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Comparison of Image Processing Techniques for Nonviable
Tissue Quantification in Late Gadolinium Enhancement
Cardiac Magnetic Resonance Images
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Purpose: The aim of this study was to compare the performance of
quantitative methods, either semiautomated or automated, for left
ventricular (LV) nonviable tissue analysis from cardiac magnetic
resonance late gadolinium enhancement (CMR-LGE) images.

Materials and Methods: The investigated segmentation techniques
were: (i) n-standard deviations thresholding; (ii) full width at half
maximum thresholding; (iii) Gaussian mixture model classification;
and (iv) fuzzy c-means clustering. These algorithms were applied
either in each short axis slice (single-slice approach) or globally
considering the entire short-axis stack covering the LV (global
approach). CMR-LGE images from 20 patients with ischemic
cardiomyopathy were retrospectively selected, and results from
each technique were assessed against manual tracing.

Results: All methods provided comparable performance in terms of
accuracy in scar detection, computation of local transmurality, and
high correlation in scar mass compared with the manual technique.
In general, no significant difference between single-slice and global
approach was noted. The reproducibility of manual and inves-
tigated techniques was confirmed in all cases with slightly lower
results for the nSD approach.

Conclusions: Automated techniques resulted in accurate and
reproducible evaluation of LV scars from CMR-LGE in ischemic
patients with performance similar to the manual technique. Their
application could minimize user interaction and computational
time, even when compared with semiautomated approaches.
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Late gadolinium enhancement cardiac magnetic reso-
nance (CMR-LGE) is the standard imaging technique
for the assessment of left ventricular (LV) myocardial via-
bility, allowing the identification of scar tissue.!* With this
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procedure, a gadolinium-based contrast agent is injected,
and after 10 to 20 minutes a single-frame sequence is
acquired when the agent is washed-out by normal tissue,
resulting in hyperenhanced (HE) intensity in nonviable
myocardial tissue when compared with the darker normal
myocardium.

The presence of scar tissue has an important prog-
nostic and therapeutic value as a strong predictor of LV
remodeling, cardiac dysfunction, and mortality.3>? Its
quantitative analysis is therefore of potential clinical
interest and relies on the segmentation of the myocardial
scar tissue in each image, where existing. To this end, sev-
eral techniques for CMR-LGE image segmentation have
been previously proposed.'®!7 However, a recognized
optimal method is still not defined,'® and in clinical practice
the analysis is performed qualitatively using the 17-segment
bull’s eye model with a good agreement when compared
with standard quantitative planimetry.'® Nevertheless, the
extent of the HE scar tissue has been shown to be able to
provide supplementary information beyond conventional
risk stratification,?® thus suggesting that quantitative
approaches should be used to measure scar extent and
transmurality.

The most adopted computerized methods rely on
threshold-based approaches,'12:1421-24 thys exploiting the
enhanced intensity of the scar tissue compared with the
surrounding normal myocardium. Besides manual tracing,
recent recommendations'® proposed 2 semiautomatic
threshold-based methods to segment HE regions, where the
threshold is respectively defined as: (i) the intensity value n
standard deviations higher than the mean intensity of the
normal myocardium (nSD); or (ii) the half value of the HE
myocardium maximum intensity (full width at half max-
imum, FWHM). In both cases, user interaction is needed
for each image to manually select suitable regions of
interest (ROIs) used for calculating the threshold values.

The first aim of our work is to compare the performance
of 4 different automated or semiautomated methods for
nonviable tissue segmentation against reference standard
manual tracing in CMR-LGE images acquired in ischemic
patients. Furthermore, we aim to test the effect of deriving
segmentation parameters by considering globally the entire
short-axis (SA) stack (global approach), with benefit in
increased analysis automation, compared with obtaining the
same parameters singularly from each image (single-slice
approach) as it is usually performed. In addition, we propose
to quantify the presence and extent of nonviable tissue by
automatically evaluating the local transmurality of myo-
cardial scars in dedicated parametric representations.
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MATERIALS AND METHODS

Imaging Data

This study was approved by the institutional review
board, and each patient gave her/his informed consent. We
selected for the analysis cine and LGE CMR images of 20
patients (15 men, age 65 + 10y) with previous myocardial
infarction referred for the evaluation of LV function, which
before this study had undergone the following acquisition
protocol. Cine images were acquired during consecutive
breath-holds using electrocardiogram-gated steady-state
free precession sequence (1.5T GE Healthcare, Discovery
M450, 8-element phased-array coil, 512 x 512 matrix size,
pixel spacing 0.74x0.74mm, slice thickness 8 mm, no
overlap, no gap) in SA from the atrium to the apex. ECG-
triggered LGE SA images were acquired during consecutive
breath-holds using inversion recovery gradient echo scan-
ning sequence (256x256 matrix size, pixel spacing
1.4844 x 1.4844 mm, slice thickness 8 mm, no overlap, no
gap), 10 to 20 minutes after injection of an intravenous
bolus of 0.1 mmol/kg gadolinium-gadobenate dimeglumine
(Multihance-Bracco, Milan, Italy). Inversion time was
individually adapted during acquisition to ensure intensity
homogeneity between slices (usual range, 220 to 300 ms).
Images were acquired during systole, with delay after trig-
ger in the range of 200 to 400 ms.

Segmentation Techniques

All analyses and measurements were carried out using
dedicated custom software developed in the Matlab envi-
ronment (Mathworks Inc., Natick, MA). Four techniques
were considered to segment nonviable myocardial tissue,
previously proposed for HE scar quantification!1-1415:23; (i)
nSD thresholding (with n = 3); (i) FWHM thresholding;
(iii) automated Gaussian mixture model (GMM), including
border zones (BZ) classification, the clinical importance of
which has been previously reported?0-’; and (iv) fuzzy c-
means clustering (FCM). Main characteristics of the inves-
tigated techniques are summarized in Table 1 (please refer to
Hsu and colleagues!!'141325 for more detailed descriptions).

All these methods require the a priori knowledge of the
myocardial position defined by its epicardial and endo-
cardial borders, excluding papillary muscles, to define the
regions of search for segmentation. Excluding this step, in
the following text, we will refer to nSD and FWHM as
“semiautomated” techniques, as user interaction is needed
to define appropriate regions to define intensity thresholds,
while the GMM and FCM will be referred as “automated”
techniques, because no further user interaction is required.

Postprocessing
The following postprocessing operations were applied
to refine results of all the segmentation techniques.

First, regions classified as HE were removed if their
area was <5% of the total myocardial area, likely repre-
senting noise. Furthermore, small dark areas surrounded by
HE regions were identified as holes in the binary image
resulting from segmentation and were included in the HE
region, as potentially representing microvascular obstruc-
tions or intensity inhomogeneity of the HE signal. Finally,
thin regions classified as HE connected to the epicardium or
to the endocardium were removed because they could be
potentially related to incorrect myocardial border delin-
eation. The definition of these thin regions was made by
computing the following threshold value:

# pixels connected to the myocardial border

tr= - — 100[ %
' # pixels constituting the scar area x (%]

measuring for each segmented scar the percentage of pixels
connected to one myocardial border with respect to the
total scar size. Segmented scars connected to one myo-
cardial border were removed if their # index reached the
cutoff values:
tr = 100% for scars connected to the endocardium, mean-
ing that all pixels belonging to the scar are connected
to the endocardial border (scar thickness equal to 1 pixel);
tr > 50% for scars connected to the epicardium.

These values were empirically set, according to the
rationale that classification errors are more prone to hap-
pen where segmented scars are connected to the epicar-
dium, as scar position is expected to be subendocardial in
the population of ischemic patients analyzed here.

This operation made it possible to remove pixels
belonging to the blood pool or to the epicardial fat regions
that can be erroneously classified as nonviable tissue if
included in the myocardium during myocardial border
delineation, as their intensity is comparable to scar tissue.

Quantification of Scar Size and Transmurality

After segmentation of the entire stack of SA images,
the quantification of scar extent was estimated by com-
puting the following indices:

e scar mass, i.e., the total volume of the nonviable tissue
per slice, as sum of pixels in the HE area multiplied by
the slice thickness, multiplied by the myocardial density
(1.05 g/cm318)

e percent scar, i.e., the HE area for all SA images divided
by the total amount of LV tissue (i.e. the area within the
endocardial and epicardial contours for all images
belonging to the SA stack)

e transmurality (7), i.e., the percentage extent of nonviable
tissue in the radial direction from the endocardium to the
epicardium.

To compute 7, each SA image was sampled with 2.5
degrees equally spaced line segments radially oriented
starting from the center of the LV, estimated as the centroid

TABLE 1. Main Characteristics of the Investigated Segmentation Techniques

Segmentation Approach Parameters Manual ROI Border Zones
nSD Threshold-based Threshold intensity = 3 SD above dark myocardium Yes No
FWHM Threshold-based Threshold intensity = 50% of brightest myocardium Yes No
GMM Cluster-based Histogram fitting with 3 Gaussian curves approximating No Yes

myocardial intensity
FCM Cluster-based Probability cluster classification of myocardial intensities No No

based on fuzzy inference
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of the region delimited by the epicardium. For each line
segment, 7" was then computed as the ratio between the
radial length of the segmented scar and the myocardial
local radial extent (Fig. 1). In clinical practice, the 7 index
is usually visually estimated referring to the 17-segment
bull’s eye model defined by the American Heart Association
(AHA).2%2° In this model, the information is summarized
for the basal, medial, and apical ventricular levels consid-
ering 3 representative SA slices, and transmurality is typi-
cally categorized into 3 classes (7 =0%, T < 50%,
T > 50%), as shown in Figure 2 (left panel).

In this study, 2 automatically computed custom
parametric representations are proposed. In the first one,
named bull’s eye low resolution (LRes), all the SA slices in
the stack representing the LV, usually 7 to 10 images for
each patient, are represented individually. In particular,
each basal, medial, and apical slice is divided according to
the coronary arterial perfusion territories into 6, 6, and 4
segments, respectively. Then, for each segment in which the
scar covered >50% of its circumferential extent, the max-
imum value of T of all sampling profiles constituting the
segment was computed and assigned to the segment on the
basis of the classification (7= 0%, T < 50%, T > 50%)
used in clinical practice (Fig. 2, center panel). This repre-
sentation differs from the AHA 17-segment model, as all
segmented SA images are automatically analyzed and
contribute to the analysis.

In the second parametric representation, a high-reso-
lution (HRes) bull’s eye model is proposed, potentially
allowing for a more detailed description of the scar position
and extent. The anatomic division into sectors is skipped,
and each sampling profile is represented in the bull’s eye
model by visualizing the local value of 7, according to a
color-coded percentage scale from 0% to 100% (Fig. 2,
right panel). The LRes and HRes bull’s eye representations
were automatically computed after segmentation for all
investigated techniques and for the gold standard manual
tracing.

Analysis Protocol

The reference technique for the algorithms perform-
ance comparison was constituted by the manual tracing of
the HE scar regions in each SA image performed by a first
experienced observer. As a first step, the myocardium was

FIGURE 1. Schematic representation of transmurality computa-
tion: a myocardial sector with a scar region (in red) is sampled
with radial profiles (left panel). For each profile (center panel),
the transmural extent (right panel) is computed as the ratio

between the scar width (green arrow) and the myocardium
width (orange arrow)

Copyright © 2016 Wolters Kluwer Health, Inc. All rights reserved.

defined by manually tracing both the endocardial and the

epicardial contours. Cine images with corresponding slice

position and cardiac phase were displayed as a reference
alongside the LGE image to be contoured. Then, if present,
scar regions were delimited by tracing their contours.

To avoid introducing variability in the evaluation of
the different methods, the same endocardial and epicardial
borders manually traced were used as region of search for
all techniques.

Computerized analysis was performed as follows:

e for the automated methods (GMM and FCM), in the
global approach the threshold values were computed by
considering the pixels within the myocardial borders
belonging to the entire SA stack, whereas in the single
slice approach the threshold values were computed for
each SA image separately;

e for the semiautomated methods (nSD and FWHM), in
the global approach the SA stack was subdivided into 3
equal parts to define basal, medial, and apical portions.
For each portion, the operator selected 1 representative
slice on which the corresponding ROIs were manually
traced, and thus used for computing the basal, medial,
and apical threshold values. These values were applied
for the analysis of slices belonging to the respective
ventricular level. Conversely, in the single slice approach,
the ROI selection and analysis were performed
individually in each SA slice of the stack.

Algorithm performance was evaluated by comparing
segmentation results with the manual technique, for both
the single slice and the global approach. The correct iden-
tification of HE tissue presence was assessed by computing
sensitivity, specificity, and accuracy for both the LRes and
HRes representations by evaluating the presence of HE
tissue in each sector and in each radial profile, respectively
(true positive: HE for both the manual technique and the
investigated method; false positive: HE for the investigated
method only; true negative: normal myocardium for both
the manual technique and the investigated method; false
negative: HE for the manual technique but not by the
investigated method).

The correct definition of HE areas was further eval-
uated by computing DICE similarity coefficient between the
scar contours obtained by applying the implemented algo-
rithms and those obtained by the manual technique
(DICE =2|XnY|/(|X| + |Y]), X =first contour, Y=
second contour). Computational times required for the
segmentation of the SA image stack for each method and
approach were recorded.

Finally, repeatability analysis was assessed to evaluate
the effect of observer subjectivity on HE measurements due
to manual myocardial/scars contours tracings and ROI
selections. A subset of 10 patients was randomly chosen
and the entire analysis, including the manual tracing of
myocardial borders, the scar contours and the ROI defi-
nition, was blindly repeated by the same observer, whereas
the remaining 10 patients were analyzed by a second inde-
pendent and experienced observer.

Statistical Analysis

For the accuracy study, Cohen « statistics was applied
to measure the agreement of each method with the manual
technique, for the single-slice and the global approaches.
The McNemar test was applied to compare the approaches’
sensitivity.
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FIGURE 2. Bull’s eye parametric representation of scar transmurality in SA CMR-LGE images. Left: conventional 17-segment model, in
which results of scar segmentation in basal, mid, and apical regions are summarized by 1 ring each. Center: LRes model, in which results
of scar segmentation in each SA image is reported as a separate ring. Right: HRes model, in which the transmurality value is computed
along each 2.5° ei ually spaced line segment. A indicates anterior; AL, antero-lateral; AS, antero-septal; |, inferior; IL, infero-lateral; IS,

fer-ept.

Continuous variables (scar mass, percent scar, DICE
similarity coefficient, and computational time) showed a
non-normal distribution and were then expressed as median
and 25th, 75th percentiles. The comparison between pairs
of non-normal groups was made using Wilcoxon signed
rank test, whereas Friedman statistics with Bonferroni
correction was applied to test for differences in scar mass
and percent scar measurements obtained with different
methods, as appropriate.

The correct quantification of scar extent, measured as
scar mass and percent scar, both for the single and global
approach, was further verified by linear regression and
Bland-Altman analyses for each method against the manual
technique, wherein the significance of the bias was verified
by applying paired Student ¢ test. To allow for homogeneity
with the results of the other methods, BZs detected by the
GMM approach were considered as normal myocardium in
the analysis. For the correlation study, the ¢ test versus null
was applied to test for the significance of the bias and the
Fisher z transformation was applied to test for differences
in correlation coefficient values.

The derived HE measurements, i.e., scar mass and
percent scar, were tested for interobserver and intra-
observer variability by linear regression and Bland-Altman
analysis, for both manual reference and investigated tech-
niques. The coefficient of variation for each parameter was
calculated as the SD of the signed difference between each
pair of measurements divided by their mean value. For each
method and each observer, the squared difference between
the 2 observations was computed as an estimate of within-
subject variance for that method.3°

For the variability study, Friedman test with Bonfer-
roni correction was applied on the squared differences of
the HE measurements to assess the reproducibility sig-
nificance.3® Cohen « statistics were applied to measure the
agreement between the repeated measures.

RESULTS

Accuracy Analysis
As expected, all patients showed HE tissues: 163 SA
slices were overall analyzed and 77.3% (126/163) had scars,
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wherein the percentage of slices with HE for each patient
was in the range of 28.6% (2/7) to 100% (10/10).

Figure 3 shows an example of the proposed analysis in
1 representative patient: compared with the manual tech-
nique, all methods localized the HE tissue in the same
position, with an extent that appeared to be slightly over-
estimated toward the infero-septal region for the nSD and
GMM. Results obtained with single-slice and global
approaches appeared very similar in all methods.

Accuracy analysis for both LRes (comparison on
every sector) and HRes (comparison along each radial line)
bull’s eye representations resulted in high values of specif-
icity, sensitivity and accuracy, with good agreement
between each method and the manual approach (Table 2).
In particular, in both single-slice and global approaches,
specificity was high and very similar for the FWHM and
GMM methods, whereas slightly degraded in nSD and
FCM methods. Conversely, sensitivity was higher for nSD
and FCM compared with FWHM and GMM. Significance
of this finding was found for all cases except for the single-
slice approach in the LRes bull’s eye representation, in
which FCM sensitivity result did not differ from those
obtained from the other approaches. Total accuracy was
slightly higher for the global approach than for the single-
slice for the nSD, GMM, and FCM methods, with very
similar results among the tested algorithms.

Scar Mass

Results for scar mass and percent scar values com-
puted for each of the investigated methods showed no
statistically significant difference between single-slice and
global approach considering the same segmentation
method, whereas for both single-slice and global approach,
for both scar mass and percent scar, higher values were
observed for the nSD and FCM approaches compared with
those obtained with FWHM and GMM (Fig. 4). In all
cases, no difference was found against the manual
technique.

Table 3 shows the results of correlation and Bland-
Altman analyses against the manual technique for scar
mass and percent scar indices, respectively. Correlation for
scar mass index was between 0.64 and 0.73, with no sig-
nificant differences between single-slice and global
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FIGURE 3. Example of the proposed analysis in 1 representative patient. Top: segmentation results in an SA slice. Mid: results of the SA
stack analysis expressed as bull’s eye LRes representation. Bottom: results of the SA stack analysis expressed as bull’s eye Hres
representation.

TABLE 2. Accuracy Analysis for HE Myocardial Tissue Detection on SA Images of LRes and HRes Bull’s Eye Representations Versus Manual
Technique, for Both the Single-slice and the Global Approach

Single-slice Approach Global Approach
Method Bull’s Eye Specificity Sensitivity Accuracy K Specificity Sensitivity Accuracy K
n-SD LRes 87.34 92.56 88.96 75.59 89.63 92.92 90.66 79.16
HRes 84.65 92.86 87.6 74.2 87.06 93.11 89.23 77.4
FWHM LRes 94.32 77.34 89.06 73.7 95.47 71.7 88.05 70.72
HRes 93.59 77.6 87.86 72.95 94.23 73.18 86.68 69.95
GMM LRes 94.61 75.08 88.55 72.27 95.91 75.56 89.56 74.62
HRes 93.21 74.63 86.55 69.88 94.77 76.12 88.08 73.23
FCM LRes 84.86 86.41 85.34 67.54 88.47 83.92 87.05 70.59
HRes 80.35 85.12 82.06 62.68 85.94 86.24 86.05 70.42
All values are expressed as percentage.
Copyright © 2016 Wolters Kluwer Health, Inc. All rights reserved. www.thoracicimaging.com | 5
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FIGURE 4. Cumulative results of scar mass (left) and percent scar (right) segmentation for each applied method, both for single-slice

and global approach (*P<0.05 Friedman test).

approaches. When considering percent scar, correlation
was higher in all cases, again with no significant differences
between single-slice and global approach. For all methods,
very limited biases were found (bias for scar mass <1g,
ranging from 1.5% to 6.6% for percent scar).

In all cases, DICE similarity coefficient (Table 4)
resulted in high values (>75%) with no significant differ-
ences between single-slice and global approaches.

Computational Times

Computational times required for the segmentation of
the SA image was found to be significantly lower in all cases
for automated techniques compared with those semi-
automated, as well as in each method for the global
approach compared with the single-slice segmentation
(Supplemental Digital Content 1, http://links.lww.com/JTI/
A64). These results do not include the time required for the
manual segmentation of the endocardial and epicardial
contours, which was here considered as an a priori step for
myocardial viability analysis.

Variability Analysis

For both intraobserver and interobserver analyses,
very high and similar correlation coefficients for all tested
approaches were found, with the highest correlation for the
intraobserver analysis in the manual approach and for the
interobserver analysis in the manual and nSD techniques
(Supplemental Digital Content 2, http://links.lww.com/JTI/
A652). Bland-Altman analysis confirmed minimal interob-
server and intraobserver biases and relatively narrow limits
of agreement, with the lowest intraobserver bias in FCM
and interobserver bias in GMM. Coefficient of variation
values were remarkably lower for the percent scar com-
pared with the scar mass in both intraobserver and inter-
observer analyses, suggesting that this global HE value is a
more repeatable measure compared with the local scar
mass. Cohen k analysis resulted in scattered values, show-
ing, overall, a good agreement between repeated measure-
ments with no noticeable differences among approaches.

Finally, the manual technique together with the
automated methods (GMM and FCM) was found to be
significantly more reproducible than the semiautomated

TABLE 3. Results of Correlation and Bland-Altman Analyses Computed for Scar Mass and Percent Scar Indices on SA Images Versus

Manual Technique

Single-slice Approach

Global Approach

Method p Bias (g) (95% Limits of Agreement) p Bias (g) (95% Limits of Agreement)
Scar mass
n-SD 0.73 —0.37* (- 1.5 to 0.76) 0.73 —0.32*% (= 1.4 t0 0.79)
FWHM 0.65 0.2* (—1 to 1.4) 0.65 0.17*% (=1 to 1.3)
GMM 0.64 0.24* (—0.97 to 1.4) 0.69 0.19* (—0.9 to 1.3)
FCM 0.72 0.058 (—1to 1.2) 0.73 —0.067* (—1.1 to 0.95)
Percent scar
n-SD 0.83 —6.6% (—23 to 10) 0.86 —5.4% (=19 to 8.2)
FWHM 0.69 3.5% (— 11 to 18) 0.75 4.7* (6.7 to 16)
GMM 0.83 4.4% (—78 to 17) 0.87 4.4% (=10 to 19)
FCM 0.76 —2.1(=17to 12) 0.78 —1.5(14to 11)

p: Spearman correlation coefficient.
*P < 0.05, ¢ test versus null for bias.
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TABLE 4. DICE Similarity Coefficient, Expressed as Median and

(25th, 75th) Percentiles for Each Segmentation Technique

Computed Against Manual Reference

DICE Similarity Coefficient (%)

Method Single-slice Approach Global Approach
nSD 79.08 (69.07, 85.6) 79.9 (70.3, 85.4)
FWHM 76.9 (68.4, 83.2) 76.5 (62.6, 84.7)
GMM 75.2 (63.6, 83.7) 79.4 (65.9, 85.6)
FCM 78.6 (68.6, 85.6) 78.5 (68.7, 87)

ones (nSD and FWHM), for intraobserver reliability, when
computing scar mass with the global approach (Fig. 5, top
panels). In general, for both intraobserver and interob-
server analyses, the nSD was found to be the less repro-
ducible technique (Fig. 5).

DISCUSSION

We have implemented and compared 4 different sem-

iautomated or automated techniques for nonviable tissue

quantification

Intra-observer variability
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FIGURE 5. Intraobserver (top) and interobserver (bottom) reproducibility, expressed as the root squared differences of the repeated HE
measurements, scar mass (left) and percent scar (right), for the manual techniques and each investigated method in both single-slice
and global approaches (*P<0.05 Friedman test). @
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postprocessing for segmentation refinement and quantita-
tive evaluation of scar transmurality. Our main findings are
that: (i) automated methods (GMM, FCM) resulted to be
robust in detecting and quantifying nonviable tissue com-
pared with the reference manual technique and the rec-
ommended semiautomated techniques (nSD, FWHM) and
were also associated with higher intraobserver and inter-
observer reproducibility; (ii) a global approach in which
segmentation was applied simultaneously to the myocardial
regions in the whole SA stack or to subgroups of SA images
led to reliable results with a significant decrease of user
interaction and processing time.

On the basis of the published literature (Supplemental
Digital Content 3, http://links.lww.com/JTI/A66, for a
synthetic overview of published quantitative techniques for
LGE image analysis), our analysis was focused on 2 pop-
ular semiautomated (nSD and FWHM) methods and on 2
automated (GMM and FCM) 2-dimensional methods.

The choice of nSD and FWHM was made as they are
more frequently reported in both research papers and
recent guidelines,?1821-23.25.31.32 wherein the FWHM was
found to be the best method in terms of reproducibility and
correlation with histopathology in animal models.3!-32
However, both approaches need user interaction for man-
ual delineation of suitable ROIs necessary for threshold
computation with potential variability of the results due to
subjective selection. For this reason, 2 automated
approaches (GMM 413 and FCM10-2%) were further inves-
tigated, resulting in objective and reproducible quantifica-
tion of infarct size and extent in patients without the need
of additional user interaction, thus suggesting that they
should be preferred to the more common semiautomated
techniques. Among the investigated techniques, GMM is
the only method that allows for the segmentation of BZs,
the clinical importance of which has been pointed out in
several studies.?”33-3% However, further investigations are
required to prove this assumption and quantify results on
BZ segmentation, as this quantification was not available in
the manual analysis, and thus its validation on GMM
results was not possible.

Our results slightly differ from those presented by few
other studies that comparatively investigated the ability of
various methods to quantify viability from LGE
images.2>-*2 Compared with these studies, we evaluated a
cohort of patients with myocardial infarction, and we per-
formed a more extensive validation based on infarct size
measurements, DICE similarity coefficient, and accuracy
analysis. Moreover, efforts were made to improve the local
measurement of transmural extent of scar tissue, which was
shown to significantly influence the response to resynchro-
nization or revascularization therapies®-3% and whose large
extent is associated with deleterious remodeling.3” Of note,
no standard method has been defined to quantify trans-
mural extent of scar myocardial tissue, and this value may
vary significantly depending on the adopted technique.’

Our study showed the usefulness of a global approach
to derive segmentation parameters to significantly decrease
user interaction and computational time, as it does not
require the subjective step of the a priori selection of slices
showing HE tissue. Applicability of the global approach
relies on homogeneity of the image intensities among slices,
and, as previously reported,'® the usual pattern shows
intensities that tend to become brighter when moving from
the mitral valve plane to the apical slice. In our acquisitions,
the manual adjustment of inversion times during
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acquisition ensured negligible intensity variations within
LGE images (0% to 8% for blood pool intensity and 0% to
6% for normal myocardium intensity), not visually
appreciable.

Furthermore, recent developments in MR technology
might envisage the use of T1 and T2 mapping sequence to
further characterize the component of ischemic injury
without the need of a contrast agent, as in LGE imag-
ing.3%3 In this scenario, quantitative computerized
approaches could play a significant role in the evaluation of
the potential advantages of T1 and T2 sequences and their
comparison with LGE.

The main limitation of our study is the lack of a true
“gold standard” for the assessment of the HE measure-
ments in CMR-LGE. This is, however, a difficult issue to
address, as histologic validation in animal models consid-
ered as the gold standard in previous studies>!!-14:2131 jg
actually an inadequate option due to differences in human
and animal HE patterns, as already pointed out by Flett
et al’? and Baron et al.?® As a consequence, we decided to
consider the manual technique, which proved to be
repeatable, as the reference for accuracy and quantification
analysis. Furthermore, scar segmentation was focused on
LGE images of patients with ischemic cardiomyopathies,
and thus dedicated postprocessing methods applied to all
techniques were developed on the basis of the a priori
knowledge of the typical morphologic characteristics of
infarcted tissue (i.e. mostly connected tissue and in sub-
endocardial position). However, nonischemic car-
diomyopathies can also be studied through CMR-LGE,
where the enhancement areas are characterized by uncon-
nected zones of focal fibrosis. In these cases, postprocessing
strategy should be optimized to handle the specific
enhancement patterns.

In conclusion, we have proposed and compared
quantitative methods for the analysis of nonviable tissue in
CMR-LGE images for patients with ischemic cardiomy-
opathy. The global approach, jointly analyzing groups of
SA slices or the entire SA image stack, led to faster and
more reliable results compared with the classic single-slice
approach and the manual gold standard. Among the
investigated techniques, promising results were found for
the automated methods, with a high level of accuracy and
correlation with the manual gold standard, minimizing user
interaction and the time required for the analysis.
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