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1 Introduction
Let M be a smooth and oriented (2m + 1)-dimensional real submanifold of some complex manifold X. A
natural question arises, whetherM is the boundary of an (m+1)-dimensional complex analytic subvariety of
X. This problem, the so-called boundary problem, has been widely treated over the past �fty-�ve years when
M is compact and X is Cn or CPn. For a review of the boundary problem see [18], chapter 6.

The case when M is a compact, connected curve in X = Cn (m = 0), has been �rst solved by Wermer [20]
in 1958. In 1966, Stolzenberg [19] proved the same result when M is a union of smooth curves. Later on, in
1975, Harvey and Lawson in [11] and [12] solved the boundary problem in Cn and then in CPn \ CPr, in terms
of holomorphic chains, for anym. The boundary problem inCPn was studied by Dolbeault andHenkin, in [8]
for m = 0 and in [9] for any m. Moreover, in these two papers the boundary problem is dealt also for closed
submanifolds (with negligible singularities) contained in q-concave (i.e. union ofCPq’s) open subsets ofCPn.
This allows M to be non compact. The results in [8] and [9] were extended by Dinh in [7].

The main theorem proved by Harvey and Lawson in [11] is that if M ⊂ Cn is compact and maximally
complex thenM is the boundary of a unique holomorphic chain of �nite mass [11, Theorem 8.1]. Moreover, if
M is contained in the boundary bΩ of a strictly pseudoconvex domainΩ, thenM is the boundary of a complex
analytic subvariety of Ω, with isolated singularities [13] (see also [10]).

In [5] Della Sala and the secondnamed author generalized this last theorem to a non compact, connected,
closed and maximally complex submanifold M (of real dimension at least 3, i.e. m ≥ 1) of the connected
boundary bΩ of an unbounded weakly pseudoconvex domain Ω ⊂ Cn. The extension result is obtained via
a method of “cut-extend-and-paste”.
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In [16] the �rst named author established the Harvey-Lawson theorem for maximally complex manifolds
of real dimension at least 3 (m ≥ 1) contained in a complex Hilbert space, under the addition of a technical
hypothesis.

Theaimof this paper is to combine the techniques of these last papers, in order to generalize the extension
result to a non necessarily bounded, connected, closed andmaximally complex submanifoldM (dimRM ≥ 5,
i.e. m ≥ 2) of the connected boundary bΩ of a strongly convex unbounded domain Ω of a complex Hilbert
space H.

The precise de�nitions will be given in the following section; here, we only recall that a holomorphic
chain C in an open set Ω is a quasi-locally �nite sum with integer coe�cients of currents of integration on
analytic subvarieties of Ω, i.e. for any x ∈ H, for any ρ > 0, C ∩ B(x, ρ) is a �nite sumwith integer coe�cients
of currents of integration on analytic subvarieties of Ω ∩ B(x, ρ).

The main theorem we establish is the following:

Theorem 1.1. Let H be a complex Hilbert space, and M ⊂ H such that
(i) M is a smooth maximally complex manifold of real dimension 2m + 1 ≥ 5 (complex dimension m ≥ 2);
(ii) M ⊂ bΩ ⊂ H, where Ω is a strongly convex domain;
(iii) there exists an orthogonal decomposition H = Cm+1 ×H′ such that the orthogonal projection p : H → Cm+1,

when restricted to M, is a closed immersion with transverse self-intersections;
(iv) M is quasi-locally compact.

Then there exists a unique analytic chain of �nite dimension T in Ω with isolated singularities, such that the
boundary of T is M.

As already mentioned, the case when Ω is bounded was treated in [16]; therefore we will always suppose Ω
to be unbounded.

The strategy behind the proof of Theorem 1.1 is similar to that used in [5] and it is actually a simpli�cation
of that one. First we get a local and semi-global extension (see section 3), through a Lewy-type extension
theorem for Hilbert-valued CR-functions. Then we cut Ω with parallel complex-hyperplanes.

Hypotheses (ii) and (iv) are technicalities needed in order to assure that the slices of M are compact, so
that we can apply the extension result in [16] (the slices of M are maximally complex, and property (iii) is
inherited by the hyperplane). The high dimension of M is needed in order to get the maximal complexity of
slices (in an Hilbert space a moments condition makes less sense than inCn). We give a simple example (see
example 4.1) showing that relaxing hypothesis (ii) can lead to the slices of Ω (thus of M) being unbounded.
On the other hand, hypothesis (iv) is unnecessary (because always satis�ed) if the following topological con-
jecture (by Williamson and Janos, 1987 [21]) is true.

Conjecture 1.1. A complete admissible metric d for a σ-compact, locally compact space X is always a Heine-
Borel metric if

Cl{x ∈ X | d(x, x0) < r} = {x ∈ X | d(x, x0) ≤ r}, ∀x0 ∈ X, ∀r > 0 .

Using the conjecture of Williamson and Janos, we can get rid of one annoying technical hypothesis:

Theorem 1.2. Assume Conjecture 1.1 is true.
Let H be a complex Hilbert space, and M ⊂ H such that

(i) M is a smooth maximally complex manifold of real dimension 2m + 1 ≥ 5 (complex dimension m ≥ 2);
(ii) M ⊂ bΩ ⊂ H, where Ω is a strongly convex domain;
(iii) there exists an orthogonal decomposition H = Cm+1 ×H′ such that orthogonal the projection p : H → Cm+1,

when restricted to M, is a closed immersion with transverse self-intersections.

Then there exists a unique analytic chain of �nite dimension T in Ω with isolated singularities, such that the
boundary of T is M.
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2 Notations and de�nitions
In the following, we denote by H a complex Hilbert space and by B(x, ρ) the (open) ball of center x ∈ H and
radius ρ > 0. We introduce the following quasi-local property (following the terminology of [15]).

De�nition 2.1. We say that K ⊂ H is quasi-locally compact if, for any x ∈ H, for any ρ > 0, the set B(x, ρ)∩ K
is relatively compact in H.

De�nition 2.2. Given an open set Ω ⊂ H with smooth boundary, we call it strongly convex at x ∈ bΩ if the
Hessian form of the boundary at x satis�es Hessx(·, ·) ≥ ε‖ · ‖2 for some �xed ε > 0.

We call Ω ⊂ H strongly convex if it is strongly convex at all its boundary points.

Let x ∈ bΩ be a point of strong convexity, then for every 2-dimensional real plane P containing the normal
to bΩ at x the set P ∩ Ω is a convex set locally (around x) contained in a parabola. Considering the cone
delimited by two tangents lines to such a parabola, symmetric with respect to its axis and close enough to x,
we note that P ∩ Ω lies inside such a cone, by convexity; the angle of such a cone depends only on the ε in
the de�nition of strong convexity.

This holding for for every plane P and the angle of the cone not depending on P, we have that Ω is con-
tained in a cone of H with �xed angle. Given a real hyperplane L intersecting the cone in a bounded set, all
its translations along the axis of the cone will intersect the cone in bounded sets, therefore if L intersects Ω
just in x and is tangent to bΩ, then all its translations alond the axis of the cone will intersect Ω in bounded
sets.

Moreover, if Ω is unbounded, ν is the unit vector pointing in the direction of the axis of the cone (with the
correct orientation) and C0 ∈ R is such that (L + C0ν)∩Ω ≠ ∅, then the intersection (L + Cν)∩Ω is non-empty
for C ≥ C0.

Indeed, assume by contradiction that (L + C1ν)∩Ω = ∅ for C1 > C0, then (L + Cν)∩Ω = ∅ for every C > C1
by convexity.

Therefore Ω is contained in the intersection between the cone constructed above and {L < C1}; such an
intersection is bounded, which is a contradiction.

De�nition 2.3. We recall one of the equivalent de�nitions of �nite-dimensional analytic subvariety of an
in�nite dimensional complex space: A ⊂ H is said to be a �nite-dimensional analytic subvariety if for any
x ∈ H there exist an open neighborhood U of x and a �nite-dimensional complex manifoldW of U such that
A ∩ U ⊂ W and A ∩ U is an analytic subvariety ofW.

See [16] for some examples and a discussion of the relations between this de�nitions and the others that can
be found in the literature.

In this paper,M will denote a smooth �nite-dimensional manifold in H, of real dimension 2m +1 greater
than or equal to 5 and p will always be the projection whose existence is required in the third hypothesis of
Theorem 1.1. Hx(M) will be the holomorphic tangent to M at x, i.e. Hx(M) = Tx(M) ∩ JTx(M), where J is the
natural complex structure on Tx(H) ∼= H.

M will also be required to bemaximally complex, i.e. such that at all points x ∈ M dimC Hx(M) = m, since
maximal complexity is a necessary condition for being the boundary of a complex variety.

Thus, at each point x ∈ M, we can orthogonally decompose the tangent space Tx(M) as Tx(M) = Hx(M)⊕
Lx, where Lx is a linear space of dimension one. Lx will be called the real part of Tx(M).

Given a smooth real hypersurface S in H, we denote by Lx(S) the Levi form of S at the point x; we note
that, if S is the boundary of a strongly convex open set Ω, then Lx(S) is positive de�nite for every x ∈ S, i.e. a
strongly convex open set is strongly pseudoconvex.
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3 The local and semi-global results
The aim of this section is to prove the local result. Let 0 be a point ofM ⊂ S. We have the following inclusions
of tangent spaces:

H ⊃ T0(S) ⊃ H0(S) ⊃ H0(M);

T0(S) ⊃ T0(M) ⊃ H0(M).

Lemma 3.1. Let M be a maximally complex submanifold of a smooth real hypersurface S ⊂ H, dimR(M) =
2m + 1, m ≥ 1. Suppose that, for any �nite dimensional complex subspace V of H, the restrictionL0(S ∩ V) has
all but at most m − 1 eigenvalues of the same sign. Then

H0(S) ⊅ T0(M).

Proof. We will reduce problem to the �nite dimensional case proved in [5] (Lemma 3.1; for a di�erent proof
see also Lemma 2.3.1 in [4]). Let us consider the following orthogonal decomposition of T0(H):

T0(H) = T0(S)⊕ l ,

and let L = T0(M)⊕ l and LC be the smallest complex subspace of T0(H) containing L.
Let M1 = L ∩ S (so T0(M) = T0(M1) and H0(M) = H0(M1)) and S1 = LC ∩ S so H0(S) ∩ LC = H0(S1).
M1 ⊂ S1 satisfy thehypothesis of Lemma3.1 in [3], soH0(S1) ⊅ T0(M1) = T0(M). Hence, sinceH0(S)∩LC =

H0(S1), H0(S) ⊃ ̸ T0(M).

The following lemma is an immediate consequence of a well-known fact.

Lemma 3.2. Let D, D′ be domains in a topological space X, with D ⊆ D′. Suppose we are given two Banach
algebras (over K = R,C) of continuous functions, endowed with the sup norm, A(D) and B(D′) such that the
restriction map

B(D′) 3 f 7→ f |D ∈ A(D)

is bijective. Then
|| f̂ ||B(D′) = || f ||A(D) ,

where f̂ is the unique extension of f .

Proof. Let f ∈ A(D). Let x be any point in D′. We can de�ne

χx : A(D)→ K χx(f ) = f̂ (x),

where f̂ is the unique extension of f . χx is a character of the Banach algebra A(D), therefore continuous of
unitary norm. Thus

|f̂ (x)| = |χx(f )| ≤ || f ||A(D), ∀x ∈ D′ .

Hence the thesis.

The typical setting in which the previous lemma applies is when one is concerned with extension of analytic
functions.

Lemma 3.3. In the setting of Lemma 3.1, assume that S is the boundary of an unbounded domain Ω ⊂ H, 0 ∈ M
and that the Levi form of S has at most m − 1 non-positive eigenvalues. Then
(i) there exists an open neighborhood U of 0 and an (m + 1)-dimensional complex submanifold W0 ⊂ U with

boundary, such that bW0 = M ∩ U;
(ii) W0 ⊂ Ω ∩ U.



38 | Samuele Mongodi and Alberto Saracco

Proof. Toprove the�rst assertion, observe that to obtainLM0 (ζ0, ζ 0) it su�ces to choose a smooth local section
ζ of H0(M) such that ζ (0) = ζ0 and compute the projection of the bracket [ζ , ζ ](0) on the real part of T0(M).
By hypothesis, the intersection of the space where L0(S) is positive de�nite with H0(M) is non zero; take η0
in this intersection. Then LM0 (η0, η0) ≠ 0. Suppose, by contradiction, that the bracket [η, η](0) lies in H0(M),
i.e. its projection on the real part of the tangent ofM is zero. Then, if η̃ is a local smooth extension of the �eld
η to S, we have [η̃, η̃](0) = [η, η](0) ∈ H0(M). Since H0(M) ⊂ H0(S), this would mean that the Levi form of S
in 0 is zero in η0. Now, we project (generically)M over aCm+1 in such a way that the projection π : H → Cm+1

is a local embedding of M near 0: since the restriction of π to M is a CR function, and since the Levi form of
M has - by the arguments stated above - at least one positive eigenvalue, it follows that the Levi form of π(M)
has at least one positive eigenvalue. Thus, in order to obtain W0, it is su�cient to apply the Lewy extension
theorem [14] to the CR function π−1|π(M).

In order to ensure that the extension lies in the Hilbert space H, we consider the orthonormal decomposi-
tion found beforeH = Cm+1×H′. Let {ej}j∈N be a complex base ofH′, and π−1j (M) the ej coordinate of π−1|π(M).
We can apply Lewy’s theorem to extend all of the functions π−1j to a �xed one-sided open neighbourhood U
of 0 ∈ π(M); let us provisionaly denote by pj the extension of π−1j .

For any positive integer k, for any k−tuple (i1, . . . , ik) and for any a ∈ Ck, the scalar function

f = a1π−1i1 + . . . + akπ−1ik

extends to U by
F = a1pi1 + . . . + akpik .

Therefore, by Lemma 3.2, we know that

‖F‖U ≤ ‖f‖π(M) ≤ ‖a‖Ck

∥∥∥∥∥∥∥
 k∑

j=1

|π−1ij |
2

1/2
∥∥∥∥∥∥∥
π(M)

.

Let z0 ∈ U and take aj = pij (z0) for j = 1, . . . , k. Then

|pi1 (z0)|
2 + . . . + |pjk (z0)|

2 ≤ ‖pi1 (z0)pi1 (z) + . . . + pik (z0)pik (z)‖U

≤
(
|pi1 (z0)|

2 + . . . + |pjk (z0)|
2
)1/2 ∥∥∥∥∥∥∥

 k∑
j=1

|π−1ij |
2

1/2
∥∥∥∥∥∥∥
π(M)

and, letting z0 vary in U, we have∥∥∥∥∥∥∥
 k∑

j=1

|pij |
2

1/2
∥∥∥∥∥∥∥
U

≤

∥∥∥∥∥∥∥
 k∑

j=1

|π−1ij |
2

1/2
∥∥∥∥∥∥∥
π(M)

.

This implies that, if the sequence of the partial sums of∑
i

eiπ−1i

is a Cauchy sequence on π(M) with respect to the supremumnorm, then the same holds true for the sequence
of partial sums of ∑

i

eipi

on U with respect to the supremum norm, implying the convergence of the latter to a holomorphic map from
U to H′.

As for the second statement, we observe that the projection by π of the normal vector of S pointing to-
wards Ω lies into the domain of Cm+1 where the above extensionW0 is de�ned. Indeed, the extension result
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in [14] gives a holomorphic function in the connected component of (a neighborhood of 0 in) H \ π(M) for
whichL0(π(M)) has a positive eigenvalue, when π(M) is oriented as the boundary of this component. This is
precisely the component towardswhich the projection of the normal vector of S points, when the orientations
of S and M are chosen accordingly. This fact, combined with Lemma 3.1 (which states that any extension of
M must be transverse to S) implies that locallyW0 ⊂ Ω ∩ U.

Remark 3.4. The open neighborhood U of 0 is not uniquely determined, but the germ of complex submani-
fold given by (U,W)0 is. This follows from the uniqueness of extension of CR functions.

Corollary 3.5 (Semi global existence). Let M be a maximally complex submanifold of the smooth boundary S
of an unbounded domain Ω ⊂ H, 0 ∈ M, dimR(M) = 2m + 1, m ≥ 1. Assume that
1. M is quasi-locally compact;
2. the Levi form of S has at most m − 1 non-positive eigenvalues, at each point of M.

Then there exist an open tubular neighborhood I of S = bΩ in Ω and an (m + 1)-dimensional complex subman-
ifold W0 of Ω ∩ I, with boundary, such that S ∩ bW0 = M.

Proof. By Lemma 3.3, for each point x ∈ M, there exist a neighborhood Ux of x and a complex manifold
Wx ⊂ Ω ∩ Ux bounded by M. Since M is quasi-locally compact, we can cover M with countable many such
open sets Ui, and consider the union W0 = ∪iWi. W0 is contained in the union of the Ui’s, hence we may
restrict it to a tubular neighborhood IM of M. It is easy to extend IM to a tubular neighborhood I of S.

The fact that Wi|Uij = Wj|Uij if Ui ∩ Uj = Uij ≠ ∅ immediately follows from the construction made in
Lemma 3.3, in view of the uniqueness of the holomorphic extension of CR functions.

4 The global result
In this section we will prove Theorem 1.1 in the case when Ω is unbounded.

Proof of Theorem 1.1.. Since Ω is strongly convex, by the discussion following De�nitions 2.1 and 2.2, we can
�nd a real hyperplane

I = {Re λ = 0}

with λ a complex linear functional, tangent to bΩ in 0, such that, for every translation

Ia = {Re λ = a}, a ∈ R+

of I, Ia ∩ Ω is bounded (and not empty) and the same holds for nearby hyperplanes. Denoting by

Lk = {λ = k}, k ∈ C, Re k ∈ R+ ,

also Ak = Lk ∩M is bounded and, by the quasi-local compactness ofM, the slice Ak ofM is compact. In view
of Sard’s lemma, up to modifying the equation of Lk by means of another complex linear functional µ

Lk = {λ + εµ = k}

we can suppose the slice Ak to be smooth and a transversal intersection, hence of the correct dimension
(2m−1). As a notation, we’ll call suitable a slicing hyperplane Lk that leads to a smooth, compact, transversal
intersection, as above.

Thanks to themaximal complexity ofM, it follows that each slice Ak ismaximally complex too.Moreover,
the technical hypothesis (iii) of Theorem 1.1 is inherited by the slice.

Fix a point in Ω. To this correspond a suitable slicing hyperplane Lk0 of the above form, such that nearby
parallel hyperplanes are suitable too. Each slice Ak, k in a neighborhood U of k0, satis�es the hypotheses of
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the theorem in [16], thus is the boundary of a holomorphic chain Ãk with support in the hyperplane Lk, which
is a smooth manifold near bΩ, since there it coincides with the manifold obtained in Corollary 3.5.

Our goal is now to glue together the slices Ãk: ÃU = ∪k∈U Ãk and show that ÃU is a holomorphic chain,
too (without singularities near bΩ, due to Corollary 3.5).

It is worth observing that a strictly convexity hypothesis does not su�ce to use our slicingmethod, as the
following example shows.

Example 4.1. Let Ω ⊂ H be de�ned by

Ω =
{
(zn)n∈N ∈ H | x0 > y20 +

∞∑
n=1

|zn|2
n

}
.

Then Ω is strictly convex (i.e. convex and its boundary does not contain lines or line segments). But it is not
strongly convex at 0 ∈ bΩ.

Observe that the real tangent hyperplane

T0bΩ =
{
(zn)n∈N ∈ H | x0 = 0

}
is such that all its translated in the positive x0 direction intersect Ω and bΩ in unbounded sets. That is also
true for complex hyperplanes of the form

Lk =
{
(zn)n∈N ∈ H | z0 = k

}
, Re k > 0 .

Hence it is not possible to apply out slicing method to a maximally complex manifoldM ⊂ bΩ, since we
have no way to assure even the boundedness of the slice.

If we show that ÃU =
⋃
k∈U Ãk is an analytic space, the thesis will follow.

4.1 Background in geometric measure theory in Banach spaces

In order to carry onwith the proof, we need somemachinery from geometricmeasure theory, sowewill spend
the next few paragraphs to recall the main facts and de�nitions that will come into play later on.

Given a Hilbert space H (or more generally the dual of a separable Banach space), we denote by Hk the
k−dimensional Hausdor� measure on H and we say that a set S ⊆ H is countablyHk-recti�able if there exist
compact sets Ai ⊆ Rk and Lipschitz maps fi : Ai → H such that

Hk

(
S \

∞⋃
i=0

fi(Ai)
)
= 0 .

For Hk-almost every (in what follows Hk-a.e.) point x ∈ S, one can de�ne an analogue of the tangent
plane, the approximate tangent Tan(k)(S, x), which is a k-dimensional subspace of H, in terms of the w*-
di�erential of the maps fi. For the precise de�nition, refer to [2, De�nition 5.5].

Given a Lipschitz map g : S → E, for any E which is dual of a separable Banach space, we de�ne the
tangential di�erential on S forHk-a.e. x ∈ S: the unique linear map

dSgx : Tan(k)(S, x)→ E

which realizes the best linear approximation of g on S in the sense of w*-topology, outside a negligible set.
The precise de�nitions and the properties of such a di�erential can be found in [2].

Given a linearmap L : V → W between�nite dimensional real vector spaceswith dimV = n ≥ dimW = k,
we de�ne Ck(L) as the unique constant such that

Ck(L)Hn(A) =
∫
W

Hn−k(A ∩ L−1(y))dHk(y)
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for every Borel set A ⊆ X. Such a constant is called coarea factor. We have the following coarea formula (see
[2, Theorem 9.4]).

Theorem 4.2 (Coarea formula). Let S ⊂ H be a countablyHn-recti�able set and let g : H → Rk be a Lipschitz
map, with k ≤ n, then
1. forHk-a.e. y ∈ Rk the set S ∩ g−1(y) is countablyHn−k-recti�able,
2. forHk-a.e. y ∈ Rk andHn−k-a.e. x ∈ g−1(y) ∩ S is Tan(n−k)(g−1(y), x) = Ker(dSgx),
3. for every Borel function θ : S → [0,∞] we have

∫
S

θCk(dSgx)dHn(x) =
∫
Rk

 ∫
g−1(y)

θ(x)dHn−k(x)

 dHk(y) .

In what follows we will drop the k in the notation for the coarea factor, as it will be always equal to 2, thus
writing only C(dSgx).

We will also be using metric currents, introduced in [1] and adapted to the complex setting by the �rst
author in [15, 16]; in these works, the interested reader can �nd all the relevant de�nitions. We only recall
that a k-recti�able current is current T such that its mass ‖T‖ is concentrated on a countably Hk-recti�able
set and vanishes onHk-negligible sets.

A metric current is called holomorphic chain if it is given by integration on �nite dimensional analytic
sets, with integer multiplicity.

4.2 Final part of the proof

By [16, Remark 5.4], ÃU is a Lipschitz-continuous family in the parameter k, therefore it is a recti�able set of
real dimension 2m + 2. We denote by [ÃU ] the current of integration associated to it and we de�ne the map
κ : ÃU → U ⊂ C such that x ∈ Ãκ(x) for every x ∈ ÃU ; the map κ is Lipschitz-continuous, therefore∫

ÃU

C(dÃU κx)ω =
∫
U

∫
Ãk

ω = [ÃU ](ω) (1)

by the coarea formula cited above, where ω is any Lipschitz 2m + 2-form.
Formula (1) implies that the current [ÃU ] is of bidimension (m + 1,m + 1), which is equivalent to the fact

that Tan(2m+2)(ÃU , x) = Vx is a complex subspace forH2m+2−a.e. x ∈ ÃU ; moreover, κ is the restriction to ÃU
of a C-linear map f : H → C, therefore dÃU κx = df |Vx . By formula (9.2) in [2] and the properties of C−linear
maps, we get

C(dÃU κx) = C(df |Vx ) > 0 .

This implies that [ÃU ] is a positive current.
The topological boundary of ÃU is given by the union⋃

k∈U
Ak ∪

⋃
k∈bU

Ãk

and therefore is again a recti�able set, this time of dimension 2m + 1 (U is an arbitrary neighborhood of k0,
so we can choose it to have smooth boundary). By formula (1), applied ω = dη, and by the fact the map κ is
indeed linear, the boundary of the current [ÃU ] is concentrated on bÃU ; this set is disjoint from the bounded
open set

ΩU =
⋃
k∈U

(Lk ∩ Ω) ,

therefore d[ÃU ]|ΩU = 0.
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Summing up, [ÃU ] is a (2m + 2)−recti�able current, which is positive and closed in ΩU ; therefore, by [16,
Theorem 4.5], [ÃU ] can be represented by integration on the regular part of an analytic set. We denote such a
set by V.

Let us consider the projection p : H → Cm+1, which is an immersion with self-transverse intersections
when restricted to M, and let us suppose that, for some open set ΩU , we can �nd a linear functional ν :
π(ΩU) → C such that p(Ak) = ν−1(k) ∩ p(M) for every k ∈ U and such that p|Ak is again an immersion with
self-transverse intersections.

We can always �nd such a ν, up to shrinking U; we can also restrict U further, so that every connected
component Uj of π(ΩU) \ p(M) intersects ν−1(k) in a non empty set for every k ∈ U. Going through the proof
of Theorem 5.6 in [16], we can construct holomorphic functions

Fhj,k : Uj ∩ ν−1(k)→ H′

which realize Ãk as their graph. What we proved before is that

Uj 3 (z, k) 7→ Fhj,k(z) = Fhj (z, k)

is a holomorphic function whenever (z, Fhj,k(z)) belongs to (Ãk)reg; therefore, we have an analytic set Sj,k ⊂
Uj ∩ ν−1(k) outside which the dependence from k is analytic. Let us denote by Sj =

⋃
k Sj,k.

By an easy coarea argument, we observe thatH2m+1(Sj) = 0.
Finally, the functions Fhj are boundedonUj because their images are contained in anyballwhich contains

ΩU ∩M, which is bounded. Therefore, we can extend the functions Fhj as holomorphic functions through Sj.
Obviously, the graph of Fhj on Uj coincides with the closure of its graph on Uj \ Sj; therefore, the collection of
the graphs of the F′j s (which are �nite-dimensional analytic subspaces of H \ M by Théorème 2 in the third
part of [17]) supports the current [ÃU ], which is then a holomorphic chain.

The open sets
ωU +

⋃
k∈U

Lk

are a covering of M. Since M is quasi-locally compact, we can �nd a locally �nite countable subcovering ωi,
i ∈ N. In each ωi lives a holomorphic chain Ãi. On the intersection of two such open domains ωi and ωj the
two chains coincide by analiticity, since they both coincide near the boundary bΩ with the manifold W of
Corollary 3.5.

The union T = Ãi of the holomorphic chains de�ned in the open sets ωi is the holomorphic chain with
boundary M.

A �nite dimensional analytic variety in H is contained in a �nite dimensional complex manifold and it
is a complex variety in the latter. Therefore, we can repeat almost verbatim the argument used in [5] to show
that the singularities of ÃU are a discrete set.

The chain T we constructed is unique in Ω; this follows from the fact that there is no holomorphic cycle
of H of positive dimension contained in Ω. Suppose X is a complex analytic subset of �nite dimension in
H, which is contained in Ω; if we consider the linear functional λ de�ned at the beginning of this section,
obviously the set {|λ| ≤ δ} doesn’t intersect X for δ > 0 small enough, therefore the function |λ| attains a
positive minimum on X, but then the holomorphic function λ has to be constant on X. Therefore X lies in
{λ = c} ∩ Ω which is bounded. By [3], X has to be of dimension 0, but this is impossible.

We remark that the previous proof works also in the �nite-dimensional case, giving a simpli�cation of the
argument used in [5], by employing the classical result by King, instead of its Hilbert space analogue.

It is also worth noticing that we can to some extent relax the convexity property, asking only for Ω to
be convex, strongly convex at one point and strongly pseudoconvex. In fact, strong convexity at one point
and convexity everywhere ensure that the slices are compact, if the hyperplanes are parallel to the tangent at
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the point of strong convexity; we also need the strong pseudoconvexity assumption to guarantee the strong
pseudoconvexity of the slices, a fact which is implied by strong convexity but it isn’t by mere convexity.

Proof of Theorem 1.2.. It is su�cient to show that if Conjecture 1.1 holds true, then hypothesis (iv) is always
satis�ed.

We thus assume that Conjecture 1.1 holds true and we consider the metric space given by M with the
distance d given by the restriction of the distance of H. Endowed with such distance, M is a locally compact
space; as a manifold, M is second countable, therefore it is σ−compact.

As the closure of {‖x − x0‖ < ρ} in H is {‖x − x0‖ ≤ ρ} for every x0 ∈ H and ρ > 0, the same holds when
the open and closed balls are intersected withM. Therefore, the metric d is Heine-Borel, i.e. bounded closed
sets are compact.

Now, let us take x ∈ M and ρ > 0; by the Heine-Borel property, the set

{y ∈ M | d(x, y) ≤ ρ} = M ∩ {y ∈ H | ‖x − y‖ ≤ ρ}

is compact, that is, M is quasi-locally compact, therefore we can apply Theorem 1.1 and obtain the desired
result.

5 Further questions
It would be nice to get rid of the technical hypotheses (ii), (iii), (iv) or to �nd examples showing that the
extension does not hold without them.

Hypothesis (ii) (or its weaker version explained after the proof of Theorem 1.1) is needed to apply the cut,
extend and paste method as we presented it (see example 4.1), but might not be necessary to extension, as
another line of proof might be possible.

Hypothesis (iii) is already present in the compact case treated in [16], and already in that case it would
be nice to see whether it is a necessary request or not.

It is worth noticing that an example showing extension does not hold just under hypotheses (i), (ii) and
(iii) would be an indirect proof of the falseness of Williamson and Janos’ conjecture.

A possible direction for future research on the subject is that pursued in [6] inCn: given a (pseudo)convex
domain Ω ⊂ H, and a subdomain A ⊂ bΩ is it possible to �nd a domain E ⊂ Ω depending only on Ω
and A such that every maximally complex manifold (of real dimension at least 5, satisfying some technical
conditions) M ⊂ A is the intersection of the boundary of a complex varietyW ⊂ E with A?

Thanks to what we proved in this paper, if Ω is a strongly convex domain, and A = bΩ, then E = Ω. Thus
the question we are asking is indeed a generalization of the main result of this paper.

Another quite natural question is whether it is possible to extend this result (or the one contained in [16])
to Banach spaces.
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