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Abstract
An electric field is employed for the active tuning of the structural colour in photonic crystals, which acts as an effective external

stimulus with an impact on light transmission manipulation. In this work, we demonstrate structural colour in a photonic crystal

device comprised of alternating layers of silver nanoparticles and titanium dioxide nanoparticles, exhibiting spectral shifts of

around 10 nm for an applied voltage of only 10 V. The accumulation of charge at the metal/dielectric interface with an applied elec-

tric field leads to an effective increase of the charges contributing to the plasma frequency in silver. This initiates a blue shift of the

silver plasmon band with a simultaneous blue shift of the photonic band gap as a result of the change in the silver dielectric func-

tion (i.e. decrease of the effective refractive index). These results are the first demonstration of active colour tuning in silver/tita-

nium dioxide nanoparticle-based photonic crystals and open the route to metal/dielectric-based photonic crystals as electro-optic

switches.
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Introduction
Structural colour is colour due to the Bragg reflection (in

photonic structures for example) as opposed to colour from pig-

ments or colour centres [1]. The active tuning of the structural

colour in photonic crystals is a subject that has attracted a great

attention in the last decades. The electric field is probably the

simplest external stimulus that can be employed for such colour
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tuning. A recent review article has reported the most important

achievements in the electrically driven tunability of photonic

crystals [2]. In this interesting article, different types of tuning

techniques are encompassed, for example: i) smart polymers

[3-7], ii) liquid crystals [8-12], and electrophoresis [13-16].

The employment of metallic nanoparticles for the structural

colour tuning with electric field, to the best of our knowledge,

has not been reported in the literature. However, plasmon

peak tuning of gold nanoparticles with an electric field in an

electrochemical cell has been recently shown [17], opening the

way to a new strategy for electro-optical switches with metal

nanostructures.

In this paper we show experimental evidence of structural

colour tuning with an electric field in a one-dimensional

photonic crystal made of alternating layers of silver nanoparti-

cles and titanium dioxide nanoparticles. We have observed a

blue shift of about 10 nm with an applied voltage of 10 V. We

give an interpretation of the phenomenon based on the in-

creased carrier density participating in the plasma frequency of

silver. Such charges are due to the polarization at the titanium

dioxide/silver interface upon application of an electric field.

Results and Discussion
The fabricated photonic crystal is made of five bilayers of silver

nanoparticles and titanium dioxide nanoparticles deposited on

top of an indium tin oxide (ITO) substrate. A scheme of the

photonic crystal is shown in Figure 1.

Figure 1: Scheme of the one-dimensional photonic crystal made of
layers of silver nanoparticles and titanium dioxide nanoparticles. The
actual photonic crystal fabricated in this work is composed of five
silver/titanium dioxide bilayers.

The silver nanoparticles have a diameter of about 50 nm, while

the TiO2 nanoparticles are smaller than 15 nm. The surface to-

pography and phase atomic force microscopy (AFM) images of

a Ag layer, a TiO2 layer and the top surface of a five bilayer

Ag/TiO2 photonic crystal, all deposited on glass/ITO substrates,

are presented in the Supporting Information File 1 (Figure S1)

and show that the silver nanoparticle layer has the highest sur-

face roughness among the different samples. This is due to the

large size of the silver nanoparticles and the formation of large

aggregates. Notably, the lowest surface roughness was found

for the top TiO2 surface layer of the five bilayer photonic

crystal (Figure S1c of Supporting Information File 1). The for-

mation of a more compact layer with a reduced surface rough-

ness is most probably a result of the small TiO2 nanoparticles

deposited onto the Ag films, which fill the empty voids be-

tween the Ag aggregates and promote a certain degree of inter-

mixing between the two different types of nanoparticles at the

Ag/TiO2 interfaces. Indeed, scanning electron microscopy

(SEM) images (Figure S2 in Supporting Information File 1) of

the cross section of a photonic crystal shows five bilayers (the

single silver and TiO2 layers cannot be distinguished due to the

resolution of our instrument) of a total thickness of 600 nm.

This value is lower than the sum of five single Ag and TiO2

layers deposited directly on the substrate (60 nm and 120 nm,

respectively), confirming the conclusions of the AFM analysis.

Nevertheless, we consider that this intermixing is confined to

the interface region and that a bilayer structure is still obtained

with a blurred interface.

For the electro-optical characterization, we placed another ITO

substrate on the other side of the photonic crystal and applied an

external voltage to provide an electric field to the photonic

crystal device. The electro-optical measurement is shown in

Figure 2, where the transmission spectrum of the photonic

crystal is reported as a function of the applied voltage. The

transmission is dominated by two strong bands at around

480 nm and 620 nm, ascribed to the plasmonic resonances of

the silver nanoparticles and the photonic bandgap, respectively.

We want to emphasize the fundamentally different nature of the

two resonances observed in our device, namely the plasmonic

resonance of the silver nanoparticle layer and that of the

photonic bandgap. The pump–probe measurement in Figure 3a

shows the transmission spectra of the transient absorption mea-

surements at delay times of 500 and 3000 fs (black and red

curve, respectively). We observe the typical plasmonic response

of the silver nanoparticles as a derivative shape of the peak at

480 nm (Figure 3a). The temporal behaviour of metallic nano-

particles is characterized by three different regimes [18]: i) the

pump excitation strongly perturbs the Fermi distribution and

creates electrons that are not in thermal equilibrium, called

energetic electrons; via electron–electron scattering, within a

few tens to hundreds of fs, a new Fermi distribution of hot elec-

trons is obtained. ii) Within a few ps, the hot electrons release

their energy to the lattice via electron–phonon scattering.
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Figure 2: Transmission spectra of the ITO–(Ag nanoparticle/TiO2
nanoparticle)5–ITO photonic crystal device upon application of an elec-
tric field.

iii) The hot lattice releases its energy to the environment within

hundreds of ps. With the temporal resolution of our setup,

which is about 150 fs, we could not observe the electron–elec-

tron scattering, but the dynamic of the resonance at 450 nm re-

ported in Figure 3b is related to the electron–phonon scattering.

This picosecond-scale dynamic is followed by a very weak

phonon–phonon scattering. The photonic band gap (around

620 nm) does not show any particular dynamic (not shown

here), as expected. The combination of a metal and a dielectric

in the photonic device is a key to the voltage-dependent obser-

vations, as will be explained later in this manuscript.

Upon application of an electrical potential to the device, we

observe a blue shift of the entire transmission spectrum, that is,

of the photonic band gap as well as the plasmon resonance of

the silver nanoparticles. The shift of the photonic band gap is

about 10 nm for an applied potential of only 10 V. In Figure S7

of Supporting Information File 1 we show that at voltages

above 15 V the shift saturates up to a value of about 16–17 nm.

Notably, the observed shifts of both resonances are a result of

the alternation between the metal and the dielectric nanoparti-

cle layer, as affirmed by several counter experiments, as

demonstrated in Figure 4.

We investigated three scenarios: first, the results for devices

with only ITO substrates placed together, as given in Figure 4a;

second, the results of only the silver layer between two ITO

substrates, as given in Figure 4b; and third, for only the tita-

nium dioxide layer between two ITO substrates (Figure 4c). For

all three investigated cases, the observed spectral changes by

applying a potential to the device are negligible, even in the

region of the silver plasmon band (Figure 4b). The strong red

Figure 3: (a) Pump–probe spectra at different time delays and
(b) pump–probe dynamic at 450 nm of the ITO–(Ag nanoparticle/TiO2
nanoparticle)5–ITO photonic crystal.

shift of the plasmonic peak when the silver nanoparticle layer is

deposited on ITO (620 nm) with respect to the glass substrate

(480 nm) was observed in the static samples (i.e. without

applying the voltage is ascribed to a coupling between the high

carrier density of ITO and the silver nanoparticle plasmon). A

difference in fill factor might also play a role here, leading to a

stronger coupling and an intense red shift. Nevertheless, these

results demonstrate that the observed shifts with applied voltage

are only observed in the alternating silver and titanium dioxide

nanoparticle layers.

In the following we provide an interpretation for the observed

blue shift of the photonic band gap as well as the silver plasmon

resonance by applying an electric field and making a simple

assumption. We consider the plasma frequency ωp for silver as

(1)
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Figure 4: (a) ITO–ITO device under electric field; (b) ITO–Ag nanopar-
ticle–ITO device under electric field; (c) ITO–TiO2 nanoparticle–ITO
device under electric field.

where N is the carrier density, e is the electron charge, m* is the

effective mass and ε0 is the dielectric constant of the vacuum.

Qualitatively, we can state that the polarization charges that

accumulate at the silver/titanium dioxide interface, because of

the electric field, effectively increase the carrier density

Figure 5: Scheme of the interpretation of the action of the electric field
on the ITO–(Ag nanoparticle/TiO2 nanoparticle)5–Ag–ITO photonic
crystal device.

involved in the plasma frequency, as schematically depicted in

Figure 5. Moreover, a second contribution can be the flow of

charges in the silver layers due to the electric field itself. In this

way, we have the carrier density with the electric field (NE)

versus the initial carrier density (N), such that NE > N.

The Drude model can be used to predict the behaviour of the

plasmonic response in the photonic crystal [19]. The frequency-

dependent complex dielectric function of silver can be written

as

(2)

where

(3)

and

(4)

with Γ representing the free carrier damping [20].

The dielectric function of the silver nanoparticle film (a

network of necked silver nanoparticles with air pores) can be

described by the Maxwell–Garnett effective medium approxi-

mation [21-23], which is given by

(5)
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where εAir is the dielectric constant of air, and δAg accounts for

the volume fraction occupied by the silver nanoparticles. Given

neff,Ag
2 = εeff,Ag and taking the refractive index dispersion of

titanium dioxide from the literature [24,25] we used the transfer

matrix method [26,27] to simulate the transmission spectrum of

the photonic crystal. We remark here that the dielectric func-

tion of both the Ag and the TiO2 nanoparticle layers were calcu-

lated with the effective medium approximation, as is thor-

oughly discussed in Supporting Information File 1. In Figure 6

the results of the calculation for three different carrier densities

are given, where blue is the actual carrier density of Ag as given

in [28] and two artificially increased carrier densities. Similar to

the experimental results, the calculated transmission spectra

show an intense band in the UV/blue region ascribed to the

plasmon resonance of the silver layer and a second band corre-

sponding to the photonic bandgap. Note that the plasmon reso-

nance of silver overlaps with some thin film interference fea-

tures (see Figure S4 in the Supporting Information File 1). To

unambiguously assign the plasmon resonance, we performed

simulations to distinguish the absorption contribution (i.e. the

imaginary part of the refractive index of Ag, see Figure S5 in

the Supporting Information File 1). From the simulation of the

spectra, we see that an increase of the carrier density induces a

blue shift of the photonic band gap, confirming the interpreta-

tion of our experimental findings.

Figure 6: Transmission spectra simulated with the transfer matrix
method for a Ag/TiO2 nanoparticle photonic crystal device with three
different carrier densities.

We used the same model to estimate the number of charges

added to the system. Without the applied voltage (Supporting

Information File 1, Figure S3), we used the parameters for the

silver dielectric function as reported in [28] with the electron

density of silver N = 5.76 × 1028 m−3 to simulate the optical

properties of the multilayer structure. To get an estimate of the

number of charges introduced with an applied voltage of 40 V

(Supporting Information File 1, Figure S6), we had to increase

the carrier density to the value of NE = 6.86 × 1028 m−3.

This resulted in a difference of ΔN = 1.1 × 1028 m−3. Taking

into account that the five silver layers have a volume of

(60 × 10−9 m × 5) × 0.015 m × 0.015 m, and that the diameter

of the Ag nanoparticles is about 50 nm, we could estimate an

increase of about 105 charges per particle. We remark here that

this discussion just gives a rough estimate of the required num-

ber of charges added to each nanoparticle to induce the shifts

observed. Indeed, in the model, we assumed for simplicity a

change in the carrier density over the entire volume of the nano-

crystal, although, as studied in [17] , charge accumulation in

metallic nanoparticles occurs for diameters around 5 nm only

(in contrast to the 50 nm diameter). An exact evaluation would

require a deeper analysis. Moreover, Brown et al. [17] showed

that the electrochemical doping of gold nanoparticles in solu-

tion is, apart from a change in carrier density, accompanied by

an increase in the surrounding medium refractive index. A

change of the dielectric surrounding, however, also largely

influences the position of the plasmon resonance [29]. In addi-

tion, doping occurs only in a thin layer at the nanoparticle sur-

face. These two effects also ultimately impact on the carrier

damping, which in our estimation was kept constant. Studies on

the accumulation of charges in an ITO film by applying a con-

stant voltage demonstrated that besides an increase in carrier

density, other Drude parameters such as the damping constant

and the high frequency dielectric constant are altered through

the introduction of additional carriers [30]. Thus, a deeper study

of the effect of applied voltage on thin films of Ag would be re-

quired for an exact evaluation of the effect on the Drude param-

eters and a more precise extraction of the number of carriers

injected. Nevertheless, our estimation is in good agreement with

results on the electrochemical doping of Au nanoparticles in

solution, as observed by Ung et al [31]. Here the injection of

1600 ± 300 carriers was found in nanoparticles of 11.5 nm in

diameter, which corresponds to an increase in the carrier densi-

ty by around ΔN = 2 × 1027 m−3. This value is about one order

of magnitude below our findings, corresponding to the order of

magnitude lower carrier density of Au with respect to Ag.

Conclusion
In this work we studied the tuning of the structural colour, that

is, the active shift of the photonic band gap, in a one-dimen-

sional photonic crystal made of alternating silver nanoparticle

and titanium dioxide nanoparticle layers. A concomitant blue

shift of the silver plasmon peak and of the photonic band gap of

about 10 nm with a 10 V applied voltage was observed. We

have proposed an interpretation of this observation in this

article: the electric field induces the accumulation of polariza-

tion charges at the silver/titanium dioxide interface. These
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charges contribute to the plasma frequency of silver, which due

to the porosity of the layer and the subsequent high surface/

volume ratio, will allow the electron density to increase over the

entire volume of the silver layer, resulting in an increase of the

carrier density and a blue shift of the plasma frequency. We

estimated an increase in carrier density by ΔN = 1.1 × 1028 m−3.

Consequently, the effective refractive index of the whole

photonic crystal is also changed, leading to the blue shift of the

photonic band gap. Our results highlight the possibility to

employ these photonic structures to manipulate the transmis-

sion of light.

Methods
Nanoparticle colloidal dispersions
Silver nanoparticle dispersion was purchased by Sigma-

Aldrich and was diluted in triethylene glycol monoethyl

ether (Sigma-Aldrich) up a final concentration of 5 wt %.

The diameter of the nanoparticles was less than 50 nm.

The TiO2 sol was synthesized by following a protocol

reported in the literature based on the hydrolysis of titanium

tetraisopropoxide (Ti(OCH2CH2CH3)4 (TTIP, 97%, purchased

from Sigma-Aldrich) [32]. Briefly, a mixture of 2.5 mL of

ethanol and 15 mL of TTIP was added dropwise, in a three-neck

round bottom flask, to 90 mL of distilled water to obtain a

TTIP/ethanol/water mixture with a molar ratio of 1:0.75:83.

Subsequently, 1 mL of hydrochloric acid (purchased by Sigma-

Aldrich) was added and the obtained sol was refluxed under

stirring for 8 h at 80 °C, resulting in a stable, milky solution.

Before layer deposition, we concentrated the nanoparticle

dispersion in order to make thicker layers.

Photonic crystal fabrication
The photonic crystal was fabricated on an indium tin oxide

(ITO) substrate using a spin coater (Laurell, WS-400- 6NPP-

Lite). The rotation speeds for the deposition were 2000 rpm and

2000 rpm for silver and titanium dioxide nanoparticles, respec-

tively. After each deposition, the sample was annealed for

10 min at 350 °C on a hot plate under the fume hood.

Optical measurements with electric field
The photonic crystal, fabricated on ITO substrate, was covered

with another ITO substrate in order to apply an electric field. To

apply an electric field, we employed a simple voltage supply

with a 100× amplifier. The transmission spectra were collected

with a Shimazdu spectrophotometer.

Pump–probe experiment
For this experiment, an amplified Ti:sapphire laser system was

employed (150 fs pulse duration, 1 kHz repetition rate, 800 nm

excitation wavelength). The pump pulse at 400 nm was

achieved via second harmonic generation. The light transmis-

sion was probed with broadband supercontinuum generation in

sapphire. The signal was collected by a fast CCD camera

connected to a spectrometer and was presented as the differen-

tial transmission ΔT/T [33].

Supporting Information
Supporting Information File 1
Morphological characterization of the sample with atomic

force microscopy and scanning electron microscopy; short

description of the transfer matrix method; additional

simulations of the light transmission in bare silver films and

in the photonic crystal.

[http://www.beilstein-journals.org/bjnano/content/

supplementary/2190-4286-7-131-S1.pdf]
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