.5 in [2], we do not prove it here to alleviate the presentation.

�

4.2. The nondependence of the function v on the variable a. In the present
subsection, our aim is to prove that the function v does not depend on the vari-
able a. This is indeed a consequence of constraint (3.4) on the component V

of equation (3.3). If v and also h were smooth enough, then, for any (t, x, ã) ∈
[0, T ] × R

d × R
q , we could express the process V t,x,ã as follows [we use the

notation h(ã) = (hi(ã))i=1,...,q , Dãh(ã) = (Dãj
hi(ã))i,j=1,...,q and finally Dhv to

denote the gradient of v with respect to its last argument]:

V t,x,ã
s = Dhv

(
s,Xt,x,ã

s , I t,ã
s

)
Dãh(ã + Bs − Bt), t ≤ s ≤ T .

Therefore, from constraint (3.4) we find

E
t,ã

[∫ t+δ

t

∣∣Dhv
(
s,Xt,x,ã

s , I t,ã
s

)
Dãh(ã + Bs − Bt)

∣∣ds

]
= 0,

for any δ > 0. By sending δ to zero in the above equality divided by δ, we obtain
∣∣Dhv

(
t, x, h(ã)

)
Dãh(ã)

∣∣ = 0.

Let us consider the function vh : [0, T ] ×R
d ×R

q →R given by

vh(t, x, ã) := v
(
t, x, h(ã)

)
, (t, x, ã) ∈ [0, T ] ×R

d ×R
q.(4.16)
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Then |Dãv
h| ≡ 0, so that the function vh is constant with respect to ã. Since

h(Rq) = A, we have that v does not depend on the variable a on A.
Unfortunately, we do not know if v is regular enough in order to justify the

above passages. Therefore, we shall rely on viscosity solutions techniques to de-
rive the nondependence of v on the variable a. To this end, let us introduce the
following first-order PDE:

−∣∣Dãv
h(t, x, ã)

∣∣ = 0, (t, x, ã) ∈ [0, T ) ×R
d ×R

q .(4.17)

LEMMA 4.6. Let assumptions (HFC), (HBC), (HA) and (Hλ) hold. The
function vh in (4.16) is a viscosity supersolution to (4.17): for any (t, x, ã) ∈
[0, T ) ×R

d ×R
q and any function ϕ ∈ C1,2([0, T ] × (Rd ×R

q)) such that
(
vh − ϕ

)
(t, x, ã) = min

[0,T ]×Rd×Rq

(
vh − ϕ

)
,

we have

−∣∣Dãϕ(t, x, ã)
∣∣ ≥ 0.

PROOF. We know that vh is the pointwise limit of the nondecreasing sequence
of functions (vh

n)n. By continuity of vh
n , the function vh is lower semicontinuous,

and we have (see, e.g., page 91 in [1])

vh(t, x, ã) = vh∗ (t, x, ã) = lim inf
n→∞ ∗vh

n(t, x, ã),

for all (t, x, ã) ∈ [0, T ) ×R
d ×R

q , where

lim inf
n→∞ ∗vh

n(t, x, ã) = lim inf
n→∞

(t ′,x′,ã′)→(t,x,ã)

t ′<T

vh
n

(
t ′, x′, ã′), (t, x, ã) ∈ [0, T )×R

d ×R
q.

Let (t, x, ã) ∈ [0, T ) ×R
d ×R

q and ϕ ∈ C1,2([0, T ] × (Rd ×R
q)) such that

(
vh − ϕ

)
(t, x, ã) = min

[0,T ]×Rd×Rq

(
vh − ϕ

)
.

We may assume, without loss of generality, that this minimum is strict. Up to
a suitable negative perturbation of ϕ for large values of x and ã, we can as-
sume, without loss of generality, that there exists a bounded sequence (tn, xn, ãn) ∈
[0, T ] ×R

d ×R
q such that

(
vh
n − ϕ

)
(tn, xn, ãn) = min

[0,T ]×Rd×Rq

(
vh
n − ϕ

)
.

Then it follows that up to a subsequence,
(
tn, xn, ãn, v

h
n(tn, xn, ãn)

) −→ (
t, x, ã, vh(t, x, ã)

)
as n → ∞.(4.18)
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Now, from the viscosity supersolution property of vh
n at (tn, xn, ãn) with the test

function ϕ, we have

−∂ϕ

∂t
(tn, xn, ãn) − f

(
xn,h(ãn), v

h
n(tn, xn, ãn), σ

�(
xn,h(ãn)

)
Dxϕ(tn, xn, ãn)

)

−Lh(ãn)ϕ(tn, xn, ãn) − 1

2
tr

(
D2

ãϕ(tn, xn, ãn)
) − n

∣∣Dãϕ(tn, xn, ãn)
∣∣ ≥ 0,

which implies
∣∣Dãϕ(tn, xn, ãn)

∣∣
≤ 1

n

(
−∂ϕ

∂t
(tn, xn, ãn) −Lh(ãn)ϕ(tn, xn, ãn)

− f
(
xn,h(ãn), v

h
n(tn, xn, ãn), σ

�(
xn,h(ãn)

)
Dxϕ(tn, xn, ãn)

)

− 1

2
tr

(
D2

ãϕ(tn, xn, ãn)
))

.

Sending n to infinity, we get from (4.18) and the continuity of b, σ , β , f and h,
∣∣Dãϕ(t, x, ã)

∣∣ = 0,

from which the claim follows. �

We can now state the main result of this subsection.

PROPOSITION 4.7. Let assumptions (HFC), (HBC), (HA) and (Hλ) hold.
Then the function v in (4.1) does not depend on its last argument on [0, T ) ×
R

d × ◦
A,

v(t, x, a) = v
(
t, x, a′), a, a′ ∈ ◦

A,

for any (t, x) ∈ [0, T ) ×R
d .

PROOF. From Lemma 4.6, we have that vh is a viscosity supersolution to the
first-order PDE

−∣∣Dãv
h(t, x, ã)

∣∣ = 0, (t, x, ã) ∈ [0, T ) ×R
d × ◦

Ah,

where Ah was introduced in assumption (HA). Then from Proposition 5.2 in [27],
we conclude that vh does not depend on the variable ã in

◦
Ah,

vh(t, x, ã) = vh(
t, x, ã′), (t, x) ∈ [0, T ) ×R

d, ã, ã′ ∈ ◦
Ah.

Since, from assumption (HA) we have h(
◦

Ah) = ◦
A, we deduce the claim. �
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4.3. Viscosity properties of the function v. From Proposition 4.7, by misuse
of notation, we can define the function v on [0, T ) ×R

d by

v(t, x) = v(t, x, a), (t, x) ∈ [0, T ) ×R
d,

for some a ∈ ◦
A. Since h(

◦
Ah) = ◦

A, we also have

v(t, x) = vh(t, x, ã), (t, x, ã) ∈ [0, T ) ×R
d,

for some ã ∈ ◦
Ah. Moreover, from estimate (4.3) we deduce the following linear

growth condition for v:

sup
(t,x)∈[0,T )×Rd

|v(t, x)|
1 + |x| < ∞.(4.19)

The present subsection is devoted to the remaining part of the proof of Theo-
rem 4.3, namely that v is a viscosity solution to (3.1)–(3.2).

PROOF OF THE VISCOSITY SUPERSOLUTION PROPERTY TO (3.1). We know
that v is the pointwise limit of the nondecreasing sequence of functions (vh

n)n, so
that v is lower semicontinuous, and we have

v(t, x) = v∗(t, x) = lim inf
n→∞ ∗vh

n(t, x, ã),(4.20)

for all (t, x, ã) ∈ [0, T )×R
d × ◦

Ah. Let (t, x) ∈ [0, T )×R
d and ϕ ∈ C1,2([0, T ]×

R
d) such that

(v − ϕ)(t, x) = min
[0,T ]×Rd

(v − ϕ).

From the linear growth condition (4.19) on v, we can assume, without loss of
generality, that ϕ satisfies sup(t,x)∈[0,T ]×Rd |ϕ(t, x)|/(1 + |x|) < ∞. Fix some ã ∈
◦

Ah, and define for any ε > 0, the test function

ϕε(t ′, x′, ã′) = ϕ
(
t ′, x′) − ε

(∣∣t ′ − t
∣∣2 + ∣∣x′ − x

∣∣2 + ∣∣ã′ − ã
∣∣2)

,

for all (t ′, x′, ã′) ∈ [0, T ] × R
d × R

q . Notice that ϕε ≤ ϕ with equality if and
only if (t ′, x′, ã′) = (t, x, ã). Therefore v − ϕε has a strict global minimum at
(t, x, ã). From the linear growth condition on the continuous functions vh

n and ϕ,
there exists a bounded sequence (tn, xn, ãn)n (we omit the dependence in ε) in
[0, T ) ×R

d ×R
q such that
(
vh
n − ϕε)(tn, xn, ãn) = min

[0,T ]×Rd×Rq

(
vh
n − ϕε).

By standard arguments, we obtain that up to a subsequence,
(
tn, xn, ãn, v

h
n(tn, xn, ãn)

) −→ (
t, x, ã, v(t, x)

)
as n → ∞.
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Now, from the viscosity supersolution property of vh
n at (tn, xn, ãn) with the test

function ϕε , we have

−∂ϕε

∂t
(tn, xn, ãn) − f

(
xn,h(ãn), v

h
n(tn, xn, ãn), σ

�(
xn,h(ãn)

)
Dxϕ

ε(tn, xn, ãn)
)

−Lh(ãn)ϕε(tn, xn, ãn) − 1

2
tr

(
D2

ãϕ
ε(tn, xn, ãn)

) − n
∣∣Dãϕ

ε(tn, xn, ãn)
∣∣ ≥ 0.

Therefore

−∂ϕε

∂t
(tn, xn, ãn) − f

(
xn,h(ãn), v

h
n(tn, xn, ãn), σ

�(
xn,h(ãn)

)
Dxϕ

ε(tn, xn, ãn)
)

−Lh(ãn)ϕε(tn, xn, ãn) − 1

2
tr

(
D2

ãϕ
ε(tn, xn, ãn)

) ≥ 0.

Sending n to infinity in the above inequality, we obtain, from the definition of ϕε ,

−∂ϕε

∂t
(t, x, ã) −Lh(ã)ϕε(t, x, ã)

− f
(
x,h(ã), v(t, x), σ�(

x,h(ã)
)
Dxϕ

ε(t, x, ã)
) + ε ≥ 0.

Sending ε to zero and recalling that ϕε(t, x, ã) = ϕ(t, x), we find

−∂ϕ

∂t
(t, x) −Lh(ã)ϕ(t, x) − f

(
x,h(ã), v(t, x), σ�(

x,h(ã)
)
Dxϕ(t, x)

) ≥ 0.

Since ã ∈ ◦
Ah and h(

◦
Ah) = ◦

A, the above equation can be rewritten in an equivalent
way as follows:

−∂ϕ

∂t
(t, x) −Laϕ(t, x) − f

(
x, a, v(t, x), σ�(x, a)Dxϕ(t, x)

) ≥ 0,

where a is arbitrarily chosen in
◦

A. As a consequence, using assumption (HA) and
the continuity of the coefficients b, σ , β and f in the variable a, we end up with

−∂ϕ

∂t
(t, x) − sup

a∈A

[
Laϕ(t, x) + f

(
x, a, v(t, x), σ�(x, a)Dxϕ(t, x)

)] ≥ 0,

which is the viscosity supersolution property. �

PROOF OF THE VISCOSITY SUBSOLUTION PROPERTY TO (3.1). Since v

is the pointwise limit of the nondecreasing sequence (vh
n)n, we have (see, e.g.,

page 91 in [1])

v∗(t, x) = lim sup
n→∞ ∗vh

n(t, x, ã),(4.21)

for all (t, x, ã) ∈ [0, T ) ×R
d × ◦

Ah, where

lim sup
n→∞ ∗vh

n(t, x, ã) = lim sup
n→∞

(t ′,x′,ã′)→(t,x,ã)

t ′<T,ã′∈ ◦
Ah

vh
n

(
t ′, x′, ã′), (t, x, ã) ∈ [0, T )×R

d ×R
q.
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Let (t, x) ∈ [0, T ) ×R
d and ϕ ∈ C1,2([0, T ] ×R

d) such that(
v∗ − ϕ

)
(t, x) = max

[0,T ]×Rd

(
v∗ − ϕ

)
.

We may assume, without loss of generality, that this maximum is strict and that
ϕ satisfies a linear growth condition sup(t,x)∈[0,T ]×Rd |ϕ(t, x)|/(1 + |x|) < ∞. Fix

ã ∈ ◦
Ah, and consider a sequence (tn, xn, ãn)n in [0, T ) ×R

d × ◦
Ah such that(

tn, xn, ãn, vn(tn, xn, ãn)
) −→ (

t, x, ã, v∗(t, x)
)

as n → ∞.

Let us define for n ≥ 1 the function ϕn ∈ C1,2([0, T ] × (Rd ×R
q)) by

ϕn

(
t ′, x′, ã′) = ϕ

(
t ′, x′) + n

(∣∣t ′ − tn
∣∣2 + ∣∣x′ − xn

∣∣2)
,

for all (t ′, x′, ã′) ∈ [0, T ] × R
d × R

q . From the linear growth condition on vh
n

and ϕ, we can find a sequence (t̄n, x̄n, ¯̃an)n in [0, T ) ×R
d × Ah such that(

vh
n − ϕn

)
(t̄n, x̄n, ¯̃an) = max

[0,T ]×Rd×Ah

(
vh
n − ϕn

)
.

By standard arguments, we obtain that up to a subsequence,

n
(|t̄n − tn

∣∣2 + |x̄n − xn|2) n→∞−→ 0.

As a consequence, up to a subsequence, we have

(t̄n, x̄n, ¯̃an)
n→∞−→ (t, x, ¯̃a),

for some ¯̃a ∈ Ah. Now, from the viscosity subsolution property of vh
n at (t̄n, x̄n, ¯̃an)

with the test function ϕn, we have

−∂ϕn

∂t
(t̄n, x̄n, ¯̃an) − f

(
x̄n, h( ¯̃an), v

h
n(t̄n, x̄n, ¯̃an), σ

�(
x̄n, h( ¯̃an)

)
Dxϕn(t̄n, x̄n, ¯̃an)

)

−Lh( ¯̃an)ϕn(t̄n, x̄n, ¯̃an) − 1

2
tr

(
D2

ãϕn(t̄n, x̄n, ¯̃an)
) − n

∣∣Dãϕn(t̄n, x̄n, ¯̃an)
∣∣ ≤ 0.

Therefore, using the definition of ϕn,

−∂ϕn

∂t
(t̄n, x̄n, ¯̃an) −Lh( ¯̃an)ϕn(t̄n, x̄n, ¯̃an)

− f
(
x̄n, h( ¯̃an), v

h
n, σ�Dxϕn(t̄n, x̄n, ¯̃an)

) ≤ 0.

Sending n to infinity in the above inequality, we obtain

−∂ϕ

∂t
(t, x) −Lh( ¯̃a)ϕ(t, x) − f

(
x,h( ¯̃a), v∗(t, x), σ�(

x,h( ¯̃a)
)
Dxϕ(t, x)

) ≤ 0.

Setting a′ = h( ¯̃a), the above equation can be rewritten in an equivalent way as
follows:

−∂ϕ

∂t
(t, x) −La′

ϕ(t, x) − f
(
x, a′, σ�(

x, a′)Dxϕ(t, x)
) ≤ 0.



1242 S. CHOUKROUN AND A. COSSO

As a consequence, we have

−∂ϕ

∂t
(t, x) − sup

a∈A

[
Laϕ(t, x) + f

(
x, a, σ�(x, a)Dxϕ(t, x)

)] ≤ 0,

which is the viscosity subsolution property. �

PROOF OF THE VISCOSITY SUPERSOLUTION PROPERTY TO (3.2). Let
x ∈ R

d . From (4.20), we can find a sequence (tn, xn, ãn)n valued in [0, T ) ×R
d ×

R
q such that(

tn, xn, ãn, v
h
n(tn, xn, ãn)

) −→ (
T ,x, ã, v∗(T , x)

)
as n → ∞,

for some ã ∈ ◦
Ah. Since the sequence (vh

n)n is nondecreasing and vh
n(T , ·, ·) = g,

we have

v∗(T , x) ≥ lim
n→∞vh

1 (tn, xn, ãn) = g(x). �

PROOF OF THE VISCOSITY SUBSOLUTION PROPERTY TO (3.2). Let x ∈ R
d .

From (4.21), for every ε > 0 and ã ∈ ◦
Ah there exist N ∈ N and δ > 0 such that∣∣vh

n

(
t ′, x′, ã′) − v∗(T , x)

∣∣ ≤ ε,(4.22)

for all n ≥ N and |t ′ − T |, |x′ − x|, |ã′ − ã| ≤ δ, with t ′ < T and ã′ ∈ ◦
Ah. Now

we recall that vh
n(T , x, ã) = g(x). Therefore, from the continuity of vh

n , for every
n ∈ N, there exists δn > 0 such that∣∣vh

n

(
t ′, x′, ã′) − g(x)

∣∣ ≤ ε,(4.23)

for all |t ′ −T |, |x′ − x|, |ã′ − ã| ≤ δn, with ã′ ∈ ◦
Ah. Combining (4.22) with (4.23),

we end up with

v∗(T , x) ≤ g(x) + 2ε.

From the arbitrariness of ε, we get the claim. �

APPENDIX A: MARTINGALE REPRESENTATION THEOREM

We present here a martingale representation theorem, which is one of the funda-
mental results used to derive our nonlinear Feynman–Kac representation formula.
It is indeed a direct consequence of Theorem 4.29, Chapter III, in [21], which is,
however, designed for local (instead of square integrable) martingales.

THEOREM A.1. Let (t, ã) ∈ [0, T ] × R
q and M = (Ms)t≤s≤T be a càdlàg

square integrable F-martingale, with Mt constant. Then, there exist Z ∈ L2
t,ã

(W),

V ∈ L2
t,ã

(B) and U ∈ L2
t,ã

(π̃) such that

Ms = Mt +
∫ s

t
Zr dWr +

∫ s

t
Vr dBr +

∫ s

t

∫
E

Ur(e)π̃(dr, de),

for all t ≤ s ≤ T , Pt,ã almost surely.
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PROOF. Since M is a local martingale, we know from Theorem 4.29, Chap-
ter III, in [21], that

Ms = Mt +
∫ s

t
Zr dWr +

∫ s

t
Vr dBr +

∫ s

t

∫
E

Ur(e)π̃(dr, de),

for some predictable processes (Zs)t≤s≤T , (Vs)t≤s≤T and (Us)t≤s≤T , satisfying

E
t,ã

[∫ T ∧τZ
n

t
|Zs |2 ds

]
< ∞, E

t,ã

[∫ T ∧τV
n

t
|Vs |2 ds

]
< ∞,

E
t,ã

[(∫ T ∧τU
n

t

∫
E

∣∣Us(e)
∣∣2π(ds, de)

)1/2]
< ∞,

for all n ∈ N, where (τZ
n )n∈N, (τV

n )n∈N and (τU
n )n∈N are nondecreasing sequences

of F-stopping times valued in [t, T ], converging pointwise P
t,ã a.s. to T . It re-

mains to show that Z ∈ L2
t,ã

(W), V ∈ L2
t,ã

(B) and U ∈ L2
t,ã

(π̃). This is indeed a
consequence of Theorem 4.1.d in [18]. �

APPENDIX B: CHARACTERIZATION OF π AND MARKOV
PROPERTY OF (X, I)

In the following lemma, inspired by the results concerning Poisson random
measures (see, e.g., [32], Chapter XII, Proposition 1.12), we present a charac-
terization of π in terms of Fourier and Laplace functionals. This shows that π is a
conditionally Poisson random measure (also known as doubly stochastic Poisson
random measure or Cox random measure) relative to σ(Iz; z ≥ 0).

PROPOSITION B.1 (Fourier and Laplace functionals of π ). Assume that
(HFC) holds, and fix (t, ã) ∈ [0, T ]×R

q . Let � :R+×E →R be a B(R+)⊗B(E)-
measurable function such that

∫ ∞
0

∫
E |�u(e)|λ(I t,ã

u , de) du < ∞, Pt,ã a.s. Then for
every s ≤ ∞,

E
t,ã[

ei
∫ s

0
∫
E �u(e)π(du,de)|σ (

I t,ã
z ; z ≥ 0

)] = e
∫ s

0
∫
E(ei�u(e)−1)λ(I

t,ã
u ,de) du, P

t,ã a.s.

If � is nonnegative, then the following equality holds:

E
t,ã[

e− ∫ s
0
∫
E �u(e)π(du,de)|σ (

I t,ã
z ; z ≥ 0

)]

= e− ∫ s
0
∫
E(1−e−�u(e))λ(I

t,ã
u ,de) du, P

t,ã a.s.

In particular, if (Fk)1≤k≤n, with n ∈ N\{0}, is a finite sequence of pairwise disjoint
Borel measurable sets from R+ × E, with

∫
Fk

λ(I t,ã
u , de) du < ∞, Pt,ã a.s., then

E
t,ã[

ei
∑n

k=1 θkπ(Fk)|σ (
I t,ã
z ; z ≥ 0

)] =
n∏

k=1

e
∫
Fk

(eiθk −1)λ(I
t,ã
u ,de) du

, P
t,ã a.s.

for all θ1, . . . , θn ∈ R. In other words, π(F1), . . . , π(Fn) are conditionally inde-
pendent relative to σ(I t,ã

z ; z ≥ 0).
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PROOF. Let Js = ∫ s
0
∫
E �u(e)π(du, de), for any s ≥ 0, and define

φ(s) = E
t,ã[

eiJs |σ (
I t,ã
z ; z ≥ 0

)] ∀s ≥ 0.

Applying Itô’s formula to the process eiJs , we find

eiJs = 1 +
∫ s

0

∫
E

eiJu− (
ei�u(e) − 1

)
π(du, de).

Taking the conditional expectation with respect to σ(I t,ã
u ;u ≥ 0), we get

E
t,ã[

eiJs |σ (
I t,ã
z ; z ≥ 0

)]

= 1 +E
t,ã

[∫ s

0

∫
E

eiJu− (
ei�u(e) − 1

)
λ
(
I t,ã
u , de

)
du|σ (

I t,ã
z ; z ≥ 0

)]

= 1 +
∫ s

0

∫
E
E

t,ã[
eiJu− |σ (

I t,ã
z ; z ≥ 0

)](
ei�u(e) − 1

)
λ
(
I t,ã
u , de

)
du.

In terms of φ, this reads

φ(s) = 1 +
∫ s

0
φ

(
u−)

ψ(u)du, P
t,ã a.s.,

where

ψ(u) =
∫
E

(
ei�u(e) − 1

)
λ
(
I t,ã
u , de

)
, P

t,ã a.s.

Notice that ψ belongs to L1(R+), as a consequence of the integrability condition
on f . We see then that φ is continuous, so that

φ(s) = e
∫ s

0 ψ(u)du, P
t,ã a.s.,

which yields the first formula of the lemma. The second formula is proved simi-
larly. �

We shall now study the Markov properties of the pair (X, I) in the following
two propositions.

PROPOSITION B.2. Under assumption (HFC), for every (t, x, ã) ∈ [0, T ] ×
R

d × R
q the stochastic process (Xt,x,ã

s , I t,ã
s )s≥0 on (�,F,F,Pt,ã) is Markov

with respect to F: for every r, s ∈ R+, r ≤ s and for every Borel measurable and
bounded function h :Rd ×R

q → R, we have

E
t,ã[

h
(
Xt,x,ã

s , I t,ã
s

)|Fr

] = E
t,ã[

h
(
Xt,x,ã

s , I t,ã
s

)|σ (
Xt,x,ã

r , I t,ã
r

)]
, P

t,ã a.s.

PROOF. Fix (t, x, ã) ∈ [0, T ] × R
d × R

q . Notice that it is enough to show
the Markov property for t ≤ r ≤ s ≤ T . Therefore, let r ∈ [t, T ], and consider on
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(�,F,F,Pt,ã), the following equation for X̃:

X̃s = Xt,x,ã
r +

∫ s

r
b
(
X̃u, I

t,ã
u

)
du +

∫ s

r
σ

(
X̃u, I

t,ã
u

)
dWu

(B.1)
+

∫ s

r

∫
E

β
(
X̃u−, I t,ã

u , e
)
π̃(du, de),

for all s ∈ [r, T ], Pt,ã a.s., where π̃(du, de) = π(du, de) − 1{u<T∞}λ(I t,ã
u , de) du.

Under assumption (HFC), it is known (see, e.g., [19], Theorem 14.23) that there
exists a unique solution to equation (B.1), which is clearly given by the process
(Xt,x,ã

s )s∈[r,T ]. We recall that this solution is constructed using an iterative proce-
dure, which relies on a recursively defined sequence of processes (X̃(n))n; see, for
example, [19], Lemma 14.20. More precisely, we set X̃(0) ≡ 0, and then we define
X̃(n+1) from X̃(n) as follows:

X̃(n+1)
s = Xt,x,ã

r +
∫ s

r
b
(
X̃(n)

u , I t,ã
u

)
du +

∫ s

r
σ

(
X̃(n)

u , I t,ã
u

)
dWu

+
∫ s

r

∫
E

β
(
X̃

(n)

u− , I
t,ã
u− , e

)
π̃(du, de),

for all s ∈ [r, T ], P
t,ã a.s., for every n ∈ N. It can be shown that X̃(n) con-

verges uniformly toward the solution Xt,x,ã of (B.1) on [r, T ], Pt,ã a.s., namely
sups∈[r,T ] |X̃(n)

s −Xt,x,ã
s | → 0 as n tends to infinity, Pt,ã almost surely. This shows

that Xt,x,ã
s [and also (Xt,x,ã

s , I t,ã
s )] is F̃-adapted, where F̃ = (F̃s)s∈[r,T ] is the aug-

mentation of the filtration G̃ = (G̃s)s∈[r,T ] given by

G̃s = σ
(
Xt,x,ã

r , I t,ã
r

) ∨FW[r,s] ∨FB[r,s] ∨Fπ[r,s],

where FW[r,s] = σ(Wu − Wr; r ≤ u ≤ s), FB[r,s] = σ(Bu − Br; r ≤ u ≤ s) and

Fπ[r,s] = σ(π(F );F ∈ B([r, s]) ⊗ B(E)). Since FW[r,s] and FB[r,s] are independent
with respect to Fr , it is enough to prove that Fπ[r,s] and Fr are conditionally in-

dependent relative to σ(Xt,x,ã
r , I t,ã

r ). To prove this, take C ∈ Fr and a B(R+) ⊗
B(E)-measurable function � :R+ × E → R such that

∫ ∞
0

∫
E |�u(e)|λ(I t,ã

u ,

de) du < ∞, Pt,ã almost surely. Then the claim follows if we prove that

E
t,ã[

eiθ11C+iθ2
∫ s
r

∫
E �u(e)π(du,de)|σ (

Xt,x,ã
r , I t,ã

r

)]
= E

t,ã[
eiθ11C |σ (

Xt,x,ã
r , I t,ã

r

)]
(B.2)

×E
t,ã[

eiθ2
∫ s
r

∫
E �u(e)π(du,de)|σ (

Xt,x,ã
r , I t,ã

r

)]
, P

t,ã a.s.,

for all θ1, θ2 ∈ R. First, let us prove that 1C and
∫ s
r

∫
E �u(e)π(du, de) are condi-

tionally independent relative to σ(I t,ã
z ; z ≥ r), that is,

E
t,ã[

eiθ11C+iθ2
∫ s
r

∫
E �u(e)π(du,de)|σ (

I t,ã
z ; z ≥ r

)]
(B.3)

= E
t,ã[

eiθ11C |σ (
I t,ã
z ; z ≥ r

)]
e

∫ s
r

∫
E(ei�u(e)θ2−1)λ(I

t,ã
u ,de) du, P

t,ã a.s.
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Proceeding as in Proposition B.1, let Js = ∫ s
r

∫
E �u(e)π(du, de) and

φ(s) = E
t,ã[

eiθ11C+iθ2Js |σ (
I t,ã
z ; z ≥ r

)] ∀s ≥ r.

Applying Itô’s formula to the process eiJs , we find

E
t,ã[

eiθ11C+iθ2Js |σ (
I t,ã
z ; z ≥ r

)]
= E

t,ã[
eiθ11C |σ (

I t,ã
z ; z ≥ r

)]

+E
t,ã

[∫ s

r

∫
E

eiθ11C+iθ2Ju− (
ei�u(e)θ2 − 1

)
λ
(
I t,ã
u , de

)
du

∣∣∣σ (
I t,ã
z ; z ≥ 0

)]

= E
t,ã[

eiθ11C |σ (
I t,ã
z ; z ≥ r

)]

+
∫ s

r

∫
E
E

t,ã[
eiθ11C+iθ2Ju− |σ (

I t,ã
z ; z ≥ r

)](
ei�u(e)θ2 − 1

)
λ
(
I t,ã
u , de

)
du.

In terms of φ this reads

φ(s) = 1 +
∫ s

r
φ

(
u−)

ψ(u)du, P
t,ã a.s.,

where

ψ(u) =
∫
E

(
ei�u(e)θ2 − 1

)
λ
(
I t,ã
u , de

)
, P

t,ã a.s.

Notice that ψ belongs to L1(R+), as a consequence of the integrability condition
on f . We see then that φ is continuous, so that

φ(s) = E
t,ã[

eiθ11C |σ (
I t,ã
z ; z ≥ r

)]
e

∫ s
r ψ(u)du, P

t,ã a.s.,

which yields (B.3). Let us come back to (B.2). We have, using (B.3),

E
t,ã[

eiθ11C+iθ2
∫ s
r

∫
E �u(e)π(du,de)|σ (

Xt,x,ã
r , I t,ã

r

)] = E
t,ã[

Y1Y2|σ (
Xt,x,ã

r , I t,ã
r

)]
,

where

Y1 = E
t,ã[

eiθ11C |σ (
I t,ã
z ; z ≥ r

) ∨ σ
(
Xt,x,ã

r , I t,ã
r

)]
,

Y2 = E
t,ã[

eiθ2
∫ s
r

∫
E �u(e)π(du,de)|σ (

I t,ã
z ; z ≥ r

) ∨ σ
(
Xt,x,ã

r , I t,ã
r

)]
.

Since (I t,ã
z )z≥0 is Markov with respect to F, we have that Fr and σ(I t,ã

z ; z ≥ r)

are independent relative to σ(I t,ã
r ). Therefore, Y1 can be written as

Y1 = E
t,ã[

eiθ11C |σ (
Xt,x,ã

r , I t,ã
r

)]
.

It follows that Y1 is σ(Xt,x,ã
r , I t,ã

r )-measurable, so that

E
t,ã[

eiθ11C+iθ2
∫ s
r

∫
E �u(e)π(du,de)|σ (

Xt,x,ã
r , I t,ã

r

)]
= Y1E

t,ã[
Y2|σ (

Xt,x,ã
r , I t,ã

r

)]
, P

t,ã a.s.,

which proves (B.2). �
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PROPOSITION B.3. Under assumption (HFC), the family (�,F, (Xt,x,ã,

I t,ã),Pt,ã)t,x,ã is Markovian with respect to F and satisfies, for every (t, x, ã) ∈
[0, T ] × R

d × R
q , r, s ∈ R+ with r ≤ s, and for every Borel measurable and

bounded function h :Rd ×R
q →R,

E
t,ã[

h
(
Xt,x,ã

s , I t,ã
s

)|Fr

]
(B.4)

=
∫
Rd×Rq

h
(
x′, ã′)p(

r,
(
Xt,x,ã

r , I t,ã
r

)
, s, dx′ dã′), P

t,ã a.s.,

where p is the Markovian transition function given by

p
(
r,

(
x′, ã′), s,�) = P

r,ã′((
Xr,x′,ã′

s , I r,ã′
s

) ∈ �
)
,

for every r, s ∈R+, r ≤ s, (x ′, ã′) ∈ R
d ×R

q and every Borelian set � ⊂ R
d ×R

q .

REMARK B.4. For the proof of Proposition B.3 we shall need to consider si-
multaneously two distinct solutions, {(Xt,x,ã

s , I t,ã
s ), s ≥ 0} and {(Xt ′,x′,ã′

s , I t ′,ã′
s ),

s ≥ 0}, for (t, x, ã), (t ′, x′, ã′) ∈ [0, T ] × R
d × R

q . According to Lemma 2.5,
{(Xt,x,ã

s , I t,ã
s ), s ≥ 0} is defined on (�,F,F,Pt,ã) and {(Xt ′,x′,ã′

s , I t ′,ã′
s ), s ≥

0} on (�,F,F,Pt ′,ã′
), respectively. However, we can construct a single prob-

ability space supporting both solutions. More precisely, we can construct a
single probability space supporting both the random measure with compen-
sator given by 1{s<T∞}λ(I t,ã

s , de) ds and the random measure with compensator
1{s<T∞}λ(I t ′,ã′

s , de) ds, proceeding as follows.
Let �′′ be a copy of �′, with corresponding canonical marked point pro-

cess denoted by (T ′′
n ,α′′

n)n, canonical random measure π ′′, T ′′∞ := limn T ′′
n and

filtration F
′′ = (F ′

s)t≥0. Define (�̂, F̂, F̂ = (F̂t )t≥0) with �̂ := � × �′′, F̂ :=
F ⊗ F ′′∞ and F̂t := ⋂

s>t Fs ⊗ F ′′
s . Moreover, set Ŵ (ω̂) := W(ω), B̂(ω̂) :=

B(ω), π̂ ′(ω̂, ·) := π(ω, ·) and π̂ ′′(ω̂, ·) := π ′′(ω′′, ·). Set also T̂ ′∞(ω̂) := T∞(ω)

and T̂ ′′∞(ω̂) := T ′′∞(ω′′). Let P
t,ã,t ′,ã′

be the probability measure on (�̂, F̂)

given by P
t,ã,t ′,ã′

(dω̂) = P̄(dω̄) ⊗ P
′,t,ã(ω̄, dω′) ⊗ P

′′,t ′,ã′
(ω̄, dω′′). Finally, let

us define (X̂t,x,ã, Î t,ã)(ω̂) := (Xt,x,ã, I t,ã)(ω̄,ω′) and (X̂t ′,x′,ã′
, Î t ′,ã′

)(ω̂) :=
(Xt ′,x′,ã′

, I t ′,ã′
)(ω̄,ω′′). Then (X̂t,x,ã, Î t,ã) solves (2.1)–(2.2) on [t, T ] starting

from (x, ã) at t , and (X̂t ′,x′,ã′
, Î t ′,ã′

) solves (2.1)–(2.2) on [t ′, T ] starting from
(x′, ã′) at time t ′.

PROOF OF PROPOSITION B.3. We begin noting that from Proposition B.2, the
left-hand side of (B.4) is equal to E

t,ã[h(Xt,x,ã
s , I t,ã

s )|σ(Xt,x,ã
r , I t,ã

r )], Pt,ã almost
surely. Let us now divide the proof into two steps:

Step 1. (Xt,x,ã
r , I t,ã

r ) is a discrete random variable. Suppose that
(
Xt,x,ã

r , I t,ã
r

) = ∑
i≥1

(xi, ãi)1�i
,
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for some (xi, ãi) ∈ R
d × R

q and a Borel partition (�i)i≥1 of Rd × R
q satisfying

P(�i) > 0, for any i ≥ 1. In this case, (B.4) becomes

E
t,ã[

h
(
Xt,x,ã

s , I t,ã
s

)|σ (
Xt,x,ã

r , I t,ã
r

)]
(B.5)

= ∑
i≥1

1�i
E

r,ãi
[
h
(
Xr,xi ,ãi

s , I r,ãi
s

)]
, P

t,ã a.s.

Now notice that the process (X̂t,x,ã
s 1�i

)s≥r satisfies on (�̂, F̂, F̂,Pt,ã,r,ãi ) (using
the same notation as in Remark B.4)

X̂t,x,ã
s 1�i

= xi1�i
+

∫ s

r
bi

(
X̂t,x,ã

u 1�i
, Î t,ã

u 1�i

)
dr +

∫ s

r
σi

(
X̂t,x,ã

u 1�i
, Î t,ã

u 1�i

)
dŴu

+
∫ s

r

∫
E

β
(
X̂

t,x,ã
u− 1�i

, Î
t,ã
u− 1�i

, e
) ˜̂πi(du, de),

with bi = b1�i
, σi = σ1�i

, and ˜̂πi is the compensated martingale measure associ-

ated to the random measure π̂i , which has 1�i
λ(Î

t,ã
s− 1�i

, de) ds, s ≥ r , as compen-

sator. Similarly, the process (X̂
r,xi ,ãi
s 1�i

)s≥r satisfies on (�̂, F̂, F̂,Pt,ã,r,ãi )

X̂r,xi ,ãi
s 1�i

= xi1�i
+

∫ s

r
bi

(
X̂r,xi ,ãi

u 1�i
, Î r,ãi

u 1�i

)
dr +

∫ s

r
σi

(
X̂r,xi ,ãi

u 1�i
, Î r,ãi

u 1�i

)
dŴu

+
∫ s

r

∫
E

β
(
X̂

r,xi ,ãi

u− 1�i
, Î

r,ãi

u− 1�i
, e

) ˜̂π ′
i (du, de),

where ˜̂π ′
i is the compensated martingale measure associated to the random mea-

sure π̂ ′
i , which has 1�i

λ(Î
r,ãi

s− 1�i
, de) ds, s ≥ r , as compensator. Since the two pro-

cesses (Î t,ã
s 1�i

)s≥r and (Î
r,ãi
s 1�i

)s≥r have the same law, we see that (X̂t,x,ã
s 1�i

)s≥r

and (X̂
r,xi ,ãi
s 1�i

)s≥r solve the same equation, and, from uniqueness, they have the
same law, as well. This implies (denoting E

t,ã,r,ãi the expectation with respect to
P

t,ã,r,ãi )

E
t,ã,r,ãi

[
h
(
X̂t,x,ã

s , Î t,ã
s

)
1�i

] = E
t,ã,r,ãi

[
h
(
X̂r,xi ,ãi

s , Î r,ãi
s

)
1�i

]
.

Notice that

E
t,ã,r,ãi

[
h
(
X̂t,x,ã

s , Î t,ã
s

)
1�i

] = E
t,ã[

h
(
Xt,x,ã

s , I t,ã
s

)
1�i

]
and

E
t,ã,r,ãi

[
h
(
X̂r,xi ,ãi

s , Î r,ãi
s

)
1�i

] = E
t,ã,r,ãi

[
E

t,ã,r,ãi
[
h
(
X̂r,xi ,ãi

s , Î r,ãi
s

)
1�i

|Fr

]]
= E

t,ã,r,ãi
[
E

t,ã,r,ãi
[
h
(
X̂r,xi ,ãi

s , Î r,ãi
s

)|Fr

]
1�i

]
= E

t,ã,r,ãi
[
E

t,ã,r,ãi
[
h
(
X̂r,xi ,ãi

s , Î r,ãi
s

)]
1�i

]
= E

t,ã[
E

r,ãi
[
h
(
Xr,xi ,ãi

s , I r,ãi
s

)]
1�i

]
.
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In other words, we have

E
t,ã[

h
(
Xt,x,ã

s , I t,ã
s

)
1�i

] = E
t,ã[

E
r,ãi

[
h
(
Xr,xi ,ãi

s , I r,ãi
s

)]
1�i

]
,

from which (B.5) follows.
Step 2. General case. From estimate (2.5), we see that (Xt,x,ã

r , I t,ã
r ) is square

integrable, so that there exists a sequence (Xt,x,ã,n
r , I t,ã,n

r )n of square inte-
grable discrete random variables converging to (Xt,x,ã

r , I t,ã
r ) pointwise P

t,ã

a.s. and in L2(�,F,Pt,ã;Rd × R
q). The sequence (Xt,x,ã,n

r , I t,ã,n
r )n can be

chosen in such a way that (Xt,x,ã,n+1
r , I t,ã,n+1

r ) is a better approximation of
(Xt,x,ã

r , I t,ã
r ) than (Xt,x,ã,n

r , I t,ã,n
r ), in other words such that σ(Xt,x,ã,n

r , I t,ã,n
r ) ⊂

σ(Xt,x,ã,n+1
r , I t,ã,n+1

r ). Let us denote by (Xt,x,ã,n
s , I t,ã,n

s ) the solution to (2.1)–
(2.2) starting at time r from (Xt,x,ã,n

r , I t,ã,n
r ). Notice that, from classical con-

vergence results of diffusion processes with jumps (see, e.g., [21], Chapter IX,
Theorem 4.8), it follows that (Xt,x,ã,n

s , I t,ã,n
s ) converges weakly to (Xt,x,ã

s , I t,ã
s ).

From step 1, for any n we have

E
t,ã[

h
(
Xt,x,ã,n

s , I t,ã,n
s

)|σ (
Xt,x,ã,n

r , I t,ã,n
r

)]
(B.6)

= p
(
r,

(
Xt,x,ã,n

r , I t,ã,n
r

)
, s, h

)
, P

t,ã a.s.,

where

p
(
r,

(
x′, ã′), s, h) = E

r,ã′[
h
(
Xr,x′,ã′,n

s , I r,ã′,n
s

)]
,

for every r, s ∈ R+, r ≤ s, (x′, ã′) ∈ R
d × R

q and every Borel measurable and
bounded function h :Rd ×R

q →R. Let us suppose that h is bounded and continu-
ous. Since the sequence (Et,ã[h(Xt,x,ã,n

s , I t,ã,n
s )|σ(Xt,x,ã,n

r , I t,ã,n
r )])n is uniformly

bounded in L2(�,F,Pt,ã), there exists a subsequence (Et,ã[h(X
t,x,ã,nk
s , I

t,ã,nk
s )|

σ(X
t,x,ã,nk
r , I

t,ã,nk
r )])k which converges weakly to some Z ∈ L2(�,F,Pt,ã). For

any N ∈ N and �N ∈ σ(Xt,x,ã,N
r , I t,ã,N

r ), we have, by definition of conditional
expectation,

E
t,ã[

E
t,ã[

h
(
Xt,x,ã,nk

s , I t,ã,nk
s

)|σ (
Xt,x,ã,nk

r , I t,ã,nk
r

)]
1�N

]
= E

t,ã[
h
(
Xt,x,ã,nk

s , I t,ã,nk
s

)
1�N

]
,

for all nk ≥ N . Letting k → ∞, we deduce

E
t,ã[Z1�N

] = E
t,ã[

h
(
Xt,x,ã

s , I t,ã
s

)
1�N

]
.

Since σ(Xt,x,ã
r , I t,ã

r ) = ∨
n σ (Xt,x,ã,n

r , I t,ã,n
r ), it follows that

Z = E
t,ã[

h
(
Xt,x,ã

s , I t,ã
s

)|σ (
Xt,x,ã

r , I t,ã
r

)]
, P

t,ã a.s.

Notice that every convergent subsequence of (Et,ã[h(Xt,x,ã,n
s , I t,ã,n

s )|σ(Xt,x,ã,n
r ,

I t,ã,n
r )])n has to converge to E

t,ã[h(Xt,x,ã
s , I t,ã

s )|σ(Xt,x,ã
r , I t,ã

r )], so that the whole
sequence converges. On the other hand, when h is bounded and continuous, it
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follows again from classical convergence results of diffusion processes with jumps
(see, e.g., [21], Chapter IX, Theorem 4.8) that p = p(r, (x′, ã′), s, h) is continuous
in (x′, ã′). Since (Xt,x,ã,n

r , I t,ã,n
r )n converges pointwise P

t,ã a.s. to (Xt,x,ã
r , I t,ã

r ),
letting n → ∞ in (B.6), we obtain

E
t,ã[

h
(
Xt,x,ã

s , I t,ã
s

)|σ (
Xt,x,ã

r , I t,ã
r

)]
(B.7)

= p
(
r,

(
Xt,x,ã

r , I t,ã
r

)
, s, h

)
, P

t,ã a.s.

for any h bounded and continuous. Using a monotone class argument, we conclude
that (B.7) remains true for any h bounded and Borel measurable. �

APPENDIX C: COMPARISON THEOREM FOR EQUATIONS (3.1)–(3.2)

We shall prove a comparison theorem for viscosity sub and supersolutions to the
fully nonlinear IPDE of HJB type (3.1)–(3.2). Inspired by Definition 2 in [3], we
begin recalling the following result concerning an equivalent definition of viscosity
super and subsolution to (3.1)–(3.2), whose standard proof is not reported.

LEMMA C.1. Let assumptions (HFC), (HBC) and (Hλ) hold. A locally
bounded and l.s.c. (resp. u.s.c.) function u on [0, T ] × R

d is a viscosity super-
solution (resp. viscosity subsolution) to (3.1)–(3.2) if and only if

u(T , x) ≥ (resp. ≤) g(x)

for any x ∈ R
d , and, for any δ > 0,

−∂ϕ

∂t
(t, x) − sup

a∈A

[
b(x, a).Dxϕ(t, x) + 1

2
tr

(
σσ�(x, a)D2

xϕ(t, x)
)

+ I 1,δ
a (t, x, ϕ) + I 2,δ

a

(
t, x,Dxϕ(t, x), u

)

+ f
(
x, a,u(t, x), σ�(x, a)Dxϕ(t, x)

)]

≥ (resp. ≤) 0,

for any (t, x) ∈ [0, T ) ×R
d and any ϕ ∈ C1,2([0, T ] ×R

d) such that

(u − ϕ)(t, x) = min
[0,T ]×Rd

(u − ϕ)
(
resp. max

[0,T ]×Rd
(u − ϕ)

)
.

As in [3] (see Definition 4), for the proof of the comparison theorem it is useful
to adopt another equivalent definition of viscosity solution to equations (3.1)–(3.2)
(see Lemma C.3 below), where we mix test functions and sub/superjets. We first
recall the definition of sub and superjets.

DEFINITION C.2. Let u : [0, T ] ×R
d →R be a l.s.c. (resp. u.s.c.) function.
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(i) We denote by P2,−u(t, x) [resp. P2,+u(t, x)] the parabolic subjet (resp.
parabolic superjet) of u at (t, x) ∈ [0, T ) × R

d , as the set of triples (p, q,M) ∈
R×R

d × S
d (we denote by S

d the set of d × d symmetric matrices) satisfying
u(s, y) ≥ (resp. ≤) u(t, x) + p(s − t) + q.(y − x) + 1

2(y − x).M(y − x)

+ o
(|s − t | + |y − x|2)

as (s, y) → (t, x).

(ii) We denote by P̄2,−u(t, x) [resp. P̄2,+u(t, x)] the parabolic limiting subjet
(resp. parabolic limiting superjet) of u at (t, x) ∈ [0, T ) ×R

d , as the set of triples
(p, q,M) ∈ R×R

d × S
d such that

(p, q,M) = lim
n→∞(pn, qn,Mn)

with (pn, qn,Mn) ∈ P2,−u(tn, xn) [resp. P2,+u(tn, xn)], where(
t, x, u(t, x)

) = lim
n→∞

(
tn, xn, u(tn, xn)

)
.

LEMMA C.3. Let assumptions (HFC), (HBC) and (Hλ) hold. A locally
bounded and l.s.c. (resp. u.s.c.) function u on [0, T ] × R

d is a viscosity super-
solution (resp. viscosity subsolution) to (3.1)–(3.2) if and only if

u(T , x) ≥ (resp. ≤) g(x)

for any x ∈ R
d , an, for any δ > 0,

−p − sup
a∈A

[
b(x, a).q + 1

2
tr

(
σσ�(x, a)M

) + I 1,δ
a (t, x, ϕ)

+ I 2,δ
a (t, x, q,u) + f

(
x, a,u(t, x), σ�(x, a)q

)] ≥ (resp. ≤) 0,

for any (t, x) ∈ [0, T ) ×R
d , (p, q,M) ∈ P̄2,−u(t, x) [resp. (p, q,M) ∈ P̄2,+u(t,

x)] and any ϕ ∈ C1,2([0, T ] × R
d), with ∂ϕ

∂t
(t, x) = p, Dxϕ(t, x) = q , and

D2
xϕ(t, x) ≤ M [resp. D2

xϕ(t, x) ≥ M], such that

(u − ϕ)(t, x) = min
[0,T ]×Rd

(u − ϕ)
[
resp. max

[0,T ]×Rd
(u − ϕ)

]
.

PROOF. The proof can be completed along the lines of the proof of Proposi-
tion 1 in [3]. �

We can now state the main result of this appendix.

THEOREM C.4. Assume that (HFC), (HBC) and (Hλ) hold. Let u be a u.s.c.
viscosity subsolution to (3.1)–(3.2) and w a l.s.c. viscosity supersolution to (3.1)–
(3.2), satisfying a linear growth condition

sup
(t,x)∈[0,T ]×Rd

|u(t, x)| + |w(t, x)|
1 + |x| < ∞.(C.1)

If u(T , x) ≤ w(T ,x) for all x ∈ R
d , then u ≤ w on [0, T ] ×R

d .
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PROOF. We shall argue by contradiction, assuming that

sup
[0,T ]×Rd

(u − w) > 0.(C.2)

Step 1. For some ρ > 0 to be chosen later, set

ũ(t, x) = eρtu(t, x), w̃(t, x) = eρtw(t, x), (t, x) ∈ [0, T ] ×R
d .

Then we see that ũ (resp. w̃) is a viscosity subsolution (resp. supersolution) to the
following equation:

ρṽ − ∂ṽ

∂t
− sup

a∈A

(
Laṽ + f̃

(·, a, ṽ, σ�(·, a)Dxṽ
)) = 0 on [0, T ) ×R

d,(C.3)

ṽ(T , x) = g̃(x), x ∈R
d,(C.4)

where

f̃ (t, x, a, y, z) = eρtf
(
x, a, e−ρty, e−ρtz

)
, g̃(x) = eρT g(x),

for all (t, x, a, y, z) ∈ [0, T ] ×R
d × A ×R×R

d .
Step 2. Denote, for all (t, s, x, y) ∈ [0, T ]2 ×R

2d , and for any n ∈ N \ {0} and
γ > 0,

�n,γ (t, s, x, y) = ũ(t, x) − w̃(s, y) − n
|t − s|2

2
− n

|x − y|2
2

− γ
(|x|2 + |y|2)

.

By the linear growth assumption on u and w, for each n and γ , there ex-
ists (tn,γ , sn,γ , xn,γ , yn,γ ) ∈ [0, T ]2 × R

2d attaining the maximum of �n,γ on
[0, T ]2 × R

2d . Using standard techniques from the theory of viscosity solutions,
we see that for each γ , there exists (tγ , xγ ) ∈ [0, T ] ×R

d such that

(tn,γ , sn,γ , xn,γ , yn,γ )
n→∞−→ (tγ , tγ , xγ , xγ ),(C.5)

n|xn,γ − xγ |2 + n|yn,γ − yγ |2 n→∞−→ 0,(C.6)

ũ(tn,γ , xn,γ ) − w̃(sn,γ , yn,γ )
n→∞−→ ũ(tγ , xγ ) − w̃(tγ , xγ ).(C.7)

We also notice, proceeding by contradiction, that we can prove that if γ is small
enough, then tγ < T , so that tn,γ , sn,γ < T , up to a subsequence. Finally, we derive
a useful inequality. More precisely, for any ξ, ξ ′ ∈ R

d , from the maximum property
�n,γ (tn,γ , sn,γ , xn,γ + d, yn,γ + d ′) ≤ �n,γ (tn,γ , sn,γ , xn,γ , yn,γ ), we get

ũ(tn,γ , xn,γ + d) − ũ(tn,γ , xn,γ ) − nd.(xn,γ − yn,γ )

≤ w̃
(
sn,γ , yn,γ + d ′) − w̃(sn,γ , yn,γ ) − nd ′.(xn,γ − yn,γ )(C.8)

+ n
|d − d ′|2

2
+ γ

(|xn,γ + d|2 − |xn,γ |2 + ∣∣yn,γ + d ′∣∣2 − |yn,γ |2)
.
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Step 3. We shall apply the nonlocal Jensen–Ishii lemma; see [3], Lemma 1. To
this end, let γ ∈ (0, γ ∗], and define

ϕn(t, s, x, y)

= n
|t − s|2

2
+ n

|x − y|2
2

+ γ
(|x|2 + |y|2) − �n,γ (tn,γ , sn,γ , xn,γ , yn,γ ),

for all (t, s, x, y) ∈ R
2+2d and for any n ∈ N \ {0}. Then (tn, sn, xn, yn) :=

(tn,γ , sn,γ , xn,γ , yn,γ ) is a zero global maximum point for ũ(t, x) − w̃(s, y) −
ϕn(t, s, x, y) on [0, T ]2 ×R

2d . Set

(pn, qn) :=
(

∂ϕn

∂t
(tn, sn, xn, yn),Dxϕn(tn, sn, xn, yn)

)
,

(−p′
n,−q ′

n

) :=
(

∂ϕn

∂s
(tn, sn, xn, yn),Dyϕn(tn, sn, xn, yn)

)
.

Then, for any r̂ > 0, it follows from the nonlocal Jensen–Ishii lemma that there
exists α̂(r̂) > 0 such that, for any 0 < α ≤ α̂(r̂), we have that there exist se-
quences (for simplicity, we omit the dependence on α) (tn,k, sn,k, xn,k, yn,k) →
(tn, sn, xn, yn), (tn,k, sn,k, xn,k, yn,k) ∈ [0, T )2 × R

2d , (pn,k,p
′
n,k, qn,k, q

′
n,k) →

(pn,p
′
n, qn, q

′
n), matrices Nn,k,N

′
n,k ∈ S

d , with (Nn,k , N ′
n,k) converging to some

(Mn,α,M ′
n,α), and a sequence of functions ϕn,k ∈ C1,2([0, T ]2 ×R

2d) such that:

(i) (tn,k, sn,k, xn,k, yn,k) is a global maximum point of ũ − w̃ − ϕn,k ;
(ii) ũ(tn,k, xn,k) → ũ(tn, xn) and w̃(sn,k, yn,k) → w̃(sn, yn), as k tends to in-

finity;
(iii) (pn,k, qn,k,Nn,k) ∈ P2,+ũ(tn,k, xn,k), (p′

n,k, q
′
n,k,N

′
n,k) ∈ P2,−w̃(sn,k,

yn,k) and

(pn,k, qn,k) :=
(

∂ϕn,k

∂t
(tn,k, sn,k, xn,k, yn,k),Dxϕn,k(tn,k, sn,k, xn,k, yn,k)

)
,

(−p′
n,k,−q ′

n,k

) :=
(

∂ϕn,k

∂s
(tn,k, sn,k, xn,k, yn,k),Dyϕn,k(tn,k, sn,k, xn,k, yn,k)

)
;

(iv) the following inequalities hold [we denote by I the 2d ×2d identity matrix
and by D2

(x,y)ϕn,k the Hessian matrix of ϕn,k with respect to (x, y)]:

− 1

α
I ≤

(
Nn,k 0

0 −N ′
n,k

)
≤ D2

(x,y)ϕn,k(tn,k, sn,k, xn,k, yn,k);(C.9)

(v) ϕn,k converges uniformly in R
2+2d and in C2(Br̂ (tn, sn, xn, yn)) [where

Br̂(tn, sn, xn, yn) is the ball in R
2+2d of radius r̂ and centered at (tn, sn, xn, yn)]

toward ψn,α := Rα[ϕn](·, (pn,p
′
n, qn, q ′

n)), where, for any ξ ∈ R
2+2d ,

Rα[ϕn](z, ξ) := sup∣∣z′−z
∣∣≤1

{
ϕn

(
z′) − ξ.

(
z′ − z

) − |z′ − z|2
2α

}
∀z ∈ R

2+2d .
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Then from Lemma C.3 and the viscosity subsolution property to (C.3)–(C.4) of ũ,
we have

ρũ(tn,k, xn,k) − pn,k

− sup
a∈A

[
b(xn,k, a).qn,k + 1

2
tr

(
σσ�(xn,k, a)Nn,k

)

+ I 1,δ
a

(
tn,k, xn,k, ϕn,k(·, sn,k, ·, yn,k)

) + I 2,δ
a (tn,k, xn,k, qn,k, ũ)

+ f̃
(
tn,k, xn,k, a, ũ(tn,k, xn,k), σ

�(xn,k, a)qn,k

)] ≤ 0.

On the other hand, from the viscosity supersolution property to (C.3)–(C.4) of w̃,
we have

ρw̃(sn,k, yn,k) − p′
n,k

− sup
a∈A

[
b(yn,k, a).q ′

n,k + 1

2
tr

(
σσ�(yn,k, a)N ′

n,k

)

+ I 1,δ
a

(
sn,k, yn,k,−ϕn,k(tn,k, ·, xn,k, ·)) + I 2,δ

a

(
sn,k, yn,k, q

′
n,k, w̃

)

+ f̃
(
sn,k, yn,k, a, w̃(sn,k, yn,k), σ

�(yn,k, a)q ′
n,k

)]

≥ 0.

For every k ∈ N \ {0}, consider ak ∈ A such that

ρũ(tn,k, xn,k) − pn,k − b(xn,k, ak).qn,k − 1

2
tr

(
σσ�(xn,k, ak)Nn,k

)

− I 1,δ
ak

(
tn,k, xn,k, ϕn,k(·, sn,k, ·, yn,k)

) − I 2,δ
ak

(tn,k, xn,k, qn,k, ũ)(C.10)

− f̃
(
tn,k, xn,k, ak, ũ(tn,k, xn,k), σ

�(xn,k, ak)qn,k

) ≤ 1

k
.

From the compactness of A, we can suppose that ak → a∞ ∈ A, up to a subse-
quence. Moreover, for every a ∈ A we have

ρw̃(sn,k, yn,k) − p′
n,k − b(yn,k, a).q ′

n,k − 1
2 tr

(
σσ�(yn,k, a)N ′

n,k

)
− I 1,δ

a

(
sn,k, yn,k,−ϕn,k(tn,k, ·, xn,k, ·)) − I 2,δ

a

(
sn,k, yn,k, q

′
n,k, w̃

)
(C.11)

− f̃
(
sn,k, yn,k, a, w̃(sn,k, yn,k), σ

�(yn,k, a)q ′
n,k

) ≥ 0.

Set r∗ := 2 sup(a,e)∈A×(E∩{|e|≤δ})(|β(x∗, a, e)| ∨ |β(y∗, a, e)|), where from (C.5)
we define (x∗, y∗) := limn→∞(xn, yn), and α∗ := α̂(r∗). Notice that ∀n ∈N \ {0},
and we have sup(a,e)∈A×(E∩{|e|≤δ})(|β(xn, a, e)| ∨ |β(yn, a, e)|) < r∗, up to a sub-
sequence. Therefore, sending k to infinity, we get ϕn,k → ψn,α , as k tends to in-
finity, uniformly in C2(Br∗(tn, sn, xn, yn)) for any 0 < α ≤ α∗. Moreover, from
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assumption (Hλ)(iii) we have

lim sup
k→∞

∫
E∩{|e|>δ}

(
ũ
(
tn,k, xn,k + β(xn,k, ak, e)

)

− ũ(tn,k, xn,k) − β(xn,k, ak, e).qn,k

)
λ(ak, de)

≤
∫
E∩{|e|>δ}

(
ũ
(
tn, xn + β(xn, a∞, e)

)

− ũ(tn, xn) − β(xn, a∞, e).qn

)
λ(a∞, de).

Therefore, from (C.10) we obtain

ρũ(tn, xn) − pn − b(xn, a∞).qn − 1
2 tr

(
σσ�(xn, a∞)Mn,α

)
− I 1,δ

a∞
(
tn, xn,ψn,α(·, sn, ·, yn)

) − I 2,δ
a∞ (tn, xn, qn, ũ)

− f̃
(
tn, xn, a∞, ũ(tn, xn), σ

�(xn, a∞)qn

) ≤ 0.

A fortiori, if we take the supremum over a ∈ A we conclude

ρũ(tn, xn) − pn

− sup
a∈A

[
b(xn, a).qn + 1

2
tr

(
σσ�(xn, a)Mn,α

)
(C.12)

+ I 1,δ
a

(
tn, xn,ψn,α(·, sn, ·, yn)

)

+ I 2,δ
a (tn, xn, qn, ũ) + f̃

(
tn, xn, a, ũ(tn, xn), σ

�(xn, a)qn

)] ≤ 0,

for any 0 < α ≤ α∗. On the other hand, letting k to infinity in (C.11) for every fixed
a ∈ A, and then taking the supremum, we end up with

ρw̃(sn, yn) − p′
n

− sup
a∈A

[
b(yn, a).q ′

n + 1

2
tr

(
σσ�(yn, a)M ′

n,α

)
(C.13)

+ I 1,δ
a

(
sn, yn,−ψn,α(tn, ·, xn, ·))

+ I 2,δ
a

(
sn, yn, q

′
n, w̃

) + f̃
(
sn, yn, a, w̃(sn, yn), σ

�(yn, a)q ′
n

)] ≥ 0,

for any 0 < α ≤ α∗. Moreover, from (C.9) we have

− 1

α
I ≤

(
Mn,α 0

0 −M ′
n,α

)
≤ D2

(x,y)ψn,α(tn, sn, xn, yn)(C.14)

and by direct calculation

D2
(x,y)ψn,α(tn, sn, xn, yn)

(C.15)
= D2

(x,y)ϕn(tn, sn, xn, yn) + o(1) as α → 0+.
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Step 4. From (C.12), for any n, consider an ∈ A such that

ρũ(tn, xn) − pn − b(xn, an).qn − 1

2
tr

(
σσ�(xn, an)Mn,α

)

− I 1,δ
an

(
tn, xn,ψn,α(·, sn, ·, yn)

)
(C.16)

− I 2,δ
an

(tn, xn, qn, ũ) − f̃
(
tn, xn, an, ũ(tn, xn), σ

�(xn, an)qn

) ≤ 1

n
.

On the other hand, from (C.13) we deduce that

ρw̃(sn, yn) − p′
n − b(yn, an).q

′
n − 1

2 tr
(
σσ�(yn, an)M

′
n,α

)
− I 1,δ

an

(
sn, yn,−ψn,α(tn, ·, xn, ·)) − I 2,δ

an

(
sn, yn, q

′
n, w̃

)
(C.17)

− f̃
(
sn, yn, an, w̃(sn, yn), σ

�(yn, an)q
′
n

) ≥ 0.

By subtracting (C.17) from (C.16), we obtain

ρ
(
ũ(tn, xn) − w̃(sn, yn)

) ≤ 1

n
+ pn − p′

n + �Fn + �I 1,δ
n + �I 2,δ

n

+ b(xn, an).qn − b(yn, an).q
′
n(C.18)

+ 1

2
tr

(
σσ�(xn, an)Mn,α − σσ�(yn, an)M

′
n,α

)
,

where

�Fn = f̃
(
tn, xn, an, ũ(tn, xn), σ

�(xn, an)qn

)
− f̃

(
sn, yn, an, w̃(sn, yn), σ

�(yn, an)q
′
n

)
,

�I 1,δ
n = I 1,δ

an

(
tn, xn,ψn,α(·, sn, ·, yn)

) − I 1,δ
an

(
sn, yn,−ψn,α(tn, ·, xn, ·)),

�I 2,δ
n = I 2,δ

an
(tn, xn, qn, ũ) − I 2,δ

an

(
sn, yn, q

′
n, w̃

)
.

We have

pn − p′
n = ∂ϕn

∂t
(tn, sn, xn, yn) + ∂ϕn

∂s
(tn, sn, xn, yn) = 0.

By the uniform Lipschitz property of b with respect to x, and (C.6), we see that

lim
n→∞

(
b(xn, an).qn − b(yn, an).q

′
n

)

= lim
n→∞

(
b(xn, an).Dxϕn(tn, xn, yn) + b(yn, an).Dyϕn(tn, xn, yn)

) = 0.

Regarding the trace term in (C.18), by the uniform Lipschitz property of σ with
respect to x, (C.14), (C.15) and (C.6), we obtain

lim sup
n→∞

lim sup
α→0+

tr
(
σσ�(xn, an)Mn,α − σσ�(yn, an)M

′
n,α

) ≤ 0.
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Moreover, from assumption (HBC) and (C.6)–(C.7), we find

lim
n→∞|�Fn| = 0.

Concerning the integral term �I 1,δ
n , we have, for some ϑ ′, ϑ ′′ ∈ (0,1),

�I 1,δ
n =

∫
E∩{|e|≤δ}

[
D2

xψn,α

(
tn, sn, xn + ϑ ′β(xn, an, e), yn

)

× β(xn, an, e).β(xn, an, e)

+ D2
yψn,α

(
tn, sn, xn, yn + ϑ ′′β(yn, an, e)

)
× β(xn, an, e).β(xn, an, e)

]
λ(an, de).

Therefore, using (C.15) we see that there exists a positive constant C′
n, depending

only on (xn, yn), the Lipschitz constant of β and on supϑ ′,ϑ ′′∈[0,1] |D2
xϕn(tn, sn,

xn + ϑ ′β(xn, an, e), yn)| ∨ |D2
yϕn(tn, sn, xn, yn + ϑ ′′β(yn, an, e))|, such that

lim sup
α→0+

∣∣�I 1,δ
n

∣∣ ≤ C′
n

∫
E∩{|e|≤δ}

(
1 ∧ |e|2)

λ(an, de).

Finally, it remains to consider the integral term �I 2,δ
n . Integrating inequality (C.8),

with d = β(xn, an, e) and d ′ = β(yn, an, e), we find

I 2,δ
an

(tn, xn, qn, ũ)

≤ I 2,δ
an

(
sn, yn, q

′
n, w̃

) + n

∫
E∩{|e|>δ}

|β(xn, an, e) − β(yn, an, e)|2
2

λ(an, de)

+ γ

∫
E∩{|e|>δ}

(∣∣xn + β(xn, an, e)
∣∣2 − |xn|2)

λ(an, de)

+ γ

∫
E∩{|e|>δ}

(∣∣yn + β(yn, an, e)
∣∣2 − |yn|2)

λ(an, de).

Then it follows from assumption (HFC) that there exists a positive constant C′′,
such that

I 2,δ
an

(tn, xn, qn, ũ) ≤ I 2,δ
an

(
sn, yn, q

′
n, w̃

) + nC′′ |xn − yn|2
2

+ γC′′.

In conclusion, taking the lim supn→∞ lim supδ→0+ lim supα→0+ on both sides
of (C.18), we see that the we get the required contradiction for γ small enough.

�
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