
Optimal control to reduce emissions in gasoline engines: an iterative
learning control approach for ECU calibration maps improvement.*

Danilo Caporale1, Luca Deori, Roberto Mura, Alessandro Falsone, Riccardo Vignali, Luca Giulioni, Matteo Pirotta

Abstract— Control of emissions in gasoline engines has be-
come more stringent in the last decades, especially in Europe.
This poses new and important problems in the control of
complex nonlinear systems. In this work a preliminary investi-
gation is conducted on the idea of exploiting Iterative Learning
Control to optimize calibration maps that are commonly used
in Engine Control Units of gasoline engines. In this spirit,
starting from existing maps, we show how to refine them
using a gradient–descent iterative learning control algorithm,
considering additional constraints in the optimization problem.
The outcome of this procedure is a control signal which can be
integrated in a modified map. The performance of the proposed
technique is validated on the provided training signal and cross–
validated on different reference signals. Simulation results show
the effectiveness of the approach.

I. INTRODUCTION

The need to reduce CO2 emissions in gasoline engines
is a challenge for the control system designer, and inno-
vative methods are required to drive the engines at their
performance limits, while reducing emissions and avoiding
uncontrolled phenomena such as knocking and misfiring that
may arise in such conditions. It is required to take into
account all these aspects in the controller design procedure,
see [5].

A gasoline engine can be seen as a complex nonlinear
system where many dynamics are involved: air and fuel
intake and exhaust flows, mechanical elements and electrical
components. In order to design a good control system, a
model of the system to be controlled is needed, and the
possible lack of accuracy in the model description has to
be compensated by means of robust control techniques. In
recent years Model Predictive Controllers for engines have
been tested to explicitly handle contraints but they require an
accurate model description, which is not always available,
to compute an effective optimal control law, see [7], [8].
Dynamical models for gasoline engines are readily available,
often in the form of Mean Value Models [5]. The approach
proposed in this paper makes use of model free techniques
to avoid the need of explicitly compute these models, in
particular we focues on the so–called Iterative Learning
Control method.

The main component of engine control systems are cal-
ibration maps, which are obtained by minimizing a certain
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functional over every operating point or operating region,
see [5], [6] and references therein. In this work it is shown
how to further improve such calibration maps in terms of
better torque tracking performance, less fuel consumption
and constraints satisfaction.

In particular an optimal control problem to refine an a–
priori given control law is formulated and solved. The main
advantage is that it requires only the possibility to run
multiple experiments on the system.

Iterative Learning Control (ILC) is generally used to
improve tracking performance over repetitive tasks, taking
into account desired control objectives, see [2], [3], [4]. In
this way, the modelization and control design effort is moved
to an automated algorithm for optimal tuning. This has been
done in the industry for decades, see [6], but to the best of
our knowledge an ILC approach has not been tested yet in
the engine control framework, although it can be considered
as a viable approach.

In the spirit of a preliminary study on the application of
ILC to engine control design, and considering the nominal
conditions where the engine is given to operate, our attention
is posed on the open–loop behavior of the system, instead
of using a dynamical feedback controller. The obtained
improved maps define a control law capable of satisfying
the prescribed performances and constraints. In view of this
the effort for the designer is moved from the mathematical
description of the system to the mathematical description of
the problem and the implementation of its solution.

The paper is organized as follows: in section II the control
problem is formulated based on [1]. In section III the
proposed approach is presented. In section IV the results of
the proposed approach are shown and cross–validated with
different reference torques. In section V the conclusions are
drawn for this work and further possible developments are
shown.

II. PROBLEM FORMULATION

Consider a nonlinear dynamical system S of the form:

S :

{
dx(τ)
dτ = f(x(τ), u(τ))
y(τ) = g(x(τ), u(τ))

(1)

where x ∈ Rn is the state vector, u ∈ Rm is the control
vector and y ∈ Rp is the output vector, all continuous time
functions.

The control variables for the problem are specified in [1]
as the throttle valve position xTH [%], the spark advance



φSA [CAD], and the Exhaust Gas Recirculation (EGR) valve
position xEGR [%], collected in the vector:

u :=
[
xTH φSA xEGR

]′
(2)

while the chosen outputs are the minimum required:

y :=
[
T h qf

]′
, (3)

respectively the measured torque in [Nm], the knocking and
misfiring signaling function h [1] and the instantaneous fuel
consumption qf [kg/s]. The aim of the competition is to
minimize the cost function

J (u) =
∫ tf

0

cfq
2
f (s) + cT

(
T 0(s)− T (s)

)2
ds, (4)

which takes into account the total fuel consumption and the
torque tracking error for a specific reference torque, denoted
by T o. The constraints enforce the inputs to keep within
given proper ranges, and require to avoid knocking and mis-
firing. The optimization problem results as in equation (5):

min
u

J(u)

s.t. h(x, u) < 0
u ∈ U,

(5)

where U is a convex subset of Rm.
The optimal control problem is cast in a discrete time form

to take advantage of the ILC method. Consider a generic
nonlinear discrete time dynamical system as in (6)

Sd :
{
x(t+ 1) = f(x(t), u(t))

y(t) = g(x(t), u(t)),
(6)

over a finite time interval of length N ,
t ∈ [0, 1, 2, . . . , N − 1]. Problem (5) has been recast
as in (7),

J(u) =
tf∑
τ=0

[
cfq

2
f (τ) + cT

(
T 0(τ)− T (τ)

)2
+

+M
∑nh
i=1 σ

(
hi(t)

)]
,

u ∈ U,

(7)

where M > 0 is a constant, h(t) ∈ Rnh and

σ(η) =

{
0, η < 0
1, η ≥ 0.

(8)

Note that in h(·) only the dependency on time is considered
as of interest here. Also note that the saturation bounds on the
control u have been taken into account explicitly by adding
saturations on the output of the each control variable. Three
calibration maps were provided as a possible initial solution:
such maps shall be indicated here withM1 for the one from
T o to xTH , M2 from T o to φSA, M3 from T o to xEGR.

We assume that it is possible to perform experiments
on the system in steady state conditions, this can be done
by simulation on a computer model or running tests on a
prototype system in a laboratory. The variables related to
each test are labeled by the letter k, so that k ∈ [1, 2, . . . , Nk]
can be addressed to as the iteration counter and Nk is the
number of tests, or iterations, one performs. Hence, each
variable can be addressed to via an iteration index and a

Fig. 1. Iterative Control Loop time axes: each signal sk(t) is defined over
an iteration index k and a time index t.

time index, see Figure 1. ILC is used to reduce the tracking
error ek(t) := yok(t)− yk(t) between a reference signal and
an output signal. For a SISO system, a common implemented
law is the Arimoto’s law [3]:

uk(t) = uk−1(t) + γek(t). (9)

The use of this proportional control law (which resembles
an integral action between each iteration) has been proven to
minimize the tracking error. A similar approach is used here
where instead of the tracking error we aim at minimizing a
figure of merit.

III. PROBLEM SOLUTION VIA ITERATIVE LEARNING
CONTROL

A common assumption for ILC algorithms is introduced.
Assumption 1: The process under control, when fed with

the output of the preliminary calibration maps Mi, i = 1..3,
is globally asymptotically stable.
The gradient–descent method has been chosen to minimize
the figure of merit, hence an estimation of the gradient of
J(u) with respect to the control variables u is needed. Let
uk be the control signal given at a certain iteration k. To
estimate the gradient one can perturb this signal on the next
iteration as in:

uk,j(t) = uk(t) + δuk,j(t) (10)

where j = 1, 2, 3 denotes which input we are perturbing
and δuj(t) > 0,∀t ∈ [0, 1, 2, . . . , N − 1] is a perturbation
of the control signal’s j − th component. Then one can let
∇uJk(uk) be the gradient of the function J with respect to
u as in:

∇uJk(uk) :=
[

Jk,1−Jk
δuk,1

Jk,2−Jk
δuk,2

Jk,3−Jk
δuk,3

]
(11)

Once the gradient has been estimated one can perform a
gradient descent optimum search as shown in [2], which is
done by the following control law:

uk+1(t) = uk(t)− αk∇uJk(uk), (12)

where αk > 0 is the variable step length which takes into
account the gradient normalization and the step adaptation.



For the sake of clarity, we show here the algorithm used to
find the optimal control maps:
Require: For k = 1 run simulations with maps Mi.

for k = 2 to Nk do
Compute the gradient estimation as in (11).

for j = 1 to m do
Apply the control uk,j(t) = uk(t) + δuk,j(t)

end for
Apply the control (12).
Jk ← (7).
while Jk > Jk−1 do

α← α/2.
Apply the control (12).
Jk ← (7).

end while
end for

In [2], the convergence of the solution to the optimum is
shown, under suitable assumptions on the system dynamics
and on the step length α. In this case no information on
the system dynamics is exploited and further analysis are
required to provide a proof of convergence.

At each iteration of the algorithm, one could plot the
achieved input–output relationship for each control variable
to evaluate how they are modified. The purpose of this work
is to obtain a controller ready to be used, hence one can
perform a least squares minimization to fit a map on the
new achieved input–output relationships. This is illustrated
in the next section.

IV. SIMULATIONS

In Figure 2 the evolution of the figure of merit J over
different iterations k is shown and the optimal results, for
the 28–th iteration, are summarized in Table I, where t0 = 5
s and tf = 120 s. In Figure 3 it is posible to see the
improvement in the torque tracking performance, at the
reasonable cost of a slightly increase in the fuel consumption
as visible in Figure 4.

As already stated in section III, the outcome of ILC is a
control signal uk(t) which has to be realized in a controller
to be used on different torque reference profiles too. This
has been done with a least squares spline fitting over the
T o → uj relations, for j = 1 . . .m, resulting in a piecewise
polynomial which has been used to compute the updated
maps MLS

i . In Figure 5, 6, 7 it is possible to compare the
original calibration maps Mi, the ones obtained from the
ILC procedure, denoted by M̂i, and the maps MLS

i .
The torque tracking performance has been also assessed

when using the maps MLS
i . Results are shown in Figure 8

and in Table II. The minimum value achieved by the ILC
iterations is slightly increased when the fitted maps are
applied. This is due to the fact that the optimal input signal
resulting from ILC is different from its least square average,
as it is shown in Figures 5, 6, 7. Despite that, the tracking
achieved by means of the fitted maps is significantly better
with respect to the tracking achieved by the original maps.
Notably the achieved maps, as well as the ILC control, avoid
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Fig. 2. Figure of merit evolution with gradient descent algorithm. The
minimum value has been obtained for k = 28 and corresponds to J =
6325.4.

time [s]
0 20 40 60 80 100 120 140

T
 [

N
m

]

-50

0

50

100

150

200

reference
with original maps
with ILC

Fig. 3. Tracking of the reference torque (in solid blue) achieved with ILC
(in dot–dashed red) and with the original maps (in dashed black).
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Fig. 4. Fuel consumption qf achieved with the original maps (in solid
black) and with ILC (in dot–dashed red).



Fig. 5. Maps from T o to xTH : in blue solid thin line the original map
M1; in red dots the map M̂1 resulting from the ILC process; in black solid
bold line the map MLS

1 obtained from a least squares piecewise polynomial
fitting of the optimal map.

Fig. 6. Maps from T o to φSA: in blue solid thin line the original map
M2; in red dots the map M̂2 resulting from the optimization process; in
black solid bold line the map MLS

2 obtained from a least squares piecewise
polynomial fitting of the optimal map.

knocking and misfiring, while mantaining the control signals
inside the bounding region, see Figure 9, 10, 11 and 12.

In order to provide a cross–validation for the proposed
approach, the achieved control maps are exploited to track
a new torque reference profile, different from the torque
reference considered in the design of the control maps by
means of the ILC. The results are showed in Figure 13 and
summarized in Table II: as one can see by means of the
designed control maps a good tracking is achieved for the
new reference torque and, although not shown for space
reasons, knocking and misfiring are avoided and control
bounds are respected.

Fig. 7. Maps from T o to xEGR: in blue solid thin line the original map
M3; in red dots the map M̂3 resulting from the optimization process; in
black solid bold line the map MLS

3 obtained from a least squares piecewise
polynomial fitting of the optimal map.
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Fig. 8. Tracking of the reference torque (in solid blue) achieved with
the new least squares fitted maps MLS

i (in dot–dashed red) and with the
original maps (in solid black).

TABLE I
PERFORMANCE OBTAINED WITH ILC OPTIMAL CONTROL

Objectives Equation Value
(original)

Value
ILC

Fuel
consumption

Jfuel =
∫ tf
t0

ctqf (τ) dτ 5621.6 5721.3

Torque
deviation

JT =
∫ tf
t0

ct
(
To(τ) − T (τ)

)2 dτ 3307.3 604.1

Overall
objective

J = Jfuel + JT 8928.9 6325.4
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Fig. 9. Control signals: in blue line the signals obtained with the original
maps, in red line the signals obtained from the ILC controller.
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Fig. 10. Constraint function h: it is shown for all the cylinders with the
ILC optimal control.
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Fig. 11. Control signals: in blue line the signals obtained with the original
maps, in red line the signals obtained from the new calibration maps.
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Fig. 12. Constraint function h: it is shown for all the cylinders with the
new calibration maps.
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Fig. 13. Tracking of a different reference torque (in solid blue) achieved
with the new least squares fitted maps MLS

i (in solid red) and the original
maps (in dashed black).

TABLE II
PERFORMANCE OBTAINED

Objectives Value new
maps (same
reference of
Table I)

Value cross–
validation,
original
maps

Value cross–
validation,
new maps

Fuel consumption 5719.8 5591.0 5695.5

Torque deviation 1556.6 3539.8 1912.2

Overall objective 7276.4 9130.9 7607.7



V. CONCLUSION

In the context of a student competition, a method for
optimal tuning of ECU calibration maps is developed. The
proposed algorithm provides improved calibration maps that
have been tested on a given torque profile reference and
cross–validated on other torque profiles obtained from com-
monly used driving cycles. The promising results obtained
in simulation motivate further investigation, both theoretical
and experimental, to understand how the Iterative Learning
Control paradigm can be used to improve current state of the
art Engine Control Units. Also it is of interest to investigate
how such methods could be used in on–line operation of the
engines to automatically update the calibration maps over
time, refining the engines performances despite degradation
of its components.
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