A Formal Approach to Sensor Placement and
Configuration in a Network Intrusion Detection System

Marco Rolando, Matteo Rossi, Niccold Sanarico, Dino Mandrioli
Dipartimento di Elettronica e Informazione
Politecnico di Milano
Piazza Leonardo da Vinci, 32
Milano, Italy

{rossi,mandrioli}@elet.polimi.it

ABSTRACT

Network Intrusion Detection Systems (NIDSs) can be com-
posed of a potentially large number of sensors, which moni-
tor the traffic flowing in the network. Deciding where sensors
should be placed and what information they need in order to
detect the desired attacks can be a demanding task for net-
work administrators, one that should be made as automatic
as possible. This paper presents a logic-based model that is
suitable for describing networks and intrusions. The model
has been implemented in Prolog, and allows to analyze some
important static properties of networks. In particular, it can
be used to automatically determine, given a suitable formal
definition of an attack, the location and/or the information
needed by a NIDS sensor to detect the attack.

Keywords: Intrusion detection systems, formal model,
network analysis, sensor configuration, sensor placement.

1. INTRODUCTION

Misuse-based Network Intrusion Detection Systems (NIDS)
(e.g. Snort |9 and NetSTAT [I3]) that protect networks
from malicious users rely on a (possibly large) set of sensors
to monitor traffic and detect attacks. Some of these attacks
(which we will call topology-dependent) can be detected only
if one takes into account the topology of the underlying net-
work; that is, the signature of the same attack for different
networks changes if the topology changes. Examples of such
attacks are spoofing attacks [I3], routing attacks [B][H], etc.

Detection of topology-dependent attacks is possible only if
sensors are configured with the necessary (network-dependent)
signatures, and also if traffic information is collected at the
“right” places in the network (that is, if sensors are suitably
positioned in the system). It is obvious that the “right”
places to position these sensors differ from network to net-
work, depending on their topologies. Then, determining a
suitable distribution of sensors in the network and their cor-
responding configuration can be a daunting task (even for
small networks, if the number of attacks to be detected is

Permission to make digital or hard copies of all or part o thvwork for

personal or classroom use is granted without fee providatdbpies are
not made or distributed for profit or commercial advantage that copies
bear this notice and the full citation on the first page. Toyootherwise, to
republish, to post on servers or to redistribute to listguies prior specific
permission and/or a fee.

Copyright 200X ACM X-XXXXX-XX-X/XX/XX ... $5.00.

high), one which should be as automatic as possible.

This paper introduces a logic-based model that is suitable
to describe and statically analyze computer networks. The
model can be used to automatically generate incorrect con-
figurations (that is, signatures) of traffic, and to determine
where such configurations are detectable. Notice that, in
our approach, network and attack modeling are dealt with
in a uniform way; that is, there are no separate formalisms
to describe network topology and attack conditions, but a
unique, comprehensive model based on first-order logic.

The model has been implemented in Prolog [2], and at the
moment includes core predicates to represent networks and
few other definitions relative to incorrect packet configura-
tions. However, it is extensible, and elements can be easily
added to the core (for example to formally describe other
incorrect packets) in the form of new predicates.

This paper is structured as follows: Section B gives an ex-
tended overview of the problem at hand, outlines the IDS
architecture that was used as reference for this reserach, and
presents some related works; Section Bl presents the core,
logic-based model that is used to represent networks; Section
Hlintroduces logic predicates that describe incorrect configu-
rations for two significant topology-dependent attacks; Sec-
tion [l shows some experimental results gathered by running
the network analyzer on test network topologies; finally, Sec-
tion [l presents our conclusions, and outlines future works in
this line of research.

2. PROBLEM OVERVIEW AND RELATED
WORKS

Let us illustrate the problem at hand through an exam-
ple. It has been shown in [I3] how an IP spoofing attack,
in which an attacker sends an IP packet with the source
IP address of another host, can be detected by single sen-
sors (that is, without communication with other sensors),
if these are placed on suitable nodes in the network. This
detection technique can recognize many different instances
of IP spoofing attacks (although not all of them), provided
the sensors have some notion about the topology of the net-
work. According to this technique, detection of spoofed IP
packets occurs when the following condition is satisfied:

ATTACK CONDITION 2.1 (IPSPOOFED). Given a packet
pkt with source IP address IPsr. and source ethernet ad-
dress ethsre, a node N (sensor) receiving pkt on one of its
network interfaces nicy recognizes pkt to be spoofed if, in
the network, there is not a path P between the node corre-

sponding to IPs,. and the one of ethsrc, such that P does
not include the link | to which eths,.. and nicy are attached
(in other words, if all paths from IPsyc to ethsrc include).

This detection technique will be analyzed in greater detail
in Section EETE notice, however, that to employ it a sensor
must be able to determine if, after eliminating link ! from
the network, there is still a path between I P, and ethsc.

Now, for a NIDS employing this technique to be effec-
tive, it is clear that the sensors must not be required to
solve a path-existence problem every time they receive a
suspect packet, since it would be too costly. If, instead, one
can load onto each sensor a suitable set of offending pairs
(I Psye, ethsre) (that is, malicious pairs, as defined by condi-
tion EZJ)), then attack detection reduces to finding an item
in this set, which can be done efficiently even at run-time,
if the set is stored in a suitable data structure (for example
as a red-black tree [3]).

Two problems should be apparent from condition EZT] and
the discussion above:

1. The offending (I Psrc, ethsrc) combinations depend on
the node N (i.e. the sensor) in the network that we
are taking into account. That is, different sensors can
detect different attacks, and the same (IPsrc, ethsrc)
pair can be classified as malicious by a sensor on a node
N1, but as admissible by another sensor on a different
node N> (see also [[3] for a more detailed discussion
of the IP spoofing case).

2. Even for a network that is just bigger than a toy exam-
ple, the number of combinations that must be loaded
onto the sensors to detect the desired attacks is pro-
hibitive, if one has to manually produce them without
the aid of an automatic sensor configuration tool (one
that is capable of generating the malicious combina-
tions and send them to the sensors with the appro-
priate configuration primitive, which depends on the
NIDS).

Notice that, although we have used IP spoofing as a ref-
erence attack to elicit and illustrate the issues above, these
problems are very general, and can be found (any one of
them, possibly both) in other attacks, too (see Section
as a further example).

In this paper we present a logic-based model for networks
and attacks, which is suitable for carrying out automatic
formal analysis of networks. In particular, thanks to our
model it is possible to, among other things,

1. given some (possibly partial) information about an at-
tack (e.g. the attacker node, the victim node, etc.),
determine where in the network it is possible to put a
sensor that recognizes that attack;

2. given a network node, determine which attacks can be
detected by a sensor placed on it;

3. automatically generate the malicious combinations that
must be loaded onto a given sensor to detect the de-
sired attacks.

To the best of our knowledge, the current theory and prac-
tice of sensor placement for Network Intrusion Detection
systems relies heavily on common sense and generic prin-
ciples (which, for example, suggest sensors be placed near

network firewalls, or near the server to be protected, etc. [6,
1]). However, we feel that a more systematic approach is
necessary, especially (but not only) for attacks that can be
detected only if sensors are deployed in certain locations in
the network (as in the IP spoofing scenario described above),
or only if network-specific topology information is taken into
account. For these kinds of attacks, the generic guidelines
currently employed in practice are not enough, and a pre-
cise analysis is in order, one that matches the attack(s) we
are protecting against, with the layout of the network being
protected. Such an analysis cannot be done by hand, but
must be supported by software tools, which allow the secu-
rity officer to gather, for each relevant attack, the necessary
network-specific information for its detection (for example,
on which network nodes we must place sensors to detect cer-
tain attacks, an so on). As far as we know, however, neither
commercial, nor academic NIDSs offer functionalities that
support this kind of analysis, yet, and users are still asked
to do most of the sensor planning and configuration by hand.

With respect to existing literature and practice, the logic-
based approach presented in the rest of this paper is different
in that it allows systematic network analysis and supports
automatic NIDS planning and configuration.

To conclude this brief overview of existing literature, let
us notice that formal approaches have been applied, among
other things, to the analysis of network vulnerabilities |7}, |8,
TT] and to automatically generate attacks that compromise
a certain property of the system [I2]. The work presented
in this paper, however, differs from them in that it uses a
formal approach to tackle another problem, that of NIDS
sensor positioning and configuration.

3. THELOGIC-BASED NETWORK MODEL

We represent the network as a tripartite undirected graph
N = (H,3,L,A,C), where H, J and L are the sets of nodes
of the graph, while A C H x J and € C J x L are the sets
of edges. H is the set of hosts of the network, J is the set of
possible IP addresses, and L is the set of physical links. A is
a relation that associates network hosts with IP addresses,
and describes which are the IP addresses assigned to the
network interfaces of a host. € is a relation between the IP
addresses and the physical links of the network and defines
which are the IP addresses of the network interface cards
(NICs) that are physically connected to the link. Every host
of set H{ must be associated with at least one IP address of
set J through relation A, and every link of set L must be
connected with at least two different IP addresses of set J
through relation C.

Figure [M shows an example of network. From the graph-
ical point of view, we represent hosts as squares (e.g. host
RouterA), TP addresses as circles (e.g. ipRAL associated
with RouterA), and links as rectangles (e.g. |1 connected
to ipRAL). Informally speaking, a “router” is a host that is
associated with more than one IP address (e.g. RouterA).
For simplicity and brevity, hosts that are not routers (that is,
that have only one IP address) are graphically represented
only by their lone IP address, without the attached square
(e.g. the host associated with IP address ipA2).

We use logic predicates host and iface to describe the
structure of networks (basically, to define sets 3, J, £ and
relations A and C). Predicate host defines the hosts of the
network and their associated addresses: In practice, it de-
scribes sets H and J, and relation A. host is defined in the

Figure 1: An example of graph representing a net-
work

following way:

host(hs,ip) 2 (hs € H) A (ip € I) A ((hs,ip) € A) (1)

For simplicity and ease of use, we define also a second ver-
sion of predicate host (unsing an overloaded syntax), which
has only one argument; this version is suitable for describing
hosts that are associated with only one IP address (which
can then be identified with their lone IP address) and is
defined as follows (where 3! stands for “exists unique”):

host(ip) £ (ip € I) A (3'hs € H : (hs,ip) € A) (2)

Predicate i face has three arguments, and describes phys-
ical network interfaces. In essence, it defines relation C (i.e.
it states which IP addresses are directly connected to a phys-
ical link), and matches ethernet addresses with IP addresses.
More precisely, predicate iface is defined as follows:

iface(ip,l,e) = ip€IANIELAe€EA 3)
(ip,1) € € Ae = P(ip,1)

where € is the set of all possible ethernet addresses, and P :
IxL — €& is a function associating connections (i.e. elements
of relation €) to their corresponding ethernet address.

The structure of a network can be precisely described
using only predicates host and iface. For example, the
structure of the subnetwork of Figure [[l composed of hosts
RouterA, ipAl and ipA2 (where ipAl and ipA2 are associated
with only one IP address each, and thus are identified with
them) is captured by the predicates of Table [

host(ipAl)
host(ipA2)

(iface(ipAl,ll,eAl)
(
host(RouterA,ipRA1)
(
(

iface(ipA2,11,eA2)
iface(ipRA1,11,eRA1)
host(RouterA,ipRA2)

host(RouterA,ipRA3)

Table 1: Description of subnetwork A of Figure [l

Predicates such as those of Table [l are the known facts of
the modeled network, and represent the knowledge base on
which the analysis is founded.

From the basic host and i face predicates we define other,
derived predicates that describe aspects of the network that
can be inferred from the initial model. For example, we
define predicates isIP and isLink, which describe sets J
and L, respectively, in the following way:

isI P (ip)
isLink(l)

host(ip) V 3hs(host(hs,ip))
Tip, e(iface(ip,l,e))

— (4)

For example, from the definitions of Table [ll we can in-
fer isIP(ipAl), isIP(RAL), isLink(L1) (that is, ipAl and
ipRAL are IP addresses, while I1 is a link).

We also introduce derived predicate connected, which de-
scribes which pairs of nodes in the network (hosts, IP ad-
dresses and links) are directly connected (that is, adjacent)
with each other. connected is defined as follows:

connected(a,b) = host(a,b) V host(b,a)V)
Je(iface(a,b,e) Viface(b,a,e))

For example, from Table [[l we can infer, among other
things, connected(ipRA1, Router A) and connected(l1,ipAl).

From predicate connected we define predicate path, which
identifies paths between any two nodes in the network. More
precisely, path(a, b, p) is true if and only if p is a path between
nodes a and b. In an intuitive manner, we define a path
between nodes a and b as a sequence of adjacent nodes such
that a and b are, respectively, the first and last nodes of the
sequence (for example, in the network of Figure [l [RouterA,
ipRA3, 13, ipRB3, RouterB] is a path between nodes RouterA
and RouterB). Formally, predicate path is defined as follows:

path(a,b,p) = (a=bAp=[)V
(connected(a,b) A p = [a,b])V (6)
Je, pe(c # b A connected(a, c)A

path(c7 b7pC) /\p =a @pC)

where [] represents and empty sequence, [a,b] represents a
sequence of two elements (a first and then b), and a ® p.
is the sequence obtained by adding ¢ at the beginning of
sequence p.. With this definition, however, predicate path
is true also for all paths that have loops; for example, with
reference to the network of Figure [l formula (@) is true for
all paths between ipAl and ipCl that travel n (with n € N)
times over the loop passing through nodes RouterA, RouterB
and RouterC. To ignore all paths with loops, we modify the
definition of predicate path as follows:

path(a, b, excl,p) =
(a=bAp=[)V
(connected(a,b) Nb ¢ excl Ap = [a,b])V (7
de, pe(c # b A ¢ & excl A connected(a, c)A
path(c, b, {a} Uexcl,p.) Ap=a ® pc)

In the new definition, an argument is added, which cor-
responds to the nodes of the network that must be ex-
cluded from the path for the latter to be acceptable. Then,
path(a, b, excl, p) is true if and only if p is a loop-free path
from node a to node b that does not include any nodes from
the set excl (that is, such that excl Np = &).

Notice that paths p satisfying predicate path defined by
formula ([@) are loop-free by construction. In fact, since we
defined what constitutes a path in formal terms (i.e. through
mathematical formulae), we can actually prove that paths

satisfying () are loop-free. The proof can be done by induc-
tion over the length of the path: In the base case, we easily
determine that paths with only 0 or 2 nodes are loop-free
(this follows directly from the definition of path, and more
precisely from the first two subformulae of the disjunction
on the right-hand side of formula ([@)). In the inductive case,
let us assume that, in the third subformula of the right-hand
side of (@), path p. of length n — 1 is loop-free; then, from
the definition of path we obtain that a ¢ p., so path p (with
p = a® p.), which has length n, remains loop-free.

Before concluding this section, let us remark that through
predicate host one can model not only single hosts, but also
entire subnetworks, if one is not interested in representing
their detailed layout, but only their interaction with the out-
side world. For example, in Figure [l nodes ipAl and ipA2
might in fact stand for two subnetworks, which are con-
nected to the rest of the system through a common router,
RouterA. In a similar way, we might decide not to represent
nodes ipCl and ipC2, and use only node RouterC to model
the entire subnetwork connected to it. The predicates pre-
sented above do not mandate any fixed modeling granularity
(a host can be anything that is connected to the rest of the
network, from single computers, to LANs, to WANSs), so the
user has maximum flexibility in deciding at what level of
detail the network should be described.

3.1 Prolog implementation

To perform automatic analysis of networks, the logic pred-
icates introduced above have been implemented in Prolog
[2]. The implementation is mostly straightforward, and will
be briefly outlined in the rest of this section.

Predicates host and iface are the known facts of the net-
work, so they must be postulated in the Prolog description,
and are dependent on the network being analyzed. For ex-
ample, the following Prolog declarations correspond to two
of the logic formulae shown in Table [T

host (ipAl).
host(routerA, ipRA1).

Predicates isI P and isLink, instead, are defined as fol-
lows:

isIP(IP) :- host(IP).
isIP(IP) :- host(_,IP).
isLink(L):- host(_, L, _).

In the above declarations, identifiers beginning with a
small letter (for example ipAl) are, in Prolog terms, atoms,
while identifiers beginning with a capital letter are variables
(for example IP). The underscore (_) is a special, anonymous
variable, which, informally speaking, can be interpreted as
“there is some element such that”. For example, the Prolog
definition of predicate isLink states that an element L is a
link if and only if L appears as the second argument in a
host declaration, with some other (unspecified) elements as
first and third arguments.

Predicate path defined by formula (@), instead is imple-
mented as follows (in Prolog syntax \== corresponds to #,
while \+member is ¢):

path(A,B,Visited, [B| [A|Visited]]) :- connected(A,B),

\+member (B, Visited).

path(A,B,Visited,Path):- connected(A,C), C \== B,
\+member (C,Visited),
path(C,B, [A|Visited] ,Path).

path(A,A,Visited,Visited).

The Prolog clauses above basically correspond to recursive
algorithm FindPaths, which determines all loop-free paths
between any two nodes of the network.

Algorithm 1: FindPaths
input : current node A, destination node B, sequence
V of visited nodes (from last to first visited).
output: paths P composed by paths {Pga;} between

A and B (but with nodes in reverse order),
suffixed with sequence V' ({Pga,i ® V}).

begin

1 Add node A at the beginning of sequence V
(V—AaV);

P — @;

2 if A = B then return V;

3 AFE «—— the set of edges that start from A and do
not end in a node belonging to V;

4 while AF # @ do

Pick an edge from AF, let N be the node at its
other end;

P «— PU FindPaths(N, B,V);

return P
end

Appendix [Al evaluates the theoretical computational com-
plexity of algorithm FindPaths. In the most general case the
algorithm, which finds all loop-free paths, has complexity
O(n!); however, as Appendix [Al shows, under certain hy-
potheses the complexity of FindPaths becomes polynomial.

Moreover, as shown in the next section, when modeling
attacks it is often unnecessary to state universal properties
of paths, but, rather, existential ones are sufficient. This
turns the path finding problem into one of reachability (i.e.
“if there exists a path ...”, instead of “if for all paths ...”),
which is considerably simpler, and can be solved with algo-
rithms that are polynomial in the number of the nodes of
the network [3], no matter its topology.

4. ATTACK MODELING

Armed with the basic predicates presented in Section Bl
we can now formally express the conditions that describe
network attacks. This section illustrates our modeling ap-
proach on two network attacks, namely IP spoofing and an
attack to the Routing Information Protocol (RIP). Section
B presents some examples of how the Prolog implementation
of the model can be used to carry out network analysis for
sensor placement and to generate sensor configurations in
the sense outlined in Section

4.1 Representing IP spoofing

Following the lead of [I3], we can determine that an IP
packet pkt is spoofed if it satisfies condition EXTlof Section m
Condition EZT] can be formally expressed using the following
logic formula:

1n fact, condition X differs slightly from the one given in
[13], as it requires the whole link { to be disconnected from
the network, not only nicy from [. It can be shown that
the condition presented here covers more IP spoofing cases
than the original formulation, but, for the sake of brevity,
we will not delve into the details of this topic.

ey

ipspoofed(sensor, srclP, srcEth)
JsrcEthIP, 1, srcIPH(
monitors(sensor, srcEth, srcEthIP, 1)
hostOf (srcI P, srcIPH)
Ap(path(srcIPH, srcEthIP, [l], p)))

Formula ([B) defines predicate ipspoofed using predicate
path of Section Bl plus two other derived predicates monitors
and hostOf. Informally speaking, monitors(p, e, ip,l) is true
if and only if node p (with p either a host or a link)
can sniff the traffic transiting on link [, on which IP ip
(with physical address e) is connected, and p is not the
host of ip (for example, for the network of Figure Ol pred-
icate monitors(ipC2,eRC6,ipRC6,16) holds; in fact, node
ipC2 can sniff the traffic on link 16, on which IP ipRC6,
which has ethernet address eRC6, is connected). Predi-
cate hostOf(ip, hs), instead, is true if and only if host hs
is associated with IP address ip. Then, formula (&) states
that predicate ipspoofed(sensor,srcIP, srcEth) is true if
and only if sensor can sniff packets coming from physical
address srcEth (which is connected to link ! and is asso-
ciated with IP address srcEthIP), and there is no path
p between the host srcIPHost of IP address srcIP and
node srcEthIP such that p does not include link [. That
is, ipspoofed(sensor, srcl P, srcEth) is true if and only if a
packet with source ethernet address srcFEth and source IP
address srcl P is spoofed, and a sensor on node sensor can
detect it.

Predicate ipspoofed has a suitable Prolog implementation
ipspoofed, which is not shown here for the sake of brevity.
Nonetheless, let us notice that, for the efficiency reasons
outlined at the end of Section Bl subformula fp(...) has
been translated into a reachability problem, rather than an
instance of algorithm FindPaths. The implementation of
predicate ipspoofed can then be used for analysis purposes.
For example, the following Prolog statement produces all
malicious pairs (sourcel P, source Ethernet) that can be de-
tected by host RouterA in the network of Figure [}

ipspoofed(routerA, SRC_IP, SRC_ETH).

The statement below, instead, produces all sensors that
can detect all spoofed packets that have ipCl as source IP
(i.e. packets in which someone is impersonating ipC1):

ipspoofed(S, ipC1, SRC_ETH).

4.2 Representing RIP attacks

We now turn our attention to a type of attack to RIP
servers, that consists in a neighboring server sending a path
advertisement of a target IP with an impossible distance
(see] for detailed information about the attack). Infor-
mally speaking, we can formulate the attack condition in
the following way:

ATTACK CONDITION 4.1 (RIPIMPOSSIBLEPATH). Given
a RIP advertisement adv received by a RIP server RIPys;
and coming from the IP address RIPsy. of another RIP
server that shares a link with RIPis:, adv is illegal if it
advertises a route (i.e. a path) from RIPs. to a target IP
tgt with distance (i.e. path length) dist such that there are
no paths of length dist between RI Ps,. and tgt.

To formalize condition B we wuse a predicate
ripadvertisement that states the opposite; that is,
ripadvertisement(srcl P, dstI P,tgt,dist) is true if and
only if srcIP and dstIP are on the same link, and, if we
call srcH, dstH and tgtH the hosts associated with srcl P,
dstI P and tgt, respectively, srcH and dstH are both RIP
servers, and there is a path of length dist between srcH
and tgtH. Predicate ripadvertisement is defined as follows:

ripadvertisement(srcl P, dstIP, tgt, dist) £
sameLink(srcI P, dstIP) A
3 srcH, dstH, tgtH(
srcH # dstH A hostOf (srcH, srcIP) A
hostOf (dstH, dstIP) A hostOf(tgt, tgtH) A
isRIPserver(srcH) A isRIPserver(dstH) A

I p (path(srcH, tgtH, [|, p) N length(p, dist))) ©
9

Similarly to predicate ipspoofed, predicate ripadvertisement
has also a suitable Prolog implementation, which can be
used to carry out automatic analysis. In this case, for exam-
ple, one might decide to generate valid RIP advertisements
and load them onto sensors that can monitor links between
adjacent RIP routers (we assume here that RIP advertise-
ments are disregarded if they come from IP addresses that
are not on the same link as the RIP server). Then, sensors
can verify the validity of a RIP advertisement by checking
that the advertisement is in the set of valid ones. The Prolog
command that generates all valid advertisements that can
be received by a RIP server (with IP address dstIP) is the
following;:

ripadvertisement (SRC_IP, dstIP, TGT, D).

5. EXPERIMENTAL RESULTS

The Prolog-based analyzer implementing the logic pred-
icates presented in Sections Bl and Bl has been tested on a
variety of network topologies to assess its effectiveness.

First, we ran the analyzer to produce all triples (I,%,¢)
(with [a link, ¢ an IP address and e an ethernet address)
satisfying predicate ipspoofed; this is obtained through the
following Prolog query:

isLink(L),ipspoofed(L, I, E).

The query above has been launched on two sets of topolo-
gies. In the first set, the backbone (i.e. the number of
routers and their mutual connections) of the network re-
mains unchanged, but the number of hosts varies. In the sec-
ond set, every router is connected to exactly 4 non-routers,
but the number of routers composing the backbone increases.

The backbone of the network topologies of the first set of
tests is composed of 4 routers and is one link short of being
completely connected (the graphs describing these topolo-
gies are not presented here for the sake of brevity; they can
be found in [I0]); the total number of hosts (routers in-
cluded) varies from 10 to 100. Table Bl shows the results of
these testsB In this case, the test duration increases roughly
with n® (with n the total number of hosts in the network),
and the analyzer takes around 7 minutes to produce all pos-
sible attack configurations detectable on every link for the
network with 100 hosts.

2All tests have been run on a PC with an Athlon XP 3000+
processor and 1GB of RAM.

Total hosts | Routers | Links | Test Duration (sec.)
10 4 10 0.11
20 4 18 1.11
50 4 40 27.30
100 4 84 427.73

Table 2: First experiment: IP spoofing, fixed back-
bone, variable number of hosts

Total hosts | Routers | Links | Test Duration (sec.)
25 5 30 3.94
30 6 39 10.05
35 7 49 23.45
40 8 60 50.67
45 9 72 97.75
50 10 83 180.61

Table 3: Second experiment: IP spoofing, variable
completely connected backbone

In the second set of tests, the networks are composed of a
backbone of completely connected routers, and every router
is connected to exactly 4 non-router hosts. Table Bl shows
the durations of the new tests. In this case the complexity
of the problem remains tractable (it is less than exponen-
tial), a consequence of the fact that in the implementation of
predicate ipspoofed the path existence subformula has been
translated into a reachability condition.

In the last set of tests, we ran the analyzer to produce
all valid RIP advertisements of a given network. This is
achieved through the following Prolog query:

ripadvertisements(Src, Dst, Tgt, D).

In addition, for these tests the topology of the analyzed
network does not change, and corresponds to the testbed
presented in [5]. While the number of nodes in the network
does not vary, with each test we increase the number of
hosts that run a RIP server. The durations of the test runs
are shown in Table @l The increase in the test duration is
clearly linear with the number r of RIP routers deployed in
the network, and even in the case in which all hosts with
more than one associated IP address run a RIP server (last
row of Table Hl) the whole computation takes less than 25
seconds.

To conclude this section, we feel that the experimental re-
sults presented above are very promising, and suggest that
the modeling and analysis technique on which the Prolog an-
alyzer is based can be effectively used on real-life networks.

6. CONCLUSIONS

This paper introduced a logic-based approach for mod-
eling and analysis of networks, which supports automatic

Total hosts | RIP Routers | Test Duration (sec.)
22 3 3.72
22 6 7.11
22 10 15.92
22 16 24.23

Table 4: Third experiment: RIP attack, fixed net-
work, variable RIP routers

placement and configuration of sensors of a Network IDS.
Our approach is based on a very small set of logic predi-
cates, which are suitable for modeling the topology of net-
works, and a set of derived predicates that express relevant
properties of the modeled networks. In particular, the de-
rived predicates introduced in this article formally express
anomalous configurations of IP packets, which correspond
to possible intrusion efforts by a malicious user. Finally, the
Prolog implementation of the logic model has been used to
perform automatic network analysis, and to algorithmically
produce lists of anomalous packets that can be loaded onto
NIDS sensors to actually perform attack detection. Experi-
mental results on some test networks have shown the effec-
tiveness and usability of the logic approach.

We claim that our model is very general and extensible,
and is well-suited to describe a large variety of intrusion at-
tacks, provided the necessary derived logic predicates are
defined. In fact, future works in this line of research will
focus on extending the set of modeled attacks, by introduc-
ing new derived predicates in addition to those presented
here. In this respect, we will explore the possibility of defin-
ing new predicates, with the intent of unifying the misuse-
oriented view underlying our current model with a more
anomaly-oriented approach. For example, with respect to
the IP spoofing attack expressed by condition Xl a more
anomaly-oriented approach might consider as suspect pack-
ets coming from seldom-used paths; then, a suitable predi-
cate suspect_ipspoofed might capture this configuration in
formal terms.

In addition, we plan to enrich our logic approach with
temporal operators, in order to be able to express time-
related attack conditions and temporal constraints on the
events occurring in a network.

Moreover, the modeling technique introduced in this pa-
per is independent of any specific NIDS that one might use
in practice. Through our Prolog-based analysis tool one
can produce sets describing malicious IP packets in a NIDS-
independent way (in fact, as tuples of relevant data), so the
next natural step is to devise algorithms to translate these
sets in NIDS-specific information. Our efforts, then, will also
focus on mapping the information generated by our analyses
onto NIDS-specific mechanisms, such as STAT [I4] scenarios
or Snort [9] signatures.

Finally, the efficency of the prototype analyzer can be im-
proved in several ways. First, the Prolog code has not been
optimized, so better performance can be achieved simply
by careful re-coding of the predicates. Second, we plan to
realize different, non Prolog-based implementations of the
analyzer, to better exploit existing tools and techniques for
the solution of graph-related problems.

Acknowledgments

The authors would like to thank Giovanni Vigna and Richard
Kemmerer for their support, their help, and their useful
comments.

7. REFERENCES

[1] E. Carter, editor. Cisco Secure Intrusion Detection
System. Cisco Press, 2002.

[2] W. F. Clocksin and C. S. Mellish. Programming in
Prolog. Using the ISO Standard. Springer-Verlag,
2003.

[3] T. H. Cormen, C. E. Leiserson, R. L. Rivest, and

C. Stein. Introduction to Algorithms. The MIT Press,

2nd edition, 2001.

C. Kriigel, D. Mutz, W. Robertson, and F. Valeur.

Topology-based detection of anomalous BGP

messages. In Proc. of RAID, pages 17-35, 2003.

[5] V. Mittal and G. Vigna. Sensor-based intrusion
detection for intra-domain distance-vector routing. In
Proc. of CCS 2002, pages 127-137, 2002.

[6] S. Northcutt and J. Novak. Network Intrusion
Detection. New Riders Publishing, 2002.

[7] X. Ou, S. Govindavajhala, and A. W. Appel.
MulVAL: A logic-based network security analyzer. In
Proc. of 14th USENIX Security Symposium, pages
113-128, 2005.

[8] R. W. Ritchey and P. Ammann. Using model checking
to analyze network vulnerabilities. In IEEE Symp. on
Security and Privacy, pages 156—-165, 2000.

[9] M. Roesch. Snort: Lightweight intrusion detection for
networks. In Proc. of the 13th Conf. on Systems
Administration, pages 229-238, November 1999.

[10] Matteo Rossi. On probe placement and configuration
in an intrusion detection system. Technical report,
DEI, Politecnio di Milano, 2002.

[11] G. Rothmaier and H. Krumm. A framework based
approach for formal modeling and analysis of
multi-level attacks in computer networks. In Proc. of
FORTE, pages 247-260, 2005.

[12] O. Sheyner, J. W. Haines, S. Jha, R. Lippmann, and
J. M. Wing. Automated generation and analysis of
attack graphs. In IEEE Symp. on Security and
Privacy, pages 273-284, 2002.

[13] G. Vigna and R. A. Kemmerer. NetSTAT: A
Network-based Intrusion Detection System. Journal of
Computer Security, 7(1):37-71, 1999.

[14] G. Vigna, F. Valeur, and R. A. Kemmerer. Designing
and implementing a family of intrusion detection
systems. In Proc. of FSE/ESEC, pages 88-97, 2003.

[4

APPENDIX
A. COMPLEXITY OF PATH FINDING

In this section, let us analyze the theoretical complexity
of algorithm FindPaths shown in Section Bl

Blocks Bl are the core of algorithm FindPaths; they state
that in each recursive instance of FindPaths all the unex-
plored branches of the current path, which starts from the
current node A, are examined one by one. Now, in a com-
pletely connected graph of n nodes, the number of edges
ending in a node is n — 1. As a consequence, running Find-
Paths on a completely connected network would generate
(n—1)x(n—2)*...%2% 1= (n—1)! recursive calls, thus
resulting in a complexity of O(n!). However, real-life com-
puter networks are never completely connected, so the real
complexity of the algorithm is much smaller than O(n!). In
the rest of this section we will show how, under certain hy-
potheses, the worst-case complexity of algorithm FindPaths
in much more favorable than O(n!) (in fact, we will show it
to be polynomial).

Let us assume, for simplicity, the following:

HyproTHESIS A.1. Ewvery node of the network is connected

to exactly three edges.

Under hypothesis [AJ] set AE cannot contain more than
two edges, since the node that was visited right before A is
already marked, and the corresponding edge does not satisfy
the condition of lineBl As a consequence, every call of Find-
Paths applies itself recursively twice on a subnetwork with
one node less than the original one; this leads us to conclude
that a first upper bound for the complexity of the algorithm
is O(2™) (which is already an improvement over O(n!)). A
closer analysis yields even better results. In fact, the com-
plexity of algorithm FindPaths is O(2") if in every instance
we can choose between two edges. In statement [l however,
current node A is added to the set V' of visited nodes; this
implies that, from hypothesis [Al the subnetwork on which
FindPaths is recursively applied contains one node and two
edges (those ending in A) less than the original one. Then, at
the 7*" instance of the algorithm we would have pruned from
the original network 2° edges. Now, from hypothesis A}
the number of edges of the network is linear (O(n)) with re-
spect to the number of nodes. Then, after roughly |log,(1)]
instantiations of algorithm FindPaths, AE does not contain
two edges, but one at most, since most of the nodes (and
relative edges) have already been visited. As a consequence,
the complexity of FindPaths on a network of n nodes that
satisfies hypothesis Alis roughly O((I —2°s2(V])glles2 D]y
which is O(n?) (I is O(n)).

This result can be generalized to the following property:

PROPERTY A.2
Given a network N such that the number of edges connected
to a node is at most k, the complezity of algorithm FindPaths
applied to N is O(n*~1).

Notice that in the case of a completely connected graph,
k = n and property gives an overestimation of the real
complexity of the algorithmﬂ

In addition, if the network is made of a core of strongly
connected routers, plus other hosts loosely connected with
these (that is, with only one or, at the very maximum, two
paths to the routers, as in Figure [ll), the complexity of al-
gorithm FindPaths is better still. In fact, in this case what
is relevant is how the routers are connected with each other,
and the complexity of FindPaths becomes O(r*), with 7 the
number of routers of the network.

To conclude this section, notice that algorithm FindPaths
finds all loop-free paths between any two nodes in the given
network. If; on the other hand, we limit the goal to sim-
ply finding one (any) of the many paths between two nodes
in the network (that is, we switch to the problem of path
existence between two nodes, as is the case for predicate
ripadvertisement of Section EEZJ), algorithm FindPaths can
stop after the first path is found (that is, after the first time
line@is hit). For this simplified version of the algorithm, the
complexity is O(n?) no matter the topology of the network.

3This is theoretically acceptable, since an algorithm with
complexity O(n!) is also O(n").

(COMPLEXITY OF ALGORITHM FindPaths).

	Introduction
	Problem overview and related works
	The logic-based network model
	Prolog implementation

	Attack modeling
	Representing IP spoofing
	Representing RIP attacks

	Experimental results
	Conclusions
	References
	Complexity of path finding

