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Chapter 1

Introduction

The pages this thesis is printed on have been transported from a distribution center

in Zutphen to the Eindhoven University of Technology (TU/e). The distance between

these two locations is 118 km. Consider that the warehouse in Zutphen has a number

of vehicles used to transport office material to a number of locations. Choosing which

of these vehicles to dispatch to the TU/e and determining when this vehicle should

arrive at the TU/e, is precisely the topic of this thesis.

In 1997, 3.7 billion tons where transported on the roads of the USA, nearly the

double of the number in 1984 (?). In 2006, road freight transport was about 1894

billion tonne-kilometres in the European Union. Furthermore, in Europe the total

road freight transport volume increased by 43% between 1992 and 2005 (?). One of

the main drives of this trend is the increasing demand for goods transport.

In the context of road freight transport, this thesis considers short-haul transporta-

tion. This concerns the pick-up and delivery of goods in a small area, i.e, a city

or a country (?). In general, vehicles are based at a single depot. A vehicle

conducts one tour per working day, performing pick or delivery services. In short-haul

transportation, the key strategic question relates to the location of the depot. On a

tactical level decisions concerning fleet mix and size need to be taken. Finally, at the

operational level lies the Vehicle Routing Problem (VRP). The VRP addresses the

issue of constructing routes, for a given fleet, to satisfy customer requirements.

The VRP has a high relevance to real-life practice. Thus, much effort is invested

into developing efficient solution procedures to the problem. The basic formulation of

the VRP does not cover all complexities encountered in real-life. This thesis strives

to introduces several realistic variants to the VRP. The proposed variants mainly
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elaborate on the time it takes a vehicle to complete a route and on its expected

arrival time at customers.

The rest of this chapter is organized as follows. Section ?? defines the Vehicle Routing

Problem. Section ?? discusses the applications that motivated the research conducted

in the thesis. Section ?? presents the uncertainty aspects tackled in the thesis. Section

?? presents an overview of the main chapters. Section ?? summarizes the solution

methods used in the thesis. Finally, in Section ?? the outline of the rest of the thesis

is given.

1.1. The Vehicle Routing Problem

The Vehicle Routing Problem (VRP), as first introduced by ?, involves constructing

optimal delivery routes from a central depot to a set of geographically dispersed

customers. Its wide applicability and inherent complexity lead to an extensive amount

of research. In what follows, we formally define the VRP (see also ? for a general

survey).

The VRP, sometimes referred to as capacitated VRP, is defined on a complete

undirected graph G = (V,A) where V = {0, 1, . . . , n} is a set of vertices and

A = {(i, j) : i <> j ∈ V } is the set of arcs. The vertex 0 denotes the depot;

the other vertices in V represent customers. The problem considers using m identical

vehicles each with a fixed capacity Q. Each customer has a non-negative demand

qi ≤ Q. Associated with each edge (vi, vj) ∈ A, cij denotes the cost of visiting node

j immediately after visiting node i. The costs are assumed to be symmetric, i. e.,

cij = cji for all i,j. The objective is to design routes for the m vehicles yielding

minimum cost where the following conditions hold:

1. Each customer is visited exactly once by exactly one vehicle.

2. All vehicle routes start and end at the single depot.

3. Every route has a total demand not exceeding the vehicle capacity Q.

Several mathematical models were proposed to describe the VRP. We present the

two-index vehicle flow formulation based on the work of ?. Let xij be an integer

variable representing the number of times edge [i, j] appears in the solution. xij is

binary for i, j ∈ V \ {0}. For all j ∈ V \ {0}, x0j can be equal to 0,1 or 2. The

latter case corresponds to a immediate return trip between the depot and customer

j. Under these assumptions, the VRP formulation is as follows.
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min
x

∑

[i,j]∈E

cijxij (1.1)

subject to

∑

j∈V \{0}

x0j = 2m (1.2)

∑

i<k

xik +
∑

j>k

xkj = 2 k ∈ V \ {0} (1.3)

∑

i∈S,j /∈S
or i/∈S,j∈S

xij ≥ 2b(S) S ⊂ V \ {0} (1.4)

xij = 0 or 1 i, j ∈ V \ {0} (1.5)

x0j = 0 or 1 or 2 j ∈ V \ {0} (1.6)

In the above formulation, the objective (??) is to minimize the total costs. Constraint

(??) sets the degree of vertex 0 in accordance with the given number of vehicles m.

It should be noted that if not known m can be a decision variable. Constraints

(??) guarantee that two edges are incident to each customer vertex. The term b(S)

in constraints (??) is a lower bound on the number of vehicles required to visit all

customers in S. The constraints force any subset of customers to be connected to the

depot. Furthermore, constraints (??) ensure that the capacity restriction is preserved.

One common way is to define b(S) is
⌈∑

i∈S qi
Q

⌉
. Constraints (??) and (??) guarantee

integrality.

1.2. Time and Timing

The research presented in this thesis approaches the VRP both from a time and a

timing perspective. Figure ?? describes the positioning of the research, with respect

to these perspectives. The time perspective relates to the actual travel time of a

vehicle, and thus relates to an operational cost. The timing perspective, relates to

the customer service aspect of the problem. It mainly deals with arriving within a

time window at a customer location.

Section ?? highlights the main time perspectives treated in Chapters 2 and 3. Section

?? presents the customers service concept used in Chapters 4 and 5.
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VRP

Time

time -dependent travel time

Chapter 2

CO2 Emissions

Chapter 3

Disruptions

Timing

self imposed time windows

Chapter 4

Disruptions

Chapter 5

Consistency

Figure 1.1 Overview of the Thesis

1.2.1 The time perspective

In the core of the Vehicle Routing Problem lies the objective of minimizing the total

operational cost. The overwhelming majority of research considered this operational

cost in terms of total travel time or total distance. In the VRP formulation (as

presented in Section ??), the total cost of a solution is simply the sum of the

arc costs that comprise it. These costs are usually named distance or travel time

interchangeably. The underlining equivalence between travel time and distance is due

to the assumption that speed is constant throughout the planning period. Thus, the

travel time is merely a linear transformation of the distance.

In reality, speeds are not constant throughout the day. There is a sizeable variability

with respect to the time one travels when considering several starting times. ?

classified potential causes of variability in travel times into two main components.

The first is attributed to random events such as accidents. The second is due to

temporal variations resulting from hourly, daily, weekly or seasonal cycles in the

average traffic volumes, i. e., traffic congestion. In recent years traffic congestion has

been rising substantially. For example, ? showed that in 2007 congestion in the USA

caused 4.2 billion hours of delay. ? demonstrated that recurrent occurrences during

peak hours is the major part of traffic delay. In order to account for variations in

travel times, a number of researchers studied the Time-Dependent Vehicle Routing

Problem (TDVRP). In essence, the TDVRP relaxes the assumption of constant speed

throughout the day.

In Chapters 2 and 3, time-dependent travel times are incorporated in the VRP. In

these chapters time-dependent travel times are modeled similar to ? and ?. In the

TDVRP, the operational cost is expressed exclusively in terms of total travel time,
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where the travel time between nodes is a function of both distance and starting time,

i. e., given a distance its associated travel time is a function of the moment the vehicle

starts traversing it. This implies that the decision variables need to account for the

actual time an arc is to be traversed, along with the routing decisions.

1.2.2 The timing perspective

The Vehicle Routing Problem with Time Windows (VRPTW) extends the VRP

by requiring that the service at each customer starts within a given customer time

window. The different time windows for each customer are given as constraints to the

problem. While arriving at the customer after the upper limit of its time window is

prohibited, vehicles are allowed to wait at no cost if they arrive early. Some research

considers soft time windows by which time window violations are permitted at a

penalty cost. Time windows are seen as a customer service aspect in the VRP.

The VRPTW has been the subject of a great amount of research. ? present an

overview of exact methods for the VRPTW. Due to the VRPTW’s high complexity

coupled with its applicability to real life, much research focused on heuristic solution

methods. ? survey route construction and local search algorithms, while in ? a

survey of metaheuristics is presented. In most of the surveyed papers, the objective

of the VRPTW was first to minimize the number of vehicles needed to serve all

customers, and second to minimize the total travel times. Thus, the objective of the

VRPTW remains minimizing operational cost subject to satisfying customer time

window requirements.

Chapters 4 and 5 take a different standpoint with respect to customer service.

Realizing that many carrier companies quote their expected arrival times to their

customers, the concept of self-imposed time windows (SITW) is introduced. The

notion of SITW reflects the fact that time windows are determined by the carrier

company and not by the customers. However, once a time window is quoted

to the customer the carrier company strives to provide service within this time

window. SITW are fundamentally different from the time windows in the well-

studied VRPTW. In the latter, the customer time windows are exogenous constraints,

while SITW treat time windows as endogenous decision variables. Clearly, SITW

give additional flexibility to the carrier company. This flexibility is likely to reduce

operational costs when compared to VRPTW.

Considering SITW in VRP entails that along with the routing decisions timing

decisions are to be taken as well. Given the above concepts the VRP with self-imposed

time windows (VRP-SITW) is viewed as a problem in between the VRP and the

VRPTW. The VRP accounts for no customer service aspects and optimizes exclusively
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on operational cost. The VRPTW is constraint by obeying given customer time

windows. The VRP-SITW considers customer service with flexible time windows.

Chapters 4 and 5 consider different realistic stochastic environments for embedding

SITW.

1.3. Uncertainty in VRP

The basic formulation of the VRP assumes that all problem parameters are

deterministic. However, in reality carrier companies are faced with various types

of uncertainty. To encompass these uncertainties a number of stochastic elements

have been introduced to the VRP. In many cases, stochastic VRP are cast within

the framework of a priori optimization problems. An a priori solution attempts to

obtain the best solution, over all possible problem scenarios, before the realization of

any scenario (?).

The motivation behind using the a priori approach is that it is impractical to consider

an a posteriori approach, that recomputes the optimal solution upon the realization

of random event. The research presented in this thesis treats problems for which

decisions are taken in an a priori manner. Chapters 3-5 consider stochastic events.

These events are revealed only upon the execution of the routes. However, no online

amendments to the solutions are made to accommodate these random events. The

advantages of an a priori approach lay in the construction of robust solutions that

are able to efficiently cope with random events. For an overview of stochastic vehicle

routing the reader is referred to ?. In this thesis, uncertainty in VRP is modeled by

discrete distributions. We construct solutions that account for the expected costs of

these events. We treat three types of uncertainties.

1. In Chapter 3, stochastic service times are considered. We model situations

where the vehicle arrives at a customer location and the customer is not ready

to receive the vehicle. In this situation, the vehicle waits until the customer is

ready to receive service.

2. In Chapter 4, stochasticity in travel time is modeled to describe variability

caused by random events such as car accidents or vehicle break down.

3. In Chapter 5, the objective is to construct a long term plan for providing

consistent service to reoccurring customers. Thus, stochastic customers are

considered.
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1.4. Overview of the thesis

The thesis builds upon the established literature of the VRP and extends it to portray

more realistic aspects. The presented research identifies relevant problems, establishes

models that depict them and develops efficient solution frameworks that fit them.

Chapter 2 addresses, the ever growing, environmental concerns by incorporating CO2

emissions related costs in the routing problem. We propose a framework for modeling

CO2 emissions in a time-dependent VRP context (E-TDVRP). As the generated

amount of CO2 emissions is correlated with vehicle speed, our model considers limiting

vehicle speed as part of the optimization. The chapter explores the impact of limiting

vehicle speed on CO2 emissions. Furthermore, the trade-off between minimizing travel

time or CO2 emissions is analyzed.

The emissions per kilometer (as a function of speed) is a convex function with a

unique minimum speed v∗. However, the results presented in Chapter 2 show that

limiting vehicle speed to this v∗ might be sub-optimal, in terms of total emissions.

During congestion vehicles are constrained by lower speeds and produce much higher

emissions. Consequently, in order to minimize emissions, it might be worthwhile to

travel at speeds higher than v∗ in order to avoid congestion. Furthermore, upper and

lower bounds on the total amount of emissions that may be saved are presented.

Chapter 3 focuses on a problem expressed by a number of carrier companies. During

the execution phase of vehicle routing schedules many unexpected delays are observed.

These delays are attributed to the situation where customers are not ready to receive

their goods. This problem is studied in conjuncture with time-dependent travel times.

The construction of a priori solutions that minimize the damages inflicted by these

disruptions is the objective of this chapter.

Chapter 3 also defines defines the Perturbed Time-Dependent VRP (P-TDVRP)

model which is designed to handle unexpected delays at the nodes. The cost-benefit

analysis of the P-TDVRP solutions emphasizes the added value of such solutions.

Furthermore, the chapter identifies situations capable of absorbing delays. i. e., where

inserting a delay leads to an increase in travel time that is less than or equal to the

expected delay length itself. Based on this, we analyze the structure of the solutions

resulting from the P-TDVRP.

Chapter 4 is centered around the problem of quoting service times to the customers.

The problem arises when customers place orders beforehand and the carrier company

has the control of determining a service time window. This time window is later

communicated to the customers as the expected arrival time window of the carrier.

Once a time window is quoted to a customer, the carrier company strives to
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respect it as well as possible. The time windows are treated as soft time windows,

where penalties are incurred for late arrivals. The problem is optimized under the

assumption that stochastic disruption may occur during travel times. Given a discrete

distribution of disruptions, the objective is to construct routes that minimize the sum

of operational and service costs. The latter corresponding to the penalties caused by

late arrivals with respect to the quoted time window.

In Chapter 4, the notion of self-imposed time windows is defined and embedded in the

VRP-SITWmodel. Two main types of experiments were conducted; one compares the

VRP with VRP-SITW while the other compares VRPTW with VRP-SITW. The first

set of experiments assesses the increase in operational costs caused by incorporating

SITW in the VRP. The second set of experiments enables evaluating the savings in

operational costs by using flexible time windows, when compared to the VRPTW.

Chapter 5 extends the timing dimension in the context of the consistent vehicle routing

problem. ? defined consistency as having the same driver visiting the same customers

at roughly the same time on each day that these customers require service. This

definition stems from the needs expressed by United Parcel Service (UPS). Consistent

service facilitates building bonds between customers and drivers. Such bonds could be

translated into additional revenues. Little work has been conducted on this problem.

Moreover, the existing literature considers settings were full periodic knowledge is

known about the problem. Chapter 5 broadens the definition of the problem to

include fully stochastic parameters.

Chapter 5 models the consistent vehicle routing with stochastic customers (SCon-

VRP). Driver consistency is forced by assigning a unique driver to visit a customer.

The requirement that the customer is visited at the time same when he places an

order is characterized as temporal consistency. To model temporal consistency the

concept of SITW was used. Chapter 5 formulates the SConVRP and describes an

exact solution approach.

1.5. Solution methods

In this section, we survey the relevant solution methods and we summarize the solution

approaches adopted in each chapter.

The VRP is NP-hard since it contains the Traveling Salesman Problem (TSP) as a

special case (where m = 1 and Q = ∞). In comparison, the VRP is considered to be

harder than the TSP. Exact algorithms have been capable of solving TSP instances

with thousands of vertices (?). Conversely, exact algorithms designed for the VRP can

solve up to 100 customers (see, e. g., ? for a survey). To encompass the complexities
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faced by carrier companies, a number of modifications to the original problem are

proposed in the literature. These modifications entail additional constraints to

the VRP, which in return generally increase the difficulty of the problems. Thus,

the aspiration of solving more practical settings of the VRP mostly prompted the

development of appropriate heuristics or exact methods, where possible.

Classical Heuristics are classified into three categories by ?. Constructive heuristics

that gradually build a feasible solution. Nodes are chosen based on some cost

minimization criteria. One example is the savings heuristics proposed by ?. The

second category of heuristics is two-phase heuristics, where in the first phase customers

are clustered into feasible routes and in the second phase the actual routes are

established, e. g., the sweep algorithm ?. The third category of heuristics is

improvement methods. These are based on the concept of iteratively improving the

solution to a problem by exploring neighboring ones (see, e. g., ?). As mentioned

by ?, these classical heuristics have a large gap when compared to the best known

solutions.

Over the years a number of metaheuristics have been applied to the VRP. ? mention

six main type of metaheuristics: simulated annealing, deterministic annealing, tabu

search, genetic algorithms, ant systems, and neural networks. ? mention that while

the success of any method is related to its implementation features, it is fair to say

that tabu search clearly outperforms competing approaches.

Tabu Search was first introduced by ?. The procedure explores a solution space

at each iteration as it moves from one solution to another. Given a solution xt at

iteration t a subset neighborhood N(xt) of xt is explored and the best solution found

in this neighborhood is set as xt+1. By this definition, the procedure allows non-

improving moves. Thus, to avoid, cycling solutions that were previously explored are

forbidden, tabu, for a number of iterations. Over the years Tabu Search has been

applied successfully to the VRP, we mention the work of ?, ?, and ?.

We adopted Tabu Search in Chapters 2-4. In Chapter 2, we integrated time-dependent

travel time in the search. Furthermore, the vehicle speed limit, which is a decision

parameter is embedded in the solution procedure. In Chapter 3 perturbations are

imposed, depicting disruptions in service times. To our knowledge, the proposed

solution procedure, in Chapter 3, is the first application of the methodology proposed

by ? to a discrete problem.

In Chapter 4, we propose a heuristic solution approach combining an LP model

in a Tabu Search framework. The tabu search assigns customers to vehicles and

establishes the order of visit of the customers per vehicle. Detailed timing decisions

are subsequently generated by the LP model, whose output also guides the local search

in a feedback loop.
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Chapter
CO2

Emissions

Time-Dependent

Travel Time
Disruptions

Self-Imposed

Time Windows

Stochastic

Customers

2 X X

3 X X

4 X X

5 X X

Table 1.1 Thesis outline: main features by chapter

In Chapter 5, a stochastic programming formulation is presented for the consistent

VRP with stochastic customers. This differs from the models proposed in the

literature which assume known customer demands for a given period. An exact

solution method is proposed by adapting the 0-1 integer L-shaped algorithm,

introduced by ?. The proposed algorithm is based on the L-shaped method proposed

by ? for continues problems and on Benders decomposition (?). The 0-1 integer

L-shaped algorithm solves problems with binary first stage variables and integer

recourse. It applies branch-and-cut to a relaxed version of the problem. The algorithm

introduces lower bounding functionals and optimality cuts to the current problem and

converges with a finite number of steps.

The 0-1 integer L-shaped algorithm has been applied to a number of stochastic VRP

variants. ? adapted the algorithm for the single VRP with stochastic demand. ?

solved the VRP with stochastic demand. Finally, ? applied the algorithm to the

VRP with stochastic customers and demand.

1.6. Outline of the Thesis

The general features of each of the chapters are summarized in Table ??. The time

dimension is a key component in Chapters 2 and 3. Including customer service is a

focal element in Chapters 4 and 5. Chapter 2 considers the VRP with CO2 emissions

along with TDVRP. Chapter 3 incorporates disruptions in the TDVRP. Chapter 4

optimizes the VRP with SITW under disruptions. Finally, Chapter 5 solves the

consistent VRP with stochastic customers and makes use of SITW to guarantee

temporal consistency. The main conclusions are discussed in Chapter 6. The relevant

literature is surveyed in each chapter separately.
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Chapter 2

Analysis of Travel Times and

CO2 Emissions in TDVRP

The ever growing concern over Greenhouse Gases (GHG), has led many countries

to take policy actions aiming at emissions reductions. Most notable is the Kyoto

Protocol which enforces countries to reduce a basket of the six major GHG by the

year 2012 by 5.2% on average (compared to their 1990 emission levels). Next to this,

a number of other initiatives have emerged to particularly control CO2 emissions. For

example, more than 12,000 industrial plants in the EU are subjected to CO2 caps,

enabling the trade of emissions rights between parties. For a comprehensive survey

of GHG trade market models, the reader is referred to ?.

The importance of environmental issues is continuously translated into regulations,

which potentially have a tangible impact on supply chain management. As a

consequence, there has been an increasing amount of research on the intersection

between logistics and environmental factors. ? identified potential combinatorial

optimization problems where Green Logistics is relevant. ?? discussed the integration

of environmental management in operations management. ? did so in the context of

sustainable operations management.

European road freight transport uses considerable amounts of energy (?). ? note that

predictions are that the UK will meet the Kyoto targets. However, they highlight that

within the period from 1985 until 1995, energy use across all sectors grew only by

7% while transport energy use grew by 31%. Similar findings were observed by ?.

They state that in the period 1991-2001 road freight traffic in Germany increased by

40%. Moreover, in 2001 traffic was responsible for about 6% of total CO2 emissions
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in Germany. More substantial CO2 increases are observed in India by ?, where the

CO2 emissions from road transport in the year 2000 have increased by almost 400%

compared to 1985. In the context of examining scenarios for GHG, ? mentioned

that in California the transportation sector accounted for over 40% of GHG for 2006,

making it by far the largest contributor. ? acknowledge that new vehicle designs

are more efficient in terms of emissions. However, this is outweighed by the influx in

transport growth rate in the EU. ? mention that CO2, which is directly related

to the consumption of carbon-based fuel, is regarded as one of the most serious

threats to the environment through the greenhouse effect. Globally, transportation

accounts for about 21% of CO2 emissions. One of the main drives of this trend is the

increasing demand for goods transport. For example, in Europe the total road freight

transport volume increased by 43% between 1992 and 2005 (?). CO2 is identified as

the most important greenhouse gas in the Netherlands, as it accounted for 80% of

total emissions in 1995 (see ?). Thus, there is a clear necessity to control the CO2

emissions produced.

Road transport accounts for a large portion of the CO2 emissions, of which goods

transport constitutes a sizeable portion. Thus, there is a need for addressing

environmental concerns. Carrier companies may voluntarily adopt green policies

if this is aligned with profitability. This could be in the form of GHG trading

mechanisms, or when CO2 becomes a taxable commodity. Another reason for

adopting green policies is the marketing potential of a greener company image, e.g.,

controlling the carbon footprint. Furthermore, new regulations might force companies

to change practices. It is worth mentioning that the department for environmental

food and rural affairs in the UK values the social cost of carbon between £35 and

£140 per tonne. In essence, pricing carbon emissions leads to an assessment of

its economic impact and regulations might be formed accordingly. In conclusion,

either for exogenous or endogenous reasons, change is anticipated in transportation

management with respect to environmental factors. We argue that Logistics Service

Providers should contemplate on how to deal with these issues.

The focus of this chapter is on incorporating CO2-related considerations in road freight

distribution, specifically in the framework of Vehicle Routing Problems (VRP). Both

CO2 emissions and fuel consumption depend on the vehicle speed, which changes

throughout the day due to congestion. Thus, it is very relevant to study the problem

on-hand in conjunction with time-dependent travel times, i.e., where the travel time

depends on the time of day at which a distance is traversed. Time dependency

is modeled by partitioning the planning horizon into free flow speed periods and

periods with congestion, i.e., lower speeds. We introduce a new variant of the VRP

that accounts for travel time, fuel, and CO2 emissions costs. This results in the

Emissions based Time-Dependent Vehicle Routing Problem, denoted by E-TDVRP.
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The E-TDVRP builds on the possibility of carrier companies to limit the speed of

their vehicles. Thus, the vehicle speed limit is explicitly part of the optimization. The

traditional time-dependent vehicle routing problem (TDVRP) optimizes exclusively

on travel times and thus does not consider limiting vehicle speed. However, we show

that when accounting for fuel, travel time, and emissions, controlling vehicle speed is

desirable from a total cost point of view.

The E-TDVRP is clearly a complex problem, as in addition to the complexity of the

(TDVRP), it also determines the free flow speed. This implies that one needs to

allocate customers to vehicles, determine the exact order which customers are visited

and set the free flow speed permitted. The free flow speed impacts the resulting

travel time functions of each arc, and in return, affects the moment vehicles go into

congestion. We assume that the congestion speed remains constant, as it is imposed by

traffic conditions. This leads to a situation where speeds are controlled in particular

time periods of the day, i.e., exclusively for free flow speed. The E-TDVRP can

be reduced to two subproblems: one where only the CO2 emissions are taken into

account in the optimization (i.e., a pure environmental model) and one where only

travel times are considered (i.e., a pure logistical cost model). As such, we study the

trade-off between minimizing CO2 emissions as opposed to minimizing total travel

times. In addition, we develop bounds for the potential reduction in CO2 emissions.

These bounds are based on solutions of the standard time-independent VRP. These

bounds aid decision makers in evaluating the maximum reduction in emissions, since

most industrial optimization tools consider time-independent travel times.

The remainder of the chapter is organized as follows, Section ?? reviews the relevant

literature. Section ?? describes the E-TDVRP model. It also introduces bounds for

the potential savings in CO2 emissions. The solution methods and the experimental

settings are discussed in Section ??. The results are presented in Section ??. Finally,

Section ??, highlights the main findings and indicates directions for future research.

2.1. Literature Review

? highlighted the value of traffic flow information related to emissions. Their

results showed that calculating emissions under constant speed assumptions can be

misleading, with differences of up to 20% in CO2 emissions on an average day for

gasoline vehicles and 11% for diesel vehicles. During congested periods of the day

these difference rose up to 40%. Similar results were shown by ?, on a number of roads.

Such results are motivated mainly by the fact that CO2 emissions are proportional to

fuel consumption (?), and thus are speed-dependent. The relation between emission

values and vehicle speed leads to the study of the VRP problem in a time-dependent
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framework. In what follows, we first discuss the literature concerning the TDVRP,

and then review the literature dealing with routing and emissions.

Assigning and scheduling vehicles with a limited capacity, to service a set of clients

with known demand, is a problem faced by numerous carrier companies. It has been

extensively researched in the literature as the well-known vehicle routing problem

(VRP). For a comprehensive review, the reader is referred to ?. In its most standard

version, the problem deals with minimizing costs subjected to satisfying customer

demand, while vehicle capacity constraints are maintained. Each customer is visited

by a single vehicle, each vehicle starts and ends its route at the depot. The relevance

of VRP to real-life practice coupled with the hard nature of the problem has attracted

much research. To model reality more accurately, numerous features have been

incorporated in the problem. One of which is including speed changes over the day,

in an attempt to account for traffic congestion experienced in certain periods of the

day.

Incorporating time-dependent travel times between customers in the VRP has been

adopted recently by a number of researchers. The objective of the TDVRP, in most

cases, is similar to that of the VRP, i.e., minimizing costs (?). However, in the TDVRP

the travel time cost depends on the time of day a distance is traversed. Modeling time

dependency is mostly done by associating different speeds to a number of time zones

within the planning horizon. ? motivate variability in travel time by random events,

such as accidents and cyclic temporal variations in traffic flow. They proposed a mixed

integer programming approach to the TDVRP. ? proposed a dynamic programming

formulation to solve the time-dependent TSP. Both these papers modeled travel times

by discrete step functions where travel times are associated with different time zones.

While this modeling approach does capture variability in travel times, it enables the

undesired effect of surpassing. This effect implies that a vehicle departing at a certain

time might surpass another vehicle that started traveling earlier. This limitation was

discussed by ?, ?, ?, and ?. All these papers model time dependencies complying

with the FIFO (First-In First-Out) assumption, which does not allow for surpassing.

This is done by using appropriate piecewise linear functions for travel times. In this

chapter, we adopt travel time functions similar to the ones used by ?, and thus adhere

to the FIFO assumption.

? modeled the TDVRP by partitioning the day into three speed zones, where the

speed differences due to congestion were determined by different factors of the free

flow speeds. The travel time profiles were constructed by piecewise linear functions. ?

discuss a general framework for integrating time dependent travel times in a number of

VRP routing algorithms. Furthermore, they provide an overview of traffic information

systems from which data can be collected. Modeling time-dependent travel times

would benefit from these data. Based on empirical traffic data, queueing models
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were developed by ? to model congestion, where the model parameters were set to

incorporate different traffic flows and weather conditions. The analysis of the data

resulted in average speeds for different time zones (see also ?). These speeds where

later used in ? to model the TDVRP, which was solved by means of Tabu Search. ?

proposed a modified genetic algorithm to solve the TDVRP.

Not much research has been conducted on the VRP under minimizing emissions. ?

studied the environmental impact of grocery home delivery. This however was done

by converting distance into emissions, irrespectively of speed changes. The effect of

speed changes is incorporated in ?. He studied emissions in the context of grocery

home delivery vehicles, where real traffic data was used to derive fuel consumption and

emissions. A similar detailed methodology was used by ?. Both ? and ? considered

CO2 minimization as an optimization criteri. In a more aggregate view, ? presented

an emission-based trip assignment optimization model. They also explored potential

emission reduction under the assumption that drivers choose emission minimizing

routes. Assessing vehicle emissions can be very complex, as emissions depend on

factors such as the age of the vehicle, engine state, engine size, speed, type of fuel

and weight (?). For our study, we used speed emission functions from the MEET

model (European Commission ?). In this chapter, we focus on CO2 and leave other

pollutants for further research.

2.2. Description of E-TDVRP

This section starts with a complete description of the E-TDVRP model and details

the most relevant parts of this model. Section ?? elaborates on the computation of

the travel times. Section ?? explains the computation of the CO2 emissions and fuel

consumptions.

In general, the vehicle routing problem (VRP) is described by a complete directed

graph G = (V,A) where V = {0, 1, . . . , n} is a set of vertices and A = {(i, j) : i <>

j ∈ V } is the set of directed arcs. The vertex 0 denotes the depot; the rest of the

vertices represent customers. For each customer, a non-negative demand qi is given

(q0 = 0). A non-negative cost cij is associated with each arc (i, j). The objective

is to find, for a given number of vehicles N , the minimum costs where the following

conditions hold: every customer is visited exactly once by one vehicle, all vehicle

routes start and end at the depot, and every route has a total demand not exceeding

the vehicle capacity Q. This definition is valid for the E-TDVRP model presented in

this chapter.

The E-TDVRP differs from the VRP as it considers time-dependent travel times.
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Furthermore, it considers fuel and emission costs. The objective function of the E-

TDVRP is the sum of all these costs. Limiting the free flow speed of the vehicles is

examined in this problem. Thus, in addition to the routing solution the E-TDVRP

has a decision variable vf corresponding to the upper limit of the vehicle speed. The

speed limit vf is imposed on all vehicles, i.e., all routes have the same limit. Thus,

vf is considered as a tactical choice of the carrier company.

We define a solution as a set S with s routes {R1, R2, ..., Rs} where s ≤ N , Rr =

(0, .., i, ..., 0), i.e., each route begins and ends at the depot. We write i ∈ Rr, if the

vertex i ≥ 1 is part of the route Rr (each vertex belongs to exactly one route). We

write (i, j) ∈ Rr, if i and j are two consecutive vertices in Rr. An E-TDVRP solution

is defined by the solution set S coupled with a vehicle speed limit vf .

A solution (S, vf ) results in travel times TT (S, vf) and emissions E(S, vf ). The

computation of TT (S, vf) is explained in section ??. The computation of E(S, vf ) is

discussed in section ??.

We define three cost factors in the E-TDVRP: the hourly cost of driver (with a cost

of α e /hr), the cost of fuel (costing β e /liter) and the cost of CO2 emissions (γ

e /kg). Since fuel consumption is directly related to CO2 emission, we use the factor

of h (equal to 1
2.7 liter/kg) for converting CO2 emissions into fuel consumption, similar

to ?. The objective function for E-TDVRP is given by Equation (??).

F (S, vf ;α, β, γ) = αTT (S, vf) + (βh+ γ)E(S, vf ) (2.1)

The first part of the objective function considers the travel time costs. The second part

considers the composite costs combining fuel and emissions. We explicitly consider

both, as the cost parameters for fuel (β) and emissions (γ) are different.

The E-TDVRP can be reduced into two special cases. Setting α to zero the model

minimizes solely on the costs of fuel and CO2, which is equivalent to minimizing

E(S, vf ), with an objective function value F (S, vf ; 0, β, γ). Similarly, setting both β

and γ to zero results in a model that minimizes TT (S, vf), with an objective function

value F (S, vf ;α, 0, 0). These special cases facilitate a trade-off analysis showing the

additional travel time required to obtain minimal CO2 emissions.

For completeness, we summarize the speed-related notation we will use in the reminder

of this section:

• vf : The speed limit set in E-TDVRP.

• vc: The congestion speed imposed by traffic.
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• v∗: The speed that yields the optimal CO2 emission per km value.

• v∗f : The optimal speed for E(S, vf ).

• vh: The upper bound value of v∗f .

• v′: The speed used for computing the upper bound on E(S, vf ).

2.2.1 Determining TT (S, vf)

The time-dependency of travel times throughout the planning horizon, in essence, is

driven by changing speeds in different time zones. We subject all links to given speed

profiles. This stems from the notion that most motor-ways, on average, follow the

same pattern of having a morning and evening congestion periods (see also ? for

a similar reasoning). Moreover, collecting data for each link and each time zone is

infeasible from an operational standpoint.

Figure ?? provides an illustration of how speeds are translated into travel time profiles.

The left side depicts a speed profile that starts with a congestion speed vc until time a.

After time a the vehicle can travel at free flow speed vf . Subjecting a given distance

d to the speed profile on the left side of the figure, results in the travel time profile

on the right side of Figure ??. Note that while the x-axis for the speed profile is the

time of day, the x-axis for the travel time figure is starting times. For a given distance

d and for every starting time the figure on the right provides the travel time. The

main intuition for modeling the profile is that during the first period (up to a− TTc)

it takes TTc time units to traverse d. Since, throughout that period the vehicle will

be driving with speed vc along the entire link. However, starting from time a − TTc
up to point a, the vehicle will be in the transient zone, where the vehicle will start

traversing part of the link with speed vc and the remainder with a speed vf . Starting

at point a the speed will remain constant at vf with the travel time equaling TTf .

Thus, the travel time is a continuous piecewise linear function over the starting times.

The linearity in the transient zone stems from the stepwise speed change which

imposes different speeds over time. The slope can be defined as
TTf−TTc

TTc
. By

substituting TTc with d
vc

and TTf with d
vf
, we obtain that the slope is equal to

vc−vf
vf

, which is independent of d. However, the intersection with the Travel Time

axis is a function of the distance and it is equal to
(vf−vc)

vf
a + d

vf
. Therefore, the

travel time function between customers i and j depends on the distance dij between

these customers. We define g(t) as the travel time function associated with any

starting time t for Figure ??.
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starting time

Travel Time

TTc

TTf

a ba-TTc

Speed

vc

a b

vf

time

Figure 2.1 The conversion of speed into travel times

g(t) =





TTc if t ≤ a− TTc
vc−vf
vf

t+
(vf−vc)

vf
a+ TTf if a− TTc < t < a

TTf if t ≥ a

For starting times within (0, a − TTc) FIFO is satisfied since the speed associated

with these starting times is constant, given two starting times within this interval t

and t+∆, both will arrive after TTc time units from their departure. Similarly, FIFO

holds for starting times after a. The line in the transient zone (a − TTc, a) can be

viewed as a consequence of the FIFO assumption as well. Given two starting times t

and t+∆, both in the transient zone, the arrival times are t+g(t) and t+∆+g(t+∆)

respectively, the difference between the arrival times of t+∆ and t is ∆+
vc−vf

vf
∆ > 0.

And thus, the FIFO assumption holds in the transient zone. Note that in a speed-

decreasing situation the FIFO assumption holds even for step travel time changes.

Nonetheless, for consistency, speed drops are constructed exactly in the same manner

as speed increases. The construction of travel times is equivalent to integrating the

distance over the different speeds. The proposed model is convenient since it requires

speed values and the point in time in which the speed changes. Let t(r) ∈ {t1, ..., tk}

denote the starting time of route Rr. Let t(r, i) denote the departure time at node i,

for route Rr. TTi,j,t(r,i) represents the travel time between node i and node j when

starting at time t(r, i). Equation (??) considers the total travel time associated with

a solution S and vf .

TT (S, vf) =
∑

r

∑

t(r)

∑

(i,j)∈Rr

TTi,j,t(r,i) (2.2)
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2.2.2 Determining E(S, vf )

In this chapter, we use emission functions provided in the MEET report (European

Commission ?). The function θ(v) provides the emissions in grams per kilometer for

speed v. Equation (??) depicts the amount of emissions per km, given that a vehicle

is at speed v.

θ(v) = K + av + bv2 + cv3 + d
1

v
+ e

1

v2
+ f

1

v3
(2.3)

The coefficients (K, a, . . . , f) differ per vehicle type and size. Here, we focus on heavy

duty trucks weighing 32-42 tons. The coefficients for the CO2 emissions for this

specific vehicle category are (K, a, b, c, d, e, f) = (1576,−17.6, 0, 0.00117, 0, 36067, 0).

Figure ?? depicts this CO2 (kg/km) emissions function. This function has a unique

minimum, we define v∗ as the integer speed which achieves this minimum (v∗ = 71

km/hr).
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Figure 2.2 CO2 emissions versus speed

We denote the amount (in grams) of CO2 emissions produced by traversing arc (i, j)

at time t with a free flow speed vf by Ei,j,t(r,i)(vf ). The average speeds are used

to calculate the emissions per km by Equation (??). Multiplication of emissions per

km times distances traversed yields the total amount of CO2 emissions. We define

Ω[dij , t(r, i), vf ] as the average speed for traversing arc (i, j) when leaving i at time

t(r, i), with speed limit vf . Consequently, Ei,j,t(r,i)(vf ) is given by Equation (??).

Ei,j,t(r,i)(vf ) = θ (Ω[dij , t(r, i), vf ]) dij (2.4)

The objective function for term E(S, vf ) is defined in Equation (??) summing the
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total CO2 emissions produced by the different routes Rr in solution S with speed

limit vf .

E(S, vf ) =
∑

r

∑

(i,j)∈Rr

Ei,j,t(r,i)(vf ) (2.5)

Both from a practical and an optimization point, we choose to work with integer

speeds. Optimizing on E(S, vf ) implies then finding an optimal integer free flow speed

applied to all routes Rr in S. The dependence of Ei,j,t(r,i) on the speeds associated

with dij makes the free flow speed vf a decision variable. We emphasizes that limiting

the speed of a vehicle means that in free flow the vehicle’s speed is limited. However,

in congestion the vehicle is restricted by the congestion speed. In essence, while

congestion zones can be seen as constraints, in free flow zones the maximum speed is

decided upon.

Modifying the speed profile affects the travel time profiles. As explained in Section

??, the change of speed at point a starts affecting the travel times already at point

a − TTc. If there is a speed drop at point a from a certain free flow speed vf to

a congestion speed vc, travel times for a given distance d will start to increase if

it is traversed after time a − d
vf
. Altering the free flow speed will affect the travel

time profile in a way that, if decreased, the vehicle will start experiencing congestion

at earlier starting times. We demonstrate the effect of free flow speed on the total

emissions produced with the example depicted in Figure ??. Let vc = 40 km/hr and

consider two options for free flow speed: v1 = 71 km/hr, and v2 = 72 km/hr, for

traversing a distance of 400 km with starting time 200 and a = 500 (in minutes).

Setting the free flow speed to v1 produces 2.8kg more CO2 emissions than setting it

to v2. Moreover, setting the free flow speed to v1 results in an increase of 15 minutes

in travel times, with respect to v2.

starting time

Travel Time

TT
c

TT
1

500

Speed

v
c

500

v1

TT2

v2

time (min)

Figure 2.3 Example for two free flow speeds

Considering optimizing on E(S, vf ), i.e., only on the amount of emissions, let the
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optimal speed be v∗f . Proposition ?? shows that only a subset of potential speeds

need to be taken into account for the E(S, vf ) optimization. This proposition makes

it possible to considerably reduce the search space for this problem.

Proposition 2.1 Given vc < v∗, there exists a vh > v∗ such that θ(vc) = θ(vh) and

v∗ ≤ v∗f ≤ vh.

For the case of θ(v) convex and having a unique minimum, as in the case of the CO2

emission function considered, Proposition ?? is straightforward to show. Since vc
is smaller than v∗ there exists another speed vh which is higher than v∗ such that

θ(vc) = θ(vh). We show that vc < v∗f < vh, for the setting in question.

Proof: Arguing by contradiction, assume that v∗f > vh. The shape of the emission

per km function implies that θ(v∗f ) > θ(vh) = θ(vc). In such a case, being in free

flow zones, i.e., where the speed is set to v∗f , will produce higher emissions than in

congestion. Any ṽ ∈ [vc, vh] will produce less emissions since θ(ṽ) < θ(v∗f ) and thus

v∗f is not optimal.

Again by contradiction, assume the vc < v∗f < v∗. For any ṽ ∈ [vc, v
∗] there exists a

v̂ > v∗ such that θ(v̂) = θ(ṽ). Since for v̂ the total time spent in congestion will be

lower than for ṽ, we conclude that v∗ < v∗f < vh. 2

As previously mentioned, we only consider integer values for speeds. Thus, vh is

rounded up to the nearest integer value.

2.2.3 Bounds for E(S, vf)

The E(S, vf ) on its own is a difficult problem to handle: one needs to find a solution

in a time-dependent setting in combination with setting the free flow speed. In

this section we present bounds using the standard VRP (i.e., time-independent).

Throughout the years various solution techniques have been developed to tackle this

problem. Moreover, from a practical standpoint most carrier companies developed

software solutions for the standard VRP. Hence, bounds based on these basic VRP

solutions are easily implemented in practice too.

The lower bound is realized by traversing the total distance in the VRP solution

with a speed v∗, since this implies the minimum distance traversed using the optimal

emissions speed. In essence, the upper bound can be constructed by subjecting

the VRP solutions to a speed Profile with a single speed drop, similar to Profile I

in Figure ??. However, our TDVRP setting is similar to Profile II in Figure ??.

For a given distance to be traversed starting at time zero, optimizing CO2 emissions

under Profile II would generate results superior or equivalent to the same optimization
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under profile I. For minimizing emissions, the optimal performance under profile I is

an upper bound on the performance of Profile II. Thus, we construct an upper bound

on the total CO2 emissions by assuming a single speed decrease which is outperformed

by a profile consisting of a speed drop followed by a speed increase.

Speed

v
c

a

vf

a' b

Profile II

Speed

v
c

a

vf

b

Profile I

Figure 2.4 Speed profiles for the bounds on E-TDVRP

We analyze the case of subjecting the VRP solutions to Profile I. The VRP solution

is a sequence of customers visited. We denote the distance of an arbitrary route by

d. We distinguish two cases:

i) If the vehicle is not fast enough to avoid congestion, i.e., v < d/a, then the total

emissions are given by the emissions in free flow θ(v)av plus the emissions in

congestion which are θ(vc)(d− av);

ii) If the vehicle travels fast enough to avoid congestion, i.e., v ≥ d/a, then the

total emissions would simply be given by θ(v) times the covered distance d;

According to the above distinction, define E1(d, v) and E2(d, v) as follows:

E1(d, v) = θ(v)av + θ(vc)(d− av)

E2(d, v) = θ(v)d.

Then, total emissions as a function of distance d, can be written as a function of the

speed as:

Ed(v) :=

{
E1(d, v) if v ∈ (0, da ]

E2(d, v) if v ∈ [ da ,+∞)

In our case E1(d, v), E2(d, v), and θ(v) are convex and have a unique minimum. The

problem of finding an optimal speed involves finding the minimum of Ed:

min

{
min

v∈(0, d
a
]
E1(d, v), min

(v∈[ d
a
,+∞)

E2(d, v)

}
. (2.6)
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Lemma 2.1 There exists a universal speed v′ > v∗ such that for all a, d > 0 there

exists a unique solution v∗f to problem (??) given by:

v∗f =





v∗ if d ≤ av∗

d/a if av∗ < d < av′

v′ if d ≥ av′.

Proof: E1(d, v) has a unique optimal v′. This can be easily seen by derivation

∂E1(d, v)

∂v
= a(θ′(v)v + θ(v)− θ(vc)),

As earlier observed E2(d, v) has a unique optimal speed v∗. Furthermore E1(d, d/a) =

E2(d, d/a), so that Ed is continuous. Now, since by convexity we know that

• E1 is decreasing for v < v′ and increasing for v > v′,

• E2 is decreasing for v < v∗ and increasing for v > v∗,

it is sufficient to put together E1 and E2, distinguishing between the following three

cases.

Case (i) : d ≤ av∗.

Ed(v) =






E1(v), decreasing if v ≤ d/a

E2(v), decreasing if d/a < v < v∗

E2(v), increasing if v∗ ≤ v

so the minimum value is reached when v = v∗.

Case (ii) : av∗ < d < av′.

Ed(v) =

{
E1(v), decreasing if v ≤ d/a

E2(v), increasing if d/a < v

so the minimum value is reached when v = d/a.

Case (iii) : av′ ≤ d.

Ed(v) =





E1(v), decreasing if v ≤ v′

E1(v), increasing if v′ < v < d/a

E2(v), increasing if d/a ≤ v

so the minimum value is reached when v = v′. 2
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The importance of lemma ?? is that for large enough distances, d ≥ av′ there exists

a single speed v′ which is optimal under Profile I. We use v′ to construct the upper

bound on E(S, vf ).

Let S′ be the optimal solution for the standard VRP. Let d′i be the distance of route

Ri in S
′. We arrange the different routes in descending order, with respect to their

distance, S′ = {d′[1], ..., d
′
[s]}. Equation (??) represents a lower bound on the amount

of CO2 emissions produced. The lower bound assumes that all distances can be

traversed in v∗, so that absolute minimum emissions can be achieved.

s∑

i=1

d′[i]θ(v
∗) ≤ E(S, vf ) (2.7)

The upper bound is constructed by imposing Profile I with vf = v′ onto S′. We define

w as the largest index such that d[w] > av′. Thus, routes {d′[1], ..d
′
[w]} will run into

congestion. However, the routes {d′[w+1], .., d
′
[s]} will not suffer congestion. Equation

(??) depicts this upper bound.

E(S, vf ) ≤ θ(v′)wav′ + θ(vc)

w∑

i=1

(d′i − av′) + θ(v′)

s∑

i=w+1

d′i

≤ [θ(v′)− θ(vc)]wav
′ + θ(vc)

w∑

i=1

d′i + θ(v′)

s∑

i=w+1

d′i (2.8)

Given the standard VRP solution, these bounds, are rather straightforward to

calculate, and enable decision makers to easily assess the maximal reduction in CO2

emissions. Furthermore, these bounds are used to validate the proposed solution

procedure.

2.3. Solution Method

We propose a Tabu search procedure for the E-TDVRP. Tabu search was first

introduced by ??. It makes use of adaptive memory to escape local optima. The

method has been extensively used for solving the VRP, see ?? and ? for examples.

Tabu search is also used to deal with the time-dependent version of the VRP (see

?,? and ?). The E-TDVRP model differs from the TDVRP as it includes the free

flow speed vf as a decision variable. We chose to adapt a Tabu Search procedure to

fit the E-TDVRP. Essentially, the procedure works on local search principles while

updating the vf . The algorithm searches a neighborhood with vf . After a number
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Algorithm 1 E-TDVRP algorithmic structure

construct initial solution S0 with vf = v0 and compute F (S0, vf ;α, β, γ)

si = σ

for i < Imax do

generate the neighborhood of S

choose the solution that minimizes F2(S, vf ;α, β, γ) and is not tabu or satisfies

its aspiration criteria

update the tabu list

if S is feasible and it is better than the current best feasible solution then

update the best feasible solution

set si = i+ ϕσ

end if

if S is not feasible and is better than the current best solution then

update the best solution

end if

update w

if i > si then

set current solution to best solution

check for best speed within [vf − τ, vf + τ ] and update vf accordingly

set si = i+ σ

end if

if best solution found and Imax − i < ψ then

set Imax = i+ 2ψ

end if

end for

return the best feasible solution

of iterations it checks the performance of the best solution so-far for different integer

values of vf . If a value which yields better results is found, the speed is updated and

the search continues. Next, we describe the main components of the algorithm. The

overall procedure is described in pseudo-code in Algorithm ??.

The initial solution Z0 is the output of a nearest neighbor heuristic with vf = v0. A

neighborhood is evaluated by considering all possible 1-interchanges as proposed by ?.

The (0,1) interchanges of node vr ∈ Rr to route Rp are considered only if Rp contains

one of η nearest neighbor of vr. The (1,1) interchanges between nodes vr ∈ Rr and

vp ∈ Rp are considered if Rp contains one of η nearest neighbor of vr and Rr contains

one of η nearest neighbor of vp. After completing the neighborhood search, a 2-opt

intra-route move is executed for each altered route. If node vr is removed from Rr,

reinserting vr back into Rr is tabu for ℓ iterations. ℓ is randomly chosen between
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[ℓmin, ℓmax]. However, we use an aspiration criterion similar to ?. This criterion

revokes the tabu status of a move if it yields a solution with lower costs.

Similar to ?, we allow demand-infeasible solutions, i.e, routes with total demand ex-

ceeding the vehicle capacity. Such infeasible solutions are penalized, in proportion to

the capacity violation, by the following objective function, extending F (S, vf ;α, β, γ):

F2(S, vf ;α, β, γ) = F (S, vf ;α, β, γ) + w
∑

R∈Z

[(
∑

i∈R

qi

)
−Q

]+
(2.9)

In Equation (??) each unit of excess demand is penalized by a factor w. This excess

penalty w is decreased by multiplication with a factor ν after φ consecutive feasible

moves. Similarly, w is increased (multiplied by factor ν−1) after φ infeasible iterations.

Every σ iterations, we consider the best found solution (S, vf ) and evaluate the

solution for speeds within the interval [vf − τ, vf + τ ]. The speed that minimizes

F2(S, · ;α, β, γ) is chosen as the new vf . If a new best feasible solution is found then

vf is kept for another σϕ iterations. The algorithm is run for Imax iteration. However,

if a best solution is found and the remaining number of iterations is less than ψ, the

remaining number of iterations is updated to 2ψ.

2.4. Experimental settings

We conduct two types of experiments. Section ?? describes our experiments with

a single speed profile. The other experiments include two speed profiles and are

presented in Section ??. We experiment with sets from ?. The number of customers

in these sets ranges between 32 and 80. In this benchmark set, customer locations

and their demands are randomly generated by a uniform distribution. To achieve

more realistic travel times, the coordinates of these sets were multiplied by 4.9. Note

that a test set named “32 k5” means 32 customers including depot given 5 vehicles.

Optimal VRP solutions for these sets are available from ?.

2.4.1 Single speed profile

We set up the speed profile with two congested periods, while throughout the rest of

the day the speed is set to the free flow speed (Figure ??, left). Many European roads

face such a morning and afternoon congestion period (see ?). The right side of Figure

?? depicts the travel time function for each starting time for an arbitrary distance.

We set v2 and v4 to congestion speed vc. Furthermore, v5 = v3 = v1 are considered as
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free flow speeds, i.e., they correspond to the decision variable vf in F (S, vf ;α, β, γ) .

The points a, b, c, d, e correspond to 6:00, 9:00, 16:00, 19:00, and 0:00. All links are

subjected to this profile. Based on empirical data, the congestion speed is set to 50

km/hr (?).

Observe that a starting time after 9:00 is superior to starting time before 9:00, since

the latter risks going twice into congestion. Consequently, we assume that all vehicles

leave the depot at 9:00. For computing the upper bound, we set a in Equation (??)

to c− b. Considering vc = 50 together with this profile and based on Proposition ??,

leads to the conclusion that 71 ≤ v∗f ≤ 91. Furthermore, by Lemma ??, the speed for

computing the upper bound on E(S, vf ) is v
′ = 74 km/hr.

starting timea b c d

Travel Time

e

Speed

v1 v3

a b c d time

v2 v4

v5

e

Figure 2.5 Speed and Travel time profile for the experimental setting

The parameters chosen for the tabu search algorithm in section ?? are as follows.

For an instance with N nodes, η = ⌈0.4N⌉ closest customers are considered for the 1-

interchanges. The tabu tenure length ℓ is randomly chosen in the interval [15, 25]. The

penalty for infeasible solutions w is set to the initial objective function value divided

by 30. Furthermore, φ = 5 and ν = 3
4 . The maximum number of iterations Imax is

set to 640 and ψ is set to 160. The parameters relating to vf are σ = 120, ϕ = 1.5,

τ = 1 and the initial speed v0 is set to 80 km/hr. Unless mentioned otherwise, the

cost parameters in F (S0, vf ;α, β, γ) are set to: α = 20e /hr, β = 1.2e /liter (diesel),

and γ = 11e / ton. The latter is based on the actual carbon market cost of the first

half of April 2009 ?. In the computations γ is converted into e per kg, and CO2

emissions are converted into kg. All runs are performed on a Intel Core Duo with 2.4

GHz and 2 GB of RAM.

Validating the proposed model

To validate the model, we compare the results of F (S, vf ; 0, 0, 1) with the upper

bound (UB) and the lower bound (LB) presented in section ??. Table ?? shows the

results for the reduced model where we focus on emissions, i.e., objective function
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F (S, vf ; 0, 0, 1) = E(S, vf ). Table ?? gives the CO2 emissions (kg), the optimal speed

vf , the resulting travel time is TT (F (S, vf ; 0, 0, 1)); the last column gives the run

times. There is a relation between the amount of CO2 emissions and the travel time.

For example, set 33k5 achieves the lowest emissions and the lowest travel time. The

speeds achieving lowest emissions range between 72 and 77 km/hr.

We tested the performance of our model on the standard time-independent VRP.

The algorithm reached an average optimality gap of 4% over the different sets.

Furthermore, we evaluated the performance of setting the free flow speed to 71 km/hr

(F (S, 71; 0, 0, 1)), which is the speed which minimized the CO2 emissions function as

observed in Figure ??. The results showed that adopting this speed leads to an

average increase of 2.9 % and 6.0% in emissions and travel times, when compared to

the results in Table ??.
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Instance F (S, vf ; 0, 0, 1) vf TT (F (S, vf ; 0, 0, 1)) Run time(min)

32 k5 2976 72 3420 4.8

33 k5 2489 74 2836 3.3

33 k6 2777 73 3168 4.2

34 k5 2929 73 3377 3.8

36 k5 3088 75 3449 2.3

37 k5 2516 72 2911 8.5

37 k6 3613 74 4122 4.9

38 k5 2819 73 3209 5.0

39 k5 3175 72 3852 6.6

39 k6 3151 73 3603 7.7

44 k6 3575 72 4122 8.3

45 k6 3644 74 4162 3.0

45 k7 4466 74 4918 2.7

46 k7 3458 74 3912 4.6

48 k7 4156 73 4727 7.4

53 k7 3875 72 4500 13.6

54 k7 4563 77 5023 4.0

55 k9 4174 74 4713 4.0

60 k9 5362 72 6230 16.0

61 k9 4060 74 4536 8.4

62 k8 5104 73 5871 13.2

63 k9 6209 73 7130 13.3

63 k10 5115 73 5869 12.2

64 k9 5379 73 6168 13.6

65 k9 4666 75 5228 6.9

69 k9 4508 75 4996 31.1

80 k10 7062 73 8097 30.9

Average 4034 73 4598 9.0

Table 2.1 Results for the F (S, vf ; 0, 0, 1) model

We generate the bounds using the optimal VRP solutions from ? for the Augerat sets.

Table ?? compares the amount of CO2 emissions produced using the F (S, vf ; 0, 0, 1) =

E(S, vf ) objective function with the bounds. F (S, vf ; 0, 0, 1)/LB compares the

emissions produced by the E-TDVRP with the lower bound. On average the E-

TDRVP is within 4.3% from the lower bound. We note that the LB is computed

under the assumption of no congestion. The last column in Table ?? quantifies the

gap between UB and LB. The quality of the bounds is very good as the average gap is

only 4.7 %. Based on this analysis, we conclude that the solution method is efficient

and that the bounds are useful in real-life decision-making.
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Set UB LB F (S, vf ; 0, 0, 1) F (S, vf ; 0, 0, 1)/LB UB/LB

32 k5 3081 2904 2976 102.5% 106.1%

33 k5 2546 2443 2489 101.9% 104.2%

33 k6 2838 2738 2777 101.4% 103.6%

34 k5 3016 2880 2929 101.7% 104.7%

36 k5 3135 2957 3088 104.4% 106.0%

37 k5 2602 2479 2516 101.5% 105.0%

37 k6 3684 3510 3613 102.9% 105.0%

38 k5 2822 2706 2819 104.2% 104.3%

39 k5 3220 3056 3175 103.9% 105.4%

39 k6 3240 3071 3151 102.6% 105.5%

44 k6 3634 3463 3575 103.2% 104.9%

45 k6 3648 3483 3644 104.6% 104.7%

45 k7 4458 4229 4466 105.6% 105.4%

46 k7 3531 3386 3458 102.1% 104.3%

48 k7 4172 3960 4156 104.9% 105.3%

53 k7 3897 3735 3875 103.7% 104.3%

54 k7 4553 4320 4563 105.6% 105.4%

55 k9 4078 3961 4174 105.4% 103.0%

60 k9 5238 4998 5362 107.3% 104.8%

61 k9 3925 3830 4060 106.0% 102.5%

62 k8 5041 4771 5104 107.0% 105.7%

63 k9 6344 5980 6209 103.8% 106.1%

63 k10 5042 4843 5115 105.6% 104.1%

64 k9 5437 5164 5379 104.2% 105.3%

65 k9 4498 4356 4666 107.1% 103.2%

69 k9 4438 4298 4508 104.9% 103.3%

80 k10 6900 6512 7062 108.5% 106.0%

Average 104.3% 104.7%

Table 2.2 Upper and Lower bounds for F (S, vf ; 0, 0, 1) (One speed profile).
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Numerical results for F (S, vf ;α, β, γ)

Table ?? gives an overview of the cost based solutions for all sets (α = 20e /hr,β =

1.2e /liter and γ = 11e / ton). The last three columns give the allocation of costs

between its three major components.

Cost partition

Set F (S0, vf ;α, β, γ) vf CO2 (kg) Driver cost Fuel cost CO2 cost

32 k5 2411 84 3092 41.6% 57.0% 1.4%

33 k5 1999 87 2615 40.4% 58.1% 1.4%

33 k6 2267 85 2924 41.3% 57.3% 1.4%

34 k5 2380 86 3061 41.4% 57.2% 1.4%

36 k5 2494 85 3221 41.2% 57.4% 1.4%

37 k5 2043 85 2636 41.2% 57.3% 1.4%

37 k6 2934 86 3799 41.0% 57.6% 1.4%

38 k5 2247 84 2937 40.5% 58.1% 1.4%

39 k5 2671 85 3423 41.6% 56.9% 1.4%

39 k6 2788 86 3626 40.8% 57.8% 1.4%

44 k6 2952 87 3893 39.9% 58.6% 1.5%

45 k6 2984 82 3750 42.8% 55.9% 1.4%

45 k7 3837 87 4958 41.1% 57.4% 1.4%

46 k7 2856 84 3680 41.3% 57.3% 1.4%

48 k7 3341 86 4349 40.7% 57.8% 1.4%

53 k7 3245 86 4208 40.9% 57.6% 1.4%

54 k7 3714 82 4676 42.7% 55.9% 1.4%

55 k9 3463 80 4327 43.1% 55.5% 1.4%

60 k9 4534 80 5632 43.4% 55.2% 1.4%

61 k9 3341 82 4247 42.1% 56.5% 1.4%

62 k8 4370 86 5655 41.1% 57.5% 1.4%

63 k9 5026 86 6476 41.3% 57.3% 1.4%

63 k10 4414 80 5505 43.2% 55.4% 1.4%

64 k9 4612 85 5916 41.6% 57.0% 1.4%

65 k9 3604 83 4628 41.5% 57.1% 1.4%

69 k9 3679 84 4773 40.9% 57.7% 1.4%

80 k10 5631 84 7187 41.9% 56.7% 1.4%

Average 41.5% 57.1% 1.4%

Table 2.3 Results for F (S0, vf ;α, β, γ) (One speed profile)
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The vast majority of costs are attributed to driving cost and fuel cost, which together

on average account for 98.6 % of the costs. The cost of CO2 is rather insignificant

when compared to others: 1.4% on average. Specifically, the current market cost of

CO2 has no tangible economic impact on the results. However, due to the direct

relation between fuel consumption and CO2, speeds associated with this model are

between 80 and 87 km/hr. In fact, in all instances the resulting speed is strictly less

than 90 km/hr. This implies that even with the current cost structure speeds are

likely to be less than 90 km/hr.

The reduced models: F (S, vf ; 0, 0, 1) and F (S, vf ; 1, 0, 0)

We analyze the results for the two reduced models. The first one optimizes only on the

emissions (F (S, vf ; 0, 0, 1) ), the second one focuses on travel times (F (S, vf ; 1, 0, 0)).

This facilitates a trade-off analysis between travel times and emissions. We ran the

settings F (S, 80; 1, 0, 0) and F (S, 90; 1, 0, 0), i.e., we fixed the speed limits to 80 and

90 respectively. The truck speed limits in most European countries is 80 km/hr or 90

km/hr so these two specific settings depict an interesting European benchmark.

Below, we define the resulting travel times from the (reduced) model with objective

function F (S, vf ; 0, 0, 1) as TT (F (S, vf ; 0, 0, 1)). Specifically, the objective function

only considers emissions in its optimization F (S, vf ; 0, 0, 1). The resulting solution

(S, vf ) is then evaluated in terms of their travel times (TT (F (S, vf ; 0, 0, 1))).

Similarly, we define the emissions corresponding to the (reduced) model with objective

function F (S, 80; 1, 0, 0) as E(F (S, 80; 1, 0, 0)). This means that we generate a solution

(S, vf ) by minimizing the travel time and then evaluate this solution in terms of its

emissions E(F (S, 80; 1, 0, 0)). We use the following notation.

∆TT80 =
F (S, 80; 1, 0, 0)− TT (F (S, vf ; 0, 0, 1))

F (S, 80; 1, 0, 0)

∆E80 =
E(F (S, 80; 0, 0, 1))− F (S, vf ; 0, 0, 1)

E(F (S, 80; 1, 0, 0))

∆TT90 =
F (S, 90; 1, 0, 0)− TT (F (S, vf ; 0, 0, 1))

F (S, 90; 1, 0, 0)

∆E90 =
E(F (S, 90; 0, 0, 1))− F (S, vf ; 0, 0, 1)

E(F (S, 90; 1, 0, 0))
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Instance ∆E80 ∆E90 ∆TT80 ∆TT90

32 k5 0.8% 9.2% -10.3% -20.2%

33 k5 4.2% 8.5% -4.9% -20.6%

33 k6 5.3% 12.4% -4.0% -15.1%

34 k5 2.8% 12.6% -7.3% -19.1%

36 k5 1.4% 8.2% -6.5% -20.2%

37 k5 2.1% 9.0% -9.0% -21.5%

37 k6 1.1% 11.2% -7.3% -17.5%

38 k5 1.4% 16.1% -11.1% -17.0%

39 k5 8.5% 12.0% -6.4% -21.0%

39 k6 2.0% 16.0% -8.9% -10.3%

44 k6 5.3% 9.5% -5.6% -20.4%

45 k6 3.9% 9.7% -7.6% -19.2%

45 k7 0.8% 9.3% -4.5% -12.0%

46 k7 1.4% 14.3% -8.1% -13.2%

48 k7 2.1% 12.3% -6.3% -13.5%

53 k7 5.1% 9.9% -5.8% -20.5%

54 k7 1.5% 6.7% -5.1% -17.1%

55 k9 2.1% 12.7% -7.4% -18.0%

60 k9 4.9% 11.9% -5.5% -17.0%

61 k9 2.4% 10.3% -7.7% -22.6%

62 k8 6.4% 13.9% -2.5% -11.5%

63 k9 5.3% 8.6% -3.6% -17.6%

63 k10 3.4% 11.7% -6.6% -16.7%

64 k9 4.7% 14.2% -4.4% -13.1%

65 k9 3.3% 12.0% -5.0% -15.3%

69 k9 2.5% 10.2% -6.2% -20.3%

80 k10 0.7% 14.5% -9.7% -10.5%

Average 3.2% 11.4% -6.6% -17.1%

Table 2.4 Trade-off between emissions and travel times (One speed profile)

Table ?? gives an overview of the potential savings in emissions, compared to the

amount of travel time needed to be sacrificed in order to achieve this saving. Columns

2 and 3 exhibit the increase in travel times, while the last two columns exhibit the

decrease in emissions. Considering the speed limit of 90 km/hr, Table ?? implies that

an average reduction of 11.4% in CO2 emissions can be achieved. However, such a

reduction will result in an average increase in travel time by 17.1 %. Looking to the

situation with a speed limit of 80 km/hr an average of 3.2% reduction in emissions can

be achieved, which would require an average increase of 6.6% in travel time. These

results show that in the case of 90 km/hr a substantial reduction of CO2 emissions

can be achieved.
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2.4.2 Two speed profiles

In this section we consider two speed profiles. In addition to the profile considered in

section ??, we add a similar profile but with a congestion speed equal to 70 km/hr ?),

instead of 50 km/hr. The two profiles were randomly assigned to the various distances

in the problems.

We ran F (S0, vf ;α, β, γ) for the two speed profile setting. Table ?? gives an overview

of the performance of the solutions for all sets, the last three columns give the

allocation of cost between its three components. Similar to the single speed profile

case, the majority of costs are attributed to driving cost and fuel cost. However, due

to the direct relation between fuel consumption and CO2, speeds associated with this

model are between 81 and 85 km/hr.

Both for the single and for the two speed profile case the resulting speeds (vf ) are

within the same range. For the single speed profile case, where congestion speed is 50

km/hr, the best strategy to limit fuel and emission costs is to try to avoid congestion,

and thus speeds are higher than v∗(= 71 km/hr). For the two speed profile case, the

congestion speeds are 70 km/hr and 50 km/hr. The congestion speed of 70 km/hr is

rather similar to the v∗. For these cases, minimizing fuel and emission costs leads to

prefer congestion and to reduce the speed. However, this is countered by the travel

time cost.

As the resulting speeds for both one and two speed profiles are within similar ranges,

we examine the case where we set vf to 85 km/hr for all sets. This value is observed

in 14 sets from Table ??. Furthermore, one value for all sets might be easier from an

operational point of view. Similar to the above definitions, we define the following

relations.

∆(TT )85 =
TT (F (S, 85;α, β, γ))− TT (F (S, vf ;α, β, γ))

TT (F (S, 85;α, β, γ))

∆(E)85 =
E(F (S, 85;α, β, γ))− E(F (S, vf ;α, β, γ))

E(F (S, 85;α, β, γ))

∆(F )85 =
F (S, 85;α, β, γ)− F (S, vf ;α, β, γ)

F (S, 85;α, β, γ)

Λ(F )85 = F (S, 85;α, β, γ)− F (S, vf ;α, β, γ)
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Cost partition

Set F (S0, vf ;α, β, γ) vf CO2 (kg) Driver cost Fuel cost CO2 cost

32 k5 2487 85 3231 40.8% 57.7% 1.4%

33 k5 1968 85 2564 40.7% 57.9% 1.4%

33 k6 2234 83 2887 41.1% 57.4% 1.4%

34 k5 2332 85 3039 40.7% 57.9% 1.4%

36 k5 2450 84 3161 41.2% 57.3% 1.4%

37 k5 2004 85 2625 40.4% 58.2% 1.4%

37 k6 2925 85 3823 40.5% 58.1% 1.4%

38 k5 2199 85 2874 40.5% 58.1% 1.4%

39 k5 2632 85 2874 40.8% 57.7% 1.4%

39 k6 2763 84 3571 41.1% 57.4% 1.4%

44 k6 2875 84 3728 40.9% 57.6% 1.4%

45 k6 2850 85 3729 40.4% 58.2% 1.4%

45 k7 3633 85 4744 40.5% 58.0% 1.4%

46 k7 2781 85 3641 40.4% 58.2% 1.4%

48 k7 3393 83 4371 41.3% 57.2% 1.4%

53 k7 3221 85 4198 40.6% 57.9% 1.4%

54 k7 3736 84 4851 40.9% 57.7% 1.4%

55 k9 3319 81 4243 41.8% 56.8% 1.4%

60 k9 4371 82 5593 41.7% 56.9% 1.4%

61 k9 3189 82 4114 41.2% 57.3% 1.4%

62 k8 4279 85 5588 40.5% 58.0% 1.4%

63 k9 4976 83 6394 41.5% 57.1% 1.4%

63 k10 4069 84 5300 40.7% 57.9% 1.4%

64 k9 4554 85 5951 40.5% 58.1% 1.4%

65 k9 3826 85 5027 40.2% 58.4% 1.4%

69 k9 3639 85 4804 39.9% 58.7% 1.5%

80 k10 5673 82 7250 41.8% 56.8% 1.4%

average 40.8% 57.7% 1.4%

Table 2.5 Results for F (S, vf ;α, β, γ) (Two speed profiles)

Table ?? exhibits the results for setting vf to 85 km/hr. We note that the differences

are not substantial. The cost increases only by 1.1 % on average. However, in absolute

values, as depicted by Λ(F )85, differences of up to 144.6e are observed. For the

analyzed sets, we conclude that setting the vehicle speed to 85 km/hr results in a

good compromise between travel time minimization and emissions minimization.
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Set F (S0, 85;α, β, γ) ∆(TT )85 ∆(E)85 ∆(F )85 Λ(F )85
32 k5 2489 0.0% 0% 0% 0

33 k5 1968 0.0% 0% 0% 0.0

33 k6 2234 2.9% 5% 4% 100.1

34 k5 2384 0.0% 0% 0% 0.0

36 k5 2450 0.7% 5% 4% 89.0

37 k5 2040 0.0% 0% 0% 0.0

37 k6 2960 0.0% 0% 0% 0.0

38 k5 2229 0.0% 0% 0% 0.0

39 k5 2632 0.9% 2% 2% 47.9

39 k6 2763 1.7% 2% 2% 54.8

44 k6 2875 3.8% 5% 4% 129.0

45 k6 2899 0.0% 0% 0% 0.0

45 k7 3643 0.0% 0% 0% 0.0

46 k7 2908 0.0% 0% 0% 0.0

48 k7 3393 -2.0% 2% 0% 8.5

53 k7 3258 0.0% 0% 0% 0.0

54 k7 3736 -0.1% 1% 1% 25.9

55 k9 3319 -3.9% 4% 1% 25.4

60 k9 4371 -1.6% 2% 1% 35.8

61 k9 3189 -0.2% 5% 3% 104.7

62 k8 4282 0.0% 0% 0% 0.0

63 k9 4976 -0.5% 3% 2% 78.6

63 k10 4069 2.9% 4% 4% 144.6

64 k9 4738 0.0% 0% 0% 0.0

65 k9 3891 0.0% 0% 0% 0.0

69 k9 3665 0.0% 0% 0% 0.0

80 k10 5673 -0.9% 4% 2% 124.5

average 0.1% 1.7% 1.1% 35.9

Table 2.6 Two speed profiles: Comparison of F (S, vf ;α, β, γ) and F (S, 85;α, β, γ)

2.5. Conclusions and future research

Carrier companies need to consider employing greener practices in the future. This

chapter establishes a framework for modeling CO2 emissions in a time-dependent

VRP context (E-TDVRP). It proposes an efficient solution method for the E-TDVRP.

We showed the potential reduction in emissions when weighed against travel time.
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Furthermore, reducing emissions has a positive impact with respect to reducing cost.

We analyzed the effect of limiting vehicle speed in a time-dependent VRP setting

on the generated amount of CO2 emissions. Time-dependency was established by

subjecting distances to variable speed profiles. CO2 emissions were modeled as a

function of speed. The speed which optimizes CO2 emissions per km was not observed

in any of our experimental settings. This is explained by the relation between limiting

free flow speed and the likelihood of running into congestion. In congestion, the vehicle

is forced to drive slower and thus emitting more CO2. Thus, increasing the free flow

speed decreases the amount of time spent in congestion, and by that results in less

emissions.

Based on the optimal VRP solutions in the literature, we constructed an upper and

lower bound for the CO2 emissions. We showed that these bounds are tight, on average

the gap was 4.7%. From a practical point of view these bounds are simple and fast to

calculate. They require standard VRP solutions commonly used in practice. Thus,

they enable assessing the potential reduction in CO2 emissions.

Considering CO2 emissions, the results of the E-TDVRP were rather close to the

lower bound, with a difference of 4.3% on average. This indicates that the chosen

solution strategy was adequate. We compared two extreme cases of the E-TDVRP

model, considering only travel times and considering only CO2 emissions. For the

first case, two possible speed limits were considered, 80 and 90 km/hr. For a speed

limit of 90 km/hr our results showed that achieving an average reduction of 11.4%

in CO2 emissions required increasing travel time by 17.1%. However, considering a

speed limit of 80 km/hr, an average increase of 6.6% in travel achieves a reduction of

3.2% in CO2 emissions.

Considering one and two congestion speeds, the experiments showed that from a

realistic cost perspective it is beneficial for vehicles to go below 90 km/hr. We also

showed that adopting a speed limit of 85 km/hr yields good results in terms of total

cost over all sets. Finally, we conclude that minimizing CO2 emissions by limiting

vehicle speed can be costly in terms of travel time. However, limiting vehicle speed

to a certain extent might be both cost and emission effective.

Further research can be conducted in more accurate emissions modeling. For example,

the weight of the vehicle has an impact on the amount of emissions, and in the

VRP context this can be incorporated as function of satisfied demand. Additionally,

more sophisticated travel time profiles can be constructed to encompass acceleration

and deceleration, which in return will enable more accurate emissions modeling.

Furthermore, the proposed model can be employed to investigate the costs and

benefits of using alternative fuels in the context of VRP.
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We have shown that the current market cost of CO2 has no tangible economic impact

on the results. However, exploring this value is yet another possible extension to this

work. Examining the impact of this value on transportation related strategies is a

relevant research question.
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Chapter 3

TDVRP Subject to Time

Delay Perturbations

3.1. Introduction

Following the operations of a number of carrier companies, we observed that during

the execution phase of their vehicle routing schedules many unexpected delays were

encountered. Most of these delays were caused by customers’ distribution centers

not being ready to receive their goods. Equivalently, such delays could also occur

at the carrier’s depot when the truck is not fully loaded at the scheduled starting

time. When confronted with such unanticipated delays, the trucks are forced to wait

until the customer is ready. This is mainly because the trucks were filled to serve a

certain subset of clients in a particular order, and hence altering a truck’s schedule

will imply going back to the depot and/or rearranging the filling order, which is costly

from an operational standpoint. Consequently, the carrier companies did not want

to update their schedules on-line in compliance with these delays, but would rather

have a schedule that is better protected against this specific type of time delays.

The above described situation is translated into a specific vehicle routing setting

(VRP), taking into account time-dependent information with respect to travel times.

In essence, this means that the travel time between two consecutive customers not

only depends on the distance, but also on the starting time. In this time-dependent

scheduling setting, unanticipated delays at a customer will influence the starting

time of going to the subsequent customers and thus on the expected travel time

between these customers. Consequently, assessing the impact of these delays is less
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straightforward than in a time-independent environment (with constant speeds or

travel times).

This chapter focuses on Time-Dependent Vehicle Routing Problems (TDVRP). We

model traffic by discrete speed zones, where speeds are derived from real-life data and

translated into travel time functions that satisfy the FIFO principle (see also ?). In

addition to this, we build a TDVRP model that optimizes the routing costs subject

to unanticipated delays which are modeled as perturbations. We refer to this model

as P-TDVRP. We explore the existence of routing schedules that perform well and

we identify the structural properties of these schedules which minimize the resulting

weighted cumulative delay. We pay specific attention to the analysis of the properties

of the generated routes. ? argue that an analytical analysis of the vehicle routing

problem brings new insight into the algorithmic structure and makes performance

analysis of classical algorithms possible.

The main contributions of this chapter are the following:

• This chapter proposes a P-TDVRP approach for dealing with unexpected delays

at the various nodes in a TDVRP setting. An optimization procedure is

proposed to trace solutions that perform well under perturbations. We show

that these solutions in many cases differ substantially from the ones obtained

by the TDVRP (i. e., not taking into account these delays). The optimization

technique proposed is, to our knowledge, the first application of the methodology

proposed by ? to a discrete problem coupled with a Tabu Search heuristic. The

method evaluates disruptions and considers their average value as the objective

of the optimization.

• We identify situations capable of absorbing delays, i. e., where inserting a delay

will lead to an increase in travel time that is less than or equal to the expected

delay length itself. This is namely observed when there is a speed increase, since

a delay at a customer might imply starting at a zone with higher speeds. We

evaluate the cost-benefit trade-off when using P-TDVRP routing schedules. We

weigh the costs and gains of the P-TDVRP routing schedules compared to the

TDVRP ones. In the majority of the tested cases, the results show higher gains

than costs.

• The specific characteristics and behavior of the P-TDVRP routing schedules

are identified. We observe that the P-TDVRP routing schedules have higher

absorption potential and are comprised of less disperse routes, i. e., routes where

tours are more evenly lengthened and more links are likely to be in the vicinity

of absorption zones. These properties are formulated into proposition that are

observed against the benchmark of the TDVRP routing schedules obtained.
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This chapter is organized as follows. In Section ??, we present a literature survey. In

Section ??, we present our time-dependent VRP model, and in Section ??, we define

the Perturbed TDVRP model (i. e. P-TDVRP). In Section ??, we present an analysis

of solution structures that are likely to perform better under perturbations. Our

chosen experimental setting is presented in Section ??. In Section ??, we formulate

propositions, with respect to the solution structure, and show the results. Finally in

Section ??, we highlight the main findings and discuss directions for future research.

3.2. Literature review

Much research has been conducted on Vehicle Routing Problems (VRP). For a

comprehensive overview, the reader is referred to ??. The vast majority of research

focuses on a constant speed environment, i. e., where speeds remain constant

throughout the day. Realizing that speeds and their associated travel times depend

on the time of day, more and more research is dealing with VRPs in a time-dependent

setting (TDVRP).

For the literature on time-dependent VRP the reader is referred to Section ??. We

mention that we model time dependency similar to ?, ?, and ?. Thus, our model

adheres to the FIFO assumption.

Over the past years, optimizing under uncertainty has attracted much research. This

is driven by the realization that in a modeling process parameters are assessed and are

inserted in the given constraints. However, in many cases a great deal of uncertainty

lies in their assessments. In principle this means that, while sufficiently good solutions

are found for a specific parameter set, their applicability is limited, since they do not

take into account parameter uncertainty. Robust optimization as presented by ??,

is essentially defined over a convex space. ? applied this framework to a VRP with

uncertain demand on a set of fixed customers. While this area has evolved throughout

the past years, it would be difficult to fit our problem into it, since disruptions occur

in a time-dependent environment and their impact on the costs is not straightforward.

Another view on robustness is given in ?, who address uncertainty in travel time in

TSP by applying a robust deviation criterion.

? defines robustness as the insensitivity of a solution with respect to changes in

the environment in which this solution is implemented. He further notes that while

there are a number of powerful tools to obtain robust solutions, they are very difficult

to implement with local search techniques. Based on the work of ?, he proposes an

approach that incorporates perturbations on given solutions which are then evaluated

through the objective function. This approach was presented in the context of robust
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continuous optimization using local search. We choose to adapt this approach to our

discrete TDVRP setting (due to its simplicity, relevance, and adaptability to Tabu

Search). We show that significant gains can be obtained by using solutions produced

under perturbations.

3.3. Time-Dependent Vehicle Routing Problems

Formally, the vehicle routing problem can be represented by a complete directed graph

G = (V,A) where V = {0, 1, . . . , n} is a set of vertices and A = {(i, j) : i <> j ∈ V }

is the set of directed links. The vertex 0 denotes the depot; the other vertices of

V represent customers, the number of available vehicles is N . For each customer, a

non-negative demand di is given where d0 = 0.

The objective is to find, for the given number of vehicles N , the minimum costs where

the following conditions hold: every customer is visited exactly once by exactly one

vehicle, all vehicle routes start and end at the single depot, every route has a total

demand not exceeding the vehicle capacity Q.

We define a solution as a set S with s routes {R1, R2, ..., Rs}, where s ≤ N , Rr =

(0, .., i, ..., 0), i. e., each route Rr begins and ends at the depot. We write i ∈ Rr if the

vertex i ≥ 1 is part of the route Rr, where each vertex belongs to exactly one route.

We write (i, j) ∈ Rr if i and j are two consecutive vertices in Rr.

Let t(r) ∈ {t1, ..., tk} denote the starting time of route Rr. Let t(r, i) denote the

departure time at node i, for route Rr. TTi,j,t(r,i) represents the travel time between

node i and node j when starting at time t(r, i). Furthermore, we define a shift length

w. Any route length exceeding w will result in an overtime penalty of p, for every

excess time unit. In Equation (??), we denote by Fnorm(S) the objective function

value associated with the solution S.

Fnorm(S) =
∑

r

∑

t(r)

∑

(i,j)∈Rr

TTi,j,t(i,r) + p
∑

r




∑

t(r)

∑

(i,j)∈Rr

TTi,j,t(i,r) − w




+

(3.1)

In the above equation [x]
+
= max{0, x}; p is a positive parameter. Fnorm is comprised

of total travel and a penalty component on overtime.

The time dependency of travel times throughout the planning horizon is driven by

the changing speeds in the different time zones. Since the number of links in a

fully connected directed graph is enormous, collecting data for each link and each
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time zone is infeasible. Instead, we assume that the same speed profile applies to

all links. Indeed it seems reasonable to assume that most motor ways, on average,

follow the same pattern of having a morning and evening congestion period (see also

? for a similar reasoning). The FIFO assumption, also known as the non-surpassing

assumption, infers that a vehicle starting to traverse a link at any moment t will arrive

earlier than other vehicles starting to traverse the same link after time t. This is valid

in the VRP case in particular, since one assumes that the vehicles are identical in

terms of performances, and thus vehicles cannot surpass each other. As in Chapter

2, we adopt this assumption.

In essence, throughout the time horizon we construct a speed profile, which is

translated into a travel time function satisfying the FIFO assumption. The generation

of a travel time profile can be viewed as an integration over the speed profile. An

example for a given distance d is illustrated in Figure ??. The right side of this

figure depicts the travel time pattern associated with a single step speed increase as a

function of the starting time. The main intuition for the profile is that during the first

period (up to a−TTa), it takes TTa time units to traverse the link, since throughout

that period the vehicle will be driving at a speed va along the entire link; however,

for starting time a − TTa up to point a (the transient zone), the vehicle will start

traversing part of the link with speed va and the remainder with a speed vb. Starting

at point a the speed will remain constant at vb, resulting into travel time TTb. Thus

the travel time is a continuous function over the starting times.

Figure 3.1 The conversion of speed into travel times

The start of the transient zone occurs at point a − TTa. The linearity in the

function stems from the stepwise speed change which imposes different speeds for

continuous time intervals. For distance d to be traversed, the slope in the transient

zone is independent of the distance, since the slope can be defined as TTb−TTa

TTa
. By

substituting TTa with d
va

and TTb with
d
vb
, we obtain that the slope is equal to va−vb

vb
,

while the intersection with the Travel Time axis, is a function of the distance and is

equal to (vb−va)
vb

a + d
vb
. Thus, the specific travel time functions differ from one link
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to another, since the distances between the customers are different. We define g(t) as

the travel time function associated with any starting time t for Figure ??.

g(t) =





TTa if t ≤ a− TTa
va−vb

vb
t+ (vb−va)

vb
a+ d

vb
if a− TTa < t < a

TTb if t ≥ a

For starting times within (0, a − TTa) FIFO is satisfied since the speed associated

with these starting times is constant, given two starting times within this interval t

and t + ∆, both will arrive after TTa time units from their departure. By a similar

reasoning, FIFO holds for starting times after a. The line in the transient zone

(a− TTa, a) can be viewed as a consequence of the FIFO assumption as well. Given

two starting times t and t+∆, both in the transient zone, the arrival times are t+g(t)

and t + ∆ + g(t + ∆) respectively, the difference between the arrival times of t + ∆

and t is ∆ + va−vb
vb

∆ > 0. And thus the FIFO assumption holds in the transient

zone. While this was shown for a speed increase, similar functions can be constructed

for speed drops as well. Note that this approach to modeling travel times is actually

equivalent to integrating the distance over the different speeds.

3.4. Perturbed Time-Dependent Vehicle Routing

Problems

We model disruptions in the above formulated Time-Dependent Vehicle Routing

Problem by time perturbations. Optimizing problems while taking into account

uncertainty, with respect to the actual performance of a given solution, is a common

problem. In the genetic algorithms literature, ?, this has been dealt with by

perturbing the solution before evaluating it, i. e., by replacing the objective function

f(x) with F (x) = f(x+ δ) where δ is usually a normally distributed noise. The basic

idea behind this approach is that the mechanism will prefer solutions on wide hills

as apposed to narrow peaks. A solution is regarded good if its expected performance

with respect to a number of randomly generated perturbations is good. ? further

implemented the mechanism in a Tabu Search setting for continuous functions.

We adopted this methodology to the TDVRP by modeling disruptions as perturba-

tions, leading to the P-TDVRP. We assume that these disruptions can occur at any

customer location. We also assume that only one disruption can occur during the

day. Given a solution comprised of m links, we generate m scenarios, corresponding

to a single perturbation per link. We evaluate the average performance of a solution
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over all scenarios and consider this average value as the target function value for the

solution.

For each m, the model assumes one perturbation. This approach is motivated from a

project-and-machine scheduling context. More specifically, e. g., ?, ?, and ?? focused

on the effect of a single disruption of each of the individual jobs, rather than on all

possible disruption interactions. This is due to the fact that the probability of multiple

disruptions occurring simultaneously is far lower than that of a single disruption

occurrence. Moreover a solution that performs well under a single disruption is likely

to perform well under multiple ones as well (?). Single disruption assumptions are

also used in the context of telecommunications network reliability, see, e. g., ?.

The P-TDVRP objective function is denoted by Fpert(S), where S(δi) depicts the

scenario where a perturbation of size δ is placed before the ith link in solution S.

Fpert(S) is expressed in Equation (??).

Fpert(S) =
1

m

m∑

i=1

Fnorm(S(δi)) (3.2)

By Equation (??), in a given solution each link will be perturbed once. Whenever a

perturbation occurs, it will increase travel time. Since our model complies with the

FIFO assumption, the costs will inevitably rise. In order to compare our results, we

define costs (C) and gains (G) by Equations (??) and (??), respectively. We define

S∗ = argmin
S
Fnorm(S) and Z∗ = argmin

S
Fpert(S).

C = Fnorm(Z∗)− Fnorm(S∗) (3.3)

G = Fpert(S
∗)− Fpert(Z

∗) (3.4)

Equation (??) depicts the potential loss in the normal target function value when using

the value of the perturbed solution, whereas Equation (??) describes the potential gain

of using the optimal perturbed solution as opposed to the optimal normal solution in

the perturbed setting. By definition, both Costs and Gains are positive. Subtracting

the Costs from the Gains gives the trade-off one needs to consider. A positive value

of the trade-off indicates that the potential gain in the perturbed setting prevails over

the cost of using the normal solution. Similarly, a negative trade-off indicates that

the potential cost of using the solutions from the perturbed optimization is higher

than the gains expected from it.

Figure ?? gives an illustration of P-TDVRP and TDVRP solutions. On the categorical

X-axis we have two possible solutions S∗ and Z∗, where the Fnorm(S∗) < Fnorm(Z∗),

i. e., S∗ outperforms Z∗ in the TDVRP optimization, perturbing each of the solutions
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results in an increase in costs, the average of the perturbed values are given by

Fpert(S
∗) and Fpert(Z

∗), respectively. Therefore, while S∗ is superior to Z∗ in the

TDVRP, the opposite holds for the P-TDVRP.
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Figure 3.2 Perturbations in solutions

The strong point of this approach is that it does not call for any change to the Tabu

Search structure, but rather evaluates the target function in a different manner. The

drawback is an additional computation time. We further note that, to the best of our

knowledge, this is the first application of the methodology proposed by ?, to a Tabu

Search environment with a discrete problem.

3.5. Analysis of the P-TDVRP: The absorption

effect

In this section, we analyze the consequences of the Perturbed Time-Dependent Vehicle

Routing model on travel times. More specifically, we investigate the effect of a

perturbation on the travel times. We show that the net effect of a time delay δ

on the total travel times is not always clear-cut (i. e., the effect is not merely adding

the time delay to the original travel times). Indeed, there exist situations in which the

increase in the travel times is less than the time delay. We denote this behavior as the

absorption effect AE, which can be positive (i. e., relatively less time than the delay

is added to the travel times), negative (i. e., relatively more time than the delay is

added to the travel times), or zero. Note that the AE is only relevant for the TDVRP;
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since in the time-independent VRP the speed is constant throughout the day, adding

a perturbation of size δ will constitute a constant addition to the travel time. Thus,

in the time-independent VRP setting, adding a perturbation will not influence the

optimal solution sequence. In the remainder of this section we first show situations

where on average there exists a positive absorption. After identifying situations with

positive absorption potential we elaborate the magnitude of the absorption, for some

discrete.

3.5.1 The absorption effect defined with one link

Figure ?? gives an illustration of a positive absorption effect. The left side of this

figure depicts the perturbation as perceived, while the right side depicts the actual

resulting profile. Similar to Figure ??, the travel time is given as a function of the

starting time. The solid lines are the normal travel times, i. e. without a perturbation,

while the dashed lines give the perturbed travel time. In the perceived situation the

perturbed travel time is an addition of δ to the original one. However since the

perturbation is added to the starting time of traversing a link, the actual perturbed

travel time differs from the perception, the transient zone is [a− TTa − δ, a− δ]. This

is due to the fact that when subjected to a perturbation, the starting time a−TTa−δ

will be delayed by δ and eventually start at a− TTa, and similarly a− δ will shift to

a.

Figure 3.3 Travel time profile with perturbations

For the subsequent analysis, we define the travel time plus a perturbation of size δ

as the Perceived TT , i.e TTijt + δ. We further define the actual travel time when a

perturbation of size δ is actually imposed to the solution as Actual TT, i. e. TTijt,δ.

The absorption effect (AE) is then quantified as the difference between perceived TT

and Actual TT. A positive AE implies that adding a perturbation of size δ to an edge

that initially had TTijt resulted in a travel time that is less than TTijt + δ.
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The AE effect is quantified as follows. Assume that the starting time of traversing

the link between city i and j is uniformly distributed over the planning horizon [0, b].

In the perceived situation, the average resulting perturbed travel time is equal to the

following.

TTijt + δ =
1

b

∫ a−TTa

0

(TTa + δ) dt

+
1

b

∫ a

a−TTa

[
TTb − TTa

TTa
t+

(
TTb + a

TTa − TTb
TTa

+ δ

)]
dt

+
1

b

∫ b

a

(TTb + δ) dt

=
1

b

(
a (TTa − TTb)−

TT 2
a

2
+
TTaTTb

2
+ bTTb

)
+ δ (3.5)

However, since the travel time would start to drop at point (a−TTa− δ) rather than

at time (a−TTa), and starting point a− δ the travel time will be TTb+ δ, the actual

travel time becomes:

TTijt,δ =
1

b

∫ a−TTa−δ

0

(TTa + δ) dt

+
1

b

∫ a−δ

a−TTa−δ

[
TTb − TTa

TTa
t+

(
TTb + (a− δ)

TTa − TTb
TTa

+ δ

)]
dt

+
1

b

∫ b

a−δ

(TTb + δ) dt

=
1

b

(
a (TTa − TTb)−

TT 2
a

2
− δTTa

+
TTaTTb

2
+ δTTb + b (TTb + δ)

)
(3.6)

The average absorption effect (AE) is then obtained by subtracting Equation (??)

from Equation (??):

AE =
δ (TTa − TTb)

b
(3.7)

Equation ?? can be explained intuitively. Comparing the actual and perceived travel

times in Figure ??, a total of δ(TTa + δ) is lost, a total of δ(TTb + δ) is gained, and

this is averaged over b.
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Plotting the perceived travel time along with the actual one, results in a parallelogram

where the upper line is the perception and the lower one is the actual. The

parallelogram area on the right side of Figure ?? illustrates the average absorption

effect AE for the case where TTa > δ. The left side of the figure illustrates AE

when TTa < δ. Figure ?? highlights the average absorption over a set of starting

times. In the P-TDVRP model, each link will start in a discrete point: if that point

is within [a−TTa − δ, a], an absorption will take place; however, if the starting point

is elsewhere, the absorption will be zero.

We note that a positive absorption results on average when assuming a distribution on

the starting times. However, in a discrete schedule, links are traversed in a sequence

by which each link has a unique starting point which dictates the starting points of

its successive links.

Figure 3.4 Illustration of the absorption effect AE

We analyze the absorption effect as a function of the starting times, which is relevant

to the P-TDVRP. This is depicted by Figure ?? for both cases, TTa < δ and TTa > δ,

where l1 = TTa − TTb and l2 = TTa−TTb

TTa
δ. The absorption takes place within the

interval [a − TTa − δ, a]. We distinguish between three cases depending upon the

relative value of TTa versus δ:

1. For the case where TTa < δ, the absorption is increasing for starting times

within [a − TTa − δ, a − δ]. In Figure ??, this can be seen as the difference

between the upper base of the parallelogram, the perceived flat line, and line of

the actual time in the transient zone. For starting times within [a− δ, a− TTa]

the absorption is constant and is equivalent to TTa − TTb. For starting times

within [a−TTa, a] the perceived travel time will follow the slope while the actual

one will be TTb, and thus the absorption will be decreasing.

2. For the case where TTa > δ, for starting times within [a − TTa − δ, a − TTa]

the absorption is increasing, again this can be observed in Figure ??, as the
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difference between the flat line and the slope, however since TTa > δ point

a−TTa will occur before a−δ. Starting times within the interval [a−TTa, a−δ],

will have a constant absorption since both lines, perceived and actual, will be

in the transient zone with a constant difference equaling TTa−TTb

TTa
δ. For the

starting times within the interval [a−δ, a] the absorption will decrease. Dividing

the area underneath both trapezoids with the planning horizon is equivalent to

the value obtained in Equation (??).

3. For the case where TTa = δ the shape in Figure ?? will become an isosceles

triangle for both cases.

Figure 3.5 Absorption effect for one link

We note that a speed decrease results in a negative AE, i. e., adding a perturbation of

size δ will, on average, result in a travel time that is greater than TT+δ. We conclude

that while a speed increase diminishes the effect of the perturbation, a speed decrease

amplifies it. Hence, solutions to the perturbed problem should avoid situations that

exhibit amplification of the perturbations.

3.5.2 The absorption effect with m links

In practice, more than one link will be traversed. Consequently, we are interested in

determining the absorption effect, given a sequence ofm links (and their corresponding

travel times), assuming that each link is perturbed once. We will analyze the

propagation of the absorption effect over these m links. More specifically, after

perturbing the first link, to what extent the consecutive links are affected. We

distinguish between two cases: one where the travel time profiles are identical for the

different links and one where the travel time profiles are different per link. Clearly,

the latter case is more realistic, but the first case is seen as a benchmark situation.

In the remainder of this section, both cases will be discussed in detail.
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Identical Travel Time profiles

Let us first focus on the simplified case where we have two identical links after each

other. We have a route comprised of two links each following the same profile as the

one described above in Figure ??. The left side of Figure ?? illustrates the travel time

for starting times on link 1, the upper left figure resembles Figure ??. However the

lower left part of Figure ?? depicts the travel time on link 2 given the starting times

on link 1. Therefore the earliest start time on link 2 is after TTa time units. When

link 1 starts at a−2TTa it arrives at link 2 at point a−TTa, where the transient zone

for link 2 starts. Link 2 remains in the transient zone till link 1 starts at a−TTa and

then link 2 starts at point a with travel time TTb. However, between starting times

within [a − TTa, a], link 1 will be in the transient zone, while link 2 takes TTb time

units.

The right side of Figure ?? depicts the total travel time for links 1 and 2, as a function

of the starting time on link 1. When the starting time is between zero and a− 2TTa,

the travel time on both links is TTa. For starting times [a− 2TTa, a−TTa] the travel

time on link 1 is TTa while the travel time on link 2 follows the slope pattern. For

the interval [a− TTa, a], link 1 will follow the slope while link 2 will take TTb. As of

starting point a and onwards the travel time on both links is TTb.

Figure 3.6 Travel time profile for two consecutive identical links as a function of the

starting time of the first one

We define the average absorbtion affect for perturbing link i out of m as AE(i,m),

and the average absorption over all m links as AEm. The calculations for the average

absorption effect in the case of perturbing link 1 out of 2 (AE(1,2)), are similar to

those presented for the single link case:
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AE(1,2) = 2
δ (TTa − TTb)

b
(3.8)

If link 2 is perturbed, link 1 is not effected and therefore the result from Equation

(??) holds, thus perturbing each of the two links, as discussed in Section ?? will result

in the following average absorption effect:

AE2 =
1

2

(
2
δ (TTa − TTb)

b
+
δ (TTa − TTb)

b

)

=
3

2

δ (TTa − TTb)

b
(3.9)

Next we show the absorption effect as a function of the starting times for link 1

where TTa > δ, this is depicted by Figure ??, where l = TTa−TTb

TTa
δ. The region of

starting times for which the absorption exists has increased with TTa when compared

to Figure ??, and is between [a− 2TTa − δ, a]. A similar pattern could be generated

for TTa < δ with the same difference mentioned earlier for Figure ??.

starting time on link1

AE

a b

a-2TTa

a-2TTa - δ

a- δ

l

Figure 3.7 Absorption effect for two identical links

In the same manner, it is straightforward to show that, when the first out of m

identical link is perturbed, that the absorption occurs in the region [a−mTTa− δ, a].

And that the following holds:

AE(1,m) = m
δ (TTa − TTb)

b
(3.10)

Similarly, the average absorption effect over m identical links (AEm), where each link

is perturbed once, can be depicted by the following (where i represents the ith link in

the sequence):
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AEm =
δ
∑m

i=1(m− i+ 1)(TTa − TTb)

b×m

=
δ(m+ 1)

2b
(TTa − TTb) (3.11)

Different Travel Time profiles

We again look first into the case of a route comprised of two consecutive links with

two different distances, following the same speed profile, i. e., each link has a different

travel time profile. We analyze the propagating absorption effect: when the link 1 is

perturbed to which extent are the consecutive links effected. We consider the case

where link 1 follows the same profile as the one described Figure ??, link 2 follows

the same pattern with TTc and TTd instead of TTa and TTb respectively, however

it has the same breaking point a. This follows from the assumption that a unique

speed profile applies for both links. Assuming a unique speed profile is motivated

by the fact that most roads exhibit a similar congestion pattern, (e. g., morning and

afternoon rush hours occur at similar moments on most motor ways, ?).

Figure ?? exhibits the total travel time of traversing link 1 and then later on link 2, we

note that the arrival time on link 2 is starting at TTa. For link 1 where starting time

is between zero and a− TTa − TTc, the total travel time for both links is TTa +TTc.

For starting times in [a− TTa − TTc, a− TTa] the travel time on link 1 is TTa while

link 2 is in its transient zone. For starting times [a− TTa, a] link 1 is in its transient

zone while the travel time on link 2 is TTd. As of starting point a and onwards the

travel time for both links is TTb + TTd.

TTa +TTc

a ba-TT
a
-TTc

TTb +TTd

TTa +TTd
a-TTa

starting time link 1

Travel Time for links 1&2

Figure 3.8 Travel time profile for two consecutive different links

The travel time augmented with the perturbation is then the following:
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Tijt + δ =
1

b

∫ a−TTa−TTc

o

(TTa + TTc + δ) dt

+
1

b

∫ a−TTa

a−TTa−TTc

(
TTd − TTc

TTc
t+ TTa + TTd

+ (a− TTa)
TTc − TTd

TTc
+ δ

)
dt

+
1

b

∫ a

a−TTa

(
TTb − TTa

TTa
t+ TTb + TTd + a

TTa − TTb
TTa

+ δ

)
dt

+
1

b

∫ b

a

(TTb + TTd + δ) dt

= a(TTc + TTa − TTd − TTb) +
TTdTTc − TT 2

a − TT 2
c + TTbTTa

2
−TTaTTc + TTdTTa + b(TTb + TTd) + δ (3.12)

However, when a perturbation is inserted the travel time would start to drop at point

a− δ−TTa−TTc, where the travel time follows the slope of link 2, and consecutively

starting at point a− δ − TTa travel time follows the slope of link 1. Thus the actual

perturbed travel time is:

TTijt,δ =
1

b

∫ a−TTa−TTc−δ

o

(TTa + TTc + δ) dt

+
1

b

∫ a−TTa−δ

a−TTa−TTc−δ

(
TTd − TTc

TTc
t+ TTa + TTd

+(a− TTa − δ)
TTc − TTd

TTc
+ δ

)
dt

+
1

b

∫ a−δ

a−TTa−δ

(
TTb − TTa

TTa
t+ TTb + TTd + (a− δ)

TTa − TTb
TTa

+ δ

)
dt

+
1

b

∫ b

a−δ

(TTb + TTd + δ) dt

= δ(TTb − TTc − TTa + b+ TTd) +
TTdTTc − TT 2

a − TT 2
c + TTbTTa

2
a(TTa + TTc − TTd − TTb)− TTaTTc

+b(TTb + TTd) + TTdTTa (3.13)

The average absorption effect, in the case of perturbing link 1, can be obtained by
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subtracting Equation (??) from Equation (??):

AE(1,2) =
δ (TTa + TTc − (TTb + TTd))

b
(3.14)

The absorption affect occurs in within the interval [a−TTa−TTc− δ, a]. The shapes

of the trapezoids, that depict the AE, depend on the relation between TTa and δ,

as well as on the relation between TTc and δ. Similarly, for a sequence of links

{1, . . . , i, . . . ,m} where each link follows the same speed profile as the one described

in Figure ??, i.e, with the same breaking point a, while each link has a high travel

time TTai
and low travel time TTbi. The resulting average absorption effect, where

each link is perturbed once, over all n is given by Equation (??). This is inferred by

generalizing Equation (??) to a sequence of links.

AEm =
δ
∑m

i=1 i (TTai
− TTbi)

bm
(3.15)

We note that the above analysis is relevant for the case where TTa < a. The travel

time functions used in the Section ?? were calculated as integrals over speeds, and

the figures presented earlier adhere to this. Equivalent figures would differ for the

case where TTa > a. However, in principle the same absorption behavior will occur:

a positive AE with a decrease in travel time and a negative AE with an increase in

travel time.

3.6. Experimental settings

In Section ??, we introduce our speed profile. In Section ??, we discuss the Tabu

search solution procedure. In Section ??, the results are presented and discussed.

3.6.1 The speed profile used

We used a speed profile such that, during the day, two periods with a relatively low

speed exist, while throughout the rest of the day the speed is relatively high (Figure

??). Many roads incur such a morning and an afternoon congestion period (see, e. g.,

?). We use a speed profile, derived from data collected for a Belgian highway, as

shown in Figure ?? where the right side of the figure depicts the travel time function

for each start time for an arbitrary link, under the following conditions: v2 = v4 and

v5 > v3 > v1 (since this complied with the data on which the profile was constructed).

We observed the following average speeds v1 = 95 km/hr for the period 0:00-6:00,
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v2 = 75 km/hr for the period 6:00-9:00, v3 = 100 km/hr for the period 9:00-16:00,

v4 = 75 km/hr for the period 16:00-19:00, v5 = 105 km/hr for the period 19:00-0:00.

a b c d

Travel Time

e

Speed

v
1

v3

a b c d starting time

v
2

v
4

v5

e

Figure 3.9 Travel time profile for two congested profile

Both congestion regions [a, b] and [c, d] start with a negative AE and end with a

positive one, assuming a uniform distribution on the start times [0, e], the average

absorption should be
δ(TTv1

−TTv2
+TTv2

−TTv3)
e +

δ(TTv3
−TTv4

+TTv4
−TTv5)

e , which is

positive with the chosen speed profile. However, the absorption affect for a discrete

solution would depend on the sequence of links in question.

For simplicity, we assumed that the speed profile described above holds for all links

in the graph. We assumed an overtime penalty of p = 9 and a shift length w = 600

minutes. We also impose the constraint that each tour must end before midnight. The

solutions for both TDVRP and P-TDVRP are obtained via a tabu search procedure

that optimizes on a number of starting times.

3.6.2 The Tabu Search procedure used

A solution strategy based on local search is proposed. According to ?, local search is

a solution process that tries to improve a given initial solution by making relatively

small changes in several steps in the solution space. The quality of the solutions is

then determined with the target function of the problem. In this chapter, tabu search

is used for obtaining solutions. Tabu search was first introduced by ??. It makes use

of adaptive memory to escape local optima. The method has been extensively used

for solving VRPs (see, for example, ??, and ?).

In our implementation, which is similar to ?, time-dependent travel time is added

as a feature. For the P-TDVRP, we incorporate the perturbed target function. The

starting time of traversing a route is an important variable for a time-dependent

environment, since this moment dictates the total travel time of the route. In order

to take starting times into account each solution is evaluated for four hourly starting
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times between 6:00 and 9:00. Our implementation of the P-TDVRP setting involves

additional computation time since each solution is now evaluated m times, where m

is the number of links that comprise a solution. To explore the added value of having

an additional vehicle when optimizing the perturbed setting, we enable the use of one

extra vehicle, in comparison to the TDVRP. No extra costs are associated with this

additional vehicle. This sheds light on the added value of having an additional vehicle

when optimizing the perturbed setting.

The initial solution is constructed by the nearest neighbor heuristic. A complete

neighborhood of a solution is evaluated by a combination of 2-opt and swap moves

for the 15 closest neighbors of a node. The tabu list was randomly chosen within

[22, 34]. We use an aspiration criterion similar to ?. This criterion revokes the tabu

status of a move if it yields a solution with lower costs.

Similar to ?, the target function includes penalty components for infeasibility

constraints, one for exceeding the truck capacity and another for exceeding the

planning horizon ,i.e, midnight.

3.7. Propositions and Results

In order to validate the existence of low-cost solutions under the perturbed setting

and to explore their structural properties, we experimented with sets from ?. These

sets have customers ranging between 31 and 79. To achieve more realistic travel times,

the coordinates of these sets were multiplied by 4.5. To explore the existence of the

behavior discussed in section ??, we formulate a set of propositions in the following

section. The computational results will be presented in Section ??.

3.7.1 Propositions

We have clustered our propositions into three main groups in a hierarchial manner.

The first group deals with the overall performance of solutions S∗ and Z∗. Remember

that S∗ is the best solution found under the TDVRP optimization, while Z∗ is the

best solution found with the P-TDVRP optimization. The second group handles the

solutions by the different structure of the routes that make up the solutions S∗ and

Z∗. The third group focuses on the individual links that comprise the routes.
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Aggregate propositions

• PA1: G− C > 0.

This proposition states that the trade-off will be positive. In essence, the trade-

off was defined as the difference between gains and costs, given by:

G− C = [Fpert(S
∗)− Fpert(Z

∗)]− [Fnorm(Z∗)− Fnorm(S∗)]

(3.16)

We predict that not only there exist solutions that will outperform the normal

solution in the perturbed setting, but that the gain resulting from these solutions

outweighs the cost of using them.

• PA2: AE(Z∗) > AE(S∗).

The absorption effect for the solutions resulting from the perturbed setting

(Z∗) is higher than that of the normal solutions (S∗) when perturbed. The

absorption effect as defined in Section ?? is the difference between the perceived

travel time and the actual travel time when perturbed. The above proposition

implies that the perturbed solutions will result in higher absorptions than the

normal ones. The underlying assumption behind this is that the performance of

Z∗, when subjected to disruption, will outperform S∗ due to more absorption

abilities. This is due to the fact that Fpert includes perturbations that impact

the absorbtion.

Route based propositions

In both the normal and the perturbed settings, routes are penalized by p for every

minute exceeding the shift length w. During the optimization of P-TDVRP, the routes

are subjected to a certain perturbation which in return will increase the travel time,

albeit not perse by the perturbation size due to the absorption effect (see Section

??). As a consequence, we expect to see structural changes in the individual routes

resulting from the perturbed setting.

More specifically, we expect routes in the perturbed setting to be more sensitive to

the over-time penalty, i.e., being more conservative with respect to the w threshold.

Consequently, it is expected that the long tours will become shorter to protect

themselves better against the possible delays. Shorter routes will become longer or

more tours will be added to compensate for this effect. This is expected to result

in a leveling of the tour lengths. In order to verify this, we construct the following

propositions.
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• PR1: The average route length will increase in Z∗ compared to the one in S∗.

This is motivated by the following relation Fnorm(S∗) ≤ Fnorm(Z∗), since the

Fnorm relies heavily on the total travel time, without perturbations. The fact

that the perturbed solutions will be equivalent or outperformed by the normal

ones implies an increase in the total travel time.

• PR2: The maximum route length will be lower for Z∗ compared to its equivalent

in S∗.

We expect the maximum route length to decrease in the P-TDVRP. Since

the longest tour is the closest to the shift length boundary, subjecting it to

perturbations may lead to crossing this threshold . In order to reduce the

impact of the perturbations, the longest tour will decrease.

Link based propositions

In Section ??, we discussed situations where a positive or a negative absorption may

occur. The former implies that the perturbation is translated to additional travel

time that is less than the perturbation size. Similarly, a negative absorption depicts

situations where the additional travel time, resulting from perturbation, is higher

than the perturbation itself. We have shown that while a positive absorption occurs

in zones where the speed increases, the negative one occurs in zones where speed

decreases.

In Section ??, the average absorption effect was expressed on the basis of assuming

a uniform distribution on the starting times. However, a solution to the TDVRP

is comprised of a sequence of links, each traversed in a single discrete point, that is

determined either by its predecessor link or by the starting time of the route (for the

first link on the route). Thus, while on average the absorption effect can be calculated

over a distribution on the starting times, the actual absorption, whether positive or

negative, will depend on the discrete solution instance.

We note that for the speed profile depicted in Figure ??, it is highly likely that

the routes will start from point b onwards. This is due to the fact that both the

morning and afternoon congestion periods are of the same length, i. e. three hours,

while v1 < v3 < v5. Thus for a route ending before midnight it is certainly better to

commence after b. Our experiments have shown that this holds for most cases. Thus

in the subsequent propositions we exclude zones prior to b since they are irrelevant.

In order to gain insights with regards to the dispersion of the allocation of links in the

different speed zones, we partitioned the planning horizon into nine different speed

zones (e. g., in Figure ?? “v45” means on the slope between v4 and v5 ). The following

propositions relate the theoretical findings with the chosen experimental setting. Pl1
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and Pl2 predict the spread of solutions with respect to the number of links traversed

in specific speed zones. We always compare the P-TDVRP solutions to the TDVRP

ones.

• Pl1: More links are traversed in speed zones v4 and v45.

This stems from the fact that a positive absorption occurs where there is a speed

increase. In the experimental setting this is illustrated in speed zones v4 and

v45. In TDVRP the absorption effect does not play a role. Thus we predict that

the number of links traversed in the speed zones in question will be higher in

the P-TDVRP setting.

• Pl2: Less links are traversed in speed zones v3 and v34.

Similar to Pl1, negative absorption occurs with a speed decrease, which happens

in speed zones v3 and v34. Again this would be irrelevant to the normal

optimization. Thus, the number of links in these speed zones would be lower in

the P-TDVRP.

3.7.2 Results

We experimented with perturbations sizes δ ∈ {20, 50, 100, 200}, the values are in

minutes. The choice was based on discussions with carrier companies. The runs were

conducted on Pentium 4 PC with 3.00 GHz and 2 GB of RAM. We partition the

results section similar to the structure of the propositions: from aggregate results

over route based results and finally to link based results.

Aggregate results

Table ?? gives the trade-off for the different sets analyzed in columns (2-5). It also

gives the runtime required to attain each of the solutions in columns (6-10). A positive

value of the trade-off is in favor of the P-TDVRP solution found, while a negative

one shows that the solution obtained from the TDVRP is better. A trade-off of

zero indicates that the solution found under the TDVRP optimization is identical to

the one found under the P-TDVRP. Lines (2-4) from the bottom show the number

of instances, out of 27, where the trade-off was greater, smaller or equal to zero

respectively.

From Table ??, we first observe that 69 out of the 108 experimental instances have

a trade-off value that does not equal zero, this indicates that in nearly two thirds of

the cases there exists a solution that outperforms the normal one in the P-TDVRP

setting. The number of instances with a trade-off different from zero rises with the
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perturbation size. Furthermore, Table ?? exhibits the run times for all experimental

sets in minutes. We observe that the run times are predominantly influenced by the

instance size, and are by far greater than the run times for the normal optimization.

Trade-off (G− C) Calculation times (in minutes) Category

Set δ = 20 δ = 50 δ = 100 δ = 200 S∗ δ = 20 δ = 50 δ = 100 δ =

200

{A,B,C}

32 k5 0.0 727.4 9646.3 17164.6 0.7 23.7 50.8 43.6 12.2 A

33 k5 0.0 0.4 33.3 100.8 0.7 16.8 31.4 58.6 25.6 A

33 k6 0.0 0.2 1.4 -153.4 0.9 32.3 59.1 79.4 25.5 C

34 k5 0.0 0.0 -10.5 -6.0 0.9 23.1 45.1 68.1 25.4 B

36 k5 0.0 966.6 3969.0 10246.4 1.0 33.7 61.9 61.3 20.9 A

37 k5 0.0 0.0 0.0 62.9 1.0 30.0 83.5 25.7 19.4 A

37 k6 1.1 0.0 25.3 7346.5 1.5 33.2 65.7 66.1 55.5 A

38 k5 0.0 0.0 44.3 217.7 1.2 67.9 73.8 47.0 51.4 A

39 k5 0.6 570.5 5288.7 21511.0 1.6 16.4 82.8 27.4 28.2 A

39 k6 2.0 1.0 -25.4 -22.6 0.7 15.2 25.5 50.9 26.1 C

44 k6 0.0 -4.7 0.0 -191.9 1.2 105.0 182.8 193.0 71.7 B

45 k6 1.7 4.4 40.4 113.9 1.6 55.1 109.0 88.3 93.0 A

45 k7 0.0 -28.0 6231.0 15195.6 1.8 135.9 204.1 163.4 179.6 C

46 k7 0.0 0.0 -9.1 -1.3 2.2 91.5 157.1 152.2 23.5 B

48 k7 0.0 23.8 67.6 115.6 1.4 52.7 113.1 139.9 49.2 A

53 k7 -6.3 0.0 16.3 24.3 3.0 114.8 173.7 280.8 219.6 C

54 k7 0.0 26.0 19.7 100.5 7.1 236.0 135.0 414.3 189.8 A

55 k9 0.0 0.0 0.0 0.0 6.0 323.7 246.5 341.7 228.2 A

60 k9 0.0 0.0 0.0 0.0 12.8 552.8 479.4 342.0 304.7 A

61 k9 0.0 0.0 0.0 0.0 8.1 367.5 238.4 496.8 464.6 A

62 k8 12.3 2350.6 9147.0 16977.1 6.9 487.9 193.5 676.4 210.5 A

63 k9 0.0 1753.7 1633.2 3202.1 9.9 895.4 592.3 736.3 674.9 A

63 k10 0.3 1.4 0.0 137.7 16.4 841.2 590.9 707.0 275.8 A

64 k9 300.2 1649.6 0.0 14778.1 18.6 838.0 329.6 510.0 340.9 A

65 k9 0.7 0.0 0.0 8.6 11.2 615.3 697.8 551.0 281.3 A

69 k9 0.1 0.4 3.7 19.7 13.3 1135.6 973.0 473.0 840.4 A

80 k10 0.0 0.0 1355.1 5502.4 30.8 1744.5 2680.5 833.8 1020.4 A

# > 0 9 14 16 19 # of A = 20

# = 0 17 11 8 3 # of B = 3

# < 0 1 2 3 5 # of C = 4

Table 3.1 Trade-off and Calculation times for perturbation sizes δ ∈ {20, 50, 100, 200}

Since there are different trends in terms of trade-off, we classified the sets into the

following three categories:

A : instances where G− C ≥ 0 ∀ δ

B : instances where G− C ≤ 0 ∀ δ

C : instances where ∃ δ with G− C > 0 and ∃ δ with G− C < 0
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This classification can be found in the last column of Table ??. Category A is defined

as one where the solutions from P-TDVRP have a trade-off that is greater or equal

to zero for all four perturbations sizes used. This means that the perturbed solution

is either better or equivalent to the normal one in all cases. Generally, category A

exhibits a trend of the trade-off rising with the perturbation size, (e. g. sets 32k5,

36k5, and 62k8). In these examples, one might classify the sets as hyper-sensitive to

the disruption size. Contrary to Category A, Category B is one where the P-TDVRP

solutions are either equivalent or worse than the normal ones. We note that the

negative values associated with this category are relatively small in absolute terms. If

there is a tie between A and B we choose A. Finally Category C, is one where the sets

are inconsistent for the four perturbation sizes, this means that for some perturbation

sizes the trade-off is positive while for others it is negative. Category A dominates

the experimental sets with 20 observation out of 27, this implies that in many cases

we are better off using Z∗ instead of S∗.

Proposition PA1 states that the average trade-off is greater than zero. We observe

that out of the 108 experiments only 11 hade a negative trade-off, while 58 had a

positive trade-off. Thus, we conclude that PA1 holds for the entire experimental set.

Observing the results for each of the perturbation size separately. For perturbation

size 20 Table ?? shows that 17 out of the 27 resulted in a trade-off of zero. However,

the number of instances with positive trade-off increases with the perturbation size.

This implies that for relatively small perturbations the results are not substantially

different than zero while for larger ones the differences are more significant. We note

that some of the gains are high since evaluating Fpert(S
∗) includes the penalties of

infeasibility constraints, thus if the perturbed solution exceeds the planning horizon

it is penalized.

Next, we look into the attained absorption effect values (AE) in Table ??. As in

Section ?? the AE is calculated as the difference between the perceived perturbed

travel time and the actual travel time. In Table ?? columns (2-5) exhibit the AE for

each of the solutions resulting from the P-TDVRP, while columns (6-9) exhibit the AE

for subjecting the normal solutions from the TDVRP to four different perturbation

sizes. Thus the right side of the table is dedicated to the AE as attained by the

perturbed optimization while the right side of the table shows the performance of the

normal solutions, one for each set, in terms of AE for the perturbation sizes.

Out of the 108 instances in the P-TDVRP optimization setting there were 96 positive

ones. The corresponding number for the TDVRP is 79. When looking at the average

AE over the entire 108 instances, the solutions from the P-TDVRP setting have an

averageAE of 30.7 min while the solutions from the TDVRP setting have an average of

-139.1 min, this implies that in many cases the TDVRP solutions resulted in extremely
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negativeAE values. This can be explained by the fact that the optimization procedure

for TDVRP does not consider perturbations. In total, 107 observations in the P-

TDVRP setting had a higher or equal absorption effect than those of the TDVRP

ones.

AE for Z∗ AE for S∗

Set δ = 20 δ = 20 δ = 100 δ = 200 δ = 20 δ = 50 δ = 100 δ = 200

32 k5 11.9 34.8 70.9 93.3 11.9 -46.3 -1024.4 -1839.4

33 k5 17.5 43.7 87.1 147.5 17.5 43.7 79.8 127.5

33 k6 17.4 43.4 86.0 135.6 17.4 43.4 85.8 131.2

34 k5 17.4 43.2 86.5 139.1 17.4 43.2 82.7 126.7

36 k5 8.3 22.8 36.4 65.0 8.3 -87.6 -414.6 -1092.1

37 k5 17.5 41.8 71.5 150.5 17.5 41.8 71.5 116.6

37 k6 16.1 33.4 58.3 89.3 15.3 33.4 56.9 -734.0

38 k5 17.4 43.6 80.9 147.7 17.4 43.6 74.8 118.3

39 k5 12.1 28.5 45.0 81.1 12.0 -40.8 -548.0 -2331.3

39 k6 15.0 33.2 64.5 105.7 13.8 29.1 52.5 89.5

44 k6 10.0 30.0 51.2 114.9 10.0 27.4 51.2 92.5

45 k6 14.8 35.7 71.9 119.6 14.6 35.2 66.5 105.6

45 k7 12.0 27.5 50.6 75.0 12.0 19.7 -648.7 -1641.1

46 k7 17.3 42.0 80.7 136.8 17.3 42.0 79.2 129.3

48 k7 10.0 33.5 56.0 83.1 10.0 22.1 41.0 65.4

53 k7 16.7 32.8 72.4 124.2 11.5 32.8 66.6 111.3

54 k7 12.8 38.0 62.0 126.8 12.8 26.6 46.9 79.1

55 k9 17.6 44.0 85.9 157.2 17.6 44.0 85.9 157.2

60 k9 -43.7 -20.4 10.4 56.7 -43.7 -20.4 10.4 56.7

61 k9 17.6 44.0 88.0 159.6 17.6 44.0 88.0 159.6

62 k8 3.6 4.6 21.8 17.9 1.7 -265.7 -1003.7 -1926.2

63 k9 -132.1 -124.5 -113.1 -9.8 -132.1 -324.4 -312.3 -552.8

63 k10 17.1 39.6 68.9 121.5 17.0 39.6 68.9 116.0

64 k9 -9.1 5.8 -854.3 39.7 -43.2 -182.3 -854.3 -1594.0

65 k9 16.4 39.0 76.7 142.3 16.3 39.0 76.7 143.8

69 k9 17.6 43.8 85.4 146.5 17.5 43.8 84.9 144.3

80 k10 -255.8 -316.8 -148.2 -163.7 -255.8 -316.8 -304.3 -804.1

Average -4.0 13.6 16.8 96.4 -5.6 -21.9 -142.2 -386.8

Table 3.2 Absorption effect for perturbation sizes δ ∈ {20, 50, 100, 200} for both

optimization settings

When looking at the different perturbation sizes, we note that, while in the P-TDVRP

the AE is increasing with the perturbation size, in the TDVRP it is decreasing.

Furthermore, in the TDVRP the AE is on average always negative, whereas in the

P-TDVRP it is only negative for perturbation size 20. Proposition PA2 suggests that
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the AE for Z∗ is higher than for S∗. We observe perturbations size 50, 100 and 200

the AE is considerably larger for Z∗ compared to S∗. However, this is not the case

for perturbation size 20. This can be explained by the fact that in this case 17 out of

the 27 observations are identical, as seen by Table ??.

Route based results

In order to validate the relevant propositions, we construct Table ??. The data is

based on the travel time as in the normal setting, i. e. without perturbations. This is

motivated by learning more about the structure of the routes that make up solutions

in the perturbed optimization. As a consequence, we compare five different solution

sets: one for the normal optimization and four for the perturbation sizes.

Average route length Maximum route length

Set S∗ δ = 20 δ = 50 δ = 100 δ = 200 S∗ δ = 20 δ = 50 δ = 100 δ = 200

32 k5 546.4 546.4 546.7 473.0 471.9 597.0 597.0 594.7 597.6 603.3

33 k5 367.1 367.1 367.1 370.3 378.4 526.4 526.4 526.4 469.8 489.8

33 k6 341.1 341.1 341.1 341.2 373.2 482.9 482.9 482.9 483.2 448.1

34 k5 368.9 368.9 368.9 372.5 384.6 503.9 503.9 503.9 460.6 480.6

36 k5 529.8 529.8 530.0 428.3 439.6 605.8 605.8 608.6 633.0 634.5

37 k5 320.1 320.1 320.1 320.1 409.1 557.2 557.2 557.2 557.2 527.3

37 k6 449.3 450.0 449.3 447.1 451.0 600.5 597.6 600.5 602.4 606.0

38 k5 410.9 410.9 410.9 343.3 349.3 540.8 540.8 540.8 523.6 548.1

39 k5 473.6 473.6 476.3 475.9 413.4 602.3 602.3 605.1 605.1 610.6

39 k6 393.5 394.2 396.5 404.5 410.3 592.7 592.7 589.9 585.2 582.5

44 k6 404.2 404.2 407.4 404.2 442.0 601.9 601.9 599.0 601.9 587.9

45 k6 384.8 384.8 384.8 385.4 385.9 595.5 595.5 595.5 595.3 592.5

45 k7 505.3 505.3 512.9 510.4 470.9 600.8 600.8 592.1 597.8 602.6

46 k7 381.5 381.5 381.5 383.1 391.5 556.7 556.7 556.7 555.2 559.7

48 k7 454.9 454.9 460.5 459.7 456.4 598.6 598.6 587.1 590.0 597.8

53 k7 403.3 408.8 403.3 407.6 415.6 602.7 586.7 602.7 596.8 593.9

54 k7 502.0 502.0 507.5 446.6 499.4 599.4 599.4 586.6 590.9 598.1

55 k9 326.1 326.1 326.1 326.1 326.1 494.8 494.8 494.8 494.8 494.8

60 k9 430.7 430.7 430.7 430.7 430.7 659.3 659.3 659.3 659.3 659.3

61 k9 298.2 298.2 298.2 298.2 298.2 470.0 470.0 470.0 470.0 470.0

62 k8 517.9 518.2 518.9 518.9 517.8 607.0 606.8 609.9 609.9 612.0

63 k9 525.5 525.5 526.7 531.6 475.9 745.8 745.8 748.7 751.5 745.8

63 k10 383.5 383.5 383.5 383.5 380.1 586.0 586.0 586.0 554.7 556.9

64 k9 504.2 504.5 506.0 504.2 426.7 623.9 624.2 625.0 623.9 656.7

65 k9 331.5 331.5 331.5 331.5 352.8 591.0 591.0 591.0 591.0 512.1

69 k9 360.7 360.7 360.7 360.7 359.5 495.2 495.2 495.2 495.2 454.1

80 k10 545.0 545.0 545.0 540.6 528.9 752.2 752.2 752.2 757.9 796.5

Average 424.5 424.7 425.6 414.8 416.3 584.8 584.1 583.8 579.8 578.6

Table 3.3 Average and maximum route length for perturbation sizes δ ∈

{20, 50, 100, 200} for both optimization settings
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The left side of of Table ?? depicts the average route length for each instance, while

the right side of the table shows the maximum observed route length (all in travel

times). Bold numbers indicate that an extra vehicle was used in P-TDVRP. Italic

numbers indicate that one vehicle less was used in P-TDVRP.

PR1 states that the average route length will increase in Z∗ compared to the one in

S∗. In the case of perturbation size 20, the average route length is higher than that

of the normal solutions. PR1 is more evident for perturbation size 50, the average of

Z∗ is higher that S∗.

The decrease in the average tour length for the higher perturbation settings (100 and

200) is due to an increase in the number of vehicles used. The instances are indicated

in bold in the left side of Table ??. No extra vehicle was used in any of the 27

solutions for perturbation size 20 or 50. However for perturbation size 100, there was

a need for an extra vehicle in 4 instances, while for perturbations size 200 there was a

need for 7 extra vehicles. This implies that the number of vehicles needed to protect

from perturbations rises with the perturbation size, and as a consequence the average

route length might decrease. The table shows inconsistent behavior for five values,

where the average route length is lower for Z∗ than for S∗ and the number of vehicles

is the same for both solutions. The gap between these solutions is less than 1% for

four out of the five instances, and is at most 3% for set 80k10 with perturbation 200.

These inconsistencies can be avoided by running the algorithm again for TDVRP,

while setting the initial solution to Z∗. To ensure further consistency, S∗ may also

be considered as an initial solution to P-TDVRP.

We note that for perturbation size 200 in set 37k5 there was a need for one vehicle

less, indicated by italic in Table ??, the reason for that is the existence of a very short

route, in TDVRP, that was omitted in the P-TDVRP optimization. For perturbation

sizes 100 and 200 the average route length is smaller than in S∗.

We have experimented with different values of the overtime penalty of p (in the

presented experimental setting p = 9). We observed that lower values of this

parameter do not substantially influence the Trade-off values. However, they may

influence the use of additional vehicles. Thus, for lower values of p the P-TDVRP

solution may not require additional vehicles.

The data for PR2 can be observed in the right part of the table. In general the average

maximum route length decreases with the increase in the perturbation size. PR2 is

observed for perturbation size 50 and 100. The maximum route length in Z∗ is not

higher than the one in S∗ in all instances. This can be explained by noting that if the

travel time is increasing, then the maximum length might also increase. Additionally

the maximum route can become longer in the P-TDVRP and as a consequence other

routes become shorter. Thus resulting in a situation where the long route is sacrificed
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for the benefit of other routes that are more protected against perturbations.

Link based results

In order to gain insight into the dispersion of the solutions with respect to the

allocation of links in the different speed zones, we generate Table ??. Remember

that we partitioned the planning horizon into nine different speed zones. The basis

for Pl1−2 is that the distribution of the links will follow that of the logic presented in

Section ??; positive values of the absorption effect occur with speed increases while

negative ones occur with speed drops.

The data required for observing the relevant propositions is summarized in Table ??

We present the data for the average number of links traversed in the different time

zones over the 27 sets. We note that much of the links are traversed in speed zone v3
since it is relatively large.

Average number of links

Set S∗ δ = 20 δ = 50 δ = 100 δ = 200

Average number of links in v3 + v34 42.0 40.1 40.8 47.0 50.7

Average number of links in v4 + v45 3.9 10.7 12.6 11.8 7.1

Table 3.4 Average number of links and distance traversed by speed zone for

perturbation sizes δ ∈ {20, 50, 100, 200}

Pl1 states that more links are traversed in speed zones v4 and v45 in Z∗ than in S∗.

For the case of perturbation size 20 and 50 this is true, since the average number

of links in these zones has increased in solutions of the P-TDVRP. For perturbation

size 100 and 200, the average of number of links traversed in speed zones v3 and

v34 is significantly higher. The main reason for this is due to the large disruption

size. When inserting a delay the links are compelled to start at a later point. If the

delay is large the links that are likely to display the absorption are ones in speed

zone v3, which is earlier than the zones assumed by Pl1. This is further confirmed

by the relatively high AE values shown in Table ??, which indicate that this is the

particular structure that produces better P-TDVRP solutions. Another reason is

the existence of the planning horizon limitation, by which routes are not allowed to

exceed midnight. When solutions are subjected to high perturbations routes are likely

to exceed midnight and thus the routes in P-TDVRP will tend to end much sooner,

in order to account for this. Yet another explanation is the fact that some additional

vehicles are used (for perturbation size 100 and 200) which shorten the average route

length.

Due to the reasons mentioned above, the number of links traversed in v4 and v45
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for perturbation sizes 100 and 200 are significantly lower than the solutions resulting

from the TDVRP. We observe that for perturbation size 20 and 50 Pl2 exhibits the

same behavior as Pl1.

3.8. Conclusions and further research

We addressed the problem of scheduling vehicles encountering delays at docking

stations. We accounted for daily congestion by travel time functions that adhere

to the FIFO assumption. A framework for obtaining solutions that better cope with

unanticipated delays is presented. We showed theoretically how solutions could change

in order to cope with these disruptions. We presented an experimental context for

the problem, formulated propositions that support the framework. We then tested

these hypotheses based on the experimental results.

In terms of methodology, this chapter applied a perturbation approach on a discrete

space in a tabu search setting. The results showed that this approach was capable

of finding solutions that were superior to normal ones under perturbations. While

the presented approach was applied in a Tabu Search setting, its advantage is that

it can be easily applied to a wide range of existing solution methods. Hence, carrier

companies can adopt the approach without the need of drastic structural changes to

their existing systems. The most important drawback of the approach is the extensive

computational effort it requires. However, since it is designed for off-line scheduling,

meaning that information with respect to customer demand is known, moreover

rerouting is not possible, one could argue that calculation time is operationally

affordable.

We showed that the solution structure changes to accommodate for the perturbations.

In general these changes involved making use of the absorption effect, which reduces

the resulting damage from unanticipated delays in the starting times of the links.

As the TDVRP mainly optimizes travel times, it does not take the absorption

into consideration. Solutions resulting from this optimization will therefore perform

poorly under perturbations if their structure yields negative absorption. The

experiments presented in this chapter support this notion. The results showed that

the perturbation size is a highly influential parameter. This is shown by the trade-

off, which increased with the perturbation size. From this result, we infer that the

importance of the P-TDVRP increases with the perturbation size. Consequently

planners should account for this. The results however became less straightforward

when we analyzed the composition of the routes. In our setting we enabled the use of

an extra vehicle. While this option was not needed for lower perturbation sizes, it was

so for higher ones. This sunk expenditure is justified by the gains it brings. When
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there is no need for extra vehicles, the routes in the P-TDVRP are leveled, meaning

that longer tours become shorter and as a compensation shorter ones become longer,

this leads to additional travel time which is balanced by the tradeoff. Furthermore

we have shown that the perturbation size effects the distribution of the links, higher

perturbations push links, further away from the congestion period.

The P-TDVRP considered a single disruption per scenario. The proposed method-

ology can fit situations with multiple disruptions. These disruptions may be fitted

in the proposed objective function. However, accounting for interactions between

multiple disruptions may result in particularly long run times. Thus, further research

on multiple setting may be conducted by sampling a limited number of scenarios.

Further research could include converting perturbations into road accidents, or

other unexpected delays during travel time (as in Chapter 4). This would require

adjustments with respect to the location of the perturbation and further analysis of the

resulting AE. We experimented with constant perturbation sizes. Since disruptions

are stochastic, for example low perturbations have a high probability while higher

perturbations have a lower one, it is worthwhile investigating multiple disruption

scenarios.
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Chapter 4

Self-Imposed Time Windows

in Vehicle Routing Problems

4.1. Introduction

Many small-package shipping companies provide their customers with a time window

for delivery and display this in their online tracking system. UPS, for instance, shows

information on the delivery time window of orders for DELL computers. Obviously,

once a time window is quoted to the customer, the carrier company wants to service

the client within this window and so this should be reflected in the carrier’s routing

decisions. The described environment is clearly distinct from both the classic Vehicle

Routing Problem (VRP) as well as from the VRP with Time Windows (VRPTW). It

is different from the VRP since the VRP objective is to minimize the operational costs

(e. g., distances or travel times ?). The VRPTW, on the other hand, does consider

time windows but assumes they are exogenous, i. e., imposed by the customer ??. As

a consequence, the VRPTW imposes restrictions on the specific arrival times at each

customer, while maintaining the objective of minimizing operational costs.

Our problem at hand considers time windows but treats them as endogenous to the

VRP model. Specifically, the carrier company assigns customers to vehicles, sequences

the customers allocated to each vehicle, and sets the time windows in which it plans

to serve the customers. In the remainder of this chapter, we will refer to the described

problem as the Vehicle Routing Problem with Self-Imposed Time Windows (VRP-

SITW). The term ‘self-imposed’ refers to the fact that the carrier company selects the

time windows by itself, independently of the customer. Once the time windows are
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quoted to the customer, however, the customer should be serviced within the window.

As such, the VRP-SITW conceptually lies in between the VRP and the VRPTW. We

assume that service cannot start before the time window, leading to waiting in case of

early arrivals. Furthermore, late arrivals are permitted but penalized proportionally

to their tardiness. Drivers have a fixed shift length and are paid a fixed amount per

day. Finally, disruptions in traveling time may occur between each two customers.

This mainly reflects accidents, weather condition, vehicle breakdown or road works.

One natural way to protect schedules against this uncertainty is to include time buffers

(see, for instance, ? for a similar logic in a production environment). Inspired by the

scheduling literature, we propose a buffer allocation model that inserts slack time into

the schedule to cope with possible delays. Our solution framework relies on the tabu

search heuristic for assigning customers to routes and for the sequencing of each route.

The actual evaluation of the target function is achieved by solving the resulting buffer

allocation model to optimality for each route separately; this sub-problem is a linear

programming problem. In the terminology of ?, our hybrid algorithm is collaborative,

since there is a clear hierarchy between the two phases. Examples of earlier works

that combine local search with LP are ?, where job-machine allocation is performed

via tabu search while an LP model is used for inserting buffers in between jobs. ?,

solved a VRPTW via tabu search based on the input of an LP that defines origins

and destinations for full truckloads.

The parallelism between vehicle routing and production scheduling is highlighted

by ?, who study single-vehicle routing and scheduling to minimize the number of

delays. Given a deadline for servicing each customer, the objective is to minimize

the number of late deliveries. The problem is equivalent to single-machine scheduling

with sequence-dependent setup times to minimize the number of tardy jobs. The

scheduling aspect is fundamental in ?, in the context of dynamic pickup and delivery

with time windows. The authors first solve the routing component and then look into

the scheduling component. Four waiting strategies are presented and assessed based

on the distance along with the number of vehicles required. ? study the dynamic dial-

a-ride under various types of uncertainty. They propose several scheduling strategies

for handling dynamic events, accounting for a fixed duration and overtime costs in the

case of exceeding the shift length. Our problem VRP-SITW differs from the above

literature in that customer demand is known in advance. Stochastic travel times in

VRP are investigated in ?, where vehicles incur penalties for exceeding a limit on

the route duration. ? examine VRPTW with stochastic travel and service times.

Their model also includes overtime costs for exceeding route duration and soft time

windows; the actual penalties are computed by means of simulation.

Compared to Chapter 3, this chapter does not account for time-dependent travel

times. Furthermore, in this chapter we consider stochastic travel time, while in
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Chapter 3 stochastic service times were considered.

The main contributions of this chapter are threefold: (1) we describe the new yet

practical setting of SITW in vehicle routing; (2) we describe how a VRP with SITW

and stochastic travel times can benefit from time buffers; and (3) we develop a hybrid

LP / tabu search algorithm for producing high-quality solutions. Our aim is to

construct a stable a priori plan that best copes with disruptions; in other words, a

solution is generated at the start of the planning horizon and does not require further

optimization during its implementation.

The remainder of the chapter is organized as follows. We provide a number of

definitions and a detailed problem statement in Section ??. Our solution procedure is

described in Section ??. The computational experiments are presented and discussed

in Section ??. Finally, in Section ??, we highlight the main results and indicate

directions for future research.

4.2. Description of VRP-SITW

Consider a set of N customers with a fleet of K identical vehicles. Each customer

i has a demand qi and is to be serviced by a single vehicle. The logistics network

is represented by a complete directed graph G = (V,A), with V = {0, 1, . . . , N} the

set of vertices and A the set of directed links. The vertex 0 denotes the depot; the

other vertices of V represent the customers. The non-negative weight dij associated

with each arc (i, j) represents the distance from i to j. Each vehicle must start

and end its route at the depot, the total demand on each route cannot exceed the

vehicle capacity Q and each customer should be visited exactly once. The objective

of the VRP is to construct routes that bring the total travel time of the vehicles to a

minimum. The VRP-SITW entails the same elements as the VRP but with a number

of additional parameters. Below, we first give a general description of the objective

function (Section ??). Subsequently, we provide we elaborate the SITW model and

on the way in which stochasticity is captured (in Sections ?? and ??, respectively).

4.2.1 Objective function

The objective function of the VRP-SITW consists of three parts. The first part is the

travel cost, which captures the vehicle operating costs such as fuel costs. The second

part of the objective function is a tardiness penalty, which represents the desire to

respect the quoted time windows as well as possible. A ‘railroad-scheduling approach’

is adopted: the lower bound of the time window is the earliest starting time of the
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service. Arrival before the scheduled window is not penalized, since the driver cost

is presumed to be fixed. However arrival after the time window leads to a penalty

proportional to the tardiness. The third component of the objective function is an

overtime penalty. We suppose that the drivers are paid a fixed amount for a shift

with fixed duration; if this duration is exceeded then overtime penalties are due.

In the optimal solution to the VRP-SITW, the travel time will never be less than

the one in the VRP since the latter does not have neither tardiness nor overtime

penalties. The travel time in optimal solutions to VRP-SITW and VRPTW is in

principle incomparable, since the fixed time windows are relaxed in the former but

there are extra penalties in the objective. The computational experiments described

in Section ?? indicate that the VRP-SITW leads to less travel time in most of the

instances studied, presumably because the time windows are decision variables rather

than constraints. With travel costs only, the VRP-SITW is equivalent to the VRP

and is thus NP-hard.

A solution to the VRP-SITW is a set of routes Z = {R1, R2, . . . , R|Z|} with |Z| ≤

K. Each route Rr (r = 1, . . . , |Z|) is a vector (0, i, j, . . . , 0) whose components are

elements of V , specifying which clients (vertices) will be visited by the vehicle following

the route, and in which order. Each route begins and ends at the depot (vertex 0)

and each vertex different from 0 belongs to exactly one route. We say that i ∈ Rr if

the vertex i ∈ V is part of route Rr ∈ Z and (i, j) ∈ Rr if i and j are two consecutive

vertices in Rr. The objective function for the VRP-SITW is then

F (Z) = Ω(Z) +
∑

Rr∈Z

Θ(Rr), (4.1)

with Ω(Z) the total travel cost associated with solution Z and Θ(Rr) representing

the overtime and tardiness penalties of route Rr. The travel cost is defined as follows:

Ω(Z) = c
∑

Rr∈Z

∑

(i,j)∈Rr

dij ,

with c the cost of traveling one unit of distance. The penalties of each route are

evaluated by solving a buffer allocation problem, which is described in Section ??.

4.2.2 Self-imposed time windows

Each route Rr consists of visiting a set of nr customers. For convenience, when

referring to one specific route, we relabel the customers in ascending order: Rr =

(0, 1, 2, . . . , nr, nr + 1), where the depot corresponds with 0 ≡ nr + 1. The distance

di,i+1 between consecutive nodes i and i+ 1 in the route is written as di. A schedule

for route Rr is an (nr + 2)-vector s = (s0, s1, . . . , snr+1), specifying a departure time
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si from each node i ∈ Rr. The shift length is the time interval [ss, se], implying that

ss ≤ s0. Each customer i ∈ Rr \ {0, nr + 1} has a time-window length Wi within

which the arrival of the vehicle is desired. The carrier company communicates time

windows to its customers based on the schedule s. Each node i ∈ Rr also has a

standard service time ui, e. g., for load/unload activities. We assume that a vehicle

will never leave a customer earlier than scheduled. The left bound of the time window

is then si−ui, as this constitutes an earliest starting time for the servicing operations.

An illustration is provided in Figure ??. The service times u0 and unr+1 at the depot

are set to zero.

During the realization of this baseline schedule, disruptions might occur. We examine

disruptions corresponding with an increase in the travel time di between customers i

and i+1. The length Li of this delay is a random variable, which is modeled by means

of discrete scenarios; a similar choice in a machine-scheduling context is made by, e. g.,

?, ?, ?, and ?. Specifically, we let Li denote the increase in di if i is ‘disrupted’, which

takes place with probability pi. The variable Li is discrete with probability-mass

function gi(·), which associates non-zero probability with positive values lik ∈ Ψi,

where Ψi denotes the set of disruption scenarios for di, so
∑

k∈Ψi
gi(lik) = 1. We

use gik as shorthand for gi(lik); the disruption lengths lik are indexed from small to

large for a given i. The realization of Li becomes known only when arc (i, i + 1)

is traversed. The actual departure time at customer i is denoted by sai (s); this is a

random variable that is dependent on the schedule s (in the remainder of the article,

we omit the argument s when there is no danger of confusion). The value si − ui
is a lower bound on the starting time of the client’s service. This so-called railroad-

scheduling approach implies that si ≤ sai , ∀i ∈ Rr, and guarantees that the actual

schedule will strictly copy the baseline schedule if no disruptions occur. In effect, the

scheduled times become ‘release dates’ for departure times sai from each customer

di- 1 ui

Wi

si-u i si si-u i+Wisi- 1

di

time

Figure 4.1 Illustration of a time window at customer i
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i ∈ Rr:

sa0 = s0
sai = max{si; s

a
i−1 + di−1 + Li−1 + ui}, i = 1, . . . , nr + 1.

Arrival prior to si−ui is not penalized. With arrival later than si−ui+Wi, however,

we associate a cost proportional to the tardiness: a non-negative integer penalty ti
is incurred per unit-time delay. The value tnr+1 is the cost for arriving late at the

depot at the end of the tour.

We assume that the driver receives a fixed payment for the shift, which ends at se.

Arrival after the end of the shift incurs an overtime penalty b per time unit. We

can now elaborate the penalty term Θ(·) in Equation (??). For a given route Rr,

Θ(Rr) consists of two components, namely the expected delay costs at customers and

the depot on the one hand, and the expected overtime penalty on the other hand.

Specifically,

Θ(Rr) =
∑

i∈Rr\{0}

tiE[max{0; sai (s)− (si −ui+Wi)}]+ bE[max{0; sanr+1 − se}], (4.2)

with E[·] the expectation operator (note that s is actually also a parameter to Θ(·)).

In the following subsection, we outline the disruption model in detail.

4.2.3 Modeling disruptions

When the durations are independent, little less is possible for objective-function

evaluation than to consider all
∏

i∈Rr\{nr+1}(|Ψi| + 1) possible combinations of

duration disruptions. This was the motivation in a scheduling context in ???? to

develop a model that considers only the main effects of the separate disruption of each

of the individual jobs rather than all possible disruption interactions. Computational

results in the aforementioned scheduling applications show that the resulting model

is quite robust to variations in the actual number of disrupted jobs. In the context of

time-dependent VRP with service disruptions, Chapter 3 also focus on the effects of

single disruptions. We make a similar assumption in this chapter: our model assumes

that in each route, exactly one leg suffers a disruption from its baseline duration. The

underlying practical motivation is that we should only optimize for one ‘inconvenience’

per day, as it would be very difficult to protect from multiple disruptions at multiple

places at multiple times. The resulting restricted model is useful when disruptions

are sparse and spread over time so that the number of interactions is limited.

For a given routeRr we distinguish between two situations: 1) no leg in Rr is disturbed

and 2) a single leg is disturbed in Rr. Let ζ denote the overtime for Rr when no leg

is disturbed (tardiness penalties are irrelevant if no leg is disturbed).
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Θ(Rr) consists of two components, namely the expected delay costs at customers and

the depot on the one hand, and the expected overtime penalty on the other hand.

Specifically, for a given route Rr, let pi represent the probability that di is the unique

disrupted value. Under the one-disruption assumption and si−1 + di−1 + ui ≤ si for

all i > 0, the relevant penalty term in (??) can be written as

Θ(Rr) =

nr∑

i=0

nr+1∑

j=i+1

|Ψi|∑

k=1

pigiktj∆ijk + b

nr∑

i=0

|Ψi|∑

k=1

pigikΛik + b
(
1−

nr∑

i=0

pi
)
ζ,

In this expression,

∆ijk = max

{
0 ; si + di + lik +

j−1∑

m=i+1

(um + dm)− sj + uj −Wj

}
,

i ∈ Rr \ {nr + 1}; j ∈ Rr \ {0}; i < j; k ∈ Ψi

and

Λik = max {0 ; snr+1 +∆i,nr+1,k − se} , i ∈ Rr \ {nr + 1}; k ∈ Ψi

and

ζ = max {0 ; snr+1 − se} ,

The variable ∆ijk represents the tardiness at client j due to a disruption according

to scenario k of di, which is equal to zero or to the disruption length of i minus the

buffer size in place between the customers i and j, whichever is larger. The term∑j−1
m=i+1 (um + dm) is the service time and travel time for the customers between i

and j. Similarly, Λik is the overtime resulting from a disruption at customer i by

scenario k. The overtime is zero in case of arrival at the depot before the shift end

se, and equal to the realized arrival time minus se otherwise. The probability that a

route is not disturbed is (1−
∑nr

i=0 pi). Thus, ζ is zero in case of arrival at the depot

before the shift end.

4.3. A hybrid solution procedure

Our solution method for the VRP-SITW proceeds in two stages: first routing and

then scheduling. The assignment of customers to vehicles and the sequencing of

customers are done in stage 1; this stage uses tabu search. Iteratively, the routes

generated by the tabu search are then scheduled in the second stage, where we use

linear programming to solve the sub-problem to optimality under the one-disruption

assumption. We say that our solution procedure is ‘hybrid’ due to the combined use
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of a meta-heuristic and an exact optimization routine. Below, we first describe the

lower-level scheduling problem in Section ??, followed by the tabu search procedure

(Section ??).

4.3.1 Scheduling and buffer insertion

For a given route Rr, the linear program below produces an optimal schedule,

conditional on exactly one leg being disrupted. Buffer sizes are implicit from the

resulting schedule.

Θ(Rr) = min

nr∑

i=0

nr+1∑

j=i+1

|Ψi|∑

k=1

pigiktj∆ijk + b

nr∑

i=0

|Ψi|∑

k=1

pigikΛik + b
(
1−

nr∑

i=0

pi
)
ζ

subject to

si−1 + di−1 + ui ≤ si i ∈ Rr \ {0} (4.3)

s0 ≥ ss (4.4)

si + di + lik +

j−1∑

m=i+1

(um + dm) ≤ sj − uj +Wj +∆ijk

i ∈ Rr \ {nr + 1}; j ∈ Rr \ {0}; i < j; k ∈ Ψi (4.5)

snr+1 +∆i,nr+1,k − se ≤ Λik i ∈ Rr \ {nr + 1}; k ∈ Ψi (4.6)

ζ ≥ snr+1 − se (4.7)

all ∆ijk ≥ 0; all si ≥ 0; all Λik ≥ 0; ζ ≥ 0 (4.8)

Constraints (??) can be viewed as precedence constraints: the scheduled departure

time si from customer i is at least equal to the departure time of its predecessor si−1

augmented with the distance di−1 and the service time ui. This implies that the

buffer between customers i−1 and i is si− [si−1+di−1+ui]. Constraint (??) ensures

that the scheduled departure time from the depot does not precede the shift’s start

time ss. Constraints (??),(??) and (??) determine the delay terms ∆ijk, Λik and ζ

respectively, as described in Section ??.

4.3.2 Tabu search for the VRP-SITW

Tabu search has been widely used for solving the VRP, e. g., ???. Furthermore, it

has been extensively used to solve VRPTW as well, examples can be found in ??.

Thus, adopting the tabu search heuristic comes as a natural choice also for the VRP-

SITW. Our tabu search procedure generates a set of routes that still need to be
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scheduled using the lower-level LP described in Section ??. The procedure iteratively

scans the members of a neighborhood of the current solution to evaluate possible

improvements in the objective function. Due to our bi-level approach, the evaluation

of each neighborhood solution requires a separate LP run, which, if performed to

optimality, would require enormous computation times. We have therefore opted for

approximating the optimal overtime and tardiness penalties heuristically, which will

guide the tabu search in selecting the best move in its current neighborhood. Once a

move is selected, its exact target function is computed by invoking the LP model for

the changed route or routes, leading to an optimal schedule.

The overall procedure is described in pseudo-code as Algorithm ??. We adopt three

different criteria C1, C2 and C3 for choosing a move; these will be described in detail

below. The tabu search procedure is run consecutively with each of the three criteria.

The initial solution Z0 is the output of the nearest neighbor heuristic for each of

the three criteria. Feeding the best-found solution of C1 into the run for C2 and for

C2 into C3 has been tested, together with many variations of the order of the three

criteria, but this did not lead to better results. For each customer i ∈ V , we construct

2-opt∗ ? and Or-opt ? neighborhoods for the η nodes closest to i. A chosen move is

declared tabu for the next κ iterations. The process iterates until a maximum number

of non-improving moves is reached.

In line with ?, diversification of the search is achieved by allowing demand-infeasible

solutions (i. e., routes with total demand exceeding the vehicle capacity). Such

infeasible solutions are penalized in proportion to their capacity violation by means

of the following composite objective function, which replaces Ω(Z):

Ω2(Z) = Ω(Z) + w
∑

Rr∈Z

[
(∑

i∈R

qi
)
−Q

]+
. (4.9)

In Equation (??) each unit of excess demand is penalized by a factor w. This excess

penalty w is decreased by multiplication with a factor ν after φ consecutive feasible

moves. Similarly, w is increased (multiplied by factor ν−1) after φ infeasible iterations.

Below, we describe the three criteria that allow avoiding the use of the LP model

for each candidate solution and lead to computationally efficient move selection

procedures.

C1 - distance based This heuristic is based purely on minimizing the modified

travel costs Ω2(·), i. e., it does not take into account the time windows and

their associated penalties, nor does it consider overtime. Thus, C1 is similar

to the criteria used in local search for the VRP. Let Z ′ be a neighbor of the

current solution Z and define ∆1(Z
′) = Ω2(Z) − Ω2(Z

′). The chosen move is
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Algorithm 2 Global algorithmic structure

1: construct initial solution Z0 and compute F (Z0)

2: for ξ = 1 to 3 do

3: set Z = Z0 and F (Z) = F (Z0)

4: generate the neighborhood of Z

5: evaluate all neighbors on criterion Cξ and retain the best non-tabu move as

new solution Z

6: evaluate F (Z) and update the tabu list to include Z

7: if Z is feasible and is better than the current best solution then

8: update the best feasible solution for Cξ to Z

9: end if

10: update excess demand penalty

11: if no improvement in ηmax iterations then

12: store best solution for Cξ

13: else

14: go to step 4

15: end if

16: end for

17: return the best solution from ξ = 1, 2 and 3

one that is not tabu and maximizes ∆1(·).

C2 - distance based and marginal penalties This measure adds to C1 an assess-

ment of the penalty component
∑

Rr∈Z(Θ(Rr)). For given Z, the marginal

penalty of route Rr is Θ(Rr)
nr+1 . Consider a move involving two routes R1 and R2,

leading to solution Z ′ . Let n1 and n2 be the number of nodes visited by routes

R1 and R2, respectively, in the current solution Z, and n′
1 and n′

2 the number

of nodes visited by routes R1 and R2 in the new solution Z ′. C2 picks the move

that is not tabu and maximizes the following expression:

∆2(Z
′) = [Ω2(Z)−Ω2(Z

′)]+ρ
[
Θ(R1)+Θ(R2)−

Θ(R1)

n1 + 1
(n′

1+1)−
Θ(R2)

n2 + 1
(n′

2 + 1)
]
.

The logic behind this evaluation is based on the observation that penalties

increase with the number of customers in the route. Decreasing the number of

customers in a route with a large penalty value is likely to decrease the total

objective value associated with the route.

C3 - distance and buffer based As mentioned in Section ??, the buffer size

between customers i and i+ 1 is b(i) = si+1 − [si + di + ui+1]. C3 favors moves

with small buffers. Each buffer unit is penalized by γ. For each candidate
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solution Z ′ involving a move between customer i and customer j, we compute

the following quantity:

∆3(Z
′) = [Ω2(Z)− Ω2(Z

′)]− γ[b(i) + b(j)].

We chose a move that is not tabu and that maximizes ∆3(·). The reasoning

involved in this move selection process is the following: improvements in travel

times are more likely to also decrease the penalties when the buffers are small.

Different aspects of the problem are tackled by each criterion. The impact of a move

on the travel time Ω2(Z) is efficiently computed. The accurate impact of a move

on the penalty component
∑

Rr∈Z Θ(Rr) of the target function, on the other hand,

requires evaluation of the SITW model for the affected route or routes. Criteria 2 and

3 attempt to assess moves based on the penalty values of the current solution rather

than via the LP model. We note that C2 is equivalent to C1 for moves involving a

single route, which can occur only with Or-opt moves.

4.4. Computational experiments

We have run a number of experiments to assess the computational performance of

our algorithm and to compare the outcomes of the VRP-SITW with both the results

of the VRP and of the VRPTW. Throughout this section, the travel cost c in Ω(Z)

is set to one, thus we use the terms distance and travel time interchangeably. For

an instance with N nodes, for each customer the η = ⌈0.3N⌉ closest customers are

candidates for a move. The tenure size κ is set to 20. The infeasibility penalty w

equals 12, with φ = 5 and ν = 3
4 . The penalties associated with C2 and C3 are

chosen as ρ = 1 and γ = 0.1, respectively. The overtime penalty β takes the value 2.

The probability pi is set to one over the total number of legs in a solution. Given a

solution with k vehicles, where k ≤ K, pi =
1

N+k . Hence, the probability of disruption

is identical for all the legs in the solution.

We consider four disruption scenarios for each leg: |Ψi| = 4. The probabilities of

disruption are also the same for each leg i, namely gi1 = 0.5, gi2 = 0.3, gi3 = 0.1

and gi4 = 0.1. Finally, the disruption lengths between customers i and j are assumed

proportional to the baseline duration dij , namely li1 = 0.1dij , li2 = 0.2dij, li3 = 0.5dij
and li3 = dij .

All experiments are performed on a Intel(R)Core Duo with 2.40 GHz and 2 GB

of RAM. The implementation is coded in C++. The LP instances are solved by

embedding Gurobi Optimizer 2.0.2, which uses the simplex algorithm. The reported

run times are in seconds. We have adopted two datasets from the literature. The first
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dataset contains a number of VRP instances from ?. We work with 27 VRP instances,

with the number of customers ranging from 31 to 79. The vehicle capacity Q is 100

units. The baseline service time ui for each customer i is set to 10 minutes. The

shift start time and end time ss and se are chosen as zero and 200, respectively. The

window length Wi equals 60 for all i. The second dataset contains VRPTW instances

and stems from ?. We consider 29 instances with 100 customers (sets R1 (random),

C1 (clustered) and RC1 (random and clustered)). The baseline service times ui and

window sizes Wi are given. The opening hours of the depot are used to determine

the shift’s starting time ss and ending time se. The vehicle capacity Q is 200 units.

Below, we first conduct some experiments related to move selection and tardiness

choices (in Section ?? and ??, respectively), followed by comparisons with VRP

(Section ??) and with VRPTW (Section ??).

4.4.1 Move selection

Table ?? shows the results of implementations for the Augerat instances in which only

one of the three criteria C1, C2 and C3 is used during the optimization; the tardiness

penalty ti = 5 for all arcs. The left side of the table displays the target function value

F (Z) attained. The right side of the table exhibits the run time for each of the three

measures. We observe that C3 outperforms the other two critera in 15 out of the

27 instances, while C1 and C2 do so in 7 and 5 instances, respectively. On average,

C1 requires less runtime than C2 and C3. The average run time over all heuristics is

17.3 minutes. Since we are working in an a priori setting, these running times are

acceptable.

Table ?? contains similar results for the Solomon instances. The computation times

are larger than those for the first dataset. This is partly due to a greater number

of customers, but more importantly the number of customers per route is also larger

than before. Thus, the LP subroutine will consume considerably more time. We note

that we obtain identical results for some of the instances, which is due to the fact that

the time window constraints in these VRPTW instances are now relaxed, and some

of instances have the same time window lengths and customer locations. In line with

Table ??, the three move selection criteria differ in performance. C2 performs best

in 23 out of the 27 instances, while this occurs for C1 and C3 in 2 and 4 instances,

respectively.
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Objective value CPU time

C1 C2 C3 C1 C2 C3 Total

32 k5 955.4 1038.2 957.2 734 103 1568 2405

33 k5 744.8 724.1 716.6 78 121 166 365

33 k6 801.1 798.7 791.0 213 151 177 541

34 k5 867.9 876.1 852.7 335 135 374 844

36 k5 958.0 990.1 950.5 552 222 438 1212

37 k5 765.6 811.8 798.6 338 394 210 942

37 k6 1071.1 1069.0 1080.5 112 158 148 418

38 k5 822.6 832.5 823.4 361 299 227 887

39 k5 1013.1 957.5 995.9 200 302 289 791

39 k6 963.0 956.1 952.7 184 130 151 465

44 k6 1102.9 1057.7 1054.7 128 124 175 427

45 k6 1078.0 2685.8 1096.4 1117 71 1142 2330

45 k7 1294.4 1281.4 1302.8 80 86 82 248

46 k7 1072.5 1059.0 1008.7 99 221 401 721

48 k7 1256.3 1243.1 1247.2 169 230 224 623

53 k7 1185.3 1194.7 1165.3 192 1046 376 1614

54 k7 1293.7 1396.7 1335.5 253 446 320 1019

55 k9 1158.7 1137.4 1132.2 340 212 255 807

60 k9 1509.2 1489.4 1473.8 108 112 177 397

61 k9 1197.9 1239.7 1177.3 225 224 214 663

62 k8 1509.7 1516.0 1499.5 295 893 386 1574

63 k10 1556.2 1411.1 1493.0 157 607 292 1056

63 k9 1834.5 1897.8 1840.8 343 317 712 1372

64 k9 1658.5 1626.5 1587.8 202 431 521 1154

65 k9 1319.7 1307.3 1293.2 137 1249 115 1501

69 k9 1254.5 1276.8 1291.3 616 452 552 1620

80 k10 2095.0 2057.7 2046.5 399 1002 693 2094

Average 295 361 385 1040

Table 4.1 Comparison of the three move selection criteria for the Augerat instances

4.4.2 Tardiness penalty choices

In order to evaluate the effects of varying delay penalty costs ti, we have conducted

experiments under four different cost settings, which are subsequently referred to as

‘P5’, ‘P10’, ‘Prob’ and ‘1.3dist’. In P5, we choose ti = 5, ∀i ∈ V \ {0} (which was

the choice also in Section ??), while P10 corresponds to ti = 10. Under setting Prop,

the delay cost for each customer equals the quantity ordered, so ti = qi, ∀i ∈ V \ {0},

which represents a situation where the delay penalty is proportional to the demand.

The final experimental setting, denoted by 1.3dist, puts ti equal to 5 for all customers,

similarly to P5, but all distances are now increased by 30%. In this way, there is less

slack time available, leading to less buffer time to be allocated and resulting in tighter

instances.
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Objective value CPU time

C1 C2 C3 C1 C2 C3 Total

R101 918.6 905.7 922.4 1773 3388 775 5936

R102 918.2 922.5 922.1 1724 1860 769 4353

R103 918.2 922.5 922.1 1734 1865 774 4373

R104 917.2 917.0 920.5 1737 3445 771 5953

R105 917.0 908.8 920.1 1722 2412 767 4901

R106 917.0 908.8 920.1 1743 2384 761 4888

R107 917.0 908.8 920.1 1752 2362 773 4887

R108 917.0 908.8 920.1 1765 2392 764 4921

R109 917.0 908.8 920.1 1728 2375 767 4870

R110 917.0 908.8 920.1 1730 2240 761 4731

R111 917.0 908.8 920.1 1717 2229 768 4714

R112 917.0 908.8 920.1 1743 2240 761 4744

C101 834.7 834.6 859.2 805 3209 1315 5329

C102 834.7 834.6 859.2 802 3181 1328 5311

C103 834.7 834.6 859.2 799 3210 1317 5326

C104 834.7 834.6 859.2 807 3271 1324 5402

C105 834.7 834.6 859.2 796 3308 1317 5421

C106 834.7 834.6 859.2 799 3296 1316 5411

C107 834.7 834.6 859.2 798 3211 1327 5336

C108 834.7 834.6 859.2 803 3187 1319 5309

C109 834.7 834.6 859.2 792 3198 1327 5317

RC101 1024.5 1013.2 1022.6 1198 1318 1071 3587

RC102 1024.5 1013.2 1022.6 1196 1318 1075 3589

RC103 1024.5 1013.4 1022.6 1195 1740 1121 4056

RC104 1024.5 1042.0 1022.6 1201 1026 1137 3364

RC105 1025.0 1013.6 1023.2 1195 1318 1093 3606

RC106 1024.5 1042.0 1022.6 1189 1024 1083 3296

RC107 1024.5 1042.0 1022.6 1209 1021 1090 3320

RC108 1024.5 1042.0 1022.6 1191 1023 1083 3297

Average 1298 2347 1029 4674

Table 4.2 Comparison of the three move selection criteria for the Solomon instances

Table ?? summarizes the results for the four experimental settings after running the

full tabu search procedure (with the three criteria combined). The left side of the

table shows the achieved target function values. M(Ci) denotes the number of times

(out of 27) that criterion Ci produces the best result; these values are presented in the

last three lines of the table. C3 performs best in more instances in all 4 experimental

setting. The best result for C3 is in P5. In total C2 and C3 perform best in 30 and

26 instances, respectively, when considering the all four experimental settings. The

fact that C3 takes accounts for buffer between customers its superior performance.

On average, the objective values for P10 are only 0.7% higher than P5. This means

that even doubling the customer delay penalty does not affect the final objective value

to a large extent. With varying penalties, as in the Prop setting, the values are not
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Set Objective Penalty ratio

P5 P10 Prop 1.3dist P5 P10 Prop 1.3dist

32 k5 955.4 961.7 956.6 1290.8 16.6% 17.1% 16.7% 18.5%

33 k5 716.6 716.9 716.5 998.7 6.3% 5.0% 6.3% 12.4%

33 k6 791.0 796.8 797.6 1066.9 5.0% 5.7% 5.8% 8.9%

34 k5 852.7 857.6 857.2 1190.6 7.0% 7.6% 7.6% 13.4%

36 k5 950.5 960.3 957.8 1285.6 13.5% 14.4% 14.2% 17.8%

37 k5 765.6 766.8 766.4 1101.0 10.9% 11.0% 11.0% 17.0%

37 k6 1069.0 1079.4 1079.3 1457.3 9.2% 9.6% 9.6% 13.3%

38 k5 822.6 824.3 824.0 1162.0 7.6% 7.8% 7.8% 15.2%

39 k5 957.5 971.6 969.4 1283.2 11.2% 11.6% 11.4% 15.3%

39 k6 952.7 957.8 953.4 1295.1 10.5% 11.0% 8.7% 16.0%

44 k6 1054.7 1059.6 1059.2 1489.6 8.8% 9.3% 9.2% 13.4%

45 k6 1078.0 1081.3 1066.1 1469.0 8.4% 8.6% 8.2% 12.7%

45 k7 1281.4 1298.3 1277.7 1713.5 7.7% 8.9% 8.5% 11.3%

46 k7 1008.7 1007.5 1009.4 1371.5 7.0% 6.9% 7.1% 10.6%

48 k7 1243.1 1244.1 1231.5 1662.6 10.2% 9.0% 8.2% 11.8%

53 k7 1165.3 1168.2 1167.1 1542.7 7.4% 7.6% 7.5% 11.7%

54 k7 1293.7 1302.2 1302.5 1799.6 7.6% 8.2% 8.2% 12.3%

55 k9 1132.2 1135.5 1136.8 1506.1 2.7% 2.9% 3.0% 5.1%

60 k9 1473.8 1482.7 1485.1 1980.8 5.5% 5.1% 6.2% 8.0%

61 k9 1177.3 1178.6 1178.5 1651.2 3.4% 3.6% 3.5% 6.6%

62 k8 1499.5 1505.7 1486.1 1986.3 9.4% 9.7% 8.7% 11.9%

63 k10 1411.1 1500.0 1501.2 1914.9 4.0% 4.1% 4.2% 6.8%

63 k9 1834.5 1847.7 1844.1 2472.9 8.5% 9.2% 9.0% 11.3%

64 k9 1587.8 1598.7 1597.1 2166.2 8.5% 9.1% 9.0% 11.3%

65 k9 1293.2 1295.3 1293.7 1720.5 3.0% 3.2% 3.1% 6.4%

69 k9 1254.5 1256.6 1256.7 1643.9 4.0% 4.1% 4.1% 6.4%

80 k10 2046.5 2061.4 2042.8 2756.5 9.9% 10.6% 9.1% 11.7%

Average penalty % 7.9% 8.2% 8.0% 11.7%

M(C1) 7 8 7 8

M(C2) 5 5 7 9

M(C3) 15 14 13 10

Table 4.3 Results for the Augerat instances with four different penalty settings

dramatically different either. For the case of 1.3dist, the average objective increase is

36.1% compared to P5, while the distances are raised by only 30%. This difference

can be explained by the fact that when distances rise, there is less buffer time to be

allocated and the solutions are more prone to suffer overtime and delay penalties.

The right part of Table ?? shows the ‘penalty ratio’, the proportion

∑

Rr∈Z

Θ(Rr)

F (Z)

of the total objective that corresponds to penalties. The average over all four

experimental sets is 9.0%. The lowest ratios are achieved for P5 and Prop, followed
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by P10, and the ratios for 1.3dist are by far the largest. We conclude that an increase

in the distances has a substantial impact on the delay penalties.

4.4.3 VRP-SITW versus VRP

The addition of SITW to the VRP can be expected to affect the distance traveled and

the number of vehicles used. To assess the effect, we compare the total distance in

VRP-SITW with the optimal VRP solutions (taken from ?). The details are provided

in Table ??. On average for P5 and P10 the additional distance is 3.3% and 3.7%,

respectively, which shows that, at least as far as distance minimization is concerned,

our heuristic solutions are rather close to optimality. For 1.3dist the VRP distances

are scaled by 1.3. The distance increase is not substantial for any of the sets.

Increase in distance

P5 P10 Prop 1.3 dist

32 k5 101.1% 101.1% 102.7% 101.1%

33 k5 101.3% 102.7% 101.6% 101.3%

33 k6 101.2% 101.2% 100.7% 101.2%

34 k5 101.5% 101.4% 101.5% 101.4%

36 k5 102.5% 102.5% 101.3% 102.5%

37 k5 101.4% 101.4% 104.5% 101.4%

37 k6 102.0% 102.5% 102.1% 102.5%

38 k5 103.5% 103.5% 103.3% 103.5%

39 k5 102.6% 103.7% 100.9% 103.7%

39 k6 102.3% 102.3% 100.5% 104.5%

44 k6 102.4% 102.4% 105.6% 102.4%

45 k6 104.6% 104.6% 104.5% 103.6%

45 k7 103.1% 103.1% 101.9% 101.9%

46 k7 102.1% 102.1% 102.7% 102.1%

48 k7 103.9% 105.4% 105.0% 105.2%

53 k7 106.5% 106.5% 103.4% 106.5%

54 k7 102.0% 102.0% 103.6% 102.0%

55 k9 102.6% 102.6% 102.4% 102.6%

60 k9 102.7% 103.8% 103.4% 102.7%

61 k9 109.4% 109.4% 114.2% 109.4%

62 k8 105.0% 105.0% 104.0% 104.9%

63 k10 103.1% 109.5% 104.5% 109.5%

63 k9 103.4% 103.4% 104.0% 103.4%

64 k9 103.7% 103.7% 105.6% 103.7%

65 k9 106.1% 106.1% 104.8% 106.1%

69 k9 103.3% 103.3% 101.5% 103.3%

80 k10 104.4% 104.4% 106.0% 105.1%

Average 103.3% 103.7% 103.5% 103.6%

Table 4.4 Comparison of VRP-SITW with optimal VRP solutions for the Augerat

instances



4.4 Computational experiments 85

4.4.4 VRP-SITW versus VRPTW

The goal of this section is to evaluate the benefits of the flexibility in setting time

windows compared to exogenously predetermined time windows. To this aim, we

work with 29 VRPTW instances from ?. We compare the results of the VRP-SITW

with the best-known solutions for the Solomon instances as reported in ?.

TF TS/TF KF KF −KS

∑
Rr∈Z Θ(Rr)/F (Z)

R101 1637.7 52.0% 20 12 6.3%

R102 1466.6 59.9% 18 10 4.5%

R103 1208.7 72.7% 14 6 4.5%

R104 971.5 89.7% 11 3 5.2%

R105 1355.3 63.5% 15 7 5.6%

R106 1251.98 68.7% 12 4 5.6%

R107 1064.6 80.8% 11 3 5.6%

R108 960.88 89.5% 9 1 5.6%

R109 1146.9 75.0% 13 5 5.6%

R110 1068 80.5% 12 4 5.6%

R111 1048.7 82.0% 12 4 5.6%

R112 982.14 87.6% 9 1 5.6%

C101 827.3 100.9% 10 0 0.0%

C102 827.3 100.9% 10 0 0.0%

C103 826.3 101.0% 10 0 0.0%

C104 822.9 101.4% 10 0 0.0%

C105 827.3 100.9% 10 0 0.0%

C106 827.3 100.9% 10 0 0.0%

C107 827.3 100.9% 10 0 0.0%

C108 827.3 100.9% 10 0 0.0%

C109 827.3 100.9% 10 0 0.0%

RC101 1619.8 61.9% 15 6 1.1%

RC102 1457.4 68.8% 14 5 1.1%

RC103 1258 79.4% 13 4 1.4%

RC104 1261.67 79.6% 11 2 1.7%

RC105 1513.7 66.2% 15 6 1.1%

RC106 1424.73 70.5% 11 2 1.7%

RC107 1207.8 83.2% 12 3 1.7%

Average 82.9% 2.7%

Table 4.5 Comparison of VRP-SITW with the best known VRPTW solutions for the

Solomon instances

Table ?? reports the results. For practical purposes we denote the travel time, which

is equivalent to the distance, by TF and TS for the VRPTW (which has fixed time

windows) and the VRP-SITW, respectively. The number of vehicles required in the

VRPTW is denoted by KF while the number of vehicles used by the VRP-SITW

solution is denoted by KS. The third column in Table ?? gives the ratio of the total

travel times between both solutions. We observe that the VRP-SITW substantially
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reduces the travel time for instances with tight time windows such as those in the R1

and RC1 sets. Sets C1, on the other hand, achieves zero penalty values, which can

be read from the last column of the table. We conclude that these instances have

quite unrestrictive time windows and exhibit a behavior similar to the VRP instances

studied in Section ??. In general the penalty component
∑

Rr∈Z Θ(Rr) comprised at

most 6.3 % of the total objective value.

The fifth column of Table ?? displays the number of vehicles saved in VRP-SITW

compared to VRPTW. A substantial reduction in the required number of vehicles is

observed in the R1 and RC1 sets. In set C1, however, no such reduction is achieved.

We conclude that those instances that are eligible for substantial reductions in travel

times present the same behavior with respect to the number of vehicles.

We ran the VRP-SITW given the initial number of vehicles set to KF , as reported

for the VRPTW sets. However, no additional vehicles were utilized, i. e., KS values

were similar to the ones reported in Table ??. Additional vehicles may improve upon∑
Rr∈Z Θ(Rr) yet may result in additional travel times. The fact that

∑
Rr∈Z Θ(Rr)

values are relatively small, 2.7% on average, explains the outcome of not making use

of additional vehicles. Thus, an additional vehicle maybe used if customer delay is

valued at a higher cost or when solutions are subject to larger disruptions.

4.5. Conclusions

In this chapter, we have analyzed the situation of carrier companies that face the

problem of making routing decisions combined with the quotation of arrival times

to their customers; we have referred to this setting by the term ‘Self-Imposed Time

Windows’ (SITW). In the context of vehicle routing, the resulting VRP-SITW extends

the VRP by the incorporation of customer specific service aspects, reflected in the

carrier company’s ability to uphold the time windows once they have been quoted in

a stochastic environment. In comparison with the VRP with exogenous time windows

(VRPTW), the customer service requirement is somewhat relaxed, in that the service

provider has ex ante flexibility in choosing a convenient time interval that will be

quoted.

Our solution approach is a hybrid algorithm that is comprised of two main

components: routing and scheduling. The routing component is handled via a tabu

search procedure, while scheduling is performed by solving an LP model that implicitly

inserts buffers into each route’s schedule.

We have compared the VRP to VRP-SITW under different choices for penalty

structures and distances. In our tests, the results indicate that the VRP-SITW
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requires an average increase of some 3.5% in distance. Further research might focus

on the impact of additional vehicles on the penalties.

Contrary to the VRP, we observe substantial differences on comparing VRPTW to

VRP-SITW. In most cases, the VRP-SITW requires significantly less distance and

uses far less vehicles. Clearly, the VRP-SITW benefits greatly from its flexibility in

setting the time windows. In our opinion, there is important potential in conducting

an in-depth study of various flexibility levels in choosing delivery windows. Such a

study can be beneficial, for instance, when negotiating service contracts. Another

extension might look into the setting where only a subset of customers have fixed

time windows. Furthermore, given some alterations the proposed model can also

accommodate driving breaks, by using the buffers for the breaks. The proposed

model establishes an a priori plan for a static environment. A major extension of

the model might incorporate the quotation of time windows for dynamically arriving

orders.

Investigating the added value of additional vehicles is a valid extension to the

VRP-SITW. Generally, additional vehicles will improve the ability to uphold SITW.

However, additional vehicles may increase travel times. This trade-off may be studied

along with attributing a fixed cost per vehicle.
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Chapter 5

Consistent Vehicle Routing

with Stochastic Customers

5.1. Introduction

The Vehicle Routing Problem (VRP) has been extensively studied for more than fifty

years (for a comprehensive literature survey see ?). In its core lies the objective of

minimizing operational cost, traditionally modeled by the sum of distances or travel

times. Incorporating customer service measures or restrictions to the VRP has been

an evolving research direction. One service aspect that has been recently introduced

is the notion of consistent service. In this context, ? defined consistency as having

the same driver visiting the same customers at roughly the same time on each day

that these customers require service. This definition stems from the needs expressed

by United Parcel Service (UPS), as providing consistent service is a tangible feature

in their operations.

Developing consistent routes is beneficial from an operational perspective, since it

increases driver familiarity with the regions he serves on a daily basis. From a

customer service standpoint, consistent service enables building real bonds with

customers. In the case of UPS, drivers have managed to increase sales by 60 million

packages per year ?. Furthermore, consistency preserves stability in the routes which

translates to less alterations in schedules, when compared to carrying out a full

optimization upon realization of customer demand.
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Several ways have been proposed in the literature to coupe with consistency. ?

examined assigning drivers to territories. In the context of the periodic vehicle routing

problem, ? treated three consistency measures. Driver consistency was defined

as minimizing the number of different drivers serving each customer. Customer

familiarity was treated as maximizing the number of times that a unique driver visits a

customer. Finally, region familiarity was also considered and measured by maximizing

the number of times that a driver repeatedly visits a region.

? treated driver consistency as an objective by maximizing the number of customers

who are serviced by the same driver, and who are in the vicinity of his master route.

Our model resembles most the one introduced by ?, where customers appear with

a certain probability and should be serviced by the same driver. Furthermore each

customer is to be visited within a time window.

The recent research, in the field of consistent vehicle routing, has been conducted

under the assumption of known customer occurrence for a number of days. Thus,

solution procedures are constructed accordingly in ? and ?. While ? proposed a

scenario-based stochastic programming heuristic. We consider the consistent vehicle

routing with stochastic customers (SConVRP), i. e., customers place orders with a

given probability. This relaxes the assumption of comprehensive periodic knowledge

of customer occurrence. Driver consistency is imposed by having the same driver

visiting the same customers when they place an order. Furthermore, we impose

temporal consistency by which customers are visited at the same time interval, as

much as possible, if they place an order. This is done by using Self-Imposed Time

windows (SITW), which in essence means that the carrier company decides on a time

window for visiting a customer and respects it as much as possible. The aim of this

paper is to define the SConVRP and propose an exact solution approach.

Driver consistency coupled with temporal consistency dictate using an a priori

solution approach. Hence, we adopt the 0-1 integer L-shaped algorithm (introduced

by ?) for solving the SConVRP. The vehicle assignment to customers and customer

service time windows are set in stage 1. In stage 2 the customer occurrences are

realized, the sequence set in stage 1 is executed, and penalties and travel times are

computed. The penalties are computed based on the deviations from the customers

time windows. Consequently, the recourse is the sum of penalties associated with

early and late arrivals as well as the total travelling time.

The rest of the paper is organized as follows. The model formulation is described

in Section ??. Section ?? details the implementation of the 0-1 integer L-shaped

algorithm. In Section ?? computational experiments are presented and directions for

future research are indicated. Finally, Section ?? highlights the main results.
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5.2. Model

We model the SConVRP using a two-index stochastic VRP formulation. Let G =

(V,E) define an undirected graph, where V = {v1, . . . , vn} is a set of vertices and

E = {(vi, vj) : vi, vj ∈ V, i < j} is a set of edges. Given the elements of set V , let

vertex v1 correspond to a depot, from which a fleet ofm vehicles are used to visit a set

of clients represented by vertices v2, . . . , vn. Associated with each edge (vi, vj) ∈ E,

let cij denote the travel time of visiting client j immediately after visiting client i. We

assume that these travel times are symmetric and that the triangle inequality holds

for all travel times. Let us also recall that client occurrences are stochastic in the

present model. Therefore, we consider that each client i (for 2 ≤ i ≤ n), requires a

visit according to a Bernoulli distribution with value pi (0 ≤ pi ≤ 1), defined here

as the probability of occurrence associated with client i. These random variables are

considered to be independent from one another. We define Ω as the set of possible

scenarios (or outcomes) associated with the occurrences for all customers. We also

denote by A a collection of random events defined according to Ω.

In our formulation, the a priori plan, that is established in the first stage, is made up

of the following: a series of m routes (i. e., one assigned to each available vehicle)

that visit all customers once and a set of self-imposed time windows quoted for

each customer. These time windows, which are communicated to the customers,

represent the expected arrival times of the vehicles whenever visits are requested. In

the second stage, a particular scenario ω ∈ Ω is observed and routes, as established

in the a priori plan, are executed. In this case, the recourse defines a cost, which

is comprised of penalties incurred for violating the established time windows as well

as the observed travel times of the routes. It should be noted that customers not

needing a visit are simply skipped when following the sequence defined by the routes.

Driver consistency is guaranteed here, given that customers are always visited by the

same vehicle assigned to them in the a priori plan. However, temporal consistency

might not be respected given that, in the second stage, vehicles are dispatched to

serve only the occurring customers. It is considered that a vehicle immediately starts

its service when it arrives at a customer’s location. Early or late arrivals are simply

penalized according to deviations from the quoted time windows established in the

first stage. In this chapter, deviations from the time windows are treated as a service

performance measure. However, time windows do not change the execution of a route.

Each vehicle is assumed to have enough capacity to serve all customers, thus customer

demands are irrelevant in our model. However, route duration constraints are imposed

on each vehicle to account for time restrictions on working shifts performed by drivers.

Therefore, in the first stage of the model, we impose that a given vehicle can travel

at most λ hours per route. In addition to making the model more realistic, these
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restrictions also ensure that the obtained routes are balanced. As for the overall

objective of the model, we define it as the minimization of the total expected cost

over the given a priori plan (i. e., the set ofm routes and the established time windows

for the customers). The total cost being represented here as the sum of both the total

travelling times of the vehicles and the total penalty costs, which will be clearly

formulated further on in this section.

The SConVRP model differs from the VRP-SITW model, presented in Chapter 4.

In the VRP-SITW model customers are fixed and travel times are stochastic, while

in SConVRP model travel times are fixed and customers are stochastic. Another

distinction between the two models is in the execution policy, in VRP-SITW, arriving

before a customer time window implies waiting. However, in SConVRP arriving before

the time window translates into a penalty. This allows for an independent treatment

of customers, as we will demonstrate in the remainder of this section.

We can now define the first stage decision variables as follows: let xij be equal to

one if client j is visited immediately after client i, and zero otherwise. It should be

noted that variables x1j can also take value two if a vehicle only visits client j on its

route. As for the self-imposed time windows, they are set in the following way: let ti
define a target arrival time for customer i (2 ≤ i ≤ n). Customer i is then quoted an

expected arrival time between [ti − w, ti + w], where w is the half width of the time

window.

Considering the stochastic parameters within the model (i. e., the occurrences of

customers), let ξ be a random vector containing all random Bernoulli variables

associated with vertices V \ {v1}. For each scenario ω ∈ Ω let ξ(ω)⊤ =

[ξ2(ω), . . . , ξn(ω)] be the corresponding scenario vector associated with ξ, where values

ξi(ω), for 2 ≤ i ≤ n, are defined as follows:

ξi(ω) =

{
1 if client i is present in ω ∈ Ω

0 otherwise

If T (x, ξ(ω)) is defined as the second stage cost, (i. e., operating the a priori plan

given that scenario ω ∈ Ω is observed in the second stage), then the SConVRP is

formulated as follows:

min
x
Q(x) = EξT (x, ξ(ω)) (5.1)
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subject to

n∑

j=2

x1j = 2m (5.2)

∑

i<k

xik +
∑

j>k

xkj = 2 k = 2, . . . , n (5.3)

∑

i,j∈S

xij ≤ |S| −
⌈ℓ(S+)

λ

⌉
S ⊂ V \ {v1}, 2 ≤ |S| ≤ n− 2 (5.4)

0 ≤ x1j ≤ 2 j = 2, . . . , n (5.5)

0 ≤ xij ≤ 1 2 ≤ i < j ≤ n (5.6)

xij integer 1 ≤ i < j ≤ n (5.7)

Similar to ?, where S+ = S ∪ {1}, the l(S+) values are defined as follows

ℓ(S+) =
∑

i,j∈S+⊂V

cijxij .

Constraints (??) and (??) are standard constraints, which define the degree of each

vertex. Constraints (??) prohibit disconnected subtours from the depot, as well

as, subtours having a total maximum length exceeding λ (i. e., the route duration

restriction). As for constraints (??), (??) and (??), they impose both non-negativity

and integrality requirements on all the first stage decisions variables.

In the previous model, one should note that the objective function (??) simply includes

the recourse function. No first stage cost is considered. Similar to what was is done

by ?, in order to obtain a more efficient implementation of the 0-1 integer L-shaped

algorithm (?), we opt to use the following alternative formulation:

min
x
c̃x+ Q̃(x) (5.8)

where c̃ij , ∀(vi, vj) ∈ E, is a lower bound on the expected travel times associated

with the edges of the graph. Considering that even though an edge (vi, vj) is part

of a given a priori route, it may still be skipped in the second stage for a particular

scenario. Accordingly, Q̃(x) is defined as:

Q̃(x) = Q(x)− c̃x

which makes the objective function (??) equivalent to the original one (??). The

lower bound c̃x is used here as a guideline to help the search in the first stage. To

obtain c̃x, we use the same technique as proposed by ?, let:

c̃1j = pjc1j j = 2, . . . , n (5.9)
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and

c̃ij = pipjcij +
1

2

{
pi(1− pj) min

k 6=i,j
cik + pj(1− pi) min

k 6=i,j
ckj

}
1 ≤ i (5.10)

If i = 1 the definition in Equation (??) is straightforward. If i > 1 the bound c̃ij takes

into account the four possibilities of presence or absence of vi and vj . If both vi and

vj are present and (vi, vj) appears in the first stage solution, this edge will be visited

with probability pipj . If only one of the two vertices is present the bound computes

the minimum expected travel time of entering or leaving that vertex. In order to

avoid double counting, the second term is multiplied by 1
2 . The term associated with

both vertices not being present, i.e, (1 − pi)(1 − pj), is zero.

Let us now define the recourse function Q(x) which, as previously mentioned, is

obtained by summing both the travel times and the total penalties associated with

early and late arrivals at customers. Before doing so, it should be noted that

penalties not only depend on the subset of customers needing service, they are also

determined according to the orientation on which a route is executed (i. e., arrival

times at customers are not the same for each orientation). Therefore, for each route

that is considered, an orientation is chosen a priori such as to minimize penalty

costs. In the case of traveling times, route orientation has no influence. Recall that

customers are visited according to the imposed sequence, considering that absentees

are simply skipped. Consequently, a vehicle ends its route at the depot at the same

time regardless of the orientation that is chosen.

Let Qr,δ denote the expected recourse cost corresponding to route r if the orientation

δ is chosen (where δ=1 or δ = 2), which is formulated as follows: Qr,δ = Qr
T +Qr,δ

P .

Function Qr
T represents the total average travel time for route r and Qr,δ

P defines

the total average penalties associated with time window deviations for route r if

orientation δ is chosen. Then, the recourse cost associated with a given feasible

solution can be explicitly formulated as follows:

Q(x) =

m∑

r=1

min{Qr,1, Qr,2}

Let us now present in detail how functions Qr
T and Qr,δ

P are computed. To obtain

function Qr,δ
P , we first consider that the penalty for arriving before the established

time window is proportional to the associated earliness. As for the penalty associated

with late arrivals, it is defined as the tardiness times a given penalty factor β (where

β is a real value such that β > 1). As previously mentioned, the recourse policy

that is used considers that upon arrival, regardless of whether on time, early or late,

the vehicle starts servicing customers. This assumption allows for an independent

treatment of each vertex on a given route.
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Given a route r, let us relabel the vertices on the route according to a given orientation

δ in the following way: (v1 = v1δr , v2δr , . . . , vtδr , v(t+1)δr
= v1). If one is considering

orientation δ for route r, let function φ(viδr ) define the minimum expected penalty

associated with customer viδr . One should note that the arrival time at a customer

is influenced by the presence or absence of its predecessors along the route. This is

dictated by the given route r and the chosen orientation δ. LetAiδr
define the collection

of random events where customer iδr requires a visit (i. e., Aiδr
= {ω ∈ Ω | ξiδr (ω) = 1}).

We can now define function Qr,δ
P as follows:

Qr,δ
P =

t+1∑

i=1

φ(viδr )

Where for a given route r and orientation δ, the total average penalty cost Qr,δ
P is the

sum of the minimum expected penalty associated with each customer viδr .

Function φ(viδr ) is computed by solving an appropriate LP model. To formulate this

model, let us define the following parameters:

• w half length of the time window

• β late arrival penalty

• pω probability associated with scenario ω ∈ Aiδr

• aiδr (ω) arrival time at viδr considering that scenario ω ∈ Aiδr
is observed

It should be noted that the starting time associated with route r is defined such as:

a11r(ω) = a12r(ω) = 0. Furthermore, considering that the total travel time of route r

is not dependent on the orientation, then we define arrival times at the end of route

r as follows: a(t+1)1r
(ω) = a(t+1)2r

(ω) = a(t+1)r (ω).

We note that the arrival time aiδr (ω), is computed according to the subset of customers

that are scheduled before viδr in route r following orientation δ and given a particular

scenario ω. Therefore, considering that vehicles start their service upon arrival at a

customer’s location, the value aiδr (ω) is simply obtained by summing the travel times

between customers along route r following orientation δ and taking into account that

present customers are defined according to the observed scenario ω ∈ Aiδr
.

We also define the following variables:

• tδir target arrival at viδr

• lδir (ω) tardiness at viδr considering that scenario ω ∈ Aiδr
is observed
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• eδir (ω) earliness at viδr considering that scenario ω ∈ Aiδr
is observed

Clearly, targets are dependent on the orientation that is considered. Furthermore,

both recourse decisions for tardiness and earliness also vary according to the

orientation.

The LP formulation can now be expressed as follows:

φ(viδr ) = min
∑

ω∈A
iδr

pω(e
δ
ir (ω) + βlδir (ω)) (5.11)

subject to

[tδir − w] − aiδr (ω) ≤ eδir(ω) ∀ω ∈ Aiδr
(5.12)

aiδr (ω)− [tδir + w] ≤ lδir (ω)) ∀ω ∈ Aiδr
(5.13)

0 ≤ eδir(ω) ∀ω ∈ Aiδr
(5.14)

0 ≤ lδir (ω) ∀ω ∈ Aiδr
(5.15)

0 ≤ tiδr (5.16)

Through the computation of φ(viδ
k
) in (??), one fixes the decision variables tδir , which

define the target value for viδr . As previously stated, these targets are presumed to be

in the middle of a time window of length 2w which is communicated to the customer.

The value obtained for φ(viδ
k
) is a weighted sum of deviations from the established

targets. Constraints (??) and (??) ensure that both earliness and tardiness from the

windows are attributed to eik(ω) and lik(ω) respectively. Constraints (??) and (??)

guarantee that for each ω tardiness and earliness cannot have negative values.

We now conclude this section by defining how to compute Qr
T (i. e., the total average

traveling time for route r). Considering the no-wait assumption, i. e., a vehicle

immediately starts to service a customer when it arrives at the customer’s location,

Qr
T is simply measured by computing the following weighted sum:

Qr
T =

∑

ω∈Ω

pωatr+1(ω)

which defines the expected arrival time of a vehicle at the depot at the end of route

r.

5.3. Solution Methodology

We propose to solve problem (??)-(??) using the 0-1 integer L-Shaped algorithm

developed by ?, which is used to solve two stage stochastic programming problems
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with binary first stage and integer recourse. The proposed algorithm is based on the L-

shaped method proposed by ? for continues problems and on Benders decomposition

(?). The algorithm follows a branch-and-cut solution strategy that solves at each node

of the search tree a relaxed model referred to as the current problem (CP). The CP

model is initially obtained from (??)-(??) by relaxing the integrality constraints (??),

the subtour elimination and route duration constraints (??), and by approximating

the recourse functionQ(x) by a valid lower bound defined by Θ. The general algorithm

can now be described as follows (we adopt here the notation used by ?):

Step 0 Set iteration counter ν := 0 and introduce Θ ≥ L to the CP. Set the value of

the best known solution z̄ := +∞. The only pendent node is the initial CP.

Step 1 Select a pendent node from the list. If none exists stop.

Step 2 Set ν := ν + 1 and solve CP. Let (xν ,Θν) be the optimal solution obtained.

Step 3 Check for any violated constraints of type (??). At this stage, valid

inequalities or lower bounding functionals may also be generated. If a violated

constraint is found add it to the CP and Return to Step 2. Otherwise, if

cxν +Θν ≥ z̄, fathom the current node and return to Step 1.

Step 4 If the solution is not integer then branch on a fractional variable. Append

corresponding subproblems to the list of pendent nodes and return to Step 1.

Step 5 Compute Q(xν) and set zν := cxν +Q(xν). If zν < z̄ then z̄ = zν .

Step 6 If Θν ≥ Q(xν), then fathom the current node and return to Step 1. Otherwise

add an optimality cut defined as:
∑

1<i<j
xν
ij=1

xij ≤
∑

1<i<j

xνij − 1

and go to Step 2.

There are two important components within the previous algorithm that have to be

clearly defined. The first relates to how the general lower bound L is computed.

The strategy that is proposed is developed in subsection ??. The second component

directly concerns how Step 2 of the algorithm is performed. In this step, a search for

violated constraints is performed such as to cut, if possible, the considered solution

(xν ,Θν). There are two types of cuts that can be added at this point, either subtour

and duration constraints, which enforce feasibility of the routes in the first stage, or

lower bounding functionals, which improve the obtained value for Θ. In subsection ??

we define the separation strategies that are proposed for each of the valid inequalities

used.
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5.3.1 Lower Bound

The general lower bound L is comprised of two components: a general lower bound

on the penalties and a general lower bound on the traveling times. The general lower

bound on the penalties QP (L), is presented in subsection ??, it is constructed by

defining a valid lower bound for the penalty associated with each customer. The

general lower bound on the traveling times QT (L) is presented in subsection ??, it is

established by defining a modified problem which constitutes a lower bound on the

traveling times, when compared to the original problem.

5.3.2 Lower Bound on the penalties

The general lower bound on the penalties is constructed in two main steps. First,

we present the penalties associated with the first customer scheduled after the depot.

Then we bound the penalties associated with the second customer scheduled after the

depot. We show that the bound, established for the second scheduled customer, is a

valid lower bound for each customer subsequent to the second. Finally, the general

lower bound is constructed by combining the bounds.

Given any route r with orientation δ, the penalty associated with the customer

scheduled immediately after the depot (v2δr ) is zero, i. e., φ(viδ
2
) = 0. This can be

explained by the fact the arrival time at v2δr is unaffected by other customers, i. e.,

a2δr(ω) = c1,2δr for all ω ∈ A2δr
. Thus, setting the target tδ2r at v2δr to c1,2δr results in

φ(viδ
2
) = 0.

The arrival time at customer v3δr is influenced solely by its preceding customer v2δr .

Thus, the arrival time at v3δr can be expressed by conditioning on the existence of v2δr ,

as follows:

a3δr (ω) =

{
c1,2δr + c2δr,3δr if client v2δr is present in ω ∈ A3δr

c1,3δr if client v2δr is not present in ω ∈ A3δr

If w > c1,2δr + c2δr,3δr setting the tδ3r to zero would result in φ(v3δr ) = 0. Furthermore,

if c1,3δr + w > c1,2δr + c2δr,3δr − w, then 2w > c1,2δr + c2δr ,3δr − c1,3δr . Thus, setting t
δ
3r to

any value in the interval [c1,3δr + w, c1,2δr + c2δr,3δr − w], would result in φ(v3δr ) = 0.

For all other cases the following holds:

c1,3δr + w ≤ tδ3r ≤ c1,2δr + c2δr ,3δr − w
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We rewrite φ(v3δr ) as follows:

φ(v3δr ) = min
tδ
3r

[
p2δrβ[c1,2δr + c3δr ,2δr − tδ3r − w]+ + q2δr [t

δ
3r − w − c1,3δr ]

+
]

As β > 1, φ(v3δr ) is decreasing with tδ3r . Thus, φ(v3δr ) is minimized for tδ3r = c1,2δr +

c3δr,2δr −w and φ(v3δr ) = q2δr [t
δ
3r −w−c1,3δr ]

+. Next, we establish a general lower bound

on φ(v3δr ).

Proposition 5.1 Let q̃ = min
∀i∈C

(1− pi), and let ρ be:

ρ = min
∀i6=j,i,j>1

c1i + cij − c1j

Define φ̃ = q̃[ρ− 2w]+. Then φ̃ ≤ φ(v3δr ).

Proof:

φ(v3δr ) = q2δr [t
δ
3r − w − c1,3δr ]

+

= q2δr [c1,2δr + c3δr,2δr − c1,3δr − 2w]+

≥ q̃[c1,2δr + c3δr,2δr − c1,3δr − 2w]+

≥ q̃[ρ− 2w]+ = φ̃

2

Next, we show that φ̃ is a valid lower bound, on the penalties, for any customer

subsequent to the second scheduled customer.

Proposition 5.2 For all routes r and orientations δ, denoted by

(v1 = v1δr , v2δr , . . . , vtδr , v(t+1)δr
= v1),

there holds the lower bound

φ(vkδ
r
) ≥ φ̃, ∀ k = 3, . . . , t+ 1.

Proof: For sake of notation, we drop the indexes r and δ throughout the proof.

Let Ak be the collection of random events where customer k requires a visit and let

Ac
k = Ω\Ak be the complement of Ak in Ω. Referring to definition (??), let

fk(ω) = ek(ω) + βlk(ω).
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We remark that the minimization occurring in the computation of φ(vk) in this proof,

is always subject to constraints (??)-(??). For all k > 3 we compute

φ(vk) = min
∑

ω∈Ak

pωfk(ω)

= min





∑

ω∈Ak∩Ak−2

pωfk(ω) +
∑

ω∈Ak∩Ac
k−2

pωfk(ω)






≥ min
∑

ω∈Ak∩Ak−2

pωfk(ω) + min
∑

ω∈Ak∩Ac
k−2

pωfk(ω).

We want to prove that the last line is bounded from below by φ̃. We proceed in two

steps.

Step I. First we prove that for all k > 3

Φ1 = min
∑

ω∈Ak∩Ak−2

pωfk(ω) ≥ pk−2φ̃. (5.17)

As in the proof of Proposition ??,

Φ1 = min
t
pk−2

[
qk−1

(
ak−2(ω) + c(k−2)k − (t− w)

)−

+βpk−1

(
ak−2(ω) + c(k−2)(k−1) + c(k−1)k − (t+ w)

)+]
.

The expression is minimized by t = ak−2(ω)+ c(k−2)(k−1)+ c(k−1)k−w. Substituting,

we get

Φ1 = pk−2qk−1

[
c(k−2)(k−1) + c(k−1)k − c(k−2)k − 2w

]+
≥ pk−2q̃[ρ− 2w]+ = pk−2φ̃.

Step II. Now we prove that

Φ2 = min
∑

ω∈Ak∩Ac
k−2

pωfk(ω) ≥ qk−2φ̃. (5.18)

For all k > 3 define the sets

Bi = Ak ∩




k−2⋂

j=i

Ac
j



 , i = 2, . . . , k − 2,

so that (??) can be written as

min
∑

ω∈Bk−2

pωfk(ω) ≥ qk−2φ̃ for all k > 3.
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We proceed by induction on the index i. We claim that for all k > 3

min
∑

ω∈Bi

pωfk(ω) ≥ φ̃

k−2∏

j=i

qj for all i = 2, . . . , k − 2.

First we prove the induction basis (i = 2):

min
∑

ω∈B2

pωfk(ω) ≥ min
t

k−2∏

j=2

qj

[
qk−1

(
c1k − (t− w)

)−

+βpk−1

(
c1(k−1) + c(k−1)k − (t+ w)

)+]

≥

k−2∏

j=2

qj [ρ− 2w]+qk−1 ≥ φ̃

k−2∏

j=2

qj .

Then, assuming

min
∑

ω∈Bi

pωfk(ω) ≥ φ̃
k−2∏

j=i

qj ,

we prove the induction step, i. e., that the claim for i implies the claim for i+1. Note

that, by definition, Bi = Bi+1 ∩A
c
i .

min
∑

ω∈Bi+1

pωfk(ω) = min




∑

ω∈Bi+1∩Ai

pωfk(ω) +
∑

ω∈Bi+1∩Ac
i

pωfk(ω)




≥ pi

k−2∏

j=i+1

qj min
t

[
qk−1

(
ai(ω) + cik − (t− w)

)−

+βpk−1

(
ai(ω) + ci(k−1) + c(k−1)k − (t+ w)

)+]

+min
∑

ω∈Bi

pωfk(ω)

≥ pi

k−2∏

j=i+1

qj [ρ− 2w]+qk−1 + φ̃

k−2∏

j=i

qj

≥ piφ̃

k−2∏

j=i+1

qj + qiφ̃

k−2∏

j=i+1

qj = φ̃

k−2∏

j=i+1

qj .

This concludes the proof of Step II. Inequalities (??) and (??) yield the proof of

Proposition ??. 2
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Note that the penalty on customer v2δr , φ(v2δr ), is zero. Given n customers and m

vehicles, under the problem definition in (??)-(??) each route contains at least a single

customer. Thus, form customers the penalty value will be zero. Proposition ?? shows

that for each customer vkδ
r
such that k ≥ 3 the following holds: φ(vkδ

r
) ≥ φ̃. There

are at least n −m − 1 customers who are not direct successors of the depot. Thus,

the general lower bound for the penalties QP (L) is presented

QP (L) = (n−m− 1)φ̃

5.3.3 Lower Bound on the traveling times

The general lower bound on the travel times is constructed by defining a modified

problem to the one presented in (??)-(??). Essentially, in the modified problem the

distances between every two nodes are presumed equal, for all nodes in the graph.

Furthermore, a unique probability of occurrence is assumed for each customer. The

fact that distances and probabilities are equivalent for each customer enables a more

generalized treatment.

The modified problem is obtained as follows: let us first define the minimum travel

time between vertices in the graph G(V,E) as l, where l = min
∀i6=j

cij . Let us now assume

that all traveling times, defined for all (vi, vj) ∈ E, are set equal to l. Furthermore,

let the probability of occurrence for each customer be fixed to p̃, where p̃ = min
∀i∈C

pi;

and let the probability of a customer not needing service be set to q̃ = 1− p̃.

For route r, let Qr
T (L) represent the total average travel time in the modified problem.

Considering p̃ as probability of occurrence will result in lowering the expected travel

times, when compared to the original problem. This, coupled with the fact that all

traveling times are set to l, establishes that Qr
T (L) < Qr

T ∀r.

Qr
T (L) solely depends on the number of customers allocated to the given route r

comprised of (v1 = v1r , v2r , . . . , vtr , v(t+1)r = v1). In this modified version of the

problem, the expected route length up to tr is binomially distributed with tr and p̃.

Thus, the expected route length can be bounded by (tr)p̃l. As such we do not consider

one extra distance l to be traversed for each scenario where at least one customer is

present. Furthermore, we note that the scenario by which all customers in r are not

present has a travel time of zero (not one). Equation (??) provides this expected

route length.

Qr
T (L) = (tr)p̃l (5.19)
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From Equation(??) it is evident that the expected travel times, for any allocation of

n− 1 customers to m vehicles, yields similar total travel time. Accordingly the lower

bound on the total travelling time can be computed as follows:

QT (L) = (n− 1)p̃l

Putting both lower bounds for the penalty and travelling time together we conclude

that:

L = (n− 1)p̃l + (n−m− 1)φ̃

5.3.4 Feasibility Cuts and Lower Bounding Functionals

In this section we start by discussing feasibility cuts, for which we adapted a separation

procedure from the capacitated VRP literature to fit the route duration constraints.

Later we present the lower bounding functional that is a tailored cut for Θ.

Checking violated constraints of type ?? requires the computation of:

ℓ(S+) =
∑

i,j∈S+⊂V

cijxij

The term
⌈
ℓ(S+)

λ

⌉
denotes the number of vehicles required to visit customers in S

corresponding to a specific solution at hand, we recall that S+ = S ∪ {1}. A more

general approach is to bound the required number of vehicles needed to serve S

irrespectively of the specific solution. LetH(S+) be the solution value to the travelling

salesman problem (TSP) over S+. Due to the triangle inequality,
⌈
H(S+)

λ

⌉
is a lower

bound on the number of vehicles required for servicing S. Thus we use
⌈
H(S+)

λ

⌉
for

the separation procedure. This is equivalent to the use of rounded capacity constraints

RCC in the capacitated VRP. Thus, we call them rounded duration constraints RDC.

For the problem at hand we adapted the connected components heuristic separation

procedure proposed by ?. The heuristic computes connected components S1, ..., Sp.

The RDC are checked for each S+
i as well as V \Si. Finally, the RDC for the union of

those components which are not connected to the depot is checked. Similar heuristics

based on connected components are used in ?. Contrary to RCC, integer solutions

are checked by computing the corresponding ℓ(S+), as the H(S+) value in this case

is not guaranteed to find violated constraints.

Next we construct a lower bounding functional LBF on Q(x) via partial routes as

introduced by ?. A partial route h is specified by two ordered sets of vertices Sh =
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{v1, ..vsh} and Th = {v1, ..vth} satisfying Sh ∩ Th = {v1}. A third set Uh satisfies

Sh ∩ Uh = {vsh} and Th ∩ Uh = {vth}. We denote (vi, vj) ∈ Sh or Th if vi and vj
are consecutive in Sh or Th. The partial route h is comprised of two chains and some

unrestricted vertex set Uh. Essentially these bounds make use of the information from

the partial route.

In the context of our problem, given the partial route h based on a specific orientation

δ, we bound Qh,δ. Assuming an orientation, the partial route is comprised of three

main elements. A sequenced chain, followed by an unrestricted vertex set followed

by a sequenced chain. We bound each of these elements, in terms of penalties and

travelling time, and later we add these bounds to produce a valid lower bound on

Qh,δ. First, we discuss the computation of the penalty competent for each of the

three elements in h, later we discuss the bound on the traveling time.

We define P δ
h as the lower bound forQh,δ. A partial route h with orientation δ consists

of a beginning chain (v1 = v1δ
h
, v2δ

h
, . . . , vsδ

h
), followed by Ũh = Uh \{vsh , vth}. Finally

the partial route ends with the chain (vtδ
h
, vt−1δ

h
, . . . , v1δ

h
). The bound for partial route

h is defined as follows:

Ph = min{P 1
h , P

2
h}

Given the chain (v1 = v1δ
h
, v2δ

h
, . . . , vsδ

h
), we define the penalties associated with this

chain by QSh,δ
P . Since this chain is virtually unaffected by Uh the computation of

QSh,δ
P is done in an exact as manner as in Section ??. This is denoted by:

QSh,δ
P =

sδh∑

i=1

φ(viδr ) (5.20)

We remark that the minimization occurring in the computation of φ(viδr ) in this

section, is always subject to constraints (??)-(??).

The penalties associated with Ũh are related to having the chain (v1 = v1δ
h
, v2δ

h
, . . . , vsδ

h
)

as a predecessor. The bound on the penalty costs for Ũh is denoted by Bδ
P (Uh)

. This

bound is constructed by considering that vsδ
h
is present. By considering scenarios

where vsδ
h
is present, we account only for a subset of the scenarios, whose associated

penalty is at least φ(vsδ
h
). Under this assumption the penalty of each vertex in Ũh is

bounded by psδ
h
φ(vsδ

h
). Thus, the Bδ

P (Uh)
is computed as follows:

Bδ
P (Uh)

= |Ũh|psδ
h
φ(vsδ

h
) (5.21)
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As for bounding the penalties associated with the chain (vtδ
h
, vt−1δ

h
, . . . , v1δ

h
), we denote

the number of customer vertices in (vtδ
h
, vt−1δ

h
, . . . , v1δ

h
) by |Th|. Similar to Bδ

P (Uh)
,

the bound Bδ
P (Th)

is constructed by considering that vsδ
h
is present. Thus, the penalty

in (vtδ
h
, vt−1δ

h
, . . . , v1δ

h
) is bounded by psδ

h
φ(vsδ

h
).

Bδ
P (Th)

= |Th|psδ
h
φ(vsδ

h
) (5.22)

The lower bound on the travelling time is constructed by concepts similar to those

used for QT (L) in section ??. We modify the distances and probabilities from the

original problem in order to achieve the bound. In what follows we elaborate on these

modifications.

Let the distance between each vertex in Ũh and each vertex in Sδ
h be the following:

lδSh
= min

∀i∈Sδ
h
j∈Ũh

cij

Furthermore, let the probability of occurrence for each customer in Ũh be fixed to p̃,

where:

p̃ = min
∀i∈Ũh

pi

Let the probablity of a customer in Ũh not needing service be set to q̃, where q̃ = 1− p̃.

Let the distance between each vertex in Ũh be the following:

lŨh
= min

∀i,j∈Ũh;i6=j
cij

Finally, let the distance between each vertex in Ũh and each vertex in T δ
h be the

following:

lδTh
= min

∀i∈T δ
h
j∈Ũh

cij

Let the aforementioned modifications define the route r̂δ which is similar to the partial

route h only with sequenced nodes in Ũh. Clearly, the travelling time in r̂δ is a lower

bound on the travelling time of h. We define the bound on the total travel time as

BT (r̂) and it is expressed in Equation ??.

BT (r̂) =
∑

ω∈Ω

pωatr̂+1(ω) (5.23)
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Putting together the values from Equations (??) - (??) defines P δ
h a follows:

P δ
h = QSh,δ

P +Bδ
P (Uh)

+Bδ
P (Th)

+BT (r̂)

Let Rh = Sh ∪ Th ∪ Uh, x = (xij) and

Wh(x) =
∑

(vi,vj)∈Sh

xij +
∑

(vi,vj)∈Th

xij +
∑

(vi,vj)∈Uh

xij − |Rh|+ 1

Given r partial routes, let Pr+1 be a lower bound for Q(x) for m− r routes involving

customers V \∪r
h=1Rh. Let P =

∑r+1
h=1 Ph and L be the general lower bound. Similar

to ? constraint (??) is a valid inequality for SConVRP.

Θ ≤ L+ (P + L)

(
r∑

h=1

Wh(x)− r + 1

)
(5.24)

We note that in our implementation Pr+1 is computed in a similar fashion as L, while

accounting only for V \ ∪r
h=1Rh customers.

We conclude this section by explaining how these valid inequalities are generated.

In step 3 of the 0-1 integer L-Shaped algorithm presented, we start by searching for

violated subtour elimination and route duration constraints. This is done by adapting

the CVRPSEP (?) package while using a dynamic programming algorithm for solving

the TSP. These cuts are added as long as violated constrains are found. When this

heuristic fails, the separation continues by finding violated inequalities of type (??).

5.4. Experiments

To test SConVRP a number of test problems were generated. The problems were

generated based on the same principles as in ?. Namely, vertices were generated in

[0, 100]2 following a uniform distribution. The customer probability of occurence was

randomly set to one out of [0.6, 0.75, 0.9]. The branching procedure was based on

the package proposed by ?. The experiments were performed on a 2.4 GHz AMD

Operton 64 bit processor.

We conducted experiments on 16 data sets. The number of nodes N was set either to

15 or 20. λ ( the route duration restriction) was set to 180. The penalty parameter β

was set to 2 and w was set to 20. For the sets with 15 nodes the number of vehicles

m was set to 3, while for the sets with 20 nodes the number of vehicles m was set
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to 4. The CPU limit was set to 1800 seconds. The stopping optimality gap for the

algorithm was 1%.

Set N
Initial

integer

Gap with

Initial integer

c̃x / Best

integer
Final Gap

Run time

(sec)

1 15 342.2 8.4% 110% <1% 74

2 15 453.3 11.6% 113% <1% 189

3 15 383.1 7.1% 123% <1% 15

4 15 485.0 14.7% 120% <1% 173

5 15 461.5 5.9% 138% <1% 8

6 15 356.5 14.2% 114% <1% 102

7 15 323.3 9.8% 136% <1% 90

8 15 442.8 11% 104% <1% 44

9 20 497.0 4% 134% <1% 185

10 20 591.8 4% 126% <1% 91

11 20 545.8 9% 119% <1% 1670

12 20 409.5 6% 134% <1% 1914

13 20 505.2 14% 112% 3.46% 1800

14 20 557.4 3% 130% <1% 222

15 20 516.7 16% 127% 3.58 % 1800

16 20 466.4 6% 133% 2.97 % 1800

Table 5.1 SConVRP results

Table ?? summarizes the results. In 13 out of the 16 cases the algorithm reached an

optimality gap of less than 1%. A substantial difference in running times is observed

between sets with 15 nodes as opposed to sets with 20 nodes. Sets with 15 nodes

ran at most 189 seconds, while sets with 20 nodes required more computation time.

Nonetheless, all sets achieved an optimality gap of less than 3.6%. For the problem

at hand these computation times are affordable, since the a priori plan is expected

to serve the daily carrier operations for a long period.

The fifth column reports the gap between the lower bound used in the first stage

(c̃x) and the best integer solution. We note that the gaps are relatively high, this is

correlated with the run times. Thus, improving the first stage bound will improve the

performance of the algorithm.

We note that assuming fully stochastic customers, as is done in this paper, results

in extremely difficult problems. It is reasonable that in a realistic setting only a

subset of customers are stochastic, meaning that some customers request service on

a daily basis while others do not. Thus, if only a subset of customers were presumed

stochastic much larger instances may be solved. Furthermore, our solution approach

considers all scenarios with respect to the presence and absence of customers. Larger

sets might be solved by sampling approaches.
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To our knowledge ? were the only ones who developed separation procedures

for route duration constraints. We have adapted a single separation for these

constraints, developing additional separation procedures will yield better results.

Finally, improving the bounds proposed in sections Sections ?? and ?? will enhance

the results.

5.5. Conclusions

We have proposed a stochastic programming formulation for the SConVRP. The

consistent VRP was recently identified as a focal problem in the parcel delivery

industry. Two main dimensions of consistency are identified in the literature, driver

and temporal consistency. Our formulation handles both these dimensions. In our

solution approach, driver consistency is preserved while deviations from temporal

consistency are penalized.

We developed an exact solution approach for SConVRP. We adopted the 0-1 integer

L-shaped algorithm as a solution method. This included defining a general lower

bound as well as LBFs. The algorithm was tested on a number of small sized instance

(15 to 20 customers). The results indicate that our solution method was successful

in solving most test instances. These problems can be used as benchmarks for future

research.
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Chapter 6

Conclusions

The VRP is central to the operations of most carrier companies. Increasing demand

for distribution services, coupled with the need to maintain high customer service,

pose significant challenges for these companies. One of the main challenges is to

balance operational costs and customer service, while the former is rather explicit to

assess, the latter is more involved.

The uncertainties encountered by carrier contribute to increased complexity in making

routing decisions. When necessary, uncertainties should be taken into account to

ensure sound decisions. These uncertainties may result in substantially diverse routing

policies. To address uncertainty, this thesis adopts an a priori approach. In particular,

solutions are established in the beginning of the planning period and are not re-

optimized in accordance with random events. The impact of a random occurrence is

estimated in terms of the additional cost it imposes on the solution.

Transportation of goods is key to society. However, there are many undesirable

side effects to consider. These include increasing emissions, traffic congestion, and

noise levels. Moreover, the transport sector is subject to exogenous constraints, e. g.,

speed limits. Such constraints, might come in the form of governmental, regional,

or municipal regulations. Carrier companies need to obey to current regulations and

prepare themselves for future ones to come. On the other hand, carrier companies

may choose to consider these aspect in their operations planning as part of a social

responsibility agenda. In certain situations, considering such societal aspects in the

operations planning may lead to profitability. In this thesis we analyze the impact of

incorporating CO2 emissions in a number of VRP settings, we demonstrate situations

where reducing CO2 does not contradict with cost minimization.
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In this thesis, we studied four different variants of the VRP. We focused on two distinct

dimensions, time and timing. Time-dependent travel time regularly appears in road

networks in the form of congestion. Thus, a more realistic estimate of travel time

calls for the inclusion of time-dependent travel times. This enables a more enhanced

estimation of travel times and of their associated costs.

The inclusion of time-dependent travel times imposes a number of additional elements

to the routing problem. The question of which vehicle speed minimizes CO2 emissions

is trivial in a time independent setting. However, considering time-dependent travel

times, we showed that the optimal speed could be higher, when compared to its VRP

counterpart, in order to avoid congestion. We considered disruptions in customer

service times. Again, this question is trivial in a time-independent setting as the

optimal solution will not cease to be so if disrupted. However, in a time-dependent

environment disruption might substantially influence the performance of the solution.

This influence is manifested by the fact that if a disruption occurs in congestion

periods, it may cause a vehicle to eventually depart from a customer location in a

non-congested period. Thus, the impact of a disruption on travel may be less than

the disruption value itself.

In the context of timing in VRP, this thesis introduces SITW (Self-Imposed Time

Windows). This is observed in the operations of a number of companies. SITW

relate to situation where a time window is communicated to the customer by the

carrier. Violations of these windows are penalized. Determining SITW, i. e., the

timing of arrivals at customers, is an interesting question in a stochastic environment.

The importance of SITW lies in TW being part of the routing decisions. As such, the

VRP-SITW can be viewed as an extension of the VRP to include a customer service

perspective. Furthermore, the VRP-SITW can be viewed as a relaxed version of

VRPTW, where in the latter time windows are exogenous constraints on the routing

problem.

First, we introduce the VRP-SITW where disruptions in travel times are considered.

We propose coping with such disruptions by inserting buffers between arrival times.

For the presented experimental settings, we showed that from a total travel time

perspective the VRP-SITW does not entail substantial increases when compared to

the VRP.

We integrate SITW to a newly introduced customer service perspective, the Con-

sistent VRP. The definition of consistency stems from the needs expressed by UPS.

According to this definition, consistency is having the same driver visiting the same

customers at roughly the same time on each day that these customers require service.

SITW were used to maintain this temporal consistency. We consider stochastic

customers, i. e., customers which may, or may not, be present at a given day. In
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this setting, SITW played a crucial role in the long term consistent customer service

aspect.

The remainder of this chapter is organized as follows, in section ?? we discuss the

main conclusions from Chapters 2-5. In Section ?? we summarize directions for future

research.

6.1. Discussion

Incorporating time and timing in realistic aspects of the VRP is the overall main

contribution of this thesis. Within the broad title of time and timing we have

identified a number of realistic problems and embedded them in a VRP framework.

We presented models for each of these problems and developed both heuristic and

exact solution procedures. We analyzed the resulting solutions, compared them to

standard solutions, and derived insights where possible.

In Chapters 3-5 we considered three types of uncertainties. In Chapter 3 stochastic

service times was addressed. In Chapter 4 a form of stochasticity in travel times was

modeled. Finally, in Chapter 5 stochastic customers were considered.

Chapter 2 studied the TDVRP in conjuncture with CO2 emissions. We presented

a model that considers travel time, fuel, and CO2 emission costs. Specifically, we

proposed a framework for modeling CO2 emissions in a time-dependent VRP context

(E-TDVRP). Since there is a clear correlation between vehicle speed and the amount

of CO2 emissions, the vehicle speed limit was considered as a decision variable. The

CO2 emissions were derived as a function of speed, the function used had a unique

speed at which the level of CO2 emissions per kilometer is minimized. Different speed

limits affected both travel time and CO2 emissions. Lowering vehicle speed led to

increasing total travel time. However, the impact of lowering vehicle speed on CO2

emissions was less straightforward, as it implied spending more time in congestion,

which resulted in high emissions. Thus, all performed experiments indicated that

from a CO2 emissions standpoint it is better to set vehicle speed higher than the

speed which minimizes emissions per kilometer.

CO2 emissions are weighed against the traditional travel time cost. Considering

a vehicle speed limit of 90 km/hr in the TDVRP, our experiments showed that an

average reduction of 11.4% in CO2 emissions can be achieved. However, this reduction

increased travel times by an average of 17.7%. Considering the speed limit of 80

km/hr, the trade-off was less substantial, since an average increase of 6.6% in travel

achieved a reduction of 3.2%in CO2 emissions.
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The other important contribution lies in incorporating fuel costs in the optimization.

As fuel costs are correlated with CO2 emissions, Chapter 2 shows that even in today’s

cost structure limiting vehicle speeds is beneficial. For a number of situations, we show

that limiting vehicle speeds is desired from a total cost perspective. This namely stems

from the trade-off between fuel and travel time costs. In all presented experiments,

the resulting speed limit was less than 90 km/hr.

Considering time-dependent travel times, Chapter 3 dealt with the perturbed

TDVRP (P-TDVRP). Delays at customer locations were modeled as disruptions or

perturbations. The optimization used a standard tabu search algorithm and altered

the evaluation of solutions to include the expected travel time under disruption.

Comparing the trade-off between P-TDVRP and TDVRP solutions, we showed that

in more than half of the 108 experimental instances the trade-off was positive. This

implies that the benefits of using the P-TDVRP outweighed the additional travel time

required by these solutions, in comparison to the TDVRP solutions.

In Chapter 3, we elaborated on the absorption effect (AE). It is calculated as the

difference between the perceived perturbed travel time and the actual travel time.

We showed that positive AE happens in situations where service time disruptions

occur in congestion periods. In this case, the actual departure time from a customer

is shifted to a non-congested period. In 96 out of the 108 experiments the P-TDVRP

solutions exhibited positive AE values. Furthermore, we identified situations that are

more prone to absorb disruptions.

In Chapter 4, self-imposed time windows were introduced to the VRP, resulting in the

VRP-SITW. The problem corresponds to situations where carrier companies quote

their arrival times to their customers. The VRP-SITW broadens the scope of the

VRP by incorporating customer service considerations. The considered VRP-SITW

was modeled in a stochastic environment, where the carrier company seeks to uphold

its quoted time windows as much as possible.

The objective of the VRP-SITW was minimizing the travel and delay costs cor-

responding to late arrivals at customers. The solution approach, in this chapter,

embedded a LP model within a tabu search procedure. Results from the VRP-SITW

were compared with results from the standard VRP. These results indicated that

the VRP-SITW requires on average a 3% increase in distance. Comparing VRP-

SITW with VRPTW solutions showed mixed trends. In the random sets VRP-SITW

resulted in substantial decreases both in the number of vehicles and in travel cost.

However, the results of the clustered sets did not differ much neither in terms of the

number of vehicles, nor of travel cost.

Chapter 5 dealt with the consistent vehicle problem. It focused on providing consistent
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customer service, since this was identified as crucial by parcel companies. Driver

consistency is preserved by enforcing that the same driver visits customers when

they request service. Another aspect of consistent service was identified as temporal

consistency, which aims to provide customer service in more or less the same time

when this service is required. This was reflected by the use of SITW as a means to

guarantee temporal consistency.

The existing models for the consistent VRP assume periodic knowledge with respect

to customer demand, i. e., given the demand for a certain period, consistent routes

are designed. Chapter 5 introduced a stochastic programming formulation for the

consistent VRP with stochastic customers. This formulation relaxes the assumption

of known demand. An exact solution method is proposed by adapting the 0-1 integer

L-shaped algorithm. The majority of test instances reached an optimality gap of less

than 1%. Thus, the results from this chapter can be used as benchmarks for future

research in the field of SConVRP.

6.2. Future Research

As usual, this thesis raises more questions than answers. We discuss general directions

for future research regarding the underlying concepts presented in the thesis.

The models proposed in Chapters 3-5 establish a priori solutions for stochastic

environments. A major extension could be done by transforming these models in

a manner that accommodates dynamic decision making. In Chapter 3, this would

require re-optimizing upon realizing disruptions. In Chapter 4, this can be in the

form of quoting time windows for a dynamic order arrival setting. In Chapter 5,

maintaining consistency while customer orders arrive dynamically throughout the

day would be a challenging extension.

Building upon the presented research, further research on a more tactical level can

be conducted. Incorporating CO2 considerations upon fleet acquisition decisions is a

relevant research question. The decisions concerning fleet mix and size are relevant

questions in the context of SITW. Generally, there is a trade-off between the number of

used vehicles and the ability to uphold SITW. Thus, modeling the impact of additional

or different vehicles in terms of SITW remains an open question. Morever, as the

proposed models depict realistic settings, they may be embedded as sub-problems in

the context of rich vehicle routing problems.

In all presented models the evaluation of the target function was rather involved,

compared to its VRP counterpart, i. e., total distance. The difference is due to

encompassing time and timing aspects. Thus, further investigation of solution
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structures that yield better outcomes in the proposed models may enhance the

presented solution methods. Such enhancement may lead to encompassing additional

stochastic features.

Combining SITW with time-dependent travel times is a natural extension to this

thesis. In the context of SITW, further research can be directed towards allowing, at

a cost, for flexibility in setting time windows. Another extension might focus on a

setting where only a subset of customers have fixed time windows.
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Summary

Time and Timing in Vehicle Routing Problems

The distribution of goods to a set of geographically dispersed customers is a common

problem faced by carrier companies, well-known as the Vehicle Routing Problem

(VRP). The VRP consists of finding an optimal set of routes that minimizes total

travel times for a given number of vehicles with a fixed capacity. Given the demand

of each customer and a depot, the optimal set of routes should adhere to the following

conditions:

• Each customer is visited exactly once by exactly one vehicle.

• All vehicle routes start and end at the depot.

• Every route has a total demand not exceeding the vehicle capacity.

The travel times between any two potential locations are given as input to the

problem. Consequently, the total travel is computed by summing up the travel time

over the chosen routes.

In reality, carrier companies are faced with a number of other issues not conveyed

in the VRP. The research in this thesis introduces a number of realistic variants of

the VRP. These variants consider the VRP as a core component and incorporate

additional features. By definition the VRP is NP-hard. Throughout the years a

vast amount of research was aimed at developing both exact and heuristic solution

procedures. Building on this established literature, solution procedures are developed

to fit the variants proposed in this thesis.
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The standard VRP considers that the travel time between any pair of locations is

constant throughout the day. However, congestion is present in most road networks.

Considering traffic congestion results in time-dependent travel times, where the travel

time between two location depends not only on the distance between them but also on

the time of day one chooses to traverse this distance. Time-dependent travel times are

considered in Chapters 2 and 3 of this thesis. Thus, in these Chapters we incorporate

the time dimension into the VRP.

The standard VRP does not take into account any customer service aspect. The

customers are presumed to be available to receive their goods upon arrival of the

vehicles. However, a number of carrier companies quote their expected arrival time

to their customers. We introduce the concept of self-imposed time windows (SITW).

SITW reflect the fact that the carrier company decides on when to visit the customer

and communicates this to the customer. Once a time window is quoted to a customer

the carrier company strives to provide service within this time window. SITW differ

from time windows in the widely studied VRP with time windows (VRPTW), as the

latter are exogenous constraints. In Chapters 4 and 5 SITW are endogenous decisions

in stochastic environments. Thus, in addition to the sequencings decisions required

by the VRP further timing decisions are needed.

This thesis extends the VRP in two major dimensions: time-dependent travel times

and self-imposed time windows. In reality carrier companies are faced with various

uncertainties. The presented models incorporated some of these uncertainties by

addressing three stochastic aspects: (I) In Chapter 3 stochastic service times are

considered. (II) In Chapter 4, stochasticity in travel time is modeled to describes

variability caused by random events such as car accidents or vehicle break down. (III)

Finally, in Chapter 5 the objective was to construct a long term plan for providing

consistent service to reoccurring customers. Stochasticity in this thesis is treated

in an a priori manner. The plan, consisting of routes and timing decisions where

necessary, is determined beforehand and is not modified according to the realization

of the random events.

Chapter 2 addresses environmental concerns by studying CO2 emissions in a time-

dependent vehicle routing problem environment. In addition to the decisions required

for the assignment and scheduling of customers to vehicles, the vehicle speed limit is
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considered. The emissions per kilometer as a function of speed, is a function with

a unique minimum speed v∗. However, we show that limiting vehicle speed to this

v∗ might be sub-optimal, in terms of total emissions. We adapted a Tabu search

procedure for the proposed model. Furthermore, upper and lower bounds on the

total amount of emissions that may be saved are presented. Quantifying the trade-

off between minimizing travel time as opposed to CO2 emissions is an important

contribution. Another important contribution lies in incorporating fuel costs in the

optimization. As fuel costs are correlated with CO2 emissions, Chapter 2 shows that

even in today’s cost structure limiting vehicle speeds is beneficial.

Chapter 3 defines the perturbed time-dependent VRP (P-TDVRP) model which is

designed to handle unexpected delays at the various customer locations. A solution

method that combines disruptions in a Tabu Search procedure is proposed. In Chapter

3 we identify situations capable of absorbing delays. i.e. where inserting a delay will

lead to an increase in travel time that is less than the delay length itself. Based on

this, assumptions with respect to the solution structure of P-TDVRP are formulated

and validated. Furthermore, most experiments showed that the additional travel time

required by the P-TDVRP, when compared to the travel time required by the TDVRP,

was justified.

In Chapter 4 the notion of self imposed time windows is defined and embedded in the

VRP-SITW model. The objective of this problem is to minimize delay costs (caused

by late arrivals at customers) as well as traveling time. The problem is optimized

under various disruptions in travel times. The basic mechanism of dealing with

these disruptions is allocating time buffers throughout the routes. Thus, additional

timing decisions are taken. The time buffers attempt to reduce potential damage of

disruptions. The solution approach combines a linear programming model with a local

search heuristic. In Chapter 4, two main types of experiments were conducted: one

compares the VRP with VRP-SITW while the other compares VRPTW with VRP-

SITW. The first set of experiments assessed the increase in operational costs caused

by incorporating SITW in the VRP. The second set of experiments enabled evaluating

the savings in operational costs by using flexible time windows, when compared to

the VRPTW.

Chapter 5 extends the customer service dimension by considering the consistent
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vehicle routing problem. Consistency is defined by having the same driver visiting

the same customers at roughly the same time. As such, two main dimensions of

consistency are identified in the literature, driver- and temporal consistency. In

Chapter 5, driver consistency is imposed by having the same driver visit the same

customers. Furthermore, we impose temporal consistency by SITW. A stochastic

programming formulation is presented for the consistent VRP with stochastic

customers. An exact solution method is proposed by adapting the 0-1 integer L-

shaped algorithm to the problem. The method was able to solve the majority of test

instances to optimality.
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