
Fast Failure Detection and Recovery in SDN
with Stateful Data Planes

Carmelo Cascone*ˆ, Davide Sanvito*, Luca Pollini+, Antonio Capone*, Brunilde Sansòˆ

*Dipartimento di Elettronica, Informazione e Bioingegneria, Politecnico di Milano, Italy

+CNIT, Consorzio Nazionale Interuniversitario per le Telecomunicazioni, Italy

ˆDépartement de génie électrique, École Polytechnique de Montréal, Canada

September 30, 2016

Abstract

When dealing with node or link failures in Software-Defined Net-
working (SDN), the network capability to establish an alternative
path depends on controller reachability and on the round-trip times
(RTTs) between controller and involved switches. Moreover, current
SDN data plane abstractions for failure detection, such as OpenFlow
“Fast-failover”, do not allow programmers to tweak switches’ detection
mechanism, thus leaving SDN operators relying on proprietary man-
agement interfaces (when available) to achieve guaranteed detection
and recovery delays. We propose SPIDER, an OpenFlow-like pipeline
design that provides i) a detection mechanism based on switches’ peri-
odic link probing and ii) fast reroute of traffic flows even in the case of
distant failures, regardless of controller availability. SPIDER is based
on stateful data plane abstractions such as OpenState or P4, and it
offers guaranteed short (few milliseconds or less) failure detection and
recovery delays, with a configurable trade off between overhead and
failover responsiveness. We present here the SPIDER pipeline design,
behavioral model, and analysis on flow tables’ memory impact. We
also implemented and experimentally validated SPIDER using Open-
State (an OpenFlow 1.3 extension for stateful packet processing) and
P4, showing numerical results on its performance in terms of recovery
latency and packet loss.

1

1 Introduction

The longly anticipated paradigm shift of Software Defined Networking (SDN)
is radically transforming the network architecture [1]. SDN technologies pro-
vide programmable data planes that can be controlled from a remote con-
troller platform. This control and data planes separation creates new oppor-
tunities to implement much more efficient traffic engineering policies than
classical distributed protocols, since the logically centralized controller can
take decisions on routing optimization exploiting a global view of the net-
work and a flow level programmatic interface at data plane. Fault resilience
mechanisms are among the most crucial traffic engineering instruments in
operator networks since they insure quick reaction to connectivity failures
with traffic rerouting.

So far, traffic engineering applications for SDN, and failure recovery solu-
tions in particular, have received relatively little attention from the research
community and networking industry which has focused mainly on other im-
portant areas related to security, load balancing, network slicing and service
chaining. Not surprisingly, while SDN is becoming widely used in data cen-
ters where these applications are crucial, its adoption in operator networks is
still rather limited. The support in current SDN implementations of features
for failure recovery is currently rather weak and traditional technologies, e.g.
Multi-Protocol Label Switching (MPLS) Fast Reroute, are commonly con-
sidered for carrier networks more reliable.

The main reason for this gap in SDN solutions is that some traffic engi-
neering applications, such as failure recovery, challenge the limits of the data
plane abstraction that is the key element of any SDN architecture. OpenFlow
is largely the most adopted abstraction for the data plane with its match-
action rules in flow tables [2]. Current OpenFlow abstraction presents some
fundamental drawbacks that can prevent an efficient and performing imple-
mentation of traffic rerouting schemes. As a matter of fact, in OpenFlow
adaptation and reconfiguration of forwarding rules (i.e. entries in the flow
tables) in the data plane can only be performed by the remote controller,
posing limitations on the granularity of the desired monitoring and traffic
control due to the overhead and latency required.

For the case of failures, OpenFlow Fast-failover group works only when
a local alternative path is available from the switch that detected the fail-
ure. Unfortunately, such an alternative path may not be available, in which
case the intervention of a controller, which reachability is not guaranteed, is

2

required in order to establish a rerouting at another point in the network.
We believe that failure detection and recovery can be better handled locally
in the fast data path assuming different sets of forwarding rules that can be
applied according to the observed network state. We argue that this can be
done retaining the logically centralized approach of SDN to programmability
if we fully expose to application developers in the controller both the state
detection mechanism (i.e. link/node availability) and the sets of rules for the
different states. The extension of the OpenFlow abstraction to stateful data
planes has recently attracted the interest of the SDN research community:
OpenState [3] (proposed by some of the authors), FAST [4], and the “learn”
action of Open vSwitch [5] are the main examples. On the other hand,
domain-specific languages such as P4 [6] allow the specification of stateful
behaviors for programmable data plane targets.

In this paper we propose SPIDER1, a packet processing pipeline design
for stateful SDN data plane that allows the implementation of failure recov-
ery policies with fully programmable detection and rerouting mechanisms
directly in the switches’ fast-path. SPIDER is inspired by well-known legacy
technologies such as Bidirectional Forwarding Detection (BFD) [7] and MPLS
Fast Reroute (FRR) [8]. Differently from other OpenFlow-based solutions,
detection and rerouting in SPIDER are implemented entirely in the data
plane, with no need to rely on the slower control plane. As such, SPIDER
allows very short recovery delays (< 1 ms), with a configurable trade off be-
tween overhead and failover responsiveness. We present an implementation
of SPIDER based on OpenState and P4, and its performance evaluation on
some example network topologies.

The paper is organized as follows. In Section 2 we discuss related work,
while in Section 3 we review the characteristics of stateful data planes for
SDN. In Section 4 we introduce the SPIDER approach, we outline its pipeline
design and prototype implementation in Section 5, and provide experimental
results in Section 6. In Section 7 we discuss SPIDER w.r.t. legacy technolo-
gies and current SDN platforms. Section 8 concludes the paper with our final
remarks.

1Stateful Programmable faIlure DEtection and Recovery

3

2 Related Work

The concern of quickly recovering from failures in SDN has been already ex-
plored by the research community with the general goal of making SDN more
reliable by reducing the need of switches to rely on the external controller to
establish an alternative path. Sharma et al. in [9] shows how hard it is to ob-
tain carrier grade recovery times (<50ms) when relying on a controller-based
restoration approach in large OpenFlow networks. To solve this problem, the
authors propose also a proactive protection scheme based on a BFD daemon
running in the switch and integrated with the OpenFlow Fast-failover group
type, obtaining recovery times within 50ms. Similarly, Van Adrichem et al.
shows in [10] how by carefully configuring the BFD process already compiled
in Open vSwitch, it is possible to obtain recovery times of few ms. The
case of protection switching is also explored by Kempf et al. in [11], here
the authors propose an end-to-end protection scheme based on an extended
version of OpenFlow 1.1 to implement a specialized monitoring function to
reduce processing load at the controller. Sgambelluri et al. proposed in [12]
a segment-protection approach based on pre-installed backup paths. Also in
this case, OpenFlow is extended in order to enable switches to locally react
to failures by auto-rejecting flow entries of the failed interface. The concern
of reducing load at the controller is also addressed by Lee at al. in [13].
A controller-based monitoring scheme and optimization model is proposed
in order to reduce the number of monitoring iterations that the controller
must perform to check all links. A completely different and more theoretical
approach based on graph search algorithms is proposed by Borokhovich et
al. in [14]. In this case the backup paths are not known in advance, but a
solution based on the OpenFlow fast-failover scheme is proposed along an
algorithm to randomly try new ports to reach traffic demands’ destination.

Our work extends two earlier conference papers [15, 16] were we first de-
scribe an OpenState-based behavioral model to perform fast reroute and
to provide programmable failure detection, including results on flow entries
analysis, packet loss and heartbeat overhead. In addition to that, we de-
scribe here a P4 implementation of SPIDER, compare SPIDER with legacy
technologies such as BFD and MPLS Fast Reroute, and discuss about the
relation with data plane reconciliation schemes applied by current SDN plat-
forms. Finally, to the best of our knowledge, we are unaware of other prior
work towards the use of programmable stateful data plane abstractions to

4

implement both failure detection and recovery schemes directly in the fast-
path.

3 Stateful data plane abstractions

OpenFlow describes a stateless data plane abstraction for packet forwarding.
Following the spirit of SDN’s control and data plane separation, network state
is maintained only at the controller, which in turn, based on a reactive ap-
proach, updates the devices’ flow table as a consequence of events such as the
arrival of new flows, topology changes, or monitoring-based events triggered
by the periodic polling of flow table statistics. We argue that improved scala-
bility and responsiveness of network applications could be offered by adopting
a stateful proactive abstraction, where switches are pre-provisioned with dif-
ferent sets of forwarding behaviors, i.e. flow entries, dynamically activated
or deactivated as a consequence of packet-level events and timers, and based
on per-flow state maintained by the switch itself. OpenState [3], FAST [4],
OVS [5] and P4 [6] are example of such an abstraction supporting stateful
forwarding. OpenState and FAST offer explicit support to program data
plane state machines by defining dedicated structures such as state tables
and primitives for state transition. OVS in turn, provides implicit support
to stateful forwarding thanks to a special “learn” action (not currently sup-
ported in the OpenFlow specification) that allows the creation at run-time
of new flow entries as a consequence of a packets matching existing ones2.
Moreover, we note how the research community already started the inves-
tigation of a stateful fast-path in OVS [18]. Finally, the current version of
the P4 language [19] allows to define stateful forwarding behaviors based on
memory registries that can be accessed when processing a packet.

We choose to base our design and main implementation on OpenState for
two reasons. First because, in our belief, OpenState offers a simple stateful
forwarding abstraction that better serves the purpose of describing the be-
havioral model implemented by SPIDER in the form of Finite State Machines
(FSMs) that operate on per-flow states. Indeed, while OVS’s “learn” action
could be used in principle to equivalently compile SPIDER features at data
plane, it would require a less trivial effort in describing its design. Regarding
FAST, although it provides a very similar abstraction to OpenState, unfortu-

2For a detailed description of OVS’s stateful primitives, and an example on how to
program stateful applications such a MAC learning switch, please refer to [17].

5

any n/adefault
………
………

TimeoutsStateKey

.. ……
………
………

TimeoutsActionsMatch

Key extractor
(update-scope)

pkt
+ state

set_state(new_state, timeouts)

Key extractor
(lookup-scope)

pkt
pkt
+ actions

State table Flow table

Figure 1: Architecture of a stage of the OpenState pipeline.

nately, as of today there is no publicly available implementation that we can
use to implement and test SPIDER. Our second reason is that SPIDER is
built on the assumption that updates of the forwarding state are possible at
line-rate, directly handled on the fast data path. The OpenState abstraction
is also based on this assumption and its hardware experimental proof on a
TCAM-based architecture was already addressed in [20]. Finally, P4 can be
used to specify a forwarding abstraction equivalent to OpenState.

3.1 OpenState

Before proceeding with the introduction of SPIDER, we consider it neces-
sary to briefly summarize OpenState features, which are essential to define
SPIDER in the rest of the paper3. Figure 1 depicts the different elements of
the OpenState pipeline. The legacy OpenFlow’s flow table is preceded by a
state table used to store “flow states”. Each time a new packet is processed
by the flow table, it is first matched against the state table. The matching is
performed exactly (i.e. non-wildcard) on a flow key obtained using the fields
defined by a “lookup-scope” (i.e. a list of OpenFlow’s header fields identi-
fier). The state table returns a “default” state if no state entry is matched
by a given flow key, otherwise a different state is returned. The packet is
then processed by the flow table, here flow entries can be defined to match
on the state value returned by the state table. Moreover, a new “set-state”
action is defined to insert/update entries in any state table of the pipeline.
During a set-state action the state table is updated using a flow key op-
tionally different from the one used in the lookup phase and defined by the

3The features presented here are based on the most updated version of the OpenState
v1.0 specification available at [21].

6

1 2 3

5 detour

tag=0
4

(a) Normal (no failures)

1 2 3

5

//

tag=F3

4

Failover on detour
OR backward Local failure

w.r.t. node 2

tag=0

(b) Local failover

1 2 3

5

//

Detour enabled by
bounced packets

tag=F4
4

Remote failure
w.r.t node 2

tag=0

(c) Remote failover

1 2 3

tag=0

4

tag=HB_req
Drop

tag=HB_reply

5

(d) Heartbeat request/reply

1 2 3 4

5

tag=0
Drop

tag=P4

tag=F4

(e) Path probing

Figure 2: Example of the different forwarding behaviors implemented by
SPIDER.

“update-scope” (necessary when dealing with bidirectional flows). Finally,
idle and hard state timeouts can be defined and are equivalent to those used
in OpenFlow flow entries. A “rollback state” is associated to each timeout,
and its value is used to update the state entry after the timeout expiration.
Idle timeouts expires after a given entry is not matched by any packet for a
given interval, while hard timeouts are expired counting from the instant the
state entry has been inserted/updated. After configuring the lookup-scope,
update-scope and the flow table, the state table is initially empty. It is then
filled and updated based on the set-state actions defined in the flow table
and executed as a consequence of packets matching flow entries in the flow
table.

4 Approach sketch

SPIDER provides mechanisms to perform failure detection and instant rerout-
ing of traffic demands using a stateful proactive approach, without requiring
the intervention of the controller. Interaction with the controller is needed
only at boot time to provision switches’ state tables and to fill flow tables with
the different forwarding behaviors. No distributed protocols are required, in-
stead the different forwarding behaviors are handled at the data plane level
by labeling packets with special tags and by using the stateful primitives
introduced before. The features implemented by SPIDER are inspired by
well-known legacy protocols such as BFD and MPLS FRR, in Section 7 we
discuss more about the design of SPIDER w.r.t. these legacy technologies.

7

Backup path pre-planning. SPIDER does not distinguish between
node or link failures, instead we define with Fi a particular failure state of
the network for which node i is unreachable. Given another node j, we refer
to the case of a “local” failure, when j is directly connected (1 hop) to i,
while we refer to a “remote” failure when node i is not directly connected
to j. In our design the controller must be provided with the topology of
the network and a set of primary paths and backup paths for each demand.
Backup paths must be provided for each possible Fi affecting the primary
path of a given demand. A backup path for state Fi can share some of
the primary path, but it is required to offer a detour (w.r.t primary path)
around node i. In other words, even in the case of a link failure making i
unreachable from j, and even other links to j might exist, we require that
backup paths for Fi cannot use any of the links belonging to i. The reason of
such a requirement is that, to guarantee very short (< 1ms) failover delays,
a characterization of the failure, i.e. understanding if it is a node or a link
failure, is not possible without the active involvement of the controller or
other type of slow signaling. For this reason SPIDER assumes always the
worst case where node i is down, hence it should be completely avoided. An
example of problem formulation that can be used to compute an optimal set
of such backup paths has been presented in [22]. Finally, if all backup paths
are provided, SPIDER guarantees instantaneous protection from every single-
failure Fi scenario, without requiring the controller to compute an alternative
routing or to update flow tables. However, the unfortunate case of a second
or multiple failures happening sequentially can be supported through the
reactive intervention of the controller.

Failure detection. SPIDER uses tags carried in an arbitrary header
field (e.g. MPLS label or VLAN ID) to distinguish between different for-
warding behaviors and to perform failure detection and switch-to-switch fail-
ure signaling. Figure 2 depicts the different forwarding scenarios supported
by SPIDER. When in normal conditions (i.e. no failures), packets entering
the network are labeled with tag=0 and routed through their primary path
(Fig. 2a). To detect failures, SPIDER does not rely on any switch-dependent
feature such OpenFlow’s Fast-failover, instead it provides a simple detection
scheme based on the exchange of bidirectional “heartbeat” packets. We as-
sume that as long as packets are received from a given port, that port can be
also used to reliably transmit other packets. When no packets are received
for a given interval, a node can request its neighbor to send an heartbeat.
As shown in Fig. 2d, heartbeat can be requested by labeling any data packet

8

with tag=HB req. A node receiving such a packet will perform 2 operations:
i) set back tag=0 and transmit the packet towards the next hop and ii) cre-
ate a copy with tag=HB reply and send it back on the same input. In this
way, the node that requested the heartbeat will know that its neighbor is
still reachable. Heartbeat are requested only when the received packet rate
drops below a given threshold. If no packets (either data or heartbeat) are
received for more than a given timeout, the port is declared DOWN. The state
of the port will be set back to UP as soon as packets will be received again
on that port.

Fast reroute. When a port is declared DOWN, meaning a local failure sit-
uation towards a neighbor node i, incoming packets are labeled with tag=Fi

and sent to an alternative port (Fig. 2b), this could be a secondary port
belonging to a detour or the same input port where the packet was received.
In the last case we refer to a “bounced” packet. Bounced packets are used
by SPIDER to signal a remote failure situation. Indeed, they are forwarded
back along their primary path until they reach a node able to forward them
along a detour. In Fig. 2c, when node 2 receives a bounced packet with
tag=F4, it updates the state of that demand to F4 and forwards the packet
along a detour. Given the stateful nature of SPIDER, state F4 is maintained
by node 2, meaning that all future packets of that demand with tag=0, will
be labeled with tag=F4 and transmitted directly on the detour. In the ex-
ample, we refer to node 2 as the “reroute” node of a given demand in state
F4, while the portion of the path comprised between the node that detected
the failure and the reroute node is called the “bounce path”.

Path probing. Failures are temporary, for this reason SPIDER provides
also a probe mechanism to establish the original forwarding as soon as the
failure is resolved. When in state Fi the reroute nodes periodically generate
probe packets to check the reachability of node i. As for heartbeat packets,
probe packets are not forged by switches or the controller, instead, they are
generated simply duplicating and labeling the same data packets processed
by a reroute node. In Fig. 2e, node 2 duplicates a tag=0 packet. One copy
is sent on the detour with tag=F4, while the other is labeled with tag=Pi

and sent on the original primary path. If node i becomes reachable again,
it will bounce the probe packet towards the reroute node. The reception of
a probe packet Pi from a node with a demand in state Fi will cause a state
transition that will re-enable the normal forwarding on the primary path.

Flowlet-aware failover. SPIDER also addresses the issue of packet re-
ordering that might occur during the remote failover. Indeed, in the example

9

Packets
State updates

Legend:

Table 0 Table 1 Table 2
RF FSM

Table 3
LF FSM Output port(s)

Figure 3: SPIDER pipeline architecture.

of Fig. 2c, while new tag=0 packets arrive at the reroute node, one or more
(older) packets may be traveling backward on the bounce path. Such a sit-
uation might cause packets to be delivered out-of-order at the receiver, with
the consequence of unnecessary throughput degradation for transport layer
protocols such as TCP. For this reason SPIDER implements the “Flowlet-
aware” forwarding scheme first introduced in [23]. While SPIDER is already
aware of the failure, the same forwarding decision is maintained for packets
belonging to the same burst; in other words, packets are still forwarded (and
bounced) on the primary path until a given idle timeout (i.e. interval between
bursts) is expired. Such a timeout can be evaluated by the controller at boot
time and should be set as the maximum RTT measured over the bounce path
of a given reroute node for state Fi. Effectively waiting for such an amount
of time before enabling the detour, maximizes the probability that no more
packets are traveling back on the bounce path, thus minimizing the risk of
mis-ordered packet at the receiver.

5 Implementation

In this section we present the design of the pipeline and the configuration
of the flow tables necessary to implement SPIDER. The pipeline (Fig. 3)
is based on 4 different flow tables. An incoming packet is first processed
by table 0 and 1. These two blocks perform only stateless forwarding (i.e.
legacy OpenFlow), which features will be described later. The packet is
then processed by stateful tables 2 and 3. These tables implement respec-
tively the Remote Failover (RF) FSM, and the Local Failover (LF) FSM
described later. Packets are always processed by table 2 which is responsible
for rerouting packets when the primary path of a given demand is affected

10

by a remote failure. If no remote failure has been signaled to table 2, packets
are submitted to table 3 which handles the failover in the case of local fail-
ures (i.e. directly seen on local ports). State updates in table 2 are triggered
by bounced packets, while table 3 implements the heartbeat-based detection
mechanisms introduced in Section 4. Although table 1 is stateless and for
this reason doesn’t need to maintain any state, it is responsible for triggering
state updates on tables 2 and 3.

Table 0. It performs the following stateless processing before submitting
packets to table 1:

• For packets received from an edge port (i.e. directly connected to a
host): push an initial MPLS label to store the tag.

• For packets received from a transport port (i.e. connected to another
switch): write the input port in the metadata field (used later to trigger
state updates from table 1).

Table 1. It handles the processing of those packets which requires only
stateless forwarding, i.e. which forwarding behavior doesn’t depend on states:

• Data packets received at an edge port: set tag=0 , then submit it to
the next table.

• Data packets received at the last node of the primary path: pop the
MPLS label, then directly transmitted on the corresponding output
port (where the destination host is located).

• Packets with tag=Fi: directly transmitted on the detour port (unique
for each demand and value of Fi); set tag=0 on the last node of the
detour before re-entering the primary path. An exception is made for
the reroute node of demand in state Fi, in this case the routing decision
for these packets is stored in table 2.

• Heartbeat requests (tag=HB req): packets are duplicated, one copy is
set with tag=HB reply and transmitted through the input port, the
other is set with tag=0 and then submitted to the next table.

• Heartbeat replies (tag=HB reply): dropped (used only to update the
state on table 3).

11

Normal
(default)

F1

Fn

…

lookup-scope=[eth_src, eth_dst]
update-scope=[eth_src, eth_dst]

Figure 4: Macro states of the Remote Failover FSM

Fi

Fault
signaled

Normal
(default)

Detour
enabled

Need
probe

Fault
resolved

tag=Fi
<fwd(detour)>

idle_to=δ1 or
hard_to=δ2

tag=0
<fwd(primary)>

tag=Fi
<fwd(detour)>

tag=0
<fwd(primary)>

hard_to=δ5

tag=0
<set_tag(Fi), fwd(detour)>

tag=0
<set_tag(Fi), fwd(detour)>
<set_tag(Pi), fwd(primary)>

tag=0
<set_tag(Fi), fwd(detour)>

idle_to=δ3 or
hard_to=δ4

“Probe packet
coming back”

Table 1

Figure 5: Detail of the macro state Fi for the Remote Failover FSM.

• Probe packets (tag=Pi): directly transmitted on the corresponding
output port belonging to the probe path (i.e. the primary path, unique
for each demand and value of Pi) (e.g. Fig. 2e).

Finally, table 1 performs the following state updates on table 2 and 3:

• For all packets: a state update is performed on table 3 so to declare
the port on which the packet has been received as UP.

• Only for probe packets: a state update is performed on table 2 to
transition a flow state from Fi to Normal.

Table 2 (Remote Failover FSM). Figure 4 shows a simplified version
of the FSM. A state is maintained for each different traffic demand served

12

by the switch. As outlined by the lookup and update scopes, in this case the
origin-destination demands are identified by the tuple of Ethernet source and
destination address, a programmer might specify different aggregation fields
to describe the demands (e.g. IP source/destination tuple, or the 4-tuple
transport layer protocol). Given the support for only single-failure scenarios,
transitions between macro states Fi are not allowed (state must be set to
Normal before transitioning to another state Fi). Figure 5 depicts a detailed
version of the Remote Failover FSM with macro state Fi exploded. At boot
time the state of each demand is set to the default value Normal. Upon
reception of a bounced packet with tag=Fi, the latter is forwarded on the
detour and state set to Fault signaled. The flowlet-aware routing scheme
presented before, is here implemented by means of state timeouts. When
in state Fault signaled, packets arriving with tag=0 (i.e. from the source
node) are still forwarded on the primary path. This behavior is maintained
until the expiration of the idle timeout δ1, i.e. after no packets of that
demand have been received for a δ1 interval, which should be set equal to the
RTT measured on the bounce path4.To avoid a situation where the demand
remains locked in state Fault signaled, an hard timeout δ2 > δ1 is set
so that the next state Detour ready is always reached after at most a δ2
interval. When in state Detour enabled, packets are set with tag=Fi and
transmitted directly on the detour. In this state an hard timeout δ5 assures
the periodic transmission of probe packets on the primary path. The first
packet matched when in state Need probe is duplicated: one copy is sent on
the detour towards its destination, another copy is set with tag=Pi and sent
to node i through the original primary path of the demand. If node i becomes
reachable again, it responds to the probe by bouncing the packet (tag=Pi is
maintained) to the reroute node that originated it. The match of the probe
packet at table 1 of the reroute node will trigger a reset of the Remote Failure
FSM to state Fault resolved. When in state Fault resolved, the same
flowlet-aware routing scheme of state Fault signaled is applied. In this
case an idle and hard timeout are set in order to maintain the alternative
routing until the end of the current burst of packets. In this case δ3 must be
set to the maximum delay difference between the primary and backup path.
After the expiration of δ3 or δ4, the state is set back to Normal, hence the

4Such a feature requires the support for very short timeouts. OpenState v1.0 currently
define state timeouts with microseconds resolution.

13

UP: need
heartbeat
(default)

UP:
heartbeat
requested

UP: Wait

DOWN:
need probe

DOWN:
probe sent

any packet
<set_tag(HB), fwd(outport)>

lookup-scope=[metadata]
update-scope=[metadata]

hard_timeout=δ7

any packet
<set_tag(Fi), fwd(detour or inport)>

<set_tag(Pi), fwd(outport)>

any packet
<set_tag(Fi), fwd(detour or inport)>

hard_timeout=δ6
any packet

<fwd(outport)>

hard_timeout=δ5

“Any packet
arriving at outport”

any packet
<fwd(outport)>

Table 1

Figure 6: Mealy machine implemented by the LF table

transmission on the detour stops and packets are submitted to table 3 to be
forwarded on their primary port.

Table 3 (Local Failover FSM). Figure 6 depicts the FSM implemented
by this table. Here flows are aggregated per output port (encoded in the
metadata field)5 , meaning that all packets destined to the same port will
share the state. This FSM has two macro states, namely UP and DOWN. When
in state DOWN, packets are forwarded to an alternative port (belonging to
a detour or to the input port in case of bounced packets, according to the
pre-planned backup strategy). At boot time all flows are in default state
UP: need heartbeat, meaning that an heartbeat packet must be generated
and a reply received, so that the port keeps being declared UP. Indeed, the
first packet matched in this state will be sent with tag=HB req and the state
updated to UP: heartbeat requested. While in this state, packets will be
transmitted on the primary output port, until an hard timeout δ7 expires,
in which case the port will be declared DOWN. The timeout δ7 represents the
maximum interval admitted between the generation of the heartbeat request
and the reception of the corresponding reply. Every time a packet (either

5In our current implementation based on OpenFlow 1.3, matching on the outport is
not supported, for this reason we use the metadata field to carry this information across
tables.

14

a data, probe or heartbeat) is received at table 1 the state of that port is
reset to UP: wait. The Local Failover FSM will stay in this state for an
interval δ6 (hard timeout), after which the state will be set back to UP:

need heartbeat. Hence, δ6 represents the inverse of the minimum received
packet rate required for a given port to avoid the generation of heartbeats.
If the timeout δ7 expires, the port is declared DOWN. Here, packets will be
tagged with Fi (where i is the node directly connected through the port)
and forwarded on an alternative port. Similarly to the Remote Failover
FSM, an hard timeout δ5 assures that probe packets will be generated even
when the port is declared DOWN.

In conclusion, Table 1 summarizes the different timeouts used in SPIDER.
We emphasize how, by tweaking these values, a programmer can explicitly
control and impose i) a precise detection delay for a given port (δ6 + δ7), ii)
the level of traffic overhead caused by probe packets of a given demand (δ5
and δ6), the risk of packets reordering in the case of a remote failover (δ1, δ2,
δ3, and δ4). Experimental results based on these parameters are presented
in the following section.

OpenState-based prototype

We implemented SPIDER using a modified version of the OpenFlow Ryu
controller [24] extended to support OpenState [21]. SPIDER source code
is available at [25]. For the experimental performance evaluation we used
Mininet [26] with a version of the CPqD OpenFlow 1.3 softswitch [27] as
well extended with OpenState support.

P4-based prototype

In order to prove the feasibility of the SPIDER pipeline design, we also
provide an implementation of it in P4. This implementation can be found
at [28] and is based on openstate.p4, a library that can be re-used by other
P4 programs to easily express stateful packet processing using an table-based
abstraction equivalent to OpenState. In other words, openstate.p4 allows
to express forwarding behaviors based on per-flow states that can be updated
as a consequence of packet match events or timeouts.

We tested our P4 based implementation of SPIDER with the reference P4
software switch BMv2 [29]. In the following we discuss some concerns related

15

Table 1: Summary of the configurable timeouts of the SPIDER pipeline

Timeout Type Description Value

δ1 Idle Flowlet idle timeout before
switching packets from the pri-
mary path to the detour

Maximum RTT measured on
the bounce path for a specific
demand and Fi

δ2 Hard Maximum interval admitted for
the previous case before en-
abling the detour

> δ1

δ3 Idle Flowlet idle timeout before
switching packets from the de-
tour to the primary path

Maximum end-to-end delay dif-
ference between the backup
path and the primary path

δ4 Hard Maximum interval admitted for
the previous case before re-
enabling the primary path

> δ3

δ5 Hard Probe generation timeout Arbitrary interval between each
periodic check of the primary
path in case of remote failure

δ6 Hard Heartbeat requests generation
timeout

Inverse of the minimum rx rate
for a given port before the gen-
eration of heartbeat requests
and the corresponding replies

δ7 Hard Heartbeat reply timeout before
the port is declared down

Maximum RTT for heartbeat
requests/replies between two
specific nodes (1 hop)

16

to the feasibility of SPIDER and openstate.p4 on a P4-based programmable
target:

• State table: it is needed in order to maintain per-flow states, indexed
according to a flow key that is extracted from each packet according to
a given lookup-scope or update-scope, depending on the type of access
performed (read or write). We implemented the state table using P4’s
register arrays. We used hash functions to efficiently map flow keys
to the limited number of memory cells. Obviously, when using hash
functions the main concern is related to collisions, where multiple flows
can end up sharing the same memory cell. In the case of SPIDER,
collisions should be properly handled to avoid the situation of a flow
being forwarded according to a failure state set by another flow. Such
an issue can be solved either by defining a collision handling mecha-
nism in P4 or by delegating such a function to an “extern” object. The
latter is a mechanism introduced in the more recent versions of the P4
language that allows a programmer to reference target-specific struc-
ture, for example, a key-value store which uniquely maps flow keys to
state values, transparently handling collisions. Instead, openstate.p4
provides native support for a trivial collision handling scheme by im-
plementing an hash table with chaining that allows a fixed number of
key-value couples to share the same index. We do not provide any in-
sight about the performances of the approach, rather we use it to prove
to feasibility of SPIDER for a P4 target.

• State timeouts: the ability of SPIDER to detect failures depends
on the ability to evaluate timeout events (e.g. no packets received
for on a given port for δ7 time). State timeouts in openstate.p4

are implemented comparing the timestamp of incoming packets with
the idle or hard timeout value stored in the state table. However,
packets timestamping is not a feature supported by the P4 specification.
In our implementation, we rely on the ability of the BMv2 target to
add a timestamp metadata to incoming packets. Moreover, the failure
detection delay depends on the timestamp granularity, for example a
target offering seconds granularity will not be able to detect failures in
less than a second.

17

Table 2: Number of flow entries per node.

Net D E C min avg max E2 ×N

5x5 240 16 9 443 775 968 6400
6x6 380 20 16 532 1115 1603 14400
7x7 552 24 25 795 1670 2404 28224
8x8 756 28 36 1069 2232 3726 50176
9x9 992 32 49 1368 2884 4509 82944
10x10 1260 36 64 1188 3584 6153 129600
11x11 1560 40 81 1409 4249 7558 193600
12x12 1892 44 100 1185 5124 9697 278784
13x13 2256 48 121 2062 6218 11025 389376
14x14 2652 52 144 1467 7151 15436 529984
15x15 3080 56 169 3715 8461 16347 705600

6 Performance Evaluation

6.1 Flow entries analysis

While detection and recovery times are guaranteed and topology-independent,
a potential barrier for the applicability of the solution is represented by the
number of flow entries, which can be limited by the switch memory and de-
pends on the network topology. We evaluate here the resources required by
a switch to implement SPIDER in terms of flow table entries and memory
required for flow states. We start by defining as D the maximum number
of demands served by a switch, F the maximum number of failures that can
affect a demand (i.e. length of the longest primary path), and P the maxi-
mum number of ports of a switch. We can easily model the number of flow
entries required by means of Big-O notation as O(D × F). Indeed, for table
0 the number of entries is equal to P ; for table 1 in the worst case we have
one entry per demand per fault (D × F); for table 2 we always have exactly
7×D×F , and for table 3 exactly P×(3+2×D). In total, we have a number
of entries order of P +D×F +D×F +D×P and then of D×F +D×P .
Assuming F >> P we can conclude that the number of entries is O(D×F).

If we want to evaluate the complexity according to network size, we can
observe that in the worst case F = N = E + C, where N is the number
of nodes, E edge nodes and C core nodes. Assuming a protection scheme
that uses disjoint paths, which is the most demanding in terms of rules since
all the Fi states are managed by the ingress edge nodes, and a full traffic

18

matrix, we have D = E(E−1) ≈ E2. In the worst case we have a single node
managing all faults of all demands, where the primary path of each demand
is the longest possible, thus F = N . In this case the number of entries will
be O(E2 ×N).

In Table 2 we report the values for grid networks n×n where edge nodes
are the outer ones of the grid and there is a traffic demand for each pair of
edge nodes. In addition to the O(E2×N) values, we include in the table the
values per node (min, max, average) calculated for the case of end to end
protection where the primary path is the shortest one (number of hops) and
the backup path is the shortest node disjoint from the primary. The number
of rules is generated according to the SPIDER implementation described in
Section V and available at [25]. We can observe that even the max value is
always much smaller than the values estimated by the complexity analysis,
moreover, we can safely say that these are reasonable numbers for a carrier
grade router of a service provider, and well below the capabilities of data
center switches. Obviously, for more efficient protection schemes based on
a distributed handling of states Fi (e.g. segment protection), we expect an
even lower number of rules per node.

As far as the state table is concerned, table 2 for node n needs Dn entries,
where Dn is the number of demands for which n is a reroute node. For the
width of the table we need to consider the total number of possible states
that is 1 + 4Fn, where Fn is the number of remote failures managed by n.
Similarly, for stage 3 we have only 5 possible states and a number of entries
equal to P .

6.2 Detection mechanism

To evaluate the effectiveness of the SPIDER heartbeat-based detection mech-
anism, we have considered a simple experimental scenario of two nodes and a
link with traffic of 1000 pkt/sec sent in one direction only. In Fig. 7 we show
the number of packets lost after a link failure versus δ6 (heartbeat interval)
and δ7 (heartbeat timeout). As expected, the number of losses decreases
as the heartbeat interval and timeout decreases. In general, the number of
dropped packets depends on the precise instant the failure occurs w.r.t. δ6
and δ7. The curves reported are obtained averaging the results of 10 different
tries with failures reproduced at random instants.

19

10
00 50
0

25
0

12
5 63 32 16 8 4 2 1

0

100

200

300

400

500

δ6[ms]

N
u
m

b
er

of
p
ac

ke
ts

lo
st

δ7
100ms
50ms
25ms
10ms

Figure 7: Packet loss (data rate 1000 pkt/sec)

6.3 Overhead

Obviously, the price to pay for a small number of losses is the overhead due
to heartbeat packets. However, SPIDER exploits the traffic in the reverse
direction for failure detection, and this reduces the amount of heartbeat
packets. For the same two nodes scenario in the previous section, we have
evaluated the overhead caused when generating a decreasing traffic profile of
200 to 0 pkt/sec, with different values of δ6. Results are reported in Fig. 8.

We can see that, as long as the reverse traffic rate is higher than the heart-
beat request rate (1/δ6), zero or low signaling overhead is observed. When
the traffic rate decreases, the overhead due to heartbeats tends to compensate
for the missing packets up to the threshold. However, this overhead does not
really affect the network performance since it is generated only when reverse
traffic is low.

6.4 Comparison with a reactive OpenFlow approach

We now compare a SPIDER-based solution with a strawman implementation
corresponding to a reactive OpenFlow (OF) application able to modify the
flow entries only when the failure is detected and notified to the controller.
We have considered the network shown in Fig. 9a. For the primary and
backup paths, as well as the link failure indicated in the figure, we have
considered an increasing number of demands with a fixed packet rate of 100
pkt/sec each one. For the OF case, we used the detection mechanism of
the Fast-failover (FF) group type implemented by the CPqD softswitch, and

20

0 20 40 60 80 100
0

50

100

150

200

250

sec

pk
t/
se
c

data
HB reply

total

(a) HB req rate = 10 pkt/sec

0 20 40 60 80 100
0

50

100

150

200

250

sec

data
HB reply

total

(b) HB req rate = 40 pkt/sec

0 20 40 60 80 100
0

50

100

150

200

250

sec

pk
t/
se
c

data
HB reply

total

(c) HB req rate = 70 pkt/sec

0 20 40 60 80 100
0

50

100

150

200

250

sec

data
HB reply

total

(d) HB req rate = 100 pkt/sec

Figure 8: Heartbeat overhead with decreasing data traffic 200-0 pkt/sec and
heartbeat request rates (inverse of δ6) of 10, 40, 70, and 100 pkt/sec.

1

1

20

19

16

17

13

12

9

10

11

15

(a)

0 10 20 30 40
0

100

200

300

Number of demands served by the switch

N
u
m

b
er

of
p
ac

ke
ts

lo
st

OF FF (RTT 12ms)
OF FF (RTT 6ms)
OF FF (RTT 3ms)
OF FF (RTT 0ms)
SPIDER δ7=1ms

(b)

Figure 9: Comparison with OpenFlow: (a) test topology used in experiments
and (b) number of packets lost

21

different RTTs between the switch that detects the failure and the controller.
For SPIDER we used a heartbeat interval (δ6) of 2 ms and timeout (δ7) of
1 ms. For all the considered flows, no local backup path is available: in the
SPIDER case the network is able to autonomously recover from the failure
by bouncing packets on the primary path, while in the OF case the controller
intervention is needed to restore connectivity.

The results obtained are shown in Fig. 9b. We can see that the losses
with SPIDER are always lower than OF. Note that, even if the heartbeat
interval used is small, this is not actually an issue for the network since in
the presence of reverse traffic the overhead is proportionally reduced so that
it never affects the link available capacity. The value of the timeout actually
depends on the maximum delay for heartbeat replies to be delivered, which in
high speed links mainly depends on propagation and can be set to low values
by assigning maximum priority to heartbeat replies. In the case of OF, the
number of losses increases as the switch-controller RTT increases. Obviously,
losses also increase with the number of demands since the total number of
packets received before the controller installs the new rules increases as well.

7 Discussion

7.1 Comparison with BFD

BFD [7] is a widely-used protocol to provide fast failure detection that is
independent from the underlying medium and data protocol. When using
BFD, two systems, i.e. forwarding entities, establish a session where control
packets are exchanged to check the liveness of the session itself. In the com-
mon case the session to be monitored represents a bidirectional link, but it
could also be a multi-hop path. The main mode of detecting failures in BFD
is called Asynchronous Mode, where a session endpoint sends BFD packets
at a fixed rate. A path is assumed to have failed if one system stops re-
ceiving those packets for a given detection timeout. Both packets send rate
and detection timeout can be enforced by a network administrator to pro-
duce short (in the order of µs6) guaranteed detection delays. Optionally, an
endpoint can explicitly request the other to activate/deactivate transmission
of control packets using the so called Demand Mode. In both modes, the
ability of a party to detect a failure depends on the ability of the device-local

6The BFD specification at [7] defines timestamps with µs granularity

22

control plane to keep track of the elapsed time between the received control
packets, and hence on the liveness of the control plane itself. For this reason,
a third way of operation, namely the Echo Function is defined in order to
test the forwarding plane of a device. When using this function, special Echo
packets are emitted at arbitrary intervals by the control plane of one of the
two parties, with the expectation to have these packets looped-back by the
forwarding plane of the other endpoint.

In the context of SDN, the devices’ control plane is separated and log-
ically centralized at a remote, geographical distant location. Current SDN
platforms [30,31] already provide means of detecting failures that are similar
to BFD’s Asynchronous Mode, where specially forged packets are requested
to be emitted by the remote controller from a specific device port (via Open-
Flow PacketOut) and expected to be received (via OpenFlow PacketIn) by
the adjacent node in a given interval. However due to the latency and over-
head of the SDN control channel it is hard to guarantee the same short
detection delays as in BFD.

SPIDER improves SDN by providing ways to detect failure without re-
lying on the slow control channel. Indeed, in SPIDER, which mode of op-
eration based on heartbeats resembles the BFD’s Echo Function, detection
delays can be enforced by appropriately setting timeouts δ6 and δ7, which are
unique for a given switch and port. Moreover, we believe SPIDER represents
an improvement over BFD. Indeed, SPIDER operations are performed solely
on the fast-path, i.e. at TCAM speed, differently from a BFD implementa-
tion based on the slower, device-local control plane. As such, the minimum
detection delay of a target implementing SPIDER depends for the most part
on the timestamp granularity provided by the target and the propagation
delay between two devices. The other general advantage of SPIDER over
BFD is that it does not require the definition of a separate control protocol,
rather the same data packets are re-used to piggy-back heartbeats using an
arbitrary header field (a MPLS label in our prototype implementation).

Some disadvantages of SPIDER over BFD are:

• Security: BFD defines means to authenticate a session to avoid the
possibility of a system to interact with an attacker falsely reporting
session states. In other words, all control and echo packets that can-
not be validated as coming from a safe source are discarded. On the
contrary, SPIDER does not use any mechanism to check for the the
validity of the tag carried by data packets. For this reason SPIDER

23

tags should be used only inside the same authoritative domain, drop-
ping any incoming packet at the edge carrying any unexpected header
and controlling physical access to the network to prevent the intrusion
of an attacker.

• False positives: BFD allows to prevent false positives (i.e. erro-
neously declaring a session down) by setting a minimum number of
consecutive dropped packets before declaring the session down. In
fact, in presence of transmission errors, some control packets might be
unrecognized and echo packets not looped-back. On the contrary, in
SPIDER failure state for a port is triggered after the first missed heart-
beat request, that could be caused by a corrupted heartbeat request,
thus causing unnecessary fluctuation between the backup and primary
path (due to the probe mechanism). For this reason, SPIDER should
be preferred with reliable communication channels (e.g. wired medium
rather than wireless). Nevertheless, heartbeat packets are smartly re-
quested only when input traffic is low and since we expect, for most of
the time, traffic flowing in both direction of a link, the transmission of
heartbeat packets itself is a quite rare event.

• Administrative down: BFD allows a network operator to adminis-
tratively report a link as down, e.g. for maintenance, thus triggering
a fast reaction of the device. On the contrary, the implementation of
SPIDER presented here, allows down state only as a consequence of a
failure detection event. However, the implementation could be easily
extended to accept an additional state both in the LF and RF FSMs
to declare a flow or port as affected by failure without triggering the
periodic link probing process. In this case the controller should be able
to directly add or replace an entry in the state table7.

• Down state synchronization: In some cases, only 1 of the 2 direc-
tions of a link might break, an event that is common in fiber optics.
When using SPIDER, the party which incoming direction is down will
detect first the failure after the configured detection timeout, thus stop-
ping sending traffic on that port, after which the other party will trigger
the down state after another detection timeout, resulting in twice the
time for the failover to take place. BFD instead, applies a mechanism

7Possible in OpenState via state-mod messages

24

for session state synchronization, such that when a first endpoint de-
tects the failure it notifies the other of the down event, in which case
(if one direction of the two is still up) the other endpoint will imme-
diately trigger the failover procedure. In this case, the LS FSM could
be extended to emit such an extra signaling message (via tagging of
the first packet matching the DOWN: need probe state) and to trigger
a forced down state upon receiving such a packet.

7.2 Comparison with MPLS Fast Reroute

Fast Reroute (FRR) [8] is a technique used in MPLS network to provide
protection in the order of 10s of milliseconds of Label-switched Paths (LSP).
Similarly to SPIDER, backup LSPs are established proactively for each de-
sired failure scenario, such that, when a router detects a failure on one of its
local ports, it swaps the label at the top of the MPLS stack with the one of
the detour LSP, forwarding the packet to an alternative port. Packets are
forwarded on a detour until they reach a merge point with the primary path,
where the label is swapped back to the primary LSP. RSVP-TE signaling is
used to establish backup LSPs between routers in a distributed fashion.

Differently from FRR, SPIDER does not need a separate complex sig-
naling protocol (which is described in around 30 pages in the original FRR
RFC [8]) to establish backup paths. Instead, computation and provisioning
of both primary and backup paths is performed by the remote controller with
all the benefits of the SDN logically centralized paradigm, such as access to a
global topology graph and a centralized API to provision forwarding rules on
switches. It must be noted that in the proposed prototype implementation of
SPIDER, MPLS labels are used for the sole purpose of carrying failure tags
Fi, and must not be confused with their role in LSPs as the only param-
eter of the router forwarding function. In fact, in SPIDER the forwarding
function is independent on the data protocol and can be based on arbitrary
header fields. For example, as in our implementation, the output port of each
packet is decided looking at the 3-tuple comprising Ethernet source address,
Ethernet destination address, and failure tag.

When an alternative path is not available from the node that detected
the failure, SPIDER allows to bounce back packets on the primary path until
they reach a predefined reroute node, in which case a detour path is enabled.
A similar approach is implemented by FRR when used in combination with
another RSVP-TE extension for crankback signaling [32]. Differently from

25

SPIDER, data packets are dropped before the failure point, while a sepa-
rate failure notification is sent back on the primary path. Signalization in
SPIDER is performed using the same data packets, with the added benefit
of avoiding dropping extra traffic, a feature particularly useful when dealing
with geographical distant nodes (e.g. 100MB otherwise lost at 10Gbps with
80ms signalization latency).

7.3 Data plane reconciliation

A stateful data plane seems to disagree with the architectural principles of
OpenFlow and SDN, where all the state is handled at the logically centralized
control plane, so that devices do not need to implement complex software
to handle state distribution. In fact, when dealing with legacy distributed
protocols (e.g. OSPF), an important concern is about handling state recon-
ciliation, for example after a device reset or failure, in which case the state
of the device (e.g. topology graph and link metrics in OSPF) might not be
in sync with the rest of the network devices, causing loops or black holes.

Handling data plane reconciliation with OpenFlow is relatively easy given
the stateless nature of the flow tables. Indeed, modern SDN platforms [30,31]
follow an approach were applications operate on a distributed flow rule
database that is then used to keep the data plane in sync, for example
periodically polling the devices’ flow tables so that missing flow rules are
re-installed and extraneous ones removed. SPIDER forwarding decisions are
based not only on flow rules but also on flow states, maintained by the switch
and updated as a consequence of packets and timeout events. From here the
question if this additional state needs to be synchronized (e.g. notify the
controller of every state transition) and re-applied during reconciliation.

We argue that the reliability of SPIDER operations does not necessarily
require support for flow state synchronization and reconciliation. In other
words, when not used, the flow states are guaranteed to converge to the
expected value in relatively short time with no risk of traffic loops or black
holes. In fact, the per-flow state maintained by both the RF and LF FSM
can be learned by observing the incoming traffic (tag value) and does not
depend on other means of state distribution. Moreover, the correctness of
a forwarding decision of a switch does not depend on the flow state of any
other switch.

As an example, we analyze the case of switch j implementing SPIDER
being reset, e.g. content of the state and flow table wiped out, during a

26

situation of remote failure, i.e. serving some flows on a detour, and hence
in macro-state Fi for the RF FSM. If we assume the controller is able to
re-install the flow rules in a time shorter than the detection delay configured
on the upstream switch connected to j, so that it will not generate a failure
state Fj itself, we end up with switch j forwarding traffic according to an
empty state table, i.e. all flows in default state for both the RF and LF
FSM. In this case, when a packet of a traffic flow affected by the failure state
Fi arrives, it will be initially forwarded as in Normal state on the primary
path, meaning that the switch directly connected to the unreachable node i
will bounce back the packet appropriately tagged with Fi, triggering a state
transition to Fault signaled on switch j, and hence initiating the failover
procedure. Similarly, if node j is affected by a local failure state Fj, resetting
the state table of the LF FSM will have as a consequence that packets will be
forwarded according to the default state (UP: need heartbeat), initiating
the failure detection procedure, finally converging to the expected failure
state. The tax to pay in this case is a few more packets dropped, depending
on the detection delay configured for that node. If the time to re-provision the
switch configuration (flow tables) after a reset takes more than the detection
delay, this situation can be interpreted as a multiple concurrent failure for
which a rerouting of flows is required to be performed by the controller.

8 Conclusion

In this paper we have presented SPIDER, a new approach to failure recovery
in SDN that provides a fully programmable abstraction to application devel-
opers for the definition of the re-routing policies and for the management of
the failure detection mechanism. The use of recently proposed stateful data
planes, allows to execute the programmed failure recovery behaviors directly
in the switch fast-path, minimizing the recovery delay and guaranteeing the
failover even when the controller is not reachable. We believe that the pro-
posed approach can close one of the gaps between the required and supported
features that at the moment are slowing down the adoption of SDN in carrier
grade networks for telco operators.

SPIDER has been implemented using OpenState and P4. The prototype
implementation (code is made available at [25]) has been used to validate
the proposed scheme and to experimentally assess its basic performance in a
few example scenarios. The results have shown the potential advantages of

27

SPIDER with respect to fully centralized applications where the controller
is notified of failure events and is required to modify all affected forwarding
rules.

Acknowledgment

This work has been partly funded by the EU in the context of the H2020
“BEBA” project [33] (Grant Agreement: 644122).

References

[1] N. Feamster, J. Rexford, and E. Zegura, “The road to sdn: An intellec-
tual history of programmable networks,” SIGCOMM Comput. Commun.
Rev., vol. 44, no. 2, pp. 87–98, Apr. 2014.

[2] N. McKeown, T. Anderson, H. Balakrishnan, G. Parulkar, L. Peterson,
J. Rexford, S. Shenker, and J. Turner, “OpenFlow: Enabling innova-
tion in campus networks,” SIGCOMM Comput. Commun. Rev., vol. 38,
no. 2, pp. 69–74, Mar. 2008.

[3] G. Bianchi, M. Bonola, A. Capone, and C. Cascone, “OpenState: pro-
gramming platform-independent stateful OpenFlow applications inside
the switch,” SIGCOMM Comput. Commun. Rev., vol. 44, no. 2, pp.
44–51, Apr. 2014.

[4] M. Moshref, A. Bhargava, A. Gupta, M. Yu, and R. Govindan, “Flow-
level state transition as a new switch primitive for SDN,” in Proceedings
of the Third Workshop on Hot Topics in Software Defined Networking,
ser. HotSDN ’14, 2014, pp. 61–66.

[5] “Open vSwitch.” [Online]. Available: http://www.openvswitch.org

[6] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker,
“P4: Programming protocol-independent packet processors,” SIG-
COMM Comput. Commun. Rev., vol. 44, no. 3, pp. 87–95, Jul. 2014.

28

http://www.openvswitch.org

[7] D. Katz and D. Ward, “Bidirectional Forwarding Detection (BFD),”
RFC 5880 (Proposed Standard), Internet Engineering Task Force, Jun.
2010. [Online]. Available: http://www.ietf.org/rfc/rfc5880.txt

[8] P. Pan, G. Swallow, and A. Atlas, “Fast Reroute Extensions
to RSVP-TE for LSP Tunnels,” RFC 4090 (Proposed Standard),
Internet Engineering Task Force, May 2005. [Online]. Available:
http://www.ietf.org/rfc/rfc4090.txt

[9] S. Sharma, D. Staessens, D. Colle, M. Pickavet, and P. Demeester,
“OpenFlow: Meeting carrier-grade recovery requirements,” Computer
Communications, vol. 36, no. 6, pp. 656 – 665, 2013.

[10] N. L. Van Adrichem, B. J. Van Asten, F. Kuipers et al., “Fast recovery
in software-defined networks,” in Software Defined Networks (EWSDN),
2014 Third European Workshop on. IEEE, 2014, pp. 61–66.

[11] J. Kempf, E. Bellagamba, A. Kern, D. Jocha, A. Takacs, and P. Skold-
strom, “Scalable fault management for OpenFlow,” in Communications
(ICC), 2012 IEEE International Conference on, June 2012, pp. 6606–
6610.

[12] A. Sgambelluri, A. Giorgetti, F. Cugini, F. Paolucci, and P. Castoldi,
“OpenFlow-based segment protection in ethernet networks,” Optical
Communications and Networking, IEEE/OSA Journal of, vol. 5, no. 9,
pp. 1066–1075, Sept 2013.

[13] S. Lee, K.-Y. Li, K.-Y. Chan, G.-H. Lai, and Y.-C. Chung, “Path lay-
out planning and software based fast failure detection in survivable
OpenFlow networks,” in Design of Reliable Communication Networks
(DRCN), 2014 10th International Conference on the, April 2014, pp.
1–8.

[14] M. Borokhovich, L. Schiff, and S. Schmid, “Provable data plane connec-
tivity with local fast failover: Introducing Openflow graph algorithms,”
in Proceedings of the Third Workshop on Hot Topics in Software Defined
Networking, ser. HotSDN ’14. ACM, 2014, pp. 121–126.

[15] C. Cascone, L. Pollini, D. Sanvito, and A. Capone, “Traffic management
applications for stateful sdn data plane,” in Software Defined Networks
(EWSDN), 2015 Fourth European Workshop on, Sept 2015, pp. 85–90.

29

http://www.ietf.org/rfc/rfc5880.txt
http://www.ietf.org/rfc/rfc4090.txt

[16] C. Cascone, L. Pollini, D. Sanvito, A. Capone, and B. Sansó, “SPIDER:
Fault resilient SDN pipeline with recovery delay guarantees,” in 2016
IEEE NetSoft Conference and Workshops (NetSoft), June 2016, pp. 296–
302.

[17] “Open vswitch advanced features tutorial,” Open vSwitch v2.3.2 code
repository, 2013. [Online]. Available: http://git.io/vOt8i

[18] E. J. Jackson, M. Walls, A. Panda, J. Pettit, B. Pfaff, J. Rajahalme,
T. Koponen, and S. Shenker, “Softflow: A middlebox architecture for
open vswitch,” in 2016 USENIX Annual Technical Conference (USENIX
ATC 16). Denver, CO: USENIX Association, 2016, pp. 15–28.

[19] “The P4 Language Specification.” [Online]. Available: http://p4.org/
wp-content/uploads/2016/03/p4 v1.1.pdf

[20] S. Pontarelli, M. Bonola, G. Bianchi, A. Capone, and C. Cascone,
“Stateful openflow: Hardware proof of concept,” in High Performance
Switching and Routing (HPSR), 2015 IEEE 16th International Confer-
ence on, July 2015.

[21] “OpenState SDN project home page,” http://www.openstate-sdn.org.

[22] A. Capone, C. Cascone, A. Q. Nguyen, and B. Sansò, “Detour planning
for fast and reliable failure recovery in SDN with OpenState,” in De-
sign of Reliable Communication Networks (DRCN), 11th International
Conference on the, Mar. 2015.

[23] S. Kandula, D. Katabi, S. Sinha, and A. Berger, “Dynamic load balanc-
ing without packet reordering,” SIGCOMM Comput. Commun. Rev.,
vol. 37, no. 2, pp. 51–62, Mar. 2007.

[24] “Ryu OpenFlow controller,” http://osrg.github.io/ryu/.

[25] “SPIDER source code repository.” [Online]. Available: http://github.
com/OpenState-SDN/spider

[26] “MiniNet.” [Online]. Available: http://www.mininet.org

[27] “CPqD OpenFlow 1.3 Software Switch,”
http://cpqd.github.io/ofsoftswitch13/.

30

http://git.io/vOt8i
http://p4.org/wp-content/uploads/2016/03/p4_v1.1.pdf
http://p4.org/wp-content/uploads/2016/03/p4_v1.1.pdf
http://github.com/OpenState-SDN/spider
http://github.com/OpenState-SDN/spider
http://www.mininet.org

[28] “openstate.p4 source code repository.” [Online]. Available: https:
//github.com/OpenState-SDN/openstate.p4

[29] “P4 bmv2 source code repository.” [Online]. Available: https:
//github.com/p4lang/behavioral-model

[30] “Open Network Operating System (ONOS).” [Online]. Available:
https://www.onosproject.org

[31] “OpenDaylight: Open Source SDN Platform (ODL).” [Online].
Available: https://www.opendaylight.org

[32] A. Farrel, A. Satyanarayana, A. Iwata, N. Fujita, and G. Ash,
“Crankback Signaling Extensions for MPLS and GMPLS RSVP-TE,”
RFC 4920 (Proposed Standard), Internet Engineering Task Force, Jul.
2007. [Online]. Available: http://www.ietf.org/rfc/rfc4920.txt

[33] “BEBA project home page,” http://www.beba-project.eu/.

Biographies

Carmelo Cascone holds a M.Sc. in Telecommunications Engineering
from Politecnico di Milano in Italy. He is currently a third year PhD can-
didate in the Department of Electronics and Information at Politecnico di
Milano in a joint program with the Department of Electrical Engineering at
École Polytechnique de Montréal, Canada. His research interests are mostly
related to stateful data plane abstractions for SDN and their applications,
such as failure detection and recovery, and queue management for fair band-
width sharing.

Davide Sanvito received his M.Sc. in Telecommunications Engineering
from Politecnico di Milano in 2014. The subject of his thesis was ”Software-
Defined Networking Applications Based on OpenState”. He recently started
his career as a PhD student at Politecnico di Milano in the Department of
Electronics and Information. His research interests are mostly related to SDN
and traffic engineering. He is also involved in the EU H2020 BEBA project
where he specializes in the implementation of the OpenState software switch
and controller.

31

https://github.com/OpenState-SDN/openstate.p4
https://github.com/OpenState-SDN/openstate.p4
https://github.com/p4lang/behavioral-model
https://github.com/p4lang/behavioral-model
https://www.onosproject.org
https://www.opendaylight.org
http://www.ietf.org/rfc/rfc4920.txt

Luca Pollini received his M.Sc. in Telecommunications Engineering from
Politecnico di Milano in 2014. The subject of his thesis was ”Software-
Defined Networking Applications Based on OpenState”. At the time of writ-
ing of this paper he was with Consorzio Nazionale Interuniversitario per le
Telecomunicazioni (CNIT) working for the EU H2020 BEBA project. Since
December 2015 he is with SDI Automazione Industiale R&D working on
topics related to communication security in SCADA systems.

Antonio Capone is Full Professor at Politecnico di Milano, where he is
the director of the ANTLab and vice-dean of the school of industrial and
information engineering. His expertise is on networking and his main re-
search activities include radio resource management in wireless networks,
traffic management in software defined networks, network planning and op-
timization. On these topics he has published more than 200 peer-reviewed
papers. He serves in the TPC of major conferences in networking, he is editor
of IEEE Trans. on Mobile Computing, Computer Networks, and Computer
Communications, and he was editor of ACM/IEEE Trans. on Networking
from 2010 to 2014. He is senior member of the IEEE.

Brunilde Sansò is a full professor of telecommunication networks in the
department of Electrical Engineering at Ecole Polytechnique de Montreal,
where she leads the LORLAB, a research group dedicated to the develop-
ment of effective methods for the design and performance evaluation of wire-
less and wired communication networks. In the latest years, she has been
particularly interested on networking energy efficiency and its relationship
with network robustness and performances. She has published extensively
in the Telecommunication Networks and Operations Research literature and
has been a consultant for many operators, equipment and software manufac-
turers, as well as for the mainstream media. She has been the recipient of
several prizes and distinctions and has been part of government and technical
international committees. She is associate editor of Telecommunication Net-
works and co-editor of the books “Performance and Design Methods For the
Next Generation Internet” and “Telecommunications Network Planning”.

32

	Introduction
	Related Work
	Stateful data plane abstractions
	OpenState

	Approach sketch
	Implementation
	Performance Evaluation
	Flow entries analysis
	Detection mechanism
	Overhead
	Comparison with a reactive OpenFlow approach

	Discussion
	Comparison with BFD
	Comparison with MPLS Fast Reroute
	Data plane reconciliation

	Conclusion

