
Towards the formal verification of data-intensive

applications through metric temporal logic

Francesco Marconi1, Marcello M. Bersani1,
Madalina Erascu2, and Matteo Rossi1

1 DEIB, Politecnico di Milano, Milan, Italy

{francesco.marconi,marcellomaria.bersani,matteo.rossi}@polimi.it
2 Institute e-Austria Timisoara & West University of Timisoara, Timisoara, Romania

merascu@info.uvt.ro

Abstract We present an approach for the automated formal verification

of distributed systems based on the Storm technology. The approach is

based on a formal model of the behavior of Storm topologies given in terms

of the CLTLoc metric temporal logic extended with counters. We present a

tool-supported mechanism to automatically generate formal models from

high-level description of Storm topologies. The Zot formal verification

tool is then used to check whether some desired properties hold for the

modeled system or not. The analyzed properties concern the growth

of the queues of the nodes of the Storm topology. Some experiments

performed on example topologies show how the timing features of the

modeled system influence the behavior of the queues of the nodes.

Keywords: Data-intensive Applications, Distributed Systems, Formal Verifica-
tion, Storm Technology, Metric Temporal Logic

1 Introduction

Big Data is a prominent area, involving both academia and industry, researching
innovative solutions to support the entire life-cycle (from design to deployment)
of so-called data-intensive applications (DIAs), which are able to process huge
amounts of information. Hence, defining frameworks for the development of DIAs
that leverage Big Data technologies is nowadays of major importance.

The DICE project [9] defines techniques and tools for the data-aware quality-
driven development of DIAs. In the DICE approach, designers model DIAs
through UML diagrams tagged with suitable annotations capturing the features
of Big Data applications, and in particular their topology. A topology provides an
abstract representation of a DIA through directed graphs, where nodes are of two
kinds: computational nodes implement the logic of the application by elaborating
information and producing an outcome, whereas input nodes bring information
into the application from the environment.

The semantics underlying the topology typically changes depending on the
target Big Data technology. In this paper we focus on the Apache Storm [1]

2 Francesco Marconi, Marcello M. Bersani, Madalina Erascu, Matteo Rossi

technology—in which computational nodes are called bolts, and input nodes are
called spouts—a framework which is widely used in applications that need reliable
processing of unbounded streams of data, e.g. Groupon (www.groupon.com), The
Weather Channel (www.weather.com), Spotify (www.spotify.com), etc. In Apache
Storm applications, one of the key concerns is that time-related parameters such
as emission rates of data do not induce an excessive load on the topology by
accumulating data in nodes’ queues. The latest version of the framework offers
options to adapt these parameters at run-time (e.g., by slowing down the input
nodes) to mitigate the issue, but this might negatively and unpredictably impact
other features of the application. Hence, one would like to design the topology
from the beginning in a way that run-time adaptation is not necessary.

In this paper, we approach such design with three contributions.
We define a formal model of DIAs based on the Storm technology.

This model, which we call the timed counter networks model, is expressed through
the Constraint LTL over clocks (CLTLoc) [7] metric temporal logic enriched with
positive counters. CLTLoc allows users to express time delays, and the addition
of positive counters allows for the description of memory usage issues such the
evolution of the length of nodes’ queues.

We allow for the automated verification of such formal models
through the D-VerT (DICE Verification Tool) prototype tool. By performing
formal verification tasks through D-VerT, designers can detect bad configura-
tions producing undesired consequences, such as data processing delays causing
an unbounded use of memory.

We define sufficient conditions for guaranteeing the soundness of
the verification results obtained through D-VerT. In fact, the extension of
CLTLoc with unbounded counters makes the logic undecidable in general, so
we must guarantee that the conditions and abstractions introduced to make the
verification technique applicable in practice do not generate spurious results.

The rest of the paper is structured as follows. Section 2 presents some
related works and Section 3 gives an overview of the Apache Storm technology.
Section 4 introduces CLTLoc extended with counters, and a sufficient condition
guaranteeing the soundness of its satisfiability checking procedure. Section 5
introduces the formal model of Storm topologies, and Section 6 describes some
experimental results carried out with the D-VerT tool. Section 7 concludes.

2 Related works

Formal verification of distributed systems has been the focus of several decades
of software engineering research. Challenging tasks in this context are: (i) finding
the right abstraction for the formal model of the real world (formalization); (ii)
developing techniques to prove the correctness of the modeled systems (verifi-
cation); and (iii) bridging the gap between formalization and verification, since
the formal model is often too complex to be tackled by the verification methods.
Various approaches exist for the formalization of distributed systems; however,
to the best of our knowledge none focuses on Storm-like streaming technologies.

https://www.groupon.com/
https://www.weather.com/
https://www.spotify.com/

Towards the formal verification of DIA through MTL models 3

Timed counter networks, the novel model of Storm topologies introduced in
this paper, are inspired from vector addition systems with states (VASS) [14]
and Timed Petri Nets [13]. VASS are a subclass of counter systems; that is,
they are finite-state automata augmented with counters, whose values are non-
negative integers, and which can be incremented and decremented. VASS are
also equivalent to Petri nets for decision problems such as boundedness, covering
and reachability [15]. Since distributed systems have unreliable communication,
timed counter networks are also similar to lossy VASS [8], an abstraction of
FIFO-channel systems, when only the number of messages is relevant, but not
their ordering. Unlike (lossy) VASS, timed counter networks can express timing
constraints along system executions through the notion of clocks.

Timed counter networks are inherently non-deterministic, and their behavior
is effectively captured through formalisms such as the counter-augmented CLTLoc.
At first glance they also seem expressible in terms of formalisms such as Timed
Petri Nets (TPN) [13]. However, CLTLoc is more suitable to this end because,
typically, TPN-based models adopt, both in theory and in practice, an urgent

semantics for the firing of transitions [4], where an enabled transition must fire
when it reaches its upper time bound if it is not disabled earlier. This makes
modeling the possible occurrence of events in timed counter networks (e.g., failures
in Storm topologies) less natural. Moreover, the typical semantics of the firings
of transitions in TPNs does not allow for the modeling of a policy such as the
following: dequeuing always removes the maximum number of available elements

in the queue, but never more than k elements at the same time. The model in
Section 5, instead, makes use of this abstraction to represent the behavior of a
node when it extracts new elements from its queue to process them.

Concerning formal verification issues, the reachability problem is decidable
for lossy unbounded FIFO-channel models [3,12] which implies the decidability
of the verification problem of safety properties for lossy VASS. To the best of
our knowledge, lossy VASS have been investigated only from a theoretical point
of view, and no verification tools handling them currently exist.

3 Overview of Apache Storm

Apache Storm [1] is a stream processing system that allows parallel, distributed,
real-time processing of large-scale streaming data on horizontally scalable systems.

The key concepts in Storm applications are streams and topologies. Streams
are infinite sequences of tuples that are processed by the application. Topologies
are directed graphs of computation, whose nodes correspond to the operations
performed over the data flowing through the application, and whose edges indicate
how such operations are combined, i. e., the streaming paths between nodes.

There are two kinds of nodes, spouts and bolts (in the following also referred
to as topology components). Spouts are stream sources. They generally get
data from external systems such as queuing brokers (e. g., Kafka, RabbitMQ,
Kestrel) or from other data sources, e. g., Twitter Streaming APIs. Bolts apply
transformations over the incoming data streams and generate new output streams

4 Francesco Marconi, Marcello M. Bersani, Madalina Erascu, Matteo Rossi

bolt B1

bolt B2
bolt B3

spout S1

spout S2

parallelism : 5

� : 2.0

↵ : 4.0

parallelism : 5

� : 2.0

↵ : 4.0
parallelism : 3

� : 1.0

↵ : 1.0

parallelism : 3

� : 1.0

↵ : 1.0
parallelism : 6

� : 0.5

↵ : 4.0

parallelism : 6

� : 0.5

↵ : 4.0

Figure 1: Example of Storm topology. Parameters σ and α are described in Sec. 5.

to be processed by the connected bolts. When a topology component generates
new data into an output stream, it is said to emit tuples. Connections are defined
at design time by the subscription of the bolts to other spouts or bolts. Fig. 1
shows an example of Storm topology that will be used in Section 6.

Spouts can be reliable or unreliable. The former keep track of all the tuples
they emit, and if one of them fails to be processed by the entire topology within a
certain timeout, then the spout re-emits it into the topology. The latter, instead,
always emit each tuple only once, without checking for successful processing.
Single bolts usually perform simple operations, such as filtering, join, functions,
database interaction, which are combined in the topology to apply more complex
transformations. IRichBolt and IRichSpout are the main Java interfaces to use for
implementing the components of a topology. execute() is the method of IRichBolt
defining the functionality of bolts; it reads the input tuples, processes the data,
and emits (via the emit() method) the transformed tuples on the output streams.
When the spouts are reliable, bolts have to acknowledge the successful or failed
processing of each tuple at the end of the execution.

The Storm runtime is designed to leverage the computational power of
distributed clusters. At a high level, its architecture is composed of one master

node, and several worker nodes. One or more worker processes can be instantiated
on a worker node, each of them executing different parts of the same topology.
Each worker process runs a JVM where one or more executors (i.e. threads) are
spawned. Executors can run one or more tasks which, in turn, can execute a spout
or a bolt. The configuration of the topology defines the number of worker processes
and, for each component (spout or bolt), the number of executors running it in
parallel (the value of parallelism in Fig. 1) and the total number of tasks over
those executors. Since each executor corresponds to a single thread, multiple
tasks run serially on the same executor. However, each executor usually runs
exactly one task (default option). Intra-worker and inter-worker communications
are managed through queues. Each executor has its own input queue and output
queue. Tuples are read from the input queue and processed by the thread handling
the spout/bolt logic; they are emitted on the outgoing queue and then are moved
to the parent worker’s transfer queue by a send thread.

4 Constraint LTL over clocks with counters

The temporal logic model of Section 5 is expressed in terms of the CLTLoc
logic [7] enriched with discrete unbounded counters, an extension of LTL allowing

Towards the formal verification of DIA through MTL models 5

arithmetical variables to occur in atomic formulae and be incremented or decre-
mented by an integer value. The decision procedure for determining whether a
CLTLoc formula with counters is satisfiable or not is at the basis of the prototype
tool used in Section 6 to formally verify Storm topologies. In this section we
define the logic and we provide a method to check the soundness of the outcome
of the satisfiability procedure for the defined logic when a trace is returned. The
assessment is partial, in the sense that if the produced trace does not pass the
soundness check, then nothing can be said of the satisfiability of the formula
until a model passing the check is found.

The logic allows for two kinds of atomic formulae. Atomic formulae over
(R, {<,=}) contain arithmetical variables which behave as clocks of Timed
Automata [13]. For instance, a possible atomic formula over clock x is x < 4,
where x ∈ R. Atomic formulae over (N, {<,=},+, 0, 1) predicate over arithmetical
variables that have no semantic restrictions. For instance, an atomic formula of
this second kind is y + z < 4, where both y and z are in N.

A clock x measures the time elapsed since the last “reset” of x, which occurs
when x = 0. Since the values of clocks can be compared with constants in
constraints of the form x ∼ c (where c ∈ N and ∼∈ {<,=}), clocks are used to
constrain the time elapsing between relevant events of topologies. A counter y,
instead, stores a value that can be incremented, decremented and tested against
a constant value. We use counters to represent the size of bolts’ queues. We also
exploit the modality X applied to integer variables, introduced in [10]: if y is an
integer variable, term Xy represents the value of y in the next position of time.

Let V be a finite set of variables over N. Atomic formulae θ over V are
quantifier-free Presburger formulae over terms α of the form y or Xy, with y ∈ V .

Then, if C is a finite set of clock variables over R, and AP is a finite set of
atomic propositions, CLTLoc formulae with counters are defined as follows:

φ := p | x ∼ c | θ | φ ∧ φ | ¬φ | Xφ | Yφ | φUφ | φSφ

where p ∈ AP , x ∈ C, c ∈ N, ∼∈ {<,=}, and X, Y, U and S are the usual
“next”, “previous”, “until” and “since” operators of LTL [13].

An interpretation of a formula is a pair (π, σ), where π : N → ℘(AP), and
σ : N×{C∪V } → R is a mapping associating every variable in C∪V with a value
in R, but restricting values of the elements in V to N. The semantics of CLTLoc
is defined as for LTL, except for formulae x ∼ c and θ. Let AV be the ordered set
of all terms of the form y and Xy, with y ∈ V , and let n− 1 be its cardinality;
for each αj ∈ AV , its depth |αj | is such that |αj | = 0 if αj = y, and |αj | = 1 if
αi = Xy for some y ∈ V . Given a mapping v : AV → N, θ[v(α0), . . . , v(αn−1)]
is the valuation of θ through v, which is obtained by replacing each term αj
occurring in θ with value v(αj). If θ[v(α0), . . . , v(αn−1)] is true we write v |= θ.
Let t(αj) = y if αj is either y or Xy. The following holds for each i ∈ N, where
the underlying assignment v is such that v(αj) = σ(i+ |αj |, t(αj)):

(π, σ), i |= x ∼ c iff σ(i, x) ∼ c
(π, σ), i |= θ iff θ[σ(i+ |α0|, t(α0)), . . . , σ(i+ |αn−1|, t(αn−1))]

6 Francesco Marconi, Marcello M. Bersani, Madalina Erascu, Matteo Rossi

If φ is a formula, interpretation (π, σ) is a model for φ if (π, σ), 0 |= φ holds.
The satisfiability problem for CLTL and CLTLoc is decidable [10,7] and can

be practically computed through the Bounded Satisfiability Checking (BSC)
technique [6,7]. In general, a BSC decision procedure, given a formula φ, looks
for an ultimately periodic model of φ of the form α(sβ)ω, where |αsβ| = k. To
achieve this, it looks to build a bounded structure of the form αsβs, i.e., where
a state s is repeated. In the case of LTL formulae, a state corresponds to a set
of subformulae of φ. For CLTL (resp., CLTLoc) formulae, a state includes also
arithmetic constraints capturing the relationships among variables (resp., clocks),
even those that do not appear explicitly in the formula as atomic formulae. For
these logics it is guaranteed that, when the decision procedure finds a structure
of the form αsβs for formula φ, this can be extended to an infinite model of the
form α(sβ)ω. These results, however, cannot be extended to CLTLoc augmented
with counters, since the logic is in general undecidable, as it contains CLTL over
quantifier-free Presburger formulae [11], i.e., the absence of ultimately periodic
models for a formula does not entail its unsatisfiability.

As a consequence, we pursue a limited approach that stems from the analysis
of the shape of the formulae defining the semantics of Section 5, which is still
meaningful to discover possible dangerous executions of a Storm topology, i.e.,
those originated from a periodic behavior of its abstract model and representing
undesired executions of running topologies (see Section 6). More precisely, we
adapt the techniques developed in [6,7] into a procedure that, given a CLTLoc
formula with counters and a bound k, tries to build a suitable structure αsβs, with
|αsβ| = k and: (i) if no such structure is found, it concludes that no ultimately
periodic models of length smaller than k exist; (ii) if a structure is found, it
performs a check to determine whether the structure can be extended to an
infinite model α(sβ)ω and, if the check succeeds, it returns αsβ as representative
of the infinite model. If the check fails, the result is inconclusive, and a new
structure must be looked for.

First of all, we remark that, since clocks and counters cannot be compared
against each other, we can deal with them separately. In particular, the extend-
ability ad infinitum of the assignments of values to clocks is guaranteed through
the results of [7]. In the rest of this section, we outline a sufficient condition for
extending ad infinitum a bounded assignment of values to counters.

In [10,6] the key abstraction that allows us to deal with the fact that variables
have infinite domains is the notion of symbolic valuation, which captures the
relationships between the values of the variables in a symbolic way. For example, if
x, y, z are the variables appearing in formula φ, an example of symbolic valuation
is the set of formulae {x < y, y < z, x < z}. In fact, symbolic valuations
take into account also the fact that a CLTL formula can relate the values of
variables at different time instants through the X operator. For example, if
x,Xy are the terms appearing in formula φ, an example of symbolic valuation
is {x < y, x = Xx,Xx < y,Xx < Xy, y < Xy}. Notice that a symbolic valuation
can contain formulae (and even terms) that do not appear explicitly in φ, such
as x = Xx in the previous example, in order to provide a complete picture of the

Towards the formal verification of DIA through MTL models 7

y0 y1

…
yl yl+1

…
yk-1 yk

Δy

Δy

yk+1

…
y2k-l-1 y2k-l

Figure 2: Example of repeated shape for the evolution of variable y.

relationships among variables over a sufficient horizon. Since in CLTLoc with
counters we allow for richer constraints on variables (e.g., we can write formulae
such as Xx = 2x+ y), we cannot exhaustively capture the relationships among
possible terms. Hence, we introduce the notion of partial symbolic valuation

(p.s.v.). More precisely, given a formula φ such that Θφ is the set of all its atomic
formulae over counters, its set of partial symbolic valuations pSVφ is simply ℘(Θφ).
For example, if Θφ = {x < y,Xx = y + z,Xy < x+ Xz}, an example of partial
symbolic valuation is set {x < y,Xx = y + z}. Given a p.s.v. ρi, it symbolically

satisfies an atomic formula θ iff θ ∈ ρi, in which case we write ρi |=psv θ. We can
extend the notion of symbolic satisfaction to sequences of p.s.v.’s and CLTLoc
formulae with counters in a straightforward way; for example, if ρ = ρ0ρ1 . . . is a
sequence of p.s.v.’s, ρ, 0 |=psv X(Xx = y + z) iff ρ1 |=psv Xx = y+ z. In addition,
given a set AV of terms, a mapping v : AV → N, and a p.s.v. ρi, we say that v
satisfies ρi, written v |= ρi iff for each θ ∈ ρi it holds that v |= θ. Notice that,
given a mapping v and a set of formulae Θφ, v induces a maximal p.s.v., which
is simply the set of all θ ∈ Θφ such that v |= θ.

The goal of our decision procedure is, given a formula φ, to find a bounded
sequence σk : [0, k] × V → N of assignments to variables—which in turn cor-
responds to a sequence of mappings v0v1 . . . vk−1 such that vi(y) = σ(i, y) and
vi(Xy) = σ(i+1, y) for all y,Xy ∈ AV—such that, if ρ0ρ1 . . . ρk−1 is the sequence
of maximal p.s.v.’s induced by v0v1 . . . vk−1: (i) there is 0 ≤ l < k such that
ρ0 . . . ρl−1(ρl . . . ρk−1)ω, 0 |=psv φ; (ii) σk can be extended to an infinite sequence
of assignments σ : N × V → N, whose corresponding sequence of mappings
v0v1 . . . is such that, for all i ≥ k, it holds that vi |= ρl+(i−k) mod (k−l).

This corresponds to finding a bounded sequence σk+1 : [0, k + 1] × V → N,
whose induced sequence of maximal p.s.v.’s ρ0ρ1 . . . ρk is such that ρk = ρl, and
all subformulae of φ that hold at position l also hold at position k. In addition, as
sufficient condition for the finite sequence of assignments to be extendable to an
infinite one, we require that in the loop the evolution of each variable y ∈ V has
the same shape, as exemplified in Fig. 2. This entails that, for example, in the
second iteration the value of y is the same as in the first iteration, plus the offset
between the value of y in the first positions of the two iterations, represented
as ∆y in Fig. 2. Notice that, for the loop to be repeated ad infinitum with the
same shape, ∆y cannot be negative, since y ∈ N.

For a bounded sequence σk+1 to be extendable we check that, for each position
i inside the loop (i.e., such that l ≤ i < k), for each successive iteration n, with
n > 0, for each y ∈ V , each atomic formula θ of φ has the same value whether y

8 Francesco Marconi, Marcello M. Bersani, Madalina Erascu, Matteo Rossi

is σk+1(i, y) or σk+1(i, y) + n∆y (for example, if θ = y > 3, σk+1(i, y) = 5, and
∆y = 2, both σk+1(i, y) > 3 and σk+1(i, y) + n∆y > 3 hold). To perform the
check, we ask whether Presburger formula (1) is satisfiable.

∀n

n > 0⇒

∧
l≤i<k
θ∈Θφ

 θ[σk+1(i, y1), σk+1(i+ 1, y1), . . . , σk+1(i, ym), σk+1(i+ 1, ym)]
⇔
θ[σk+1(i, y1) + n∆y1 , . . . , σk+1(i+ 1, ym) + n∆ym]

 (1)

In Formula (1), the set of variables V is {y1, . . . , ym}; the terms σk+1(i, yj) are
constants defined by the sequence of assignments σk+1 to check; θ[σk+1(i, y1), σk+1(i+
1, y1), . . . , σk+1(i, ym), σk+1(i + 1, ym)] (resp. θ[σk+1(i, y1) + n∆y1 , . . . , σk+1(i +
1, ym) +n∆ym]) is the value of atomic formula θ when each term of the set AV is
replaced by its assigned value, where AV = {y1,Xy1, . . . , ym,Xym}; and for each
yj ∈ V , ∆yj = σk+1(k, yj) − σk+1(l, yj). As mentioned above, if Formula (1) is
false, then we cannot conclude that σk+1 can be extended to an infinite model,
nor that formula φ admits a model.

5 Formal Model of Storm Topologies

This section describes the CLTLoc (with counters)-based model of Storm topolo-
gies. We first outline the chosen abstraction level and assumptions and then we
introduce the temporal logic model of each component. The model focuses on
the behavior of the queues of the bolts of Storm topologies. It describes how
the timing parameters of the topology, such as the delays with which tuples are
input to the topology by spouts and the processing time of tuples for each bolt,
affect the accumulation of tuples in the queues. We use clocks to capture timing
features and counters to describe the evolution of the size of the queues.

Although the model refers to Storm topologies, for example in the assump-
tions made, it essentially consists of a set of nodes processing and exchanging
information—more precisely, tuples—and storing incoming data in queues, for-
malized through counters. For this reason, we call this model an example of timed

counter network, an abstraction for the behavior of Storm-like topologies.
The formal model allows for the definition of topologies in a compositional

way, similarly to how topologies are created by code developers. We formalized
the behavior of the relevant features and parameters of spouts and bolts by
reverse-engineering the IRichSpout and IRichBolt interfaces and we used them
as building blocks for creating topologies, under the following assumptions:

– Deployment details, such as the number of worker nodes and the features of
the (possibly) underlying cluster are abstracted away; topologies are assumed
to run on a single worker process and each executor runs a single task, which is
the default configuration of the runtime, as described at the end of Section 3.

– Each bolt has a single receive queue for all its parallel instances and no sending
queue, while the workers’ queues are not represented, since we assume to be
in a single-worker scenario. For generality, all queues have unbounded size.

Towards the formal verification of DIA through MTL models 9

idle emit

(a)

 process

idle

take execute emit

fail

(b)

Figure3: Finite state automata describing the states of spout (a) and bolt (b).

– We do not detail the contents of tuples, but only their quantities, since we
measure the size of queues by the number of tuples they contain.

– The external sources of information from which spouts pull data are not ex-
plicitly represented, since they are outside of the perimeter of the application.
Then, spouts are sources of tuples, so their queues are not represented.

– For each component, the duration of each operation or the permanence in a
given state has a minimum and a maximum time.

A Storm topology is a directed graph G = {N, Sub} where the set of nodes
N = S

⋃
B includes in the sets of spouts (S) and bolts (B), and Sub ⊂ B×N

captures the subscription relation defining how the nodes are connected to one
another. If it holds that (i, j) ∈ Sub, this indicates that “bolt i subscribes to the
streams emitted by spout/bolt j”.

The behavior of both spouts and bolts can be illustrated by means of finite
state automata (see Fig. 3). Spouts can be either emitting tuples or idle, therefore
the corresponding automaton only has two states, idle and emit. Different emit
actions (whose occurrence is captured by the system being in the emit state) can
happen consecutively; also, the spout can be in the idle state for consecutive
time instants. The possible execution sequences are determined by the timing
constraints, as discussed in detail later. A bolt can alternatively be processing
tuples, idle or in a failure state. The process macro-state is composed of three
states, namely take, execute and emit. If a bolt is idle and its queue is not empty,
it eventually reads tuples from the queue, performing an instantaneous take

action, that is captured by the take state of the related finite state automaton.
Immediately after a take, each bolt starts processing the tuples, an operation
which lasts α time units, with α a parameter of the bolt, a positive real value
which represents the amount of time that a bolt requires to process one tuple.
This corresponds to the state execute in the automaton. Once the execution is
completed, the bolt emits output tuples. This instantaneous action corresponds
to the emit state. Bolts may fail and failures may occur at any moment; upon
a bolt failure, the system goes to the fail state and all tuples stored, at that
moment, in the queue of the failed bolt are lost, or replayed in case of a reliable
topology. If no failure occurs, after an emit a bolt goes to idle, where it stays
until it reads new tuples. Spout failures are not modeled; their effect is irrelevant
for the growth analysis of bolt queues as they would reduce the workload on

10 Francesco Marconi, Marcello M. Bersani, Madalina Erascu, Matteo Rossi

the topology. Hence, our approach focuses only on the analysis of topologies
processing a full workload, i.e., where spouts never fail.

We model the behavior of Storm topologies through a set of formulae of
CLTLoc with counters. We refer to this logic-based model as timed counter

network. We break this model down in four parts: (i) the evolution of the state
of the nodes; (ii) the behavior of the counters (i.e., the queues); (iii) timing
constraints; (iv) failures. We present here only some highlights of the model,
whose full version can be found in [5].

State evolution. Each state is described through a combination of propo-
sitional variables. For example, a bolt j is in the macro-state process when
processj holds. In addition, it is in take (resp. emit) state when takej (resp.,
emitj) holds. The execute state, instead, corresponds to the configuration where
processj is true while both takej and emitj are false. Formula (2) defines the
conditions for processj to hold.∧

j∈B

(
processj ⇒

(
processj S (takej ∨ (orig ∧ processj)) ∧
processj U (emitj ∨ failj) ∧ ¬failj

))
(2)

Queue behavior.We use N-valued discrete counters to represent the amounts
of tuples moving through the topology. Whenever a component is emitting tuples
or reading from its queue, the related counters are updated according to several
constraints. Every time emitj holds for a component j, remitj tuples are added
to the queues of all bolts subscribing to j (i. e., the variables qi representing
the occupancy level of those queues are incremented by remitj). When multiple
components subscribed by a bolt emit tuples simultaneously, the increment on
its queue is equal to the sum of all the tuples emitted, corresponding to the
value of raddj . Dually, when takej holds, the occupancy level qj is decremented
by rprocessj (number of tuples read by bolt j). Formulae (3)-(4) describe these
situations. Notice that addj holds when at least one of the components subscribed
by j is emitting, whereas startFailj is true in the first instant of a failure state.

addj ∧ ¬takej ∧ ¬startFailj ⇒ (Xqj = qj + raddj) (3)
takej ⇒ (Xqj = qj + raddj − rprocessj) (4)

The number of tuples extracted from the queue depends on the parallelism level
of the bolt (i. e., the number of parallel executors as described in Section 3), that
is represented in the model by the value of r̂takej . When a take occurs, if the
number of elements in the queue plus the ones being added in the current time
instant is greater than r̂takej , the variable representing the number of tuples that
will be processed (rprocessj) is equal to r̂takej , otherwise it is equal to qj + raddj
(i. e., the bolt takes all elements from the queue). This captures how each bolt
is able to concurrently process a number of tuples that is at most equal to the
number of its executors.

(takej ∧ r̂takej ≥ qj + raddj)⇒ (rprocessj = qj + raddj) (5)
(takej ∧ r̂takej < qj + raddj)⇒ (rprocessj = r̂takej) (6)

Towards the formal verification of DIA through MTL models 11

The number of tuples emitted by the bolt j (remitj) at the end of the processing
phase depends on parameter σj (a constant in R), representing the ratio between
output and input tuples. That is, given nin input tuples, the total number of
output tuples is equal to σ · nin. The value of σ is either measured by monitoring
a deployed application, or defined by making assumptions based on the kind
of operation performed by the bolt. Since remitj ∈ N, simply imposing remitj =
bσ · rprocessjc (resp., remitj = dσ · rprocessje) may lead to excessive under- (resp.,
over-) approximation, especially when 0 ≤ σ · rprocess � 1. For this reason we
keep track of the number of tuples processed, but not leading to the emission of
output tuples. This is achieved through the auxiliary variable bufferj , which is
incremented as new tuples are correctly processed by the bolt. As formalized in
Formula (7), when an emit occurs on bolt j, remitj is equal to bσ · bufferjc, and
bufferj is then decremented by b remitj

σ c. Conversely, Formula (8) defines that
when the bolt is not emitting, buffer keeps its value until the next emit.

∧
j∈B

¬final(j)

emitj ⇒

bufferj = Y bufferj + rprocessj ∧
remitj ≤ σjbufferj ∧
remitj > σjbufferj − 1 ∧
Xbufferj ≥ bufferj −

remitj
σ ∧

Xbufferj < bufferj −
remitj
σ + 1

 (7)

∧
j∈B,¬final(j)

(¬emitj ⇒ (remitj = 0 ∧ (Xbufferj = bufferj)UXemitj)) (8)

Notice that some of the variables appearing in Formulae (3)-(8) have infinite
domains, but some range over finite domains. More precisely, variables qj for
each bolt j, raddj for bolts subscribing to spouts, and remiti for each spout i, are
infinite counters. Variables rprocessj , instead, are finite counters since they have
values between 0 and r̂takej . Variables bufferj and remitj for each bolt, as well
as raddj for all bolts not subscribing to spout streams, are also finite counters. In
fact, bufferj , whose behavior is defined by Formulae (7) and (8), is finite since
its value is always less than r̂takej + 1

σ + 1. We do not show the reasoning that
allows us to conclude the finiteness of the aforementioned counters for lack of
space. The finiteness of some of the counters allows us to write succinct formulae
where multiplications and divisions are abbreviations for long case formulae.

Timing constraints. To measure the time spent in each state, and to impose
timing constraints between different events, for each topology component we
define a set of clock variables. Specifically, the duration of adjacent mutually
exclusive processing phases (such as idle, process and fail for a bolt, idle and
emit for a spout) is measured through two clocks, as done in [7]. At each instant
only one of the two clocks is relevant to measure the time spent in the current
processing phase; when the next phase starts, the second clock is reset and
becomes the new relevant clock, while at the same time the value of the former is
tested to verify if the measured delay satisfies the desired bound. In the following,
we use a shorthand tphase to indicate the currently relevant clock. Formula (9)
defines the conditions for resetting tphase for a bolt: in the origin, when a take

12 Francesco Marconi, Marcello M. Bersani, Madalina Erascu, Matteo Rossi

occurs, when a failure starts and when an idle phase starts.

tphase = 0 ⇔ orig ∨ take ∨ (fail ∧ ¬Yfail) ∨ (idle ∧ ¬Yidle) (9)

Formula (10) imposes that when emit occurs, the duration of the current pro-
cessing phase is between α− ε and α+ ε, where ε� α is a positive constant that
captures possible (small) variations in the duration of the processing.

process ∧ emit ⇒ (tphase ≥ α− ε) ∧ (tphase ≤ α+ ε) (10)

Measuring non-adjacent time intervals, such as the time between the end of a
failure and the start of the next one (i. e., time to failure), can be done using a
single clock, which does not need to be tested at the same time it is reset.

Failures. In our model, whenever a node fails, the tuples being processed by
the node, together with the tuples in its receive queue, are considered as failed
(not fully processed by the topology). According to the reliable implementation of
Storm, the spout tuples that generated them must be resubmitted to the topology.
Since we do not keep track of single tuples, but we only consider quantities of
tuples throughout the topology, given an arbitrary amount of failed tuples we can
estimate the amount of spout tuples that have to be re-emitted by the connected
spouts. In order to express this relationship between the failing tuples in a specific
(failing) node and the new tuples having to be re-emitted, we introduce the concept
of impact of the node failure with respect to another (connected) node. Imp(j, i)
(“impact of node j failure on node i”) is the coefficient expressing the ratio
tuples_to_be_replayed(i)

failed_tuples(j) where j ∈ B is the failing bolt and i ∈ {S
⋃

B} is another
node in the topology. If there exists a path {p0, . . . , pn|n > 0, p0 = i, pn = j}
in the topology connecting the two nodes such that ∀k ∈ [0, n− 1]Sub(pk, pk+1)
holds, then a failure of node j has an impact on node i and Imp(j, i) > 0. If such
a path does not exist, then Imp(j, i) = 0. The procedure to obtain the values
of Imp(j, i) for each bolt is described in [5]. Once this coefficient is calculated
for all pairs of (bolt, spout) in the topology, it allows us to determine rreplayi ,
(i. e., the number of tuples to be re-emitted by spout i after a bolt failure) by
simply multiplying the number of failed tuples by the appropriate coefficient, as∧
i∈S(rreplayi =

∑
j∈B rfailji · Imp(j, i)), where rfailji expresses “the number of

failed tuples in bolt j affecting spout i”. This value is incremented as in Formula
(11) whenever a failure starts and is reset after all the rfailji · Imp(j, i) tuples are
emitted by the spout. Interested readers can refer to [5] for the complete model.∧
i∈S,j∈B

(startFailj ∧ ¬emiti ⇒ Xrfailji = rfailji + qj + rprocessj + raddj) (11)

6 Experimental results

We present some experimental results obtained with our prototype toolD-VerT3,
whose architecture is described in [5]. As shown in Fig. 4, D-VerT takes as
3 github.com/dice-project/DICE-Verification

https://github.com/dice-project/DICE-Verification/

Towards the formal verification of DIA through MTL models 13

Figure 4: D-VerT verification flow.

input the description of a Storm topology, through a suitable JSON format, and
implements the model-to-model transformation which produces the corresponding
instance of timed counter network representing the topology. The resulting model
is fed to the Zot formal verification tool [2], which has been modified to deal with
CLTLoc formulae including unbounded counters. The property is violated if a
non-spurious counterexample (i.e. a run of the system violating the property) is
found. In this case, Zot returns the violating trace (SAT result), that is processed
back and displayed graphically by D-VerT. If the verification terminates without
providing counterexamples (UNSAT result), then the property holds limited to
ultimately periodic executions represented by a prefix αsβs of bounded length.

We consider two different topologies: a simple DIA and a more complex
topology (named “focused-crawler”) provided by an industrial partner within the
DICE consortium. In both cases, we verify the property “all bolt queues have a

bounded occupation level”. If the property holds, then we claim that all bolts are
able to process the incoming tuples in a timely manner. Otherwise, there exists a
counterexample that violates (i.e., disproves) the property and that corresponds
to an unwanted execution of the topology where at least one queue grows with an
unbounded trend. This behavior can be expressed in the k-satisfiability problem
with a formula constraining the size of the queues. Over ultimately periodic
executions, defined through a k-bounded model, a queue q grows indefinitely if
its size at position k is strictly greater than the size at position l. Therefore, to
enforce the construction of models satisfying such a constraint, we add to the
formulae defining the k-satisfiability the conjunct

∨
j∈B qj(l) + c < qj(k), where

c is a non-negative constant.
The first use case (depicted in Fig. 1) allowed us to test some basic structures

that may appear in a Storm topology, such as split and join of multiple streams.
On this topology, we experimented on how modifying the parallelism level of a
bolt affects its ability of processing incoming tuples. In the first analysis, run
with the configuration in Fig. 1, Zot produces a trace showing that the adopted
configuration leads to an unbounded increase of the queue occupation of B2 and
B3. By changing the parallelism level of the bolts (setting it to, respectively, 8
for B2 and 5 for B3) we obtain a configuration showing no counterexample (up
to length k = 15) of unbounded queue increase (timings of the two configurations
– simple-DIA-cfg-1 and simple-DIA-cfg-2 – are reported in Table 1).

14 Francesco Marconi, Marcello M. Bersani, Madalina Erascu, Matteo Rossi

wpSpout wpDeserializer expander

mediaExtraction

articleExtraction

textIndexer

mediaTextIndexer

mediaUpdater

webPageUpdater

Figure 5: “focused-crawler” topology.

Topology Bolts Time Max Memory Outcome Spurious
simple-DIA-cfg-1 3 60s 104MB SAT no

simple-DIA-cfg-2 3 1058s 150MB UNSAT N/A

focused-crawler-complete 8 2664s 448MB SAT no

focused-crawler-reduced-cfg-1 4 95s 142MB SAT no

focused-crawler-reduced-cfg-2 4 253s 195MB SAT no

focused-crawler-reduced-cfg-3 4 327s 215MB SAT no

focused-crawler-reduced-cfg-4 4 333s 206MB SAT no

focused-crawler-reduced-cfg-5 4 3184s 317MB SAT yes

focused-crawler-reduced-cfg-6 4 1060s 229MB SAT yes

Table 1: Experimental analysis on commodity hardware (MacBook Air running
MacOSX 10.11.4. with Intel i7 1.7 GHz, 8 GB 1600 MHz DDR3 RAM; SMT solver
used by Zot was z3 v.4.4.1). The complete results and experimental configurations
can be found at dice-project.github.io/DICE-Verification.

The second use case represents a typical usage of Storm in big data applications.
As part of a social network analysis framework, the topology depicted in Fig. 5
is in charge of fetching and indexing articles and multimedia items from multiple
web sources. The formal analysis of the “focused-crawler” topology is motivated by
some concerns raised by the industrial partner that were witnessed by monitoring
the deployed application. After running the verification on the topology we
pointed out the critical role of the expander bolt. Some output traces show possible
system executions, even without failures, where the queue occupation level of such
component is unbounded. Fig. 6 shows two of the graphical output traces provided
by D-VerT (referring to bolts expander and wpDeserializer). It can be noticed,
by looking at the number of tuples in the queues (black solid lines) over time, how
they both represent a periodic model in which a suffix (in gray) of a finite sequence
of events is repeated infinitely many times after a prefix. After ensuring that the
trace is not a spurious model, we concluded that the expander queue, having an
increasing trend in the suffix, is unbounded. In order to evaluate the performance
and the scalability of the tool, we carried out many experiments on the presented
topologies, by varying the topology parameters and the number of bolts considered.
Table 1 shows some of the time and memory consumptions statistics we collected.

http://dice-project.github.io/DICE-Verification

Towards the formal verification of DIA through MTL models 15

Figure 6: D-VerT output trace of bolts expander and wpDeserializer. Black solid
lines represent the number of tuples in each bolt queue over time. Dashed lines
show the processing activity of the bolt, and dotted lines show the emits from
the component upstream. Gray background highlights the suffix of the trace,
that is repeated infinitely many times.

It can be noticed how the running time is strongly affected by both the number of
bolts and their configurations, while the memory consumption is mainly correlated
to the topology size (therefore, the number of formulae in the model). In the
simple-DIA case study, we obtained counterexamples (SAT results) with very
different timings depending on the configuration. The configuration leading to the
UNSAT result, discussed previously, took considerably more time to terminate.
In the “focused-crawler” case study, we ran the verification also on subsets of the
topology (focused-crawler-reduced). In some cases, the tool provided a spurious
counterexample. Despite the long running times in some cases, we think that the
experiments show the feasibility of our approach, and we will focus in the future
to optimizing the efficiency of the tool.

7 Conclusions and Future Work

In this paper we proposed a tool-supported approach for the formalization and
automated verification of DIAs based on Storm technology. We presented a
formal model of the temporal behavior of Storm topologies expressed through
formulae of the CLTLoc extended with counters. We implemented a prototype
tool,D-VerT, which takes as input a high-level description of the target topology,
produces the corresponding set of logic formulae, and carries out the verification
task via the Zot bounded satisfiability checker. We evaluated the tool through a
pair of case studies.The running times of the tool range from a few minutes to
hours, depending on the topology and on the configuration parameters. Since

16 Francesco Marconi, Marcello M. Bersani, Madalina Erascu, Matteo Rossi

the satisfiability of CLTLoc with counters is generally undecidable and the tool
introduces some approximations to make the verification feasible in practice, we
provided a procedure to determine, given a trace returned by the tool, whether
this is spurious or not.

Future extensions and improvements of this work will follow several directions.
In particular, we plan to: (i) extend the range of properties to be analyzed for
the target topologies; (ii) pursue a finer-grained modeling approach, for example
representing the internal messaging system with higher detail, to support more
precise analyses; (iii) model other relevant technologies, such as Apache Spark
and Apache Tez, by extending the current framework; (iv) further study the
current model from a theoretical point of view, to achieve new results on the
soundness and completeness of the analysis of timed counter networks.

AcknowledgmentWork supported by Horizon 2020 project no. 644869 (DICE).

References

1. Apache Storm, http://storm.apache.org/
2. The Zot bounded satisfiability checker. github.com/fm-polimi/zot

3. Abdulla, P.A., Jonsson, B.: Verifying programs with unreliable channels. In: Pro-

ceedings of LICS. pp. 160–170 (1993)

4. Bérard, B., Cassez, F., Haddad, S., Lime, D., Roux, O.H.: Comparison of the

expressiveness of timed automata and time petri nets. In: Proceedings of FORMATS.

pp. 211–225 (2005)

5. Bersani, M., Erascu, M., Marconi, F., Rossi, M.: DICE verification tool - initial

version. Tech. rep., DICE Consortium (2016), www.dice-h2020.eu

6. Bersani, M.M., Frigeri, A., Morzenti, A., Pradella, M., Rossi, M., Pietro, P.S.:

Constraint LTL satisfiability checking without automata. J. Applied Logic 12(4),

522–557 (2014)

7. Bersani, M.M., Rossi, M., San Pietro, P.: A tool for deciding the satisfiability of

continuous-time metric temporal logic. Acta Informatica 53(2), 171–206 (2016)

8. Bouajjani, A., Mayr, R.: Model checking lossy vector addition systems. In: Proceed-

ings of STACS. LNCS, vol. 1563, pp. 323–333 (1999)

9. Casale, G., Ardagna, D., Artac, M., Barbier, F., Nitto, E.D., Henry, A., Iuhasz, G.,

Joubert, C., Merseguer, J., Munteanu, V.I., Perez, J., Petcu, D., Rossi, M., Sheridan,

C., Spais, I., Vladušič, D.: DICE: Quality-driven development of data-intensive

cloud applications. In: Proc. of MiSE. pp. 78–83 (2015)

10. Demri, S., D’Souza, D.: An automata-theoretic approach to constraint LTL. Infor-

mation and Computation 205(3), 380–415 (2007)

11. Demri, S., Gascon, R.: The effects of bounding syntactic resources on Presburger

LTL. Tech. Rep. LSV-06-5, LSV (2006)

12. Finkel, A.: Decidability of the termination problem for completely specified protocols.

Distributed Computing 7(3), 129–135 (1994)

13. Furia, C.A., Mandrioli, D., Morzenti, A., Rossi, M.: Modeling Time in Computing.

Monographs in Theoretical Computer Science. An EATCS Series, Springer (2012)

14. Karp, R.M., Miller, R.E.: Parallel program schemata. Journal of Computer and

System Sciences 3(2), 147 – 195 (1969)

15. Reutenauer, C.: The Mathematics of Petri nets. Masson and Prentice (1990)

http://storm.apache.org/
http://github.com/fm-polimi/zot
http://wp.doc.ic.ac.uk/dice-h2020/wp-content/uploads/sites/75/2016/02/D3.5_DICE-verification-tools-Initial-version.pdf

