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Abstract—Queuing network models of modern computing systems must consider a large number of components (e.g., Web servers,

DB servers, application servers, firewall, routers, networks) and hundreds of customers with very different resource requirements. The

complexity of such models makes the application of exact solution techniques prohibitively expensive, motivating research on

approximate methods. This paper proposes an interpolation-matching framework that allows a unified view of approximate solution

techniques for closed product-form queuing networks. Depending upon the interpolating functional form and the matching populations

selected, a large versatile family of new approximations can be generated. It is shown that all the known approximation strategies,

including Linearizer, are instances of the interpolation-matching framework. Furthermore, a new approximation technique, based on a

third-order polynomial, is obtained using the interpolation-matching framework. The new technique is shown to be more accurate than

other known methods.

Index Terms—Queuing network models, approximate solution techniques, multiclass workloads.
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1 INTRODUCTION

IN recent years, computer-communication systems have
become increasingly complex. Client-server architectures

and Internet-based distributed systems involve intercon-
nection of a large number of components via LANs and
WANs. In addition, there has been a vast proliferation of
workloads having widely varying resource requirements
(consider, e.g., multimedia loads). Therefore, representative
queuing network models of actual systems must deal with a
large number of both components and customer classes.
The computational requirements for solving such networks
with exact solution techniques (when applicable) are known
to be prohibitive, motivating the search for approximate
techniques.

We consider product-form closed queuing networks
with constant rate servers [3]. A convenient class of
approximate methods are the so-called local-based techni-
ques that approximate the queue lengths in the neighbor of
a given population vector in order to transform the MVA
recursion into a closed fixed-point system of equations.
Several local approximation techniques have appeared in
the literature [2], [5], [6], [7], [8], [11], [15] that were
developed almost independently over a few years and very
little systematic comparison of their accuracy and complex-
ity has been carried out, partial exceptions being [13], [15],
[16]. As a result, comparing their complexity and accuracy

is hard if at all clear how it should be carried out.
Furthermore, the description of the different techniques
that have appeared thus far focuses on algorithmic rather
than theoretical issues.

In this paper, we present a new analytical framework for
the local approximation solution of product-form closed
queuing network models. The new approach is called the
interpolation-matching technique (IMT) since it is based on the
local approximation of mean queue lengths by means of
interpolating functions calibrated by matching at specific
populations. The approach followed is not simply the
description of a new approximation method, rather, it is the
definition of a general framework able to reproduce all of
the local approximation methods. The most popular local
approximation methods (Schweitzer-Bard [2], [11], Chow
[5], AQL [15], Linearizer [6], Queue Line [16], Fraction Line
[16]) are, in fact, instances of the interpolation-matching
technique, obtained by using different interpolating func-
tions. The specific interpolating function for each method
will be exhibited below.

The analysis of the interpolating functions used in IMT
allows identification of the features associated with such
functions that impact on the accuracy of the methods. For
example, a second-order polynomial yields greater accuracy
of the Linearizer over the Schweitzer-Bard method, which
uses a first-order polynomial. Similarly, a third-order
polynomial improves upon Linearizer accuracy, as we will
show in the paper. The interpolation matching technique has
several appealing properties, among which are:

. the possibility of analyzing, under a common
analytical framework, all the local approximation
methods presented in the literature and also the
possibility of capturing the relationships among
different methods;
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. the description of a systematic procedure for
generating various classes of approximation techni-
ques (linear, quadratic, cubic, splines, etc.) with
different accuracy objectives as well as different
computational complexity.

Two types of interpolation are identified and described
in the paper: interpolation on “servers” and interpolation
on “servers and classes.” The former technique provides an
approximation for the aggregate queue lengths of custo-
mers at the servers, while the latter approximates the queue
lengths individually for each class of customers.

The paper is organized as follows: Section 2 reviews the
most popular solution techniques, both exact methods and
local approximations. Sections 3 and 4 are devoted to the
description of the interpolation-matching techniques (IMT)
on “servers” and on “servers and classes,” respectively. The
major reason for including Section 3 is to make Section 4
easier to read and understand since interpolation on
“servers and classes” dominates interpolation on “servers”
alone with respect to accuracy for a given computational
order. In Section 5, a new approximate method (Linear-
izer++) is proposed. Section 6 suggests some guidelines for
the choice of interpolating functions and matching popula-
tions. Section 7 is devoted to conclusions and future work.

2 REVIEW OF SOLUTION TECHNIQUES

2.1 Exact Solution Techniques

Consider a product-form closed queuing network (BCMP)
[3] with M constant rate servers and R customer classes. Let
class r population be denoted by Nr, the population vector
by N � ðN1; N2; . . . ; NRÞ, and the total population by
N �

PR
r¼1 Nr. Customers are not allowed to change class.

The other parameters of the model are:1

. Sir = mean service time of a class r customer for each
visit to server i (if i is FCFS, this must be
independent of r);

. Vir = mean number of visits of a class r customer to
server i;

. Lir � VirSir = mean load placed on server i by a
customer of class r.

Let M � 1; 2; . . . ;Mf g be the set of server indexes and
R � 1; 2; . . . ; Rf g be the set of customer class indexes. Let
DC denote the set of Delay Centers and QC denote the set of
Queuing Centers (first-come-first-served or processor shar-
ing or last-come-first-served preemptive resume or service
in random order [14]). Note that M � DC [QC. Typically,
the performance measures of interest in solving queuing
network models are throughputs and response times by
class. These values will be denoted by:

. QirðNÞ = mean number of class r customers at
server i (either in service or on queue);

. QiðNÞ �
PR

r¼1 Qir Nð Þ = mean total number of
customers at server i.

Such measures can be computed exactly, in a recursive
fashion, using mean value analysis (MVA) [9], as:

Qir Nð Þ ¼
NrLir 1þ � ið ÞQi N ÿ 1rð Þ½ �PM
j¼1

Ljr 1þ � jð ÞQj N ÿ 1rð Þ
� � ð1Þ

with Qið0Þ ¼ 0, where 1r denotes the unit vector along the
r axis and the �-function is defined as follows:

1rð Þ � �rs �
1 r ¼ s
0 r 6¼ s

�
�ðiÞ � 1 i 2 QC

0 i 2 DC:

�
The class r queue lengths computation can be combined
into a single recursion to yield the total queue lengths at
server i:

Qi Nð Þ ¼
XR
r¼1

NrLir½1þ �ðiÞQiðN ÿ 1rÞ�PM
j¼1

Ljr½1þ �ðjÞQjðN ÿ 1rÞ�
ð2Þ

with initial conditions Qið0Þ ¼ 0. Note that, by construction,

the conservation laws
PM

i¼1 Qir Nð Þ ¼ Nr are automatically

satisfied by (1). The exact solution for queue lengths (1) has

time computational complexity OðMR
QR

r¼1ð1þNrÞÞ and

space complexity OðM
Q

r6¼rmax
ð1þNrÞÞ (where rmax is a

class with the maximum number of customers), which

usually makes it impractical if R > 4. The same computa-

tional complexity and conclusion hold when the convolu-

tion algorithm [4], [10] is used to solve constant-rate

product-form networks.

2.2 Approximation Techniques

All the approximation techniques try to compute QiðNÞ at a
given population N0 by guessing the behavior of QiðNÞ for N
in the neighborhood of N0. We will briefly review the best-
known local approximations, namely Chow [5], Schweitzer-
Bard [2], [11], Linearizer [6], and AQL [15]. In [12], a more
detailed review is reported. In Sections 3 and 4, we will
show that all the considered approximation techniques can
be seen as instantiations of the interpolation-matching
technique.

2.2.1 The Chow Algorithm

The Chow algorithm [5] uses the following approximation:

Qi N ÿ 1rð Þ � Qi Nð Þ for N near N0: ð3Þ

By substituting (3) into the MVA recursion (2), we obtain
the following set of M equations in closed (nonrecursive)
fixed-point form:

Qi N
0

ÿ �
¼
XR
r¼1

N0
r Lir 1þ � ið ÞQi N

0
ÿ �� �

PM
j¼1

Ljr 1þ � jð ÞQj N
0

ÿ �� � ð4Þ

for the M unknowns QiðN0Þ. Unlike the MVA, the time
complexity to solve (4), and related fixed point approxima-
tions, by successive substitutions, does not depend strongly
on N0. However, the resulting Chow approximations for
QiðN0Þ are sufficiently accurate only for large populations.
The major source of inaccuracy is that the approximation (3)
does not preserve the total number of customers. The sum
of the total queue lengths with one fewer customer of class r
equals N,
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XM
i¼1

Qi N ÿ 1rð Þ �
XM
i¼1

Qi Nð Þ ¼ N

instead of the correct N ÿ 1.We will henceforth refer to such

a characteristic by saying that the approximation does not

scale with the population. Similarly, we will check if

XM
i¼1

Qir N ÿ 1sð Þ ¼ Nr ÿ �rs:

2.2.2 The Schweitzer-Bard Algorithm

The Schweitzer-Bard algorithm [2], [11] (henceforth called

SB) improves upon the Chow algorithm by approximating

QirðN ÿ 1sÞ instead of QiðN ÿ 1sÞ, with a function of

QirðNÞ. The approximation employed is

Qir N ÿ 1sð Þ � Qir Nð Þ ÿ �rs
Qir Nð Þ
Nr

for N near N0: ð5Þ

By substituting approximation (5) into recursion (1), we

obtain a nonrecursive set of MR nonlinear equations in

closed fixed-point form

Qir N
0

ÿ �
¼
N0
r Lir 1þ � ið Þ Qi N

0
ÿ �

ÿ Qir N0ð Þ
N0
r

� �� �
PM
j¼1

Ljr 1þ � jð Þ Qj N
0

ÿ �
ÿ Qjr N0ð Þ

N0
r

� �� � ð6Þ

for the MR unknowns QirðN0Þ. As with the Chow

approximation, the time to solve the fixed point set (6) by

successive approximations does not depend strongly on N0.

Note that the second term in (5) ensures that the

approximation scales properly with the population. Note

also that the set of equations (6) can be reduced to M þR
equations in M þR unknowns, so very large systems can be

analyzed [11].

2.2.3 The Linearizer Algorithm

With the definition

Drit Nð Þ �
Qir N ÿ 1tð Þ
Nr ÿ �rt

ÿQir Nð Þ
Nr

;

the approximation adopted in the Linearizer method [6] is

Drit N ÿ 1sð Þ � Drit Nð Þ for N near N0: ð7Þ

By combining approximation (7) with the equations obtained

by applying the MVA recursion (1) at the population vectors

N0 and N0 ÿ 1s, we obtain a set of MRð2Rþ 1Þ nonlinear

equations in a fixed-point form in theMRð2Rþ 1Þunknowns

QirðN0Þ, QirðN0 ÿ 1sÞ, and DritðN0Þ. Note that the following

estimation is used

Qit N
0 ÿ 1r ÿ 1s

ÿ �
� N0

t ÿ �tr ÿ �ts
ÿ �

Qit N
0 ÿ 1s

ÿ �
N0
t ÿ �ts

þ
Qit N

0 ÿ 1r
ÿ �
N0
t ÿ �tr

ÿ
Qit N

0
ÿ �
N0
t

" #
;

ð8Þ

which is symmetric in r and s and which scales properly

with population.

2.2.4 The AQL Algorithm

The AQL (Aggregated Queue Length) method is based on

an approximation similar to that of Linearizer, but, instead

of the per-class queue lengths QirðNÞ, aggregate per-server

queue lengths QiðNÞ are now considered. This significantly

reduces the computational complexity with some decrease

in the precision of the method. Defining

Dir Nð Þ �
Qi N ÿ 1rð Þ
N ÿ 1

ÿQi Nð Þ
N

(where N ¼
PR

r¼1 Nr), the approximation adopted is

Dir N ÿ 1sð Þ � Dir Nð Þ for N near N0:

The resulting fixed-point problem consists of Mð2Rþ 1Þ
equations for theMð2Rþ 1Þ unknownsQiðN0Þ,QiðN0 ÿ 1rÞ,
and DirðN0Þ. Note that the following estimation is used

Qi N
0 ÿ 1r ÿ 1s

ÿ �
� N0 ÿ 2
ÿ �

Qi N
0 ÿ 1s

ÿ �
N0 ÿ 1

þ
Qi N

0 ÿ 1s
ÿ �
N0 ÿ 1

ÿ
Qi N

0
ÿ �
N0

" #
;

ð9Þ

which is symmetric in r and s and which scales properly

with population.

3 INTERPOLATION ON “SERVERS”

This method, referred to as interpolation on servers, approx-

imates the aggregate queue length QiðNÞ of customers at

each server. The key idea is the approximation

Qi Nð Þ � Ti N ;Pið Þ for N near N0; ð10Þ

where the trial functions TiðN ;PiÞ (also called approximating

functions) are completely known except for MJ parameters,

namely M vectors Pi each with J elements. Table 1 shows

some examples of possible approximating functions. Note

that the more parameters in a trial function, the worse the

computational complexity of the resulting algorithm. A

good trial function should yield a good approximation,

defined in (10), with a small number of parameters. When

the trial functions are linear in the parameters (see, e.g., the

first three rows in Table 1), there is a considerable

simplification in the formulation of the method, as

described in Section 4.4.
In order to specify the MJ parameters Pi, we need to

impose MJ conditions upon approximation (10). Under

the hypothesis that the trial functions TiðN ;PiÞ are chosen

properly (i.e., approximation (10) holds at least for N

near N0), we can specify J population vectors N �
fN ð1Þ;Nð2Þ; . . . ;N ðJÞg (from here on referred to as the

matching populations) and we can insist that MVA recursion

(2) be satisfied at these J populations:2

CREMONESI ET AL.: A UNIFYING FRAMEWORK FOR THE APPROXIMATE SOLUTION OF CLOSED MULTICLASS QUEUING NETWORKS 1425

2. In what follows, indices u, v, and w range from 1 to J unless otherwise
explicitly specified.



Ti N
uð Þ; P i

� �
¼
XR
r¼1

N uð Þ
r Lir 1þ � ið ÞTi N uð Þ ÿ 1r; P i

� �h i
PM
j¼1

Ljr 1þ � jð ÞTj N uð Þ ÿ 1r; P i

� �h i
N uð Þ 2 N:

ð11Þ

Note that N0 itself can be one point of the matching

population set. The set (11) consists of MJ equations for the

MJ parameters Pi. Once the parameters Pi have been

computed by solving the set (11), queue lengths QiðNÞ can

be estimated for any N from (10). The matching condition

expressed by (11) assumes that the approximating functions

(10) interpolate the queue lengths in between the matching

populations and fit perfectly at the matching populations.

Therefore, the approximating functions TiðN;PiÞ are called

interpolating functions. The general steps of the interpolation

strategy are:

Step 1. Specify the approximating functions TiðN;PiÞ for the

queue lengths (10), with MJ parameters Pi to be

determined;

Step 2. Specify the matching populations

N � N 1ð Þ; N 2ð Þ; . . . ; N Jð Þ
n o

;

Step 3. Solve the set of MJ equations (11) for the MJ

parameters Pi;

Step 4. Trivially evaluate the queue lengths from (10) once

the Pis are known.

Variants of (11) consist of choosing Pi to match both

functions and derivatives of (2) or to do a least squares fit

over a prescribed range of populations. In all cases, the

resulting equations (11) are nonlinear and must be solved

by an iterative procedure. By taking J large enough and

employing a sufficiently rich set of trial functions TiðN;PiÞ,
high accuracy can be achieved.

The following subsections give examples of the general

interpolation strategy using different trial functions from

Table 1. These particular trial functions were chosen

because they correspond to some of the well-known

approximation techniques described in Section 2 and they

exhibit increasing generality and accuracy. Note that the

case of linear basis expansion encompasses all the previous

ones and yet is just a particular case of the general Padè

approximation described in [1], [17].

3.1 Constant Approximation Function (Derivation of
Chow Approximation)

The constant approximation is

Qi Nð Þ � Ti N; P ið Þ � Ai P i ¼ Aif gð Þ for N near N0; ð12Þ

which corresponds to using M parameters fAig (i.e.,

M vectors Pi each with J ¼ 1 element). Therefore, only

one matching population vector Nð1Þ is needed in order to

find the M parameters Ai. If we take

N � N 1ð Þ
n o

¼ N0
� 	

; ð13Þ

the set of equations (11) reduces to

Ai ¼
XR
r¼1

N0
r Lir 1þ � ið ÞAi½ �PM

j¼1

Ljr 1þ � jð ÞAj

� �: ð14Þ

Equation (14) is identical with Chow’s (4). It can be solved

by successive substitutions, after which the mean queue

lengths are estimated from (12) as QiðN0Þ � Ai. In the

general procedure, we must work harder to solve the

equations (11) for the parameters. The parameters are then

substituted into (10) to estimate the mean queue lengths.

The Chow approximation shortens both steps because (11)

is conveniently in fixed-point form and because the

parameters themselves are the mean queue lengths. We

exploit this idea below.
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Examples of Trial Functions (fu and gv Are Arbitrary Functions of N)



3.2 Linear Approximation Function

The linear approximation is given by

Qi Nð Þ � Ti N; P ið Þ ¼ Ai þ
XR
r¼1

BirNr P i ¼ Ai;Birf gð Þ;

for N near N0;

ð15Þ

and uses MðRþ 1Þ parameters (i.e., M vectors Pi with J ¼
Rþ 1 elements each). Therefore, we need to fix Rþ 1

population vectors. A convenient choice is

N � N0; N0 ÿ 1r
� 	

: ð16Þ

Imposing the matching conditions (11) leads to a non-

fixed-point problem for the parameters Pi, which can then

be transformed into a fixed-point problem (as shown in the

Appendix). After solving for the parameters Pi, the queue

lengths are evaluated using (15). From a practical point of

view, it may be difficult to invert the transformation from

TiðNðuÞ;PiÞ to Pi (as was done in the Appendix). A better

approach is to carefully choose the trial functions TiðN ;PiÞ
such that TiðN ðuÞ;PiÞ coincide with the MJ parameters Pi. In

this case, (11) is automatically a fixed-;point problem for the

Pis. This objective can be achieved by requiring (15) to hold

exactly at the matching populations (16), which leads to the

following values for the coefficients ½Ai;Bir�:

Ai ¼ Qi N
0

ÿ �
ÿ
PR
r¼1

N0
r Qi N

0
ÿ �

ÿQi N
0 ÿ 1r

ÿ �� �
Bir ¼ Qi N

0
ÿ �

ÿQi N
0 ÿ 1r

ÿ �
:

8<: ð17Þ

By inserting (17) into (15), we obtain the new form T �i of the

trial functions

Qi Nð Þ � T �i N; P �i
ÿ �

¼ Qi N
0

ÿ �
ÿ
XR
r¼1

Nr ÿN0
r

ÿ �
Qi N

0 ÿ 1r
ÿ �

ÿQi N
0

ÿ �� �
for N near N0;

ð18Þ

which has the following desired properties:

. The original parameters Pi ¼ fAi;Birg are replaced
by new parameters

P �i ¼ Qi N
0

ÿ �
; Qi N

0 ÿ 1r
ÿ �� 	

¼ Qi N
uð Þ

� �n o
N uð Þ 2 N

that are the mean queue lengths themselves and

which, unlike the original parameters, have an

intuitive meaning;
. The left and righthand sides of (18) match perfectly

at populations N. Indeed, the righthand side of (18)
is the unique first degree interpolating Lagrangian
polynomial passing through the points fNðuÞg.

The matching condition (11) applied to (18) yields the

following fixed-point problem for the QiðNðuÞÞ (compare

with (46) to see complete equivalence):

Qi N
0

ÿ �
¼
PR
r¼1

N0
r Lir 1þ� ið ÞQi N

0ÿ1rð Þ½ �PM
j¼1

Ljr 1þ� jð ÞQj N
0ÿ1rð Þ½ �

Qi N
0 ÿ 1s

ÿ �
¼PR

r¼1

N0
rÿ�rsð ÞLir 1þ� ið Þ Qi N

0ÿ1rð ÞþQi N
0ÿ1sð ÞÿQi N

0ð Þ½ �f gPM
j¼1

Ljr 1þ� jð Þ Qj N
0ÿ1rð ÞþQj N

0ÿ1sð ÞÿQj N
0ð Þ½ �f g

8>>>>>>>><>>>>>>>>:
ð19Þ

for the MðRþ 1Þ unknowns QiðN0Þ and QiðN0 ÿ 1rÞ. As

desired, the fixed-point form has been obtained and the

new parameters QiðNðuÞÞ have a direct intuitive interpreta-

tion. Note that the approximation used in (19) is:

Qi N
0 ÿ 1r ÿ 1s

ÿ �
� Qi N

0 ÿ 1r
ÿ �

þQi N
0 ÿ 1s

ÿ �
ÿQi N

0
ÿ �

;

ð20Þ

which is a direct consequence of (18). In addition, (20) is

symmetric in r and s and scales properly with the

population. A graphical representation of the fixed-point

problem generated by a linear approximation function in

the single-class case is shown in Fig. 1. The horizontal axis

represents the population N; the vertical axis shows the

queue length for station i. Approximation (18) in this simple

case is the equation of a straight line. The IMT is used

according to the following strategy (see Fig. 1, N0 is the

population of interest):

Step 1. We start with estimate E1 and E2 of QiðN0Þ and

QiðN0 ÿ 1Þ;
Step 2. Linear interpolation based on (18) gives E3;

Step 3. The fixed-point problem (19) gives E4 and E5.

Steps 2 and 3 are repeated until values of QiðN0Þ converge

(black boxes in Fig. 1).
The approach of using trial functions with the queue

lengths themselves as parameters is advantageous because

it always yields fixed-point equations for the Qis. In the

following, it will be used whenever possible. Approxima-

tion (15) can be extended to polynomials of higher degree,

so (18) will contain higher-degree Lagrangian interpolation

polynomials.
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Fig. 1. Representation of IMT applied to a single-class case with linear

approximating function.



3.3 Another Linear Approximation (Derivation of
AQL Approximation)

The AQL method is similar to the linear approximation

method of Section 3.2, except that QiðNÞ=N rather than

QiðNÞ is considered as linear. Equation (15) is replaced by

Qi Nð Þ
N

� Ti N; P ið Þ
N

¼ Ai þ
XR
r¼1

BirNr

P i ¼ Ai;Birf gð Þ for N near N0:

ð21Þ

If (21) is required to hold exactly at the matching

populations (16), approximation (20) is replaced by

Qi N
0 ÿ 1r ÿ 1s

ÿ �
N0 ÿ 2

¼
Qi N

0 ÿ 1r
ÿ �
N0 ÿ 1

þ
Qi N

0 ÿ 1s
ÿ �
N0 ÿ 1

ÿ
Qi N

0
ÿ �
N0

;

which is exactly the AQL approximation defined by (9).

3.4 The Linear Basis Expansion

More general trial functions than the ones described in the

previous sections can be used. For example, one could use a

Padé approximation (see Table 1) or, more generally, any

smooth (analytic) function. In this section, we use a linear

combination of independent basis functions. Let us consider

J known, linearly independent, basis functions fuðNÞ and

attempt a trial function

Qi Nð Þ � TiðN;PiÞ ¼
XJ
u¼1

Piufu Nð Þ for N near N0; ð22Þ

with the MJ parameters Piu to be determined. This choice of

TiðN;PiÞ includes both the approximation functions de-

scribed above as special cases (e.g., the constant approx-

imation is obtained when J ¼ 1 and ffuðNÞg ¼ f1g and the

linear approximation is obtained when J ¼ Rþ 1 and

ffuðNÞg ¼ f1;Nrg). Higher-degree polynomials may be

accommodated as well. As in the previous case, it is

possible to change the parameters so that the new

parameters are the queue lengths themselves at some given

populations, namely by specifying J population vectors N �
fNð1Þ;N ð2Þ; . . . ;N ðJÞg and requiring (22) to hold exactly for

these populations. The fPitg are then specified in terms of

the QiðNðvÞÞ by the linear equations

Qi N
vð Þ

� �
¼
XJ
u¼1

Piu fu N vð Þ
� �

N vð Þ 2 N: ð23Þ

Because they are linear, the set of equations (23) can be

inverted to express the Pius in terms of the queue lengths at

the matching populations. We introduce the following

matrix notation:

P � Piu½ � M � J matrix; unknown

X � Xiv½ � � Qi N
vð Þ

� �h i
M � J matrix; unknown

Y � Yuv½ � � fu N vð Þ
� �h i

J � J matrix; known:

ð24Þ

Equation (23) can now be rewritten as X ¼ P�Y. Matrix Y is

always nonsingular because the basis functions are assumed

to be linearly independent. Let W � ½Wvu� � Yÿ1. Therefore,

approximation (22) becomes

Qi Nð Þ �
XJ
u¼1

XJ
v¼1

XivWvufu Nð Þ for N near N0: ð25Þ

By substituting (25) into the MVA recursion (11) and

matching at N ðvÞ 2 N, we obtain the fixed–point problem

Xiv ¼
XR
r¼1

N vð Þ
r Lir 1þ � ið Þ

PJ
u¼1

PJ
z¼1

XizWzufu N vð Þ ÿ 1r

� �� �
PM
j¼1

Ljr 1þ � jð Þ
PJ
u¼1

PJ
z¼1

XjzWzufu N vð Þ ÿ 1r

� �� �
1 � v � J;

ð26Þ

consisting of MJ equations for the MJ unknowns X. These

correspond to (11) with P � X and are the generalization of

(19). Once the matrix ½Xiv� is available, it is possible to

estimate QiðNÞ for any N using (25). Note again that the

½Xiv� have an immediate interpretation as queue lengths

(see (24)).
The possibility exists of replacing (26) by an alternative

scheme where (25) is inserted into both sides of (2) and

matched at a set of J populations different from N. We

recommend against this because the equations, unlike (26),

are not in fixed-point form; we have not found any

advantages in accuracy, provided N was chosen reasonably.

4 INTERPOLATION ON “SERVERS” AND “CLASSES”

The interpolation-matching technique described in the

previous section has an intrinsic limitation: It can approx-

imate only the aggregate queue lengths Qi, but not the

queue lengths per customer class Qir. Therefore, it can

encompass algorithms like AQL, but not SB or Linearizer. In

this section, we extend the formulation of the interpolation

matching technique in order to approximate the Qirs

individually. The extension parallels the formulation in

Section 3. The basic approximation used in this case is

Qir Nð Þ � Tir N; P irð Þ for N near N0;

where the trial functions Tir depend upon MR vectors Pir,

each with J real elements. We specify J matching

populations N � fN ð1Þ;Nð2Þ; . . . ;NðJÞg and impose the

matching conditions

Tir N uð Þ; P ir

� �
¼
N uð Þ
r Lir 1þ

PR
s¼1

Tis N uð Þ ÿ 1r; P is

� �� �
PM
j¼1

Ljr 1þ
PR
s¼1

Tjs N uð Þ ÿ 1r; P js

� �� �
N uð Þ 2 N:

ð27Þ

Equation (27) defines a set of MRJ equations for the MRJ

parameters. The following subsections illustrate the trial

functions chosen to reproduce approximation methods

corresponding to the SB and Linearizer. The more general

case of linear basis functions includes all the previous ones

and will be used in Section 5 to derive a new cubic

approximation.
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4.1 Linear Approximation Function (Derivation of
Schweitzer-Bard)

We consider the linear approximation,

Qir Nð Þ � Tir N; P irð Þ ¼ AirNr for N near N0; ð28Þ

that uses MR parameters fAirg (i.e., J ¼ 1) and R trial

functions ffrðNÞg ¼ fNrg. Changing the parameters from

fAirg to fQirðN0Þg and requiring that (28) holds exactly at

N0, we must have Air ¼ QirðN0Þ=N0
r . Therefore, (28)

becomes

Qir Nð Þ � Tir N; P irð Þ ¼
Qir N

0
ÿ �
N0
r

Nr for N near N0: ð29Þ

Using (29) to compute the queue length at the population

vector N0 ÿ 1s, we obtain

Qir N
0 ÿ 1s

ÿ �
� Qir N

0
ÿ �

ÿ �rs
Qir N

0
ÿ �
N0
r

; ð30Þ

which is exactly the SB approximation (5). The fixed-point

problem obtained using (30) in the matching conditions (27)

becomes identical to (6).

4.2 Quadratic Approximation Function (Derivation
of Linearizer)

In this section, we will show that, with a proper choice of

basis functions and matching populations, the IMT is

equivalent to the Linearizer approximation described in

Section 2.2.3. Let us consider a quadratic expansion for the

queue lengths

Qir Nð Þ � TirðN;P irÞ ¼ AirNr þ
XR
t¼1

BirtNrNt

P ir ¼ Air; Birtf gð Þ for N near N0

ð31Þ

with MRðRþ 1Þ coefficients Pir to be determined (i.e., MR

vectors each with J ¼ Rþ 1 real elements) and basis

functions fNr;NrNsg. This approximation yields the one

used by Linearizer if we take

N � N0; N0 ÿ 1r
� 	

ð32Þ

as matching populations. As before, it is possible to change

the parameters by requiring (31) to hold exactly for the ðRþ
1Þ populations (32)

QirðN0Þ ¼ TirðN0; P irÞ
QirðN0 ÿ 1sÞ ¼ TirðN0 ÿ 1s; P irÞ:

�
ð33Þ

These conditions lead to the new trial functions

Qir Nð Þ � T �ir N; P irð Þ ¼

Nr
QirðN0Þ
N0
r

þ
XR
t¼1

Nt ÿN0
t

ÿ � QirðN0Þ
N0
r

ÿQirðN0 ÿ 1tÞ
N0
r ÿ �rt

� �( )
;

with the new parameters P �ir ¼ fQirðN0Þ;QirðN0 ÿ 1tÞg.
Setting N ¼ N0 ÿ 1s ÿ 1r leads to the Linearizer approx-

imation (8).

4.3 The Linear Basis Expansion

The generalization of the above approximation functions is
obtained by approximating the queue length Qir for any

class r at a given station i with the following linear
combination of J basis functions fruðNÞ:

Qir Nð Þ �
XJ
u¼1

Priufru Nð Þ for N near N0; ð34Þ

where fPriug is a set of MRJ coefficients to be determined.
As already pointed out, it is convenient to change

parameters from Priu to QirðN 2 NÞ, where N �
fN ð1Þ;Nð2Þ; . . . ;N ðJÞg is a specified set of J populations
(which may include N0 itself). By insisting upon equality
between the left and right sides of (34) at these populations,

we obtain the MRJ equations

Qir N vð Þ
� �

�
XJ
u¼1

Priufru N vð Þ
� �

N vð Þ 2 N; ð35Þ

which are sufficient to determine the MRJ Priu. Let’s
introduce the following notation:

Pr � Priu½ �

Xr � Xriv½ � � Qir N vð Þ
� �h i

Yr � Yruv½ � � fru N vð Þ
� �h i

:

For each r, Pr and Xr are unknown M �R matrices, while
Yr is a known J � J matrix. Equation (35) can then be
rewritten as

Xr ¼ Pr �Yr:

The Yr matrices are nonsingular if we assume the basis
functions fru for each r to be linearly independent. Let

Wr � ½Wr�uv � Yÿ1
r , so Pr ¼ Xr �Wr. Approximation (35)

becomes

Qir Nð Þ �
XJ
u¼1

XJ
v¼1

Xriv Wr½ �vufru Nð Þ for N near N0: ð36Þ

By substituting the above expression into the MVA
recursion, we obtain the following fixed-point problem (in

the MRJ unknowns Xr):

Xriv ¼
N vð Þ
r Lir 1þ � ið Þ

PR
s¼1

PJ
u¼1

PJ
z¼1

Xsiz Ws½ �zufsu N vð Þ ÿ 1r

� �� �
PM
j¼1

Ljr 1þ � jð Þ
PR
s¼1

PJ
u¼1

PJ
z¼1

Xsjz Ws½ �zufsu N vð Þ ÿ 1r

� �� �
1 � v � J:

ð37Þ

Once the Xr matrices are available, it is possible to estimate
the QirðNÞ for any N using (36).

4.4 Generalization of the IMT Technique

The most general case of IMT uses the following
approximation

Qir Nð Þ � Tir N; P irð Þ; ð38Þ
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where the parameters Pir enter the trial function in a

nonlinear way. In all cases, the matching procedure gives a

nonlinear set of equations for the parameters Pir. We have

two sets of equations, the interpolation equations (38):

Qir NðvÞ
� �

� Tir NðvÞ; P ir

� �
ð39Þ

and the matching equations (27)

Tir NðvÞ; P ir

� �
¼
NðvÞr Lir 1þ � ið Þ

PR
s¼1

Tis NðvÞ ÿ 1r; P is

� �� �
PM
j¼1

Ljr 1þ � jð Þ
PR
s¼1

Tjs N ðvÞ ÿ 1r; P js

� �� � :
ð40Þ

These are 2MRJ equations for the 2MRJ unknowns Qir

and Pir and, in general, they are not in fixed-point form for

the Pirs. A straightforward procedure is to first solve (40)

for Pir and subsequently use (39) to calculate Qir.
By contrast, in the previous examples, (39) was inverted

explicitly to obtain Pir as a function of Qir and then (40) was

interpreted as a set of simultaneous equations for Qir

similar to (4), (19), (26), and (37), thus obtaining a fixed-

point problem for the queue lengths at the matching

populations. The advantages of such an approach are:

. The first step of the strategy, inverting (39), must be
executed only once when the new IMT algorithm is
created, so its computational cost can be ignored;

. We obtain a fixed-point problem, which is much
easier to solve than the more general equation (40);

. The unknowns of the fixed-point problem are the
queue lengths, which have an immediate meaning,
unlike the parameters Pir.

The most important feature, however, is that the number

of equations equals the number of parameters, so the

matching conditions (40) serve uniquely to determine the

parameters Pir, even when they are not in fixed-point form.

Two straightforward extensions are to let the basis func-

tions fruðNÞ in (34) depend on i and let the matching points

N � fN ðvÞg in (35) depend on i and r. The notation becomes

more complicated, but the underlying ideas remain the

same. With the proposed extensions, it is also possible to

treat the more general case of Padè approximations.

5 AN EXAMPLE OF IMT APPLICATION: THE

LINEARIZER++ ALGORITHM

To illustrate the ease of constructing new approximation

algorithms using the IMT, we propose a cubic expression as

the interpolating function for the queue lengths. The

equivalence between SB and linear interpolation function

and between Linearizer and quadratic interpolation func-

tion has motivated the investigation of higher order

interpolation polynomial functions in order to find more

accurate approximating methods. The specific form of cubic

interpolation—compare with (28) and (31)—is

Qir Nð Þ � AirNr þ
XR
s¼1

BirsNrNs þ
XR
t¼1

XR
s�t

CirstNrNsNt

P ir ¼ Air; Birs; Cirstf gð Þ for N near N0:

There are MR½ðRþ 1ÞðRþ 2Þ=2� unknown coefficients Pir

(i.e., MR parameter vectors each with J ¼ ðRþ 1ðRþ 2Þ=2
real elements). Choosing the following matching population
vectors:

N � N 0ð Þ; N 0ð Þ ÿ 1r; N
0ð Þ ÿ 1r ÿ 1s

n o
;

leads to a new approximation method (referred to as
Linearizer++) which shows much better accuracy than
Linearizer. Table 2 shows the results obtained for over
4,800 randomly generated models (100 models for each
specification of: M = 2, 4, 6, 8 servers, R = 2, 3 classes of
customers, and N= 5, 10, 50, 100, 500, 1,000 total customers).
Since queuing centers usually contribute more to the errors
than delay centers do, only queuing centers have been
considered in the experiments. The values of the loadings
range from 0 to 100. All the parameters were selected
independently and their values are uniformly distributed
over their respective ranges. The table presents the average
�ðeÞ, the standard deviation �ðeÞ, and the maximum maxðeÞ
of the normalized error e of each model, defined as

e ¼ max
i;r

Qir Nð ÞMVAÿQir Nð ÞAPP

Nr

���� ����;
where QirðNÞMVA and QirðNÞAPP are the exact and
approximate solutions, respectively, for the considered
model. Let us remark that the value of e is the maximum
error on the per-class customers at the servers of each
model. As the table shows, the error of Linearizer++ is, on
average, 1/3 of the error of Linearizer, with half the
standard deviation and max error of Linearizer. In all the
models, the errors e of Linearizer++ are lower then the ones
of Linearizer. In general, the errors increase with the
number of stations and with the number of classes.

The complexity of the three methods (SB, Linearizer, and
Linearizer++) is proportional to the number of iterations n
needed to solve the fixed-point problem, and to the
complexity of one iteration. The complexity of each iteration
is OðM R2 J3Þ with J ¼ 1 for SB, J ¼ ðRþ 1Þ for Linearizer,
and J ¼ ðRþ 1ÞðRþ 2Þ=2 for Linearizer++. The number of
iterations clearly depends on the starting point and on the
termination criteria and, a priori, it may also be influenced
by the number of classes, the number of stations, and the
number of customers.

Fig. 2 shows the average number of iterations (and the
standard deviation) as a function of the number of stations
M and the number of classes R, for the three local
approximation techniques. Each point in the figure is the
average of 1,800 values, corresponding to 100 models, with
six different numbers of customers (N = 5, 10, 50, 100, 500,
1,000) and three different approximation techniques (SB,
Linearizer, Linearizer++).

An interesting result that can be drawn from the figure,
is that the number of customers N and the approximate
method adopted have a very limited influence on the
number of iterations required for the method to converge.
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On the other side, the number of iterations increases with

the number of stations M and decreases with the number of

classes R.

6 DESIGN GUIDELINES FOR NEW APPROXIMATION

TECHNIQUES

This section describes the guidelines for the design of new

approximation techniques using IMT. Any IMT algorithm is

specified by choosing:

. an integer number J (i.e., the number of unknown
vector parameters), which is a dominant factor in the
computational complexity of the method;

. the interpolating functions TirðN;PirÞ, with MJR
parameters Pir to be determined;

. the matching points N � fN ð1Þ; N ð2Þ; . . . ; NðJÞg.
The issues regarding each of these choices are described in

the following subsections.

6.1 Choice of J

Experience suggests that good choices for J are J ¼ Rþ 1 and

J ¼ ðRþ 1ÞðRþ 2Þ=2 because they satisfy all three of the

previously stated general rules. Note that these choices for J

are implicitly made by AQL, Linearizer, and Linearizer++.

6.2 Choice of the Interpolation Functions

The largest degree of freedom when defining a new IMT

method arises with the choice of the interpolating functions.

Experience suggests that:

. Choosing the trial functions to be finite-degree
polynomials leads to convenient Lagrangian inter-
polating polynomials and gives good insight into the
interpolation method. All the known approximation
methods use polynomials. Increasing the degree of
the polynomial from constant to linear then to
quadratic and cubic is observed to increase the
method accuracy, with Linearizer++ being the most
precise. However, the increase of accuracy with the
increase of the polynomial degree is not expected to
continue indefinitely because of the numerical
instability that characterizes high degree polynomial
approximations. We have observed that instability
arises with a degree greater than 3. In addition, high
degree polynomials are computationally unattrac-
tive as the number of customer classes increases. The
instability of the high degree polynomials arises
because the matching population set now include
points very far from N0 and such points do not
contribute significantly to the accuracy of estimating
QiðN0Þ.

. It is desirable to choose the trial functions TirðN ;PirÞ
such that

PM
i¼1 TirðN;P irÞ ¼ Nr is an identity (i.e.,

the scaling condition described in Section 2.2.1 must

be verified) and similarly choose trial functions

TiðN ;PiÞ such that
PM

i¼1 TiðN;P iÞ ¼
PR

r¼1 Nr is an

identity. Inspection of (18), (29), and (31) shows that

SB, Linearizer, and Linearizer++ satisfy this condi-

tion and that it is straightforward to accomplish this.
. SB, Linearizer, and Linearizer++ use Lagrangian

polynomials for interpolating the functions Qir=Nr

rather than Qir and provide good results. A reason
for this is that the function Qir=Nr is smoother than
Qir, so a low degree polynomial satisfactorily
approximates it. More generally, it appears desirable
to attempt interpolations on functions of the queue
lengths that are known to be smoother than the
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queue lengths themselves. This is the motivation for
the use of generalized Padé approximations.

. Other choices of trial functions besides linear basis
functions (Lagrangian interpolation polynomials)
have been explored. In particular, generalized Padé
approximations appear to be both convenient and
flexible. The choice of trial functions determines the
ease of solving (27), which are usually not in fixed-
point form.

6.3 Choice of the Matching Points

The choice of the matching pointsNðtÞ have a great impact on

the accuracy of an IMT method. Our intuition, based on the

experiments performed, suggests that the matching points:

. Should be in some way “fair” to the different classes
of customers;

. Should be chosen near N0: IMT methods are local,
thus they provide good results locally (i.e., at points
near N0);

. Should be below N0 (i.e., for networks with fewer
customers than N0) because of the well-known
property of the upward MVA recursion to smooth
errors [8];

. Should constitute a “compact” set, without gaps in it
(see the following section).

A good choice of matching points is

N � N0; N0 ÿ 1r
� 	

;

which is the choice made by Linearizer and AQL, or

N � N 0ð Þ; N 0ð Þ ÿ 1r; N
0ð Þ ÿ 1r ÿ 1s

n o
;

which is the choice made by Linearizer++. Good choices of

the matching points are

N ¼W vð Þ � N j NrN
0
r 8r

ÿ �
^ N � N0 ÿ vð Þ

� 	
; ð41Þ

where v refers to the maximum distance from N0. Let us

remark that all the points contained in the set WðvÞ
influence QiðN0Þ in the MVA recursion. We refer to such

set of points as the wake set for the point N0. Fig. 3 shows the

wake set for a two-class network with v ¼ 3.

6.3.1 Characteristics of the Matching Population Set

We found good results i f our choice of N ¼
fN ð1Þ;Nð2Þ; . . . ;N ðJÞg met three criteria:

1. N0 2 N;
2. Each N ðuÞ lies in the wake set of N0;
3. Each N ðuÞ lies in the wake set of other numbers N ðvÞ.

The explanation is that the interpolation formula QiðNÞ ¼
TiðN ;PiÞ is implicitly assumed to hold perfectly at all the
points fN ð1Þ;Nð1Þ ÿ 1r;N

ð2Þ;Nð2Þ ÿ 1r; . . .g 8r. This is too
much to expect. Compare, for example, Fig. 1 and Fig. 4,
both showing a graphical representation of linear approx-
imation (15) with a single (R ¼ 1) and two parameters
(J ¼ 2). Fig. 4 shows the most general (and worst) choice of
matching population set. Starting with estimate E1 and E2

of the queue lengths at populations N ð1Þ and Nð2Þ, linear
interpolation gives E3 and E4, which are used to iterate the
method. Linear interpolation also gives E0, which is used to
test the method convergence. One is therefore attempting,
in the worst case, to fit a straight line through five points
fN ð0Þ;Nð1Þ;N ð1Þ ÿ 1;N ð2Þ;N ð2Þ ÿ 1g. One of these five points
is eliminated by rule 1 and another by rules 2 and 3. The
result is to have to fit a straight line through three points
fN ð0Þ;Nð0Þ ÿ 1;Nð0Þ ÿ 2g, a task which is much more likely
to succeed, as shown in Fig. 1.

7 CONCLUSIONS

In this paper, we have presented an interpolation-matching
technique that provides an analytical framework under
which all the known local approximation techniques for the
solution of closed product-form queuing networks can be
described and analyzed.

We have identified the characteristics and the para-
meters of approximating methods that impact on their
complexity and accuracy. In particular, we have shown
that differences in the accuracy are related to the specific
forms of the corresponding interpolating functions. As an
example of the power of the IMT technique, throughout
its application, we have constructed a new algorithm that
exhibits better accuracy results than previous ones.
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Guidelines are given for the construction of new approx-

imation techniques with different accuracy and computa-

tional complexity by properly selecting the matching

points and the interpolating functions.
Our current investigation focuses on choosing noninte-

ger populations in order to be closer to target population;

on choosing the function parameters to locally match both

functions and derivatives of the MVA recursion or to do a

least squares fit over a prescribed range of populations; on

choosing the trial functions and extending the results to

load-dependent servers.

APPENDIX

This appendix shows how to obtain a fixed–point problem

for the parameters fAir;Birg from the linear approximation

defined in Section 3.2:

Qi Nð Þ � Ti N; P ið Þ ¼ Ai þ
XR
r¼1

BirNr P i ¼ Ai;Birf gð Þ;

for N near N0;

ð42Þ

when using the matching points

N � N0; N0 ÿ 1r
� 	

:

If, for each N 2 N, we write the matching condition (11)

together with the approximation (42), we obtain the

following equations:

Ai þ
XR
r¼1

BirN
0
r ¼

XR
s¼1

N0
s Lis 1þ � ið Þ Ai þ

PR
r¼1

Bir N
0
r ÿ �rs

ÿ �� �� �
PM
j¼1

Ljs 1þ � jð Þ Aj þ
PR
r¼1

Bjr N0
r ÿ �rs

ÿ �� �� � ð43Þ

Ai þ
XR
r¼1

Bir N
0
r ÿ �rt

ÿ �
¼

XR
s¼1

N0
s ÿ �st

ÿ �
Lis 1þ � ið Þ Ai þ

PR
r¼1

Bir N
0
r ÿ �rs ÿ �rt

ÿ �� �� �
PM
j¼1

Ljs 1þ � jð Þ Aj þ
PR
r¼1

Bjr N0
r ÿ �rs ÿ �rt

ÿ �� �� � :

ð44Þ

These are MðRþ 1Þ equations for the MðRþ 1Þ unknowns

fAi;Birg. They are neither linear nor in fixed-point form.

The fixed-point form can be obtained by adding and

subtracting (43) and (44):

Ai ¼
PR
s¼1

N0
s Lis 1þ� ið Þ Aiþ

PR
r¼1

Bir N0
rÿ�rsð Þ

� �� �
PM
j¼1

Ljs 1þ� jð Þ Ajþ
PR
r¼1

Bjr N0
rÿ�rsð Þ

� �� �ÿPR
r¼1

BirN
0
r

Bit ¼
PR
s¼1

N0
sÿ�stð ÞLis 1þ� ið Þ Aiþ

PR
r¼1

Bir N0
rÿ�rsÿ�rtð Þ

� �� �
PM
j¼1

Ljs 1þ� jð Þ Ajþ
PR
r¼1

Bjr N0
rÿ�rsÿ�rtð Þ

� �� � þ

ÿ
PR
s¼1

N0
s Lis 1þ� ið Þ Aiþ

PR
r¼1

Bir N0
rÿ�rsð Þ

� �� �
PM
j¼1

Ljs 1þ� jð Þ Ajþ
PR
r¼1

Bjr N0
rÿ�rsð Þ

� �� � :

8>>>>>>>>>>>>>>>>>>><>>>>>>>>>>>>>>>>>>>:

ð45Þ

Successive substitutions on this set of equations will

presumably converge to the parameters fAi;Birg and then

(15) will produce an estimate of QiðNÞ.
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