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A Randomized Approach to Probabilistic Footprint
Estimation of a Space Debris Uncontrolled Reentry?

Alessandro Falsone, Student Member, IEEE and Maria Prandini, Senior Member, IEEE

Abstract—This paper studies the problem of characterizing the
region of the airspace that will be occupied by a space debris
during an uncontrolled reentry (footprint), with the final goal
of supporting the air traffic controllers in their task of guiding
aircraft safely from their origin to their destination. Given the
various sources of uncertainty affecting the debris dynamics,
the reentry process is characterized probabilistically, and the
problem of determining the footprint is formulated in terms of a
chance-constrained optimization program, which is solved via a
simulation-based method. When observations of the debris initial
position and radar measurements of the aircraft prior to the
reentry event are available, nonlinear filtering techniques can be
adopted and the posterior probability distribution of the debris
position as well as of the wind field affecting the reentry process
can be integrated in the chance-constraint formulation so as to
obtain an enhanced estimate of the footprint. Simulation results
show the efficacy of the approach.

Index Terms—Randomized algorithms; nonlinear filtering; air
traffic control; uncontrolled debris reentry.

I. INTRODUCTION

Since the beginning of the space era the number of satellites
grew significantly and so did the number of them which ceased
their operations and now are orbiting around Earth without
the possibility to be controlled from ground stations. Together
with upper stage rocket bodies, and fragments generated by
collisions with meteoroids or other artificial satellites, they
constitute the so-called space debris population. When its orbit
decays, mainly due to atmospheric friction, a debris can reenter
the atmosphere. If it can be manoeuvred, then, high density
fly zones are avoided and the debris is typically driven to
strike the ground in the ocean or over an uninhabited area. In
the case of uncontrolled reentry, instead, the debris cannot be
manoeuvred and, hence, poses risk to public safety, striking
people and properties on the ground as well as aircraft in the
air. Interestingly, notwithstanding the fact that aircraft vulner-
ability is higher compared to that of people on the ground (in
the case of an aircraft flying at a speed of 700 kilometers per
hour even an impact with a small debris, hypothetically at rest
in the air, can cause a severe damage, [1]), the aviation risk has
started being considered only lately and in a few contributions
(see e.g. [2]–[4]), the main concern being the possible impact
in terms of casualties on the population on the ground (see
[1], [5]–[8] to name a few).

Up today, accurate and reliable models to describe un-
controlled space debris reentry are not available, due to the
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complexity of the phenomenon. When a satellite ceases its
operation, it typically continues to orbit around the Earth
until the atmospheric drag reduces its speed making it lower
its major semi-axis. Typical speed of an orbiting satellite
is about 7 km/s and, as it enters the Earth atmosphere, it
encounters a steadily increasing aerodynamic load that causes
a sequence of failures, thus generating multiple fragments,
[3]. Though this fragmentation is far from instantaneous,
we refer to it as the breakup instant, meaning the instant
when the reentering body experiences a major breakup (i.e.
the first massive breakup). In [6], [7] it is shown that all
fragments evolve with a ballistic trajectory, only subject to
gravity and aerodynamic forces. Observations have shown that
the major breakup event happens at an altitude of about 78
km [3] with an uncertainty range from ±10 km to ±20 km,
[6]–[8]. So, fragments generated from this first breakup are
distributed over a range of altitudes, thus increasing the spread
of debris footprint along the direction of motion. Following
[3], which suggests that the spread of debris footprint caused
by breakup altitude uncertainty can be reduced if the object is
observed during the major breakup, we focus only on fragment
dispersion after the breakup phase.

Besides the complex nature of the breakup process, even
post-breakup trajectories of fragments are subject to strong
uncertainties. In particular, the aerodynamic drag acting on a
fragment depends on the ballistic coefficient, which accounts
for the shape and mass of the object and is uncertain, and on
the atmospheric density, that is affected by modeling errors,
[1], [9]. Local wind is pointed out as a source of uncertainty
in [3], [10], due to its effect on the debris trajectories after the
breakup process, when the debris enters the low atmosphere.
The horizontal component of the velocity vector is in fact
typically dominated by the wind that can cause a cross-track
dispersion of the debris, [3], the impact being higher on those
fragments with a lower ballistic coefficient, [10].
All this motivated the adoption of a probabilistic approach in
previous works in the literature (see e.g. [4], [6], [7]), and in
this paper as well.

Our goal here is to propose a method for determining the
footprint of a debris fragment, i.e., the minimum size 4D
(space cross time) region of the airspace where all fragment
trajectories except a set of predefined probability ε ∈ (0, 1)
can be confined. More specifically, we introduce a simulation-
based approach where the problem of the ε-footprint com-
putation is formulated as a chance-constrained optimization
problem and then solved through a randomized method, which
reduces to generating a certain number of realizations of the
reentry trajectory and imposing that these realizations belong
to the footprint. The availability of measurements of the debris
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position can be used to decrease the size of the footprint,
through nonlinear filtering techniques and, in particular, the
unscented Kalman filter [11]. A further improvement of the
footprint estimate can be obtained by exploiting the radar mea-
surements of the aircraft positions during normal operations.
Given the strong correlation in time of the wind field, the
particle filtering technique proposed in [12] can be effective
in reducing the uncertainty on the wind acting on the debris
trajectory. Numerical examples are presented throughout the
paper to assess the performance of the proposed approach.

This paper significantly extends our preliminary work in
[4] by introducing footprint refinement based on available
measurements, combining unscented Kalman filtering and
sequential particle filtering to this purpose. It can be seen as a
first step for the introduction of automatic tools that, as soon
as a debris enters the atmosphere, provide an estimate of the
airspace area that will be occupied by the reentering debris.
Air traffic controllers – who are in charge of monitoring air
traffic and ensuring safe flights, [13], [14] – could then decide
the best action in terms of re-routing of the aircraft involved
so as to limit service disruption and avoid fatalities in the air.

The rest of the paper is organized as follows. In Section II,
we characterize the 4D ε-footprint of a debris fragment and
propose a simulation-based method for its computation, using
the model for a single-fragment reentry trajectory simulation
in [15] (Section III). The state of the art analytic approach for
estimating the footprint in [15] is compared with our approach
in Section IV. Footprint refinement via nonlinear filtering
techniques is addressed in Section V, considering first the
measurements of the debris (Section V-A) and then those of the
aircraft (Section V-B). The algorithm for enhanced footprint
estimation is given in Section V-C. A simulation example is
presented in Section VI. Finally, in Section VII, we draw some
conclusions and suggest directions of future research.

II. PROBABILISTIC FOOTPRINT ESTIMATION

The footprint of a debris fragment is the 4D (space cross
time) region of the airspace that will be occupied by the
fragment during its uncontrolled reentry, from the instant
it originates due to debris breakup till it reaches the Earth
surface. Given the different sources of uncertainty that affect
the fragment trajectory and that make it stochastic, we shall
refer to the notion of ε-footprint, which is the minimum size
4D region that contains all fragment trajectories except for a
set of predefined probability ε ∈ (0, 1).

In this section, we present a randomized approach to esti-
mate the ε-footprint of a debris fragment based on multiple
simulations of its reentry trajectory. We shall first address the
estimate of the 3D ε-footprint associated with a certain time
instant t, and then extend the approach to the 4D case. In
both cases, ellipsoidal sets are used to describe the footprint.
This can be viewed as an extension to a stochastic setting of
reach set computations based on ellipses [16], [17]. Indeed,
an ε-footprint can be reinterpreted as a probabilistic reach
set, i.e., the set of states that a stochastic system can reach
for all its input realizations except for a set of probability
smaller than or equal to ε. As ε approaches 0, the more

standard notion of reach set, which comprises all reachable
states, is recovered. In the literature on reachability, various
methods have been developed for reach sets computations of
various classes of systems, see e.g. [16]–[24] to name a few. In
particular, effective computational tools have been developed
for non-stochastic systems. Among the different descriptions
adopted in these tools, ellipses present the advantage of being
a quite compact representation.

The debris dispersion at a certain time instant t is de-
scribed via the ellipsoidal set Eε (A, c) = {x ∈ R3 :
(x− c)>A (x− c) ≤ 1}, which is finitely parameterized
through a vector c and a positive definite symmetric matrix A
representing the center and shape of the ellipse respectively.
Let xδ(t) denote the position of the debris at time t, when
the uncertainty affecting the debris reentry trajectory is δ.
The uncertainty vector δ can account for various sources of
uncertainties (parameters, initial condition, disturbances) as
discussed in the introduction, and takes values in some set
∆ according to a probability distribution P (see [6], [7] for
sensible choices for P).
The problem of computing the ellipse Eε (A, c) with minimum
volume that contains all possible debris trajectories except for
a set of probability at most ε can then be formalized as follows:

min
A,c

log detA−1 (1)

subject to: A = A>� 0

P {δ ∈ ∆ : xδ(t) ∈ Eε (A, c)} ≥ 1− ε,

where the cost to be minimized is convex as a function of the
optimization variables, [25].
If we let (A?, c?) be the solution to (1), then E?ε = {x ∈ R3 :
(x− c?)>A? (x− c?) ≤ 1} is the minimum volume ellipsoid
that represents the 3D footprint associated with the violation
parameter ε.
Chance-constrained optimization problems like (1) are known
to be difficult to solve, [26], [27], except for specific cases
like when the involved probability distribution is Gaussian.
We next show how to approximately solve problem (1) via
a randomized method, called the scenario approach (see [28]
for a tutorial presentation), which reduces chance-constrained
optimization to optimization with non probabilistic constraints
by extracting a finite number N of realizations of the uncer-
tainty vector δ and replacing the constraint in probability with
the N constraints associated with the extracted δ’s scenarios.
Guarantees on the chance-constraint feasibility of the obtained
solution can be provided when the resulting scenario problem
is convex and N is appropriately chosen. Following [29], a
fraction k of the N extracted scenarios can be discarded to
reduce the footprint volume, while retaining chance-constraint
feasibility. The scenario program to be solved is given by

min
A,c

log detA−1 (2)

subject to: A = A>� 0

xδ(i)(t) ∈ Eε (A, c) , i ∈ {1, 2, . . . , N} \ Ir,

where δ(i), i = 1, . . . , N are extracted independently from
∆ according to the distribution P , and Ir = {i1, . . . , ik} ⊂
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{1, 2, . . . , N} is the set of indices of the uncertainty instances
that are removed so as to improve the cost (i.e. reduce the
volume of the ellipse). Note that, (2) is a convex optimization
problem with a finite number of constraints, which can be
solved by computing first the convex hull of all data points
xδ(i)(t), i ∈ {1, 2, . . . , N}\Ir, and then applying Khachiyan’s
algorithm to find the minimum volume ellipsoid containing the
convex hull, [30], [31]. The feasibility of the scenario solution
for the original chance-constrained optimization problem (1)
is guaranteed by the following theorem, which derives imme-
diately from [29].

Theorem 1. Select a confidence parameter η ∈ (0, 1) and an
empirical violation parameter α ∈ [0, ε). If N satisfies(

bαNc+ d

bαNc

) bαNc+d∑
i=0

(
N

i

)
εi (1− ε)N−i ≤ η,

where d denotes the number of optimization variables in (2),
then, if we set k = bαNc, with probability no smaller than
1− η, the solution (A?N,k, c

?
N,k) to the scenario optimization

problem with constraint removal (2) satisfies P{δ ∈ ∆ :
xδ(t) ∈ Eε(A?N,k, c?N,k)} ≥ 1− ε.

Not surprisingly, feasibility of the scenario solution holds
with a certain confidence 1− η. This is because the scenario
solution is a random quantity that depends on the extracted
multi-sample δ(1), δ(2), . . . , δ(N). It may then happen that a
bad multi-sample (e.g., all δ(i)’s are equal) is extracted and
the feasibility property does not hold. However, this event
becomes more and more unlikely as N increases and its prob-
ability η can be set as small as 10−10 (i.e., zero in practice)
without growing too much N . Indeed, when α = 0, the explicit
bound N ≥ 1

ε

(
d+ 1 + ln(1/η) +

√
2(d+ 1) ln(1/η)

)
in [32]

shows that the dependence on η is logarithmic.

Remark 1 (Choice of α). Though the feasibility of the
randomized solution is guaranteed for every α ∈ [0, ε), the
closer α is to the desired violation probability ε, the better
the randomized solution approximates the actual solution to
the chance-constrained problem. At the same time, however,
N grows to infinity as O( 1

ε−α ) when α → ε, [29], so that
one should choose α based on the available computational
resources.

In order to extend the characterization of the debris disper-
sion to 4D, we discretize the reference time horizon [tin, tout]
and associate to each sampled time instant tj , j = 1, . . . , ns,
an ellipsoidal set Eε (Aj , cj), j = 1, . . . , ns. The sum of
the volumes of all ellipses is then minimized subject to the
constraint that a fraction of probability at least 1 − ε of the
debris trajectories belongs to the ellipsoidal sets:

min
{Aj ,cj}ns

j=1

ns∑
j=1

log detA−1
j (3)

subject to:

Aj = ATj � 0, j = 1, . . . , ns

P {δ ∈ ∆ : xδ(tj) ∈ Eε (Aj , cj) , j = 1, . . . , ns} ≥ 1− ε.

Algorithm 1 – 4D ε-footprint computation
Input: α ∈ [0, ε), η ∈ (0, 1), and {tj}j=1,...,ns

1: Set N and k according to Theorem 1
2: for i← 1 to N do
3: Extract δ(i) at random from ∆ according to P
4: xδ(i)(tj)← position of the debris fragment at time tj ,

with j = 1, . . . , ns, when the uncertainty is δ(i)

5: end for
6: {A?N,0,j , c?N,0,j}j=1,...,ns ← solution to (4) with Ir = ∅
7: V ← ∅ % Set of indices of violated constraints
8: p← 0 % Cardinality of V
9: while p < k do

10: m← number of active constraints
11: if m > k − p then
12: R← set of k − p indices, randomly selected among

the indices of the active constraints
13: else
14: R← set of active constraints indices
15: end if
16: % R is the set of indices of constraints to be removed
17: Ir ← R ∪ V
18: {A?N,k,j , c?N,k,j}j=1,...,ns

← solution to (4)
19: V ← indices of the constraints violated by the new

solution
20: p← |V |
21: end while
22: return {A?N,k,j , c?N,k,j}j=1,...,ns

The scenario program with constraint removal

min
{Aj ,cj}ns

j=1

ns∑
j=1

log detA−1
j (4)

subject to:

Aj = ATj � 0, j = 1, . . . , ns

xδ(i)(tj) ∈ Eε (Aj , cj) , j = 1, . . . , ns, i ∈ {1, 2, . . . , N} \ Ir,

can then be solved through Algorithm 1. Choosing the k
out of N constraints to remove so as to obtain the best
improvement in the cost is a combinatorial problem. However,
since Theorem 1 holds irrespectively of the algorithm used to
remove the constraints, one can opt for suboptimal approaches
like removing one by one the constraint that leads to the largest
improvement in the cost (greedy removal) or keeping removing
the whole set of active constraints (block removal), i.e., those
constraints such that (xδ(i)(t)− c)>A (xδ(i)(t)− c) = 1. for
the current (A, c) solution. Algorithm 1 implements this latter
removal procedure.

III. MODEL OF A REENTERING DEBRIS FRAGMENT

To simulate the trajectory of a debris fragment after the
breakup instant, we adopt the three-degrees of freedom model
of a falling object over a rotating planet recently proposed in
[15]. The reference coordinate system is named ENZ (East-
North-Zenith) frame and is centered on the Earth surface at the
(nominal) longitude ϑ0 and latitude ϕ0 of the fragment at the
breakup instant, with the x3-axis directed towards the zenith
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and the x1x2 plane tangent to the Earth surface, the x1-axis
pointing eastward and the x2-axis pointing northward. In this
way, the initial position of the fragment at the breakup instant
is x0 = [0, 0, x3,0]> with x3,0 representing the nominal value
for the altitude at which the breakup occurs. With reference to
the ENZ frame, the equations of motion describing the debris
trajectory are given by:

ẋ = v (5)
v̇ = −ad − ge3 − 2ω × v − ω × [ω × (x+Ree3)] + ξ

where x = [x1, x2, x3]> is the position, v = [v1, v2, v3]> is
the velocity, ad is the atmospheric drag deceleration, ω =
[0, ωe cos (ϕ0) , ωe sin (ϕ0)]> is the angular velocity vector of
the ENZ frame (Earth rotation rate: ωe = 7.2921×10−5 rad/s)
and e3 = [0, 0, 1]>. Constant Re represents the Earth mean
radius (Re = 6.3728× 106 m), whereas according to the
inverse square gravity model, the gravitational acceleration is
given by g = gg(Re/(Re + x3))2, where gg = 9.81 m/s2

is the gravitational acceleration on the ground (x3 = 0).
The atmospheric drag deceleration ad acting on the fragment
can be expressed as ad = 1

2
ρ(x3)
β vrvr, where ρ (x3) is the

atmosphere density as a function of the altitude, vr = v−Λ is
the debris speed relative to the wind velocity Λ, and vr = ‖vr‖
is the magnitude of vr. Parameter β represents the ballistic
coefficient and is given by β = md/(CdA), where md is
the mass of the debris, A its cross-sectional area, and Cd
the aerodynamics coefficient. Finally, ξ is an additive random
acceleration vector that accounts for modeling errors and
disturbances. The uncertainty elements can be collected in
vector δ := [x0

> v0
> ξ> Λ> β]>.

IV. COMPARATIVE ANALYSIS

The Covariance Propagation (CP) method proposed in [15]
for determining the 4D footprint rests on the linearization of
(5) around the nominal trajectory and on the description of the
resulting perturbation as a Gauss-Markov process.
Set s = [x>,v>]>. Then, (5) can be rewritten in the compact
form

ṡ = f (s) +Bξ, (6)

where B = [03×3 I3×3]>. Now, define the perturbation vector z
as z = s−sn, where sn is the nominal trajectory obtained by
neglecting ξ and the other sources of uncertainty affecting the
system evolution. If we assume that the wind velocity vector
Λ entering (5) through the atmospheric drag deceleration ad
depends on the position only (i.e., Λ = Λ (x)), and set A (t) =
∂f
∂s

∣∣∣
sn(t)

, then, the linearised equations governing z are given

by
ż = A (t) z +Bξ. (7)

Suppose that the disturbance vector ξ is a white Gaus-
sian noise with mean and covariance given by E [ξ (t)] =
ξ (t) and E[

(
ξ (t)− ξ (t)

) (
ξ (t)− ξ (t)

)>] = Ξ (t), and that
it is independent of the initial state at time tin = 0.
If z(0) is Gaussian z(0) ∼ N (z0, Z0), then, (7) de-
scribes a continuous time Gauss-Markov process with mean
and covariance matrix z (t) = E [z (t)] and Z (t) =

E[(z (t)− z (t)) (z (t)− z (t))>], that satisfy ż = A (t) z +
Bξ (t) and Ż = A (t)Z + ZA (t) + BΞ (t)B>, initialized
with z (0) = z0 and Z (0) = Z0. The debris position at time
t can then be described as a Gaussian random variable with
mean and covariance matrix x (t) = C(z (t) + sn (t)) and
X (t) = CZ (t)C>, where C = [I3×3 03×3].

As a consequence, the 3D ellipsoid containing a fraction
1−ε of the debris trajectories at time t can be determined as an
appropriate level set of the Gaussian distribution of x (t), i.e.,
Eε(t) := {x ∈ R3 : [x− x (t)]>X−1(t) [x− x (t)] ≤ r2

ε},
where rε is the Mahalanobis distance between x and x and can
be computed as the 1− ε quantile of the χ2 distribution with
3 degrees of freedom: P

(
V ≤ r2

ε

)
= 1− ε with V ∼ χ2 (3).

The 4D footprint can then be obtained by varying t within
the reference time horizon [tin, tout] and considering the
corresponding ellipsoidal set Eε(t), t ∈ [tin, tout].

Remark 2 (approximation errors in the CP method). There
are two sources of approximation in the evaluation of the 4D
footprint according to the outlined procedure: i) the footprint
is constructed based on a linearized model of the system, and
ii) the adopted level-set based procedure provides no guaran-
tee that a fraction of probability 1−ε of the trajectories passes
through all the ellipsoidal sets Eε(t), t ∈ [tin, tout], e.g. the
set of trajectories which pass through Eε(t1) may be different
from that passing through Eε(t2), tin ≤ t1 < t2 ≤ tout.

In order to compare the Simulation-Based (SB) method
proposed in Section II with the CP method, we suppose
that the only source of uncertainty is the initial state s(0)
at time tin = 0 and consider the disturbance vector ξ (t)
in (5) negligible, as in the simulation results presented in
[15]. Differently from the simulation setting in [15], we use
HWM93, [33], as nominal local wind model for both methods,
and the U.S. Standard Atmosphere model [34] to obtain the
atmospheric density in the range 0 to 120 km. Given the geode-
tic coordinates (latitude, longitude and altitude) of a point in
the Earth’s atmosphere, HWM93 provides the mean value of
wind speed along the eastward and northward directions. The
wind speed component along the altitude direction is set equal
to zero.

Results reported in this section refer to the case when
the initial state s(0) is given by s(0) = sn(0) +
z(0), where the nominal initial state is sn(0) =[
xn(0)>,vn(0)>

]>, with xn(0) =
[
0, 0, 7.8×104

]> m,
vn(0) =

[
7.0989×103, 0,−123.9

]>m/s, and the perturbation
to the nominal initial state z(0) is Gaussian with mean
z0 = 0 and covariance matrix Z0 = blkdiag(03×3, V0), where
V0 = diag(σ2

v1 , σ
2
v2 , σ

2
v3), with σ2

v1 = σ2
v2 = 2500 m2/s2 and

σ2
v3 = 5300 m2/s2. All parameters are chosen to match the

experiments reported in [15] for comparison purposes.
The time instants {tj}j=1,...,ns for the 4D footprint calcu-

lation are determined by considering ns = 10 equally spaced
samples of the nominal trajectory sn(t), t ∈ [tin, tout], along
the x3-axis (i.e. the altitude in the ENZ reference frame).
Different values for the violation parameter ε and for the
empirical violation α are considered, whereas the confidence
parameter η is set equal to η = 10−5 in all simulations. The
value for N satisfying the bound in Theorem 1 depend on the
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considered (ε, α, η), the maximal N being N = 10780.
Table I summarises the results obtained with the SB method

and the CP method for a set of values of ε. The value for α
used in the SB method is specified in the second column. In
all simulations we maintained fixed N = 10780 and removed
k = bαNc constraints.
The comparison between the SB method and CP method is
in terms of i) volume V of the corresponding 4D footprints
(reported in km3 in the last two columns of Table I) and
ii) actual violation ε̂ computed via Monte Carlo simulation
by generating a further set of N simulated trajectories and
evaluating the fraction of them that exits the 4D footprint.

TABLE I
COMPARISON BETWEEN SB AND CP METHODS IN TERMS OF ACTUAL

VIOLATION ε̂ AND 4D FOOTPRINT VOLUME V .

ε α ε̂SBN ε̂CPN VSB VCP
0.500 0.350 0.3505 0.5933 452.47 235.10
0.400 0.260 0.2602 0.5083 625.91 326.69
0.300 0.170 0.1705 0.4261 907.73 453.24
0.200 0.100 0.1003 0.3366 1304.18 646.03
0.100 0.035 0.0353 0.2370 2208.56 1009.74
0.050 0.010 0.0103 0.1724 3552.52 1411.29
0.025 0.002 0.0020 0.1328 5494.42 1846.50
0.020 0.001 0.0012 0.1224 6845.50 1993.27
0.015 0 <5·10−5 0.1109 9182.69 2187.03

Note that if we look at each single row of Table I, the 4D
footprint volume VSB obtained with the SB method is larger
than volume VCP obtained with the CP method. However, the
violation ε̂CP of the CP method always exceeds the desired
ε value (possibly due to the approximations errors involved
in the method, see Remark 2), whereas the violation ε̂SB of
the SB method is always smaller. If we make a comparison
between the volume of the 4D footprints corresponding to
the same actual violation (i.e., ε̂CP ' ε̂SB), the SB method
outperforms the CP one. For instance, considering the third
and sixth rows, ε̂SB = 0.1705 and VSB = 907.73 (third row)
and ε̂CP = 0.1724 ' ε̂SB and VCP = 1411.29� VSB (sixth
row). As for the SB method, it is worth noticing that actual
violation ε̂SBN is very close to the chosen empirical violation
α, which affects the size of the 4D footprint.

As a final remark, the SB method has the additional ad-
vantage with respect to the CP method of being applicable to
a more general setting, where further sources of uncertainties
(like that on the ballistic coefficient or the local wind) are
present besides that on the initial velocity. As a matter of fact,
wind can play a main role and cause a significant increase
of the footprint volume. The numerical results in Section VI
show that by exploiting radar measurements of the aircraft
position, uncertainty on the wind can be reduced and the
footprint volume significantly decreased.

V. FOOTPRINT REFINEMENT VIA NONLINEAR FILTERING

In this section, we address the problem of using available
measurements of the debris fragment and aircraft positions so
as to improve the estimate of the debris fragment probabilistic

footprint. The proposed approach involves the adoption of
nonlinear filtering techniques and their integration in the
footprint calculation. The idea is to use the Unscented Kalman
Filter (UKF) so as to determine the a-posteriori probability of
the debris state given the measurements of its position, and to
run simultaneously a sequential version of the particle filter so
as to gather information from the aircraft radar measurements
on the actual wind field and improve the wind forecast.

A. Debris State Estimation

The Extended Kalman Filter (EKF) addresses state esti-
mation for nonlinear systems by propagating the mean and
covariance of the state estimate through the linearized system
dynamics. As a consequence, its performance typically turns
out to be unsatisfactory in presence of strong nonlinearities.
In the UKF in [11], the so-called Unscented Transformation
(UT) is introduced to overcome this limitation. Interestingly,
in [11], the UKF is shown to better perform than the EKF
in a numerical example similar to our debris state estimation
problem. The basic idea of the UT is to approximate the
probability distribution of the state by a set of weighted sigma
points matching its mean and covariance, and then propagate
these points through the nonlinear dynamics. More precisely,
let µt and Σt be the mean and covariance of the debris state
s = [x>,v>]> at time t, and suppose we are using p + 1

sigma points s(i)
t , i = 0, 1, . . . , p. If we denote by W

(i)
µ and

W
(i)
Σ , i = 0, 1, 2, . . . , p, their weights, then, it holds that µt =∑p
i=0W

(i)
µ s

(i)
t and Σt =

∑p
i=0W

(i)
Σ [s

(i)
t − µt][s

(i)
t − µt]>.

Among the possible choices for the set of sigma points and
their weights, we adopt the one in [35] given by

s
(0)
t = µt, s

(i)
t = µt + a

√
n(Γt)i, s

(i+n)
t = µt − a

√
n(Γt)i,

(8)
with i = 1, . . . , n, where n = 6 is the dimension of the debris
state vector, and (Γt)i is the ith-row of the matrix Γt obtained
by performing a Cholesky decomposition of Σt, i.e., Σt =

Γt
>Γt. In this way, s(i)

t , i = 1, . . . , 2n, are positioned on some
ellipsoidal set with shape matrix Σt and center µt, at a distance
from the center that can be tuned via a ∈ (0, 1]. As for the
weights, we set

W (0)
µ = 1− 1

a2
, W

(0)
Σ = 1− 1

a2
+ (1− a2 + b)

W (i)
µ = W

(i)
Σ =

1

2a2
, (9)

where a ∈ (0; 1] and b ≥ 0 are scaling parameters and the
resulting UT is named Scaled UT (SUT). Parameter a controls
the distance of the sigma points from their mean, and both a
and b can be tuned to exploit possibly available information
on higher order moments. Precisely, a can be set small enough
so as to reduce the approximation errors of the mean and the
covariance matrix. As for b, b = 2 is the optimal value for
minimizing the approximation error of the covariance matrix
when the probability distribution is Gaussian, [35].

In the UKF, the debris dynamics is propagated for dt time
instants starting from each sigma point s(i)

t . The resulting
ŝ

(i)
t+dt is named transformed sigma point. Updated estimates
µ̃s and Σ̃s of mean and covariance matrix of the a-priori
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Algorithm 2 – Unscented Kalman Filter
1: Set µ0 ← ŝ(0), Σ0 ← Σŝ(0), and t← 0

2: s
(i)
t ← sigma points from µt and Σt as suggested in (8),
i = 0, . . . , 2n

3: loop
4: t← t+ dt
5: ŝ

(i)
t ← solution to (5) after dt time instant, starting from
s

(i)
t−dt, i = 0, . . . , 2n, with the wind set to its nominal

value and the noise ξ to zero

6: µ̃s ←
2n∑
i=0

W (i)
µ ŝ

(i)
t

Σ̃s ←
2n∑
i=0

W
(i)
Σ [ŝ

(i)
t − µ̃s][ŝ

(i)
t − µ̃s]>+ Ξ

7: ŷ
(i)
t ← Cŝ

(i)
t , ∀i

8: µ̃y ←
2n∑
i=0

W (i)
µ ŷ

(i)
t

Σ̃y ←
2n∑
i=0

W
(i)
Σ [ŷ

(i)
t − µ̃y][ŷ

(i)
t − µ̃y]>+ S

9: Σ̃xy ←
2n∑
i=0

W
(i)
Σ [ŝ

(i)
t − µ̃s][ŷ

(i)
t − µ̃y]>

10: K ← Σ̃xyΣ̃−1
y

µt ← µ̃s +K (yde,t − µ̃y)

Σt ← Σ̃s −K(Σ̃xy)>

11: end loop

distribution of the debris state vector at time t+ dt can
be derived from the transformed sigma points set according
to µ̃s =

∑p
i=0W

(i)
µ ŝ

(i)
t+dt and Σ̃s =

∑p
i=0W

(i)
Σ [ŝ

(i)
t+dt −

µ̃s][ŝ
(i)
t+dt − µ̃s]>+ Ξ, where Ξ is the covariance matrix of

the discretized noise in (6).

Let yde,t+dt = Cst+dt + nt+dt be the measurement of the
debris position at time t+ dt, where C = [I3×3 03×3] and nt is
a zero mean Gaussian noise with covariance matrix S. Then,
mean and covariance matrix of the a-posteriori distribution
of the debris state vector at time t+ dt can be computed by
means of the standard KF equations.

The overall procedure described above is reported in Algo-
rithm 2, which is a slightly simplified version of the original
UKF presented in [11]. Algorithm 2 uses the SUT in place of
the UT, and exploits the fact that the nonlinear debris dynamics
in Section III has additive Gaussian process noise with zero
mean and covariance matrix Ξ. The algorithm takes as inputs
some a-priori estimate ŝ(0) and covariance Σŝ(0), and then
applies the UKF online each time a new measurement yde
of the debris position is available. Note that the UKF can be
used to estimate uncertain parameters. Indeed, in Section VI,
we use the UKF to estimate the ballistic coefficient β. This
involves extending the debris state vector to include β and
attributing to β the trivial dynamics β̇ = 0.

B. Wind Estimation

The wind velocity Λ affects the debris motion (5) through
the atmospheric drag deceleration ad. Wind velocity is un-
certain and this causes a dispersion of the debris trajectories
and an enlarged footprint. The idea developed here is to
improve the footprint estimate obtained via Algorithm 1 by
using aircraft as sensors to reduce the uncertainty on Λ. More
specifically, we follow the approach in [12] where a Sequential
Conditional Particle Filter (SCPF) is introduced to estimate the
wind field in a certain region of the airspace based on radar
measurements of the aircraft position. We next briefly describe
the contributions in [12] that are relevant to our context.

1) Aircraft Model: The aircraft model developed in [12],
[36], [37] is a stochastic hybrid system [38], which comprises
a continuous dynamics describing the physical motion of the
aircraft, a discrete dynamics representing the flight manage-
ment system (FMS), and a stochastic component given by the
wind affecting the aircraft motion. The following point mass
model is adopted for the aircraft motion

Ẋ1

Ẋ2

Ẋ3

V̇

ψ̇

ṁ


=



V cos(ψ) cos(γ) + λ1

V sin(ψ) cos(γ) + λ2

V sin(γ) + λ3

T −D
m

− g sin(γ)− Λagf cos(γ)V sin(γ)

1

m

L sin(ϕ)

V cos(γ)
− Λcgf tan(γ)

−ηcT


(10)

where X1, X2 and X3 are the coordinates of the aircraft
position with respect to an inertial reference X1,r, X2,r,
X3,r with origin fixed at some point on Earth’s surface
(i.e. the radar position), V is the true air speed, ψ is the
heading angle, and m is the mass. Wind acts as a disturbance
and enters the aircraft dynamics additively through its speed
Λ = (λ1, λ2, λ3) ∈ R3. The bank angle ϕ, the flight path
angle γ, and the engine thrust T are treated as inputs (i.e.
commands from pilot for directing the aircraft). The lift and
drag forces L and D can be expressed as canonic-form
aerodynamics forces as follows: L = 1

2CLSwρ(X3)V 2 and
D = 1

2CDSwρ(X3)V 2, where Sw is the total wings surface
area, ρ(X3) the air density at altitude X3, and CD and CL
are the drag and lift coefficients, which depend on the angle
of attack AOA and the side slip angle AOS. The engine thrust
T affects mass variation through ηc that represents the fuel
consumption rate. As for Λagf and Λcgf appearing in (10),
they represent the along-track and cross-track wind gradient
factors and are given by Λagf = ∂λ1

∂X3
cos(ψ)+ ∂λ2

∂X3
sin(ψ) and

Λcgf = ∂λ1

∂X3
sin(ψ)+ ∂λ2

∂X3
cos(ψ). The parameters entering the

dynamics depend on the type of aircraft and can be retrieved
from the Base of Aircraft Data (BADA) documents, [39]. If the
aircraft is flying at constant altitude and with constant speed
(i.e. trimmed flight), then, X3 and V are held constant by
setting γ equal to 0 and the trust T equal to D, respectively.
We can hence drop the third and fourth equations in (10) and
set AOA = AOS = 0, [12]. This entails that equations (10)
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simplify to

Ẋ1

Ẋ2

ψ̇

ṁ

 =


V cos(ψ) + λ1

V sin(ψ) + λ2

1

2m
ρ(X3)CLSwV sin(ϕ)

−1

2
ηcCDSwρ(X3)V 2

 . (11)

The only input to set is then ϕ, which is set by the FMS
so as to track the reference path by compensating cross-track
deviations.

Aircraft positions are obtained from radar measurements.
Radar noise is supposed to affect only the X1 and X2

measurements, and the altitude at which the aircraft is flying
is supposed to be constant and known. The accuracy of the
radar decreases as an aircraft moves away from its location.
One can however use a sufficiently large value for the standard
deviation σr of the radar error measurements and keep it
constant.

2) Wind Modeling: The wind velocity entering equations
(10) is modeled as a random field composed by two contribu-
tions: the weather forecast (the nominal part) and the forecast
error (the stochastic part).

The stochastic wind field component is supposed to satisfy
the following conditions:
• the vertical component of the wind is zero;
• the horizontal components λ1(t, p) and λ2(t, p) in the X1

(eastward) and X2 (northward) directions associated with
time t ∈ R and position p ∈ R3 are independent Gaussian
random variables with zero mean;

• the wind field is isotropic (invariant under rotations) in
the horizontal plane;

• the wind variance depends only on the altitude.
Given these assumptions, we can characterize the stochastic
wind field through the correlation function

r(t, p, t′, p′) = E[λ1(t, p)λ1(t′, p′)] = E[λ2(t, p)λ2(t′, p′)]

= σ(X3)σ(X ′3)rt(τ)r12(d12)r3 (|%(X3)− %(X ′3)|) , (12)

where t, t′ ∈ R, p = (X1, X2, X3), p′ = (X ′1, X
′
2, X

′
3) ∈ R3,

τ = |t − t′|, d12 = ‖[(X1 −X ′1)> (X2 −X ′2)>]>‖, %(X3)
being the atmospheric pressure and r(t, p, t, p) = σ(X3)2 the
variance of the wind at altitude X3. Quantities σ(X3), rt,
r12 and r3 are defined in [12], so as to match the empirical
data in [40]. Wind correlation decays exponentially with the
distance in the horizontal plane, with the pressure difference in
the vertical direction, and with time separation. In particular,
the wind field is characterized by a strong time correlation, a
significant but smaller horizontal correlation, and a very weak
altitude correlation. In a 30 minutes look-ahead time horizon,
the following expression holds for the time correlation rt:
rt(|t−t′|) ≈ e−|t−t

′|/Gt , where Gt is an appropriate constant,
see [12].

In the SCPF, we need to generate wind realizations consis-
tent with the above described structure. To this purpose, the
airspace region of interest is discretized into N1, N2, and N3

bins along the three orthogonal axes with bin size d1, d2 and
d3, respectively, while the look-ahead time horizon is split

into Nt time-steps of size dt. At each time step t = kdt, with
k ∈ {0 . . . Nt}, we can then define the two vectors Λ1 (k)
and Λ2 (k) containing the horizontal components λ1(t, p) and
λ2(t, p) sampled on the spatial grid. Due to the isotropy
assumption, Λ1 and Λ2 have the same covariance matrix R,
which can be derived based on the correlation function (12).
Finally, wind realizations can be generated according to the
following linear equations:{

Λ1(k + 1) = aΛ1(k) +Qζ1(k + 1)

Λ2(k + 1) = aΛ2(k) +Qζ2(k + 1)
(13)

initialized with Λ1 (0) = Q̂ζ1 (0) and Λ2 (0) = Q̂ζ2 (0),
where ζ1(k), ζ2(k) are standard independent Gaussian random
variables, and matrices Q̂ and Q are derived by using the
Cholesky decomposition of R and satisfy Q̂Q̂> = R and
QQ>= (1− a2)R with a = e−dt/Gt . These choices are such
that the covariance matrices of Λ1 and Λ2 in (13) are constant
and equal to R (see the appendix of [12] for a proof). The wind
at some point that does not belong to the grid is computed by
linear interpolation of Λ1 and Λ2.

3) Sequential Conditional Particle Filter: The SCPF in-
troduced in [12] is adopted here to derive the conditional
probability distribution of the wind vectors Λ1 and Λ2 in
some region of interest, given the radar measurements of the
positions of the aircraft flying in that region. The idea is that
aircraft can be used as flying sensors to obtain an indirect
local measure of the wind, which can then be extended to all
the grid points thanks to the spatial correlation structure of
the wind field. Note that the wind evolution is governed by
linear equations fed by a Gaussian noise (see (13)) so that if
measurements of Λ1 and Λ2 were available, then, standard
Kalman filtering could be applied to compute mean and
covariance matrix of their Gaussian conditional distributions.
In the SCPF, such measurements are reconstructed from the
measurements of the aircraft positions by implementing a PF,
which estimates the conditional distribution of the aircraft
state vectors via a set of particles. These particles contain
also realizations of Λ1 and Λ2. In the filtering step, particles
are resampled based on their likelihood as derived from the
radar measurements. The resampled wind realizations are
then used as local measurements of Λ1 and Λ2 to update
mean and covariance matrix of the wind Gaussian conditional
distributions associated to each particle, via a Kalman filter.
Due to the fact that, conditioned to the wind field, the aircraft
dynamics are decoupled, the filtering step can be performed
one aircraft at a time, hence the term “sequential”.

C. Improved Footprint Estimate and No-Fly Zones

The UKF for the debris state estimation in Section V-A
and the SCPF for the wind field estimation in Section V-B
can be jointly exploited to improve the debris footprint. More
precisely, air traffic controllers can run the SCPF continuously
so as to have a constantly updated estimate of the wind
field over their sector. When a debris reentry occurs and a
measurement of the debris position becomes available, the
UKF can be activated to process a certain (limited) number of
debris measurements before generating the footprint estimate
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via the simulation-based Algorithm 1 in Section II. The algo-
rithm uses the last a-posteriori mean and covariance matrix
of the debris state obtained via the UKF and the a-posteriori
mean and covariance matrix of the wind field obtained via the
SCPF to generate realizations of the debris trajectories. The
dispersion of the trajectories is thus reduced and the debris
footprint enhanced. By intersecting the footprint with planes
at different flight levels, air traffic controllers can obtain no-
fly zones forbidden to air traffic in certain time frames and
appropriately re-route aircraft so as to ensure their safety. Note
that the larger a no-fly zone is, the more difficult it is to find a
feasible solution to the problem of re-routing the aircraft. ε can
then play the role of a tuning parameter so as to compromise
between the admissible risk level and the size of the no-fly
zone: 0 risk but a large no-fly zone if ε = 0, and maximum
risk but a zero volume no-fly zone if ε = 1.

VI. A NUMERICAL EXAMPLE

We next apply the proposed method for debris footprint
estimation to a reference scenario and demonstrate its effec-
tiveness. Aircraft and wind parameters are set as in [12].

We consider 6 aircraft flying at constant altitude in a region
of the airspace of 600 km by 600 km in the X1X2 plane and
the 9-12 km range along X3. The flight plan of each aircraft
is composed of a starting waypoint and a target waypoint.
The aircraft state vectors are initialized with the corresponding
starting waypoints, a nominal speed of 214 m/s, an initial
mass of 46 tonnes, and a heading angle that points towards
the corresponding target waypoint. All aircraft are assumed
to be Boeing 737-700, and their parameters are taken from
BADA, [39]. Figure 1 represents the aircraft by either a dot
or a diamond, and flight plans as straight lines. Aircraft are
divided in two sets: the first set contains 3 aircraft flying from
the south-west corner of the airspace region to the north-east
corner, while the other 3 aircraft in the second set fly from the
north-west to the south-east corner. Nominal trajectories cross
at the center of the considered airspace region, but aircraft
reaching the central point at the same time are actually flying
at different altitudes. More specifically, the aircraft marked
with a dot in Figure 1 fly at altitude 10.5 km and the other
ones at altitude 11.5 km.

To simulate the wind field, we consider a grid whose blocks
have dimensions d1 = 60 km, d2 = 60 km, and d3 = 1 km
along the X1, X2, and X3 directions respectively. In each point
of the grid, the X1 and X2 components of the wind velocity
is the sum of two contributions: a forecast value obtained
from the HWM93 model, [33], plus a stochastic component
that is generated according to equations (13) presented in
Section V-B2 at altitudes between 9 and 12 km. Each aircraft
state vector then evolves according to equations (11) (see
Section V-B1), where the air density is given by the U.S.
Standard Atmosphere, [34], and the bank angle ϕ is set by
a nonlinear feedback controller that reduces the cross-track
deviation with respect to the flight plan, [37]. We will refer
to these trajectories as the “true” ones. The aircraft radar
positions are obtained by sampling these trajectories every
dt = 30 seconds and adding a zero mean Gaussian noise with
variance σ2

r = 6400 m2 to each sample.
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Fig. 1. Air traffic configuration: aircraft flying at the same altitude are marked
with the same symbol (diamond or dot) and the same line for their nominal
path (dotted or solid line).

After 15 minutes, a debris object enters the Earth’s
atmosphere. Its initial (extended) state is extracted
at random from a Gaussian distribution with mean
s̄(0) =

[
x̄(0)>, v̄(0)>, β̄

]> and covariance matrix
Σ0 = diag(σ2

d, σ
2
d, σ

2
d, σ

2
v1 , σ

2
v2 , σ

2
v3 , σ

2
β), where x̄(0) =[

0, 0, 7.8×104
]> m, v̄(0) =

[
7.0989×103, 0,−123.9

]> m/s,
β̄ = 5 kg/m2, σ2

d = 25600 m2, σ2
v1 = σ2

v2 = 2500 m2/s2,
σ2
v3 = 5300 m2/s2, and σ2

β = 0.01 kg2/m4. The debris state
vector evolves according to equations (5) subject to the wind
field and to a random accelerations process ξ(t), which is a
Gaussian white noise with zero mean and covariance matrix
Ξ = 2.4064·10−5 · I3×3, as suggested in [11]. We will refer to
this trajectory as the “true” debris trajectory. The debris radar
measurements are obtained by sampling the true positions
every dt = 30 seconds and adding a zero mean Gaussian
noise with variance σ2

d = 25600 m2.
We first apply the SCPF for wind estimation based on the

radar measurements of the aircraft position. We used 500
particles in the SCPF implementation. The state vector of the
i-th aircraft in all the particles is initialized with the first
radar measurement of the corresponding aircraft, assuming
the heading angle ψ and the mass m known. The wind field
initial distribution is assumed to have a zero mean (in both
the X1 and the X2 direction) and a covariance matrix equal
to R, as described in Section V-B2. The SCPF is run for
15 minutes, after which the first measurement of the debris
position becomes available. When this happens, we initialize
the UKF as follows: the measured position is used to initialize
the first three components of the state vector, the rest of the
initial state vector and the initial covariance matrix are set to
v̄(0), β̄ and Σ0, according to the reference scenario. As for the
measurement noise covariance matrix, we set S = σ2

d · I3×3.
When after 30 seconds another measurement of the debris
position is available, a first iteration of the UKF is run with
the parameters a and b in (9) set equal to a = 0.001 and
b = 2. Both SCPF and UKF filters are then stopped. The
UKF returns the a-posteriori mean and covariance matrix of
the debris state vector, while the SCPF returns a set of particles
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Fig. 2. Top: footprint comparison. Bottom: wind field covariance matrix
before and after filtering.

which include a-posteriori mean and covariance matrix of the
stochastic wind field among their components. Algorithm 1
is finally run for the footprint computation. We set ε = 0.1,
α = 0.035, η = 10−5 and N according to Theorem 1. The
initial states of the N trajectories are extracted according to
the a-posteriori mean and covariance matrix of the debris
state vector returned by the UKF. The particles returned by
the SCPF are instead used to generate N realizations of the
stochastic component of wind field that will affects the N
extracted debris trajectories.

For comparison purposes, we also report the results obtained
from Algorithm 1 in case no information about the wind field
is available (i.e., the SCPF is not implemented) and in case
no filtering procedure is applied (i.e., both SCPF and UKF are
not implemented) as a baseline. The resulting footprints are
shown in Figure 2 (top plot). The corresponding volumes are
2613.22 km3 (Baseline), 111.67 km3 (UKF-only) and 80.13
km3 (UKF+PF). Ellipsoids of the same color represent 3D haz-
ardous region in four different time instants. Not surprisingly,
the largest footprint is the one obtained without any filtering
procedure, the intermediate one is that computed using only
the UKF filtering procedure, and the smallest one is obtained
using both UKF and SCPF. As can be seen, the volume of
the footprint is progressively reduced as more information are

incorporated via the two filtering procedures. In particular,
the UKF filtering reduces the footprint volume by 95.72%
with respect to the baseline, and if the SCPF is introduced
as well, then the footprint volume is further reduced by an
additional 28.25%. This volume reduction is easily justified if
one considers that the UKF is reducing the uncertainty on the
debris position, and the SCPF is reducing the uncertainty on
the wind forecast errors. Figure 2 (bottom plot) represents the
variance of the wind speed vector associated with the grid
points (X1, X2) at the altitude of 11 km before and after
applying the SCPF. As can be seen, after 15 minutes only,
wind variances have been successfully lowered by almost a
factor of two in those region of the airspace where radar
measurements of the aircraft position are available. Finally, it
is worth noticing that, as expected, the “true” debris trajectory
of the reference scenario (red solid line in the top plot of
Figure 2) is contained in all footprint estimates.

The effectiveness of the proposed approach is shown by
generating a suitable number Nv of validation trajectories
for the debris fragment and by counting how many of them
actually belong to the computed footprints. Nv is computed
according to Nv = d log(2/η)

2α2 e, so as to ensure an α level of
accuracy with a confidence 1− η, where α and η are chosen
to match the parameters in Algorithm 1. The Nv validation
trajectories are generated as follows. The initial state is set
equal to the “true” debris state vector right before it enters the
airspace region where the stochastic wind field is present. The
wind field of each realization is initialized with the true value
of the wind field at the same time instant. In each trajectory
the wind field evolves according to (13), and the debris object
evolves according to (5) subject to the corresponding wind
realization and to a realization of the Gaussian acceleration
process ξ(t) with zero mean and covariance matrix Ξ. As
pointed out in Figure 2, all the validation trajectories (reported
as black dots in the top plot) belong to the computed footprints
at the corresponding time instant.

VII. CONCLUSIONS

We presented a novel simulation-based approach to solve
the problem of estimating the region of the airspace posed
at risk by a reentering space debris. The proposed method
was shown to outperform the competing alternative covariance
propagation method and to be of more general applicability.
We also demonstrated how the obtained footprint estimate
can be significantly enhanced if measurements of the debris
position after the breakup instant as well as of the aircraft
positions during normal operations prior to breakup were
available. Results show that randomized techniques can be
a quite effective means for addressing interesting and chal-
lenging problems involving nonlinear complex dynamics. An
interesting extension of this work is footprint estimation for a
cloud of debris fragments generated in the breakup event.
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