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Abstract. The issue of dissipation has a peculiar importance in micro-electro-mechanical-
structures (MEMS). Among the sources of damping that affect their performance, the most rele-
vant are [1]: thermoelastic coupling, air damping, intrinsic material losses, electrical loading
due to electrode routing, anchor losses. Moreover, recent experimental results indicate the
presence of additional temperature dependent dissipation mechanisms which are not yet fully
understood (see e.g. [2, 12]). In a resonating structure the quality factor Q is defined as:

Q = 2πW/∆W (1)

where ∆W and W are the energy lost per cycle and the maximum value of energy stored in
the resonator, respectively. According to eq.(1), the magnitude of Q ultimately depends on the
level of energy loss (or damping) in a resonator. The focus of the present contribution is set
on anchor losses and the impact they have in the presence of axial loads. Anchor losses are
due to the scattering of elastic waves from the resonator into the substrate. Since the latter is
typically much larger than the resonator itself, it is assumed that all the elastic energy entering
the substrate through the anchors is eventually dissipated. The semi-analytical evaluation of
anchor losses has been addressed in several papers with different levels of accuracy [3, 6].
These contributions consider a resonator resting on elastic half-spaces and assume a weak
coupling, in the sense that the mechanical mode, as well as the mechanical actions transmitted
to the substrate, are those of a rigidly clamped resonator. The displacements and rotations
induced in the half-space are provided by suitable Green’s functions. Photiadis, Judge et al. [7]
studied analytically the case of a 3D cantilever beam attached either to a semi-infinite space
or to a semi-infinite plate of finite thickness. Their results are based on the semi-exact Green’s
functions established in [4]. More recently Wilson-Rae et al. [9, 10] generalized all these
approaches using the involved framework of radiation tunnelling in photonics. Unfortunately,
these contributions provide estimates of quality factors that differ quantitatively. In this paper
we revisit the procedure of [7], which rests on simple mechanical principles, but starting from
the exact Green’s functions for the half space studied by Pak [14]. Through a careful analysis
utilizing the theory of residues and inspired by the work of Achenbach [15], we show that the
results obtained coincide exactly with those of [9], but for the case of torsion.
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1 INTRODUCTION: ANALYTICAL ESTIMATE OF DISSIPATION

Following a rather standard procedure [6, 7, 8], in this Section we describe the simplest
possible analytical (or semi-analytical) approach based on a decoupling assumption. Let us
consider a structure, like the beam of Figure 1, attached to semi-infinite elastic spaces and
vibrating in one of its fundamental modes with angular frequency ω. The number of anchor
points is irrelevant and the procedure must be identically repeated for all of them.

Figure 1: Sketch of a bistable doubly clamped beam

As a consequence we focus on a specific attachment point and start considering it as perfectly
rigid. Standard theories of structural mechanics permit to express concentrated forces and cou-
ples exerted by the structure on the support. These generally include a constant component (due
for instance to pre-stresses or initial deformation) and a sinusoidal varying contribution (see
Figure 1 for the notation):

axial force : n(t) = n0 +Neiωt (2)

shear force : r(t) = r0 +Reiωt (3)

bending couple : b(t) = b0 +Beiωt (4)

torque : τ(t) = τ0 + Teiωt (5)

The shear force and bending couple have in general two components which are treated in the
same manner.

We now introduce the decoupling assumption, according to which frequencies, forces and
couples are not significantly altered if the rigid support is replaced with a deformable half space.
These concentrated actions induce displacements and rotations:

n(t) → d(t) = d0 +Deiωt (6)

r(t) → v(t) = v0 + V eiωt (7)

b(t) → φ(t) = φ0 + Φeiωt (8)

τ(t) → ψ(t) = ψ0 + Ψeiωt (9)

where D, V,Φ,Ψ are in general complex variables and denote the amplitude of the time depen-
dent part of, respectively, axial and tangential displacements, bending and torsional rotations.
These are known as Green’s functions for the half elastic space and it is worth stressing that the
real part of these kinematic quantities is in general unbounded.

However, the dissipation over one cycle due to the scatter of elastic waves in the infinite
half-space is:

∆W = −π (Im[D]N + Im[V ]R + Im[Φ]B + Im[Ψ]T )
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Figure 2: Functions gN (eq.21), gR (eq.28) and gB (eq.24)

and only depends of the bounded imaginary part of the Green’s functions.
In particular, setting kT = ω/cT, cT =

√
µ/ρ, in Section 2 we show that

Im[D] = N
kT

µ
gN(ν) Im[V ] = R

kT

µ
gR(ν) (10)

Im[Φ] = B
k3T
µ
gB(ν) Im[Ψ] = −T k

3
T

µ

1

12π
(11)

where gN , gR and gB are plotted versus the Poisson coefficient ν in Figure 2. Most of these
functions, rigorously established starting from the work by Pak [14], are similar to analogous
results published in [7], but differ quantitatively. On the contrary, the numerical values of the
g functions coincide, but for Im[Ψ], with the expressions given in [9] starting from a totally
different perspective.

Finally, summing over all the anchor points:

∆W = −π
∑
i

(
N2
i

kT

µ
gN(ν) +R2

i

kT

µ
gR(ν) +B2

i

k3T
µ
gB(ν)− T 2

i

k3T
µ

1

12π

)
(12)

In order to apply eq.(12) only the expressions of R,N,B, T are required. In many cases fully
analytical estimates are available, like for a cantilever beam in axial or bending vibrations. More
in general, a numerical tool is required, as for the case of the buckled beam of interest in this
paper, discussed in the following section.

2 DISPLACEMENTS AND ROTATIONS DUE TO POINT LOADS ON AN ELASTIC
HALF-SPACE

The general procedure proposed by Pak [14] is here employed to derive the surface displace-
ments and rotations induced by harmonic point forces and couples exerted on the surface of an
elastic half-space of outward normal ez. In [14] forces, represented as stress discontinuities,
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are distributed on a circle of radius a. By suitable specifying their form and taking the limit
a → 0, all the concentrated loads of interest herein can be recovered. Starting from formulas
(18) and (25) provided by [14], the Green’s functions for bending and torque couples are also
obtained. Next, focusing on the imaginary part of interest for the dissipation, free terms are
evaluated using the theory of residua and results are provided in the form of at most weakly
singular integrals, in general functions of the Poisson coefficient. All the results are presented
graphically in Figure 2.

Here we set kT = ω/cT, kL = ω/cL, η = k/kT (cT and cL are shear and longitudinal wave
velocities) and

α2 =
c2T
c2L

=
1− 2ν

2(1− ν)
(13)

q2 = k2 − ω2/c2T = k2 − k2T = k2T(η2 − 1) (14)
p2 = k2 − ω2/c2L = k2 − k2L = k2T(η2 − α2) (15)

G = (k2 + q2)2 + 4k2pq = k4T

(
(2η2 − 1)2 + 4η2

√
η2 − α2

√
η2 − 1

)
(16)

F = (k2 + q2)2 − 4k2pq = k4T

(
(2η2 − 1)2 − 4η2

√
η2 − α2

√
η2 − 1

)
= k4Tf(η) (17)

Vertical displacement due to a vertical force. The distribution of surface stresses:

tz =
1

πa2

over the circle of radius a centered at the origin induces a unit vertical force. From [14], the
resulting displacement w along the z axis is:

w(r) =
1

πµa

∫ ∞
0

Ω(k)J1(ak)J0(kr)dk (18)

where Jm is the m-th order Bessel function, r = |y − x| and

Ω =
1

2k2T

(
−p+

k2

q
− G

F

(
p+

k2

q

)
+

8k2p(k2 + q2)

F

)
= − 1

kT

√
η2 − α2

f(η)
(19)

where f(η) has been defined in eq.(17). Equation (18) can be rewritten:

w(r) = − 1

πµa

∫ ∞
0

√
η2 − α2

f(η)
J0(kTηr)J1(kTηa)dη (20)

It is worth stressing that the real part has a potential singular behavior at the origin, as expected.
However we are interested only in the imaginary part of D = limr→0w(r) which is smooth,
since the integrand in eq.(18) is real for η > 1. Hence the limits r → 0, a → 0 can be safely
taken.

The integral has a pole in η = ηR such that f(ηR) = 0, which corresponds to Rayleigh
waves, with ηR > 1. Following [15] this gives the free term:

DR(r) = − kT
2πµ

(
−iπ

ηR
√
η2R − α2

f ′(ηR)

)
= i

kT
µ

(
ηR
√
η2R − α2

2f ′(ηR)

)
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The integral in eq.(20) has to interpreted in the Cauchy principal value sense. Globally:

Im[D] = N
kT

µ
gN(ν) (21)

with:

gN(ν) = − 1

2π
Im

[∫ 1

0

η
√
η2 − α2

f(η)
dη

]
+
ηR
√
η2R − α2

2f ′(ηR)

It is worth stressing that the final results coincides with that provided by Achenbach ([15],
eq.77) using a different procedure.

Rotation due to bending moment. The distribution of surface stresses

tz =
4

πa4
r cos θ =

2

πa4
reiθ +

2

πa4
re−iθ

over the circle of radius a is equivalent to a unit bending couple around the θ = π/2 axis.
Indeed, in order to apply the procedure of [14], tz needs to be expressed in polar coordinates
over the circle as:

tz =
∑
m

tz,m(r)eimθ

The induced radial displacement on the surface is:

w(r) =
4 cos θ

πµa2

∫ ∞
0

Ω(k)J2(ak)J1(kr)dk (22)

which, by differentiation, yields the rotation φ around the θ = π/2 axis:

φ =
∂w(r)

∂r

∣∣∣∣
θ=0

=
2

πµa2

∫ ∞
0

ΩJ2(ak)k(J0(kr)− J2(kr))dk (23)

Since we are only interested in the imaginary part of Φ and the integrand is real for η > 1, the
rotation for r → 0, a→ 0, is bounded and:

Im[Φ] = B
k3T
µ
gB(ν) (24)

with:

gB(ν) = − 1

4π
Im

[∫ 1

0

η3
√
η2 − α2

f(η)
dη

]
+
η3R
√
η2R − α2

4f ′(ηR)

where the second term represents the contribution of Rayleigh waves at f(ηR) = 0.

Tangential displacement due to tangential force. Like the vertical force also this case is
already treated in [14]. The surface stress distribution

tθ = − 1

πa2
sin θ tr =

1

πa2
cos θ
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over the circle of radius a, which is equivalent to a unit horizontal force, generates the radial
displacement ur:

ur =
cos θ

2πµa

[∫ ∞
0

(γ1 + γ2)J0(kr)J1(ak)dk +

∫ ∞
0

(γ2 − γ1)J2(kr)J1(ak)dk
]

(25)

with

γ1 =
1

2k2T

(
k2

p
− q − G

F

(k2
p

+ q
)

+
8k2q(k2 + p2

F

)
= − 1

kT

√
η2 − 1

f(η)
(26)

γ2 =
1

q
=

1

kT

1√
η2 − 1

(27)

The displacement V at the point of application of the load and θ = 0 is the limit of ur for r → 0,
a→ 0, and

Im[V ] = R
kT

µ
gR(ν) (28)

having set:

gR(ν) = − 1

4π

∫ 1

0

ηh1(η)

f(η)
√
η2 − 1

dη +
ηRh1(ηR)

4f ′(ηR)
√
η2R − 1

(29)

with:

h1(η) = −2− 4η4 + η2
(

5 + 4
√
η2 − 1

√
η2 − α2

)
(30)

Rotation due to torque. Finally, the distribution of surface stresses

tθ =
2

πa4
r

over the circle of radius a is equivalent to a unit torque and induces the circumferential displace-
ment

uθ =
2

πµa2

∫ ∞
0

γ2(k)J2(ak)J1(kr)dk (31)

and the torque angle

ψ =
∂uθ
∂r

=
2

πµa2

∫ ∞
0

γ2(k)J2(ak)(J0(kr)− J2(kr))kdk (32)

with γ2 defined in eq.(27). In this case the free term due to Rayleigh waves is absent and, all
the limits taken, the imaginary part of the rotation Ψ at the origin is

Im[Ψ] = T
k3T
µ
gT (33)

with:

gT =
1

8π
Im

[∫ 1

0

η3√
η2 − 1

dη

]
= − 1

12π

It is worth stressing that gT is independent of the Poisson coefficient, like in [7], but differs from
the results of [9].
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3 APPLICATIONS: AXIAL AND BENDING MODES

Simple applications of these formulas give estimates of the quality factors of cantilever
beams of length L and cross section area A, resting on an elastic half space. For simplicity,
the half-space is assumed to be made of the same isotropic material as the beam. In the case of
axial vibrations for a cantilever on a rigid support the axial displacement reads:

u = U sin(kBx)eiωt

with:

kB = (1 + 2m)
π

2L
, ω =

√
E

ρ
kB

The maximum value of the stored elastic energy is:

W =
1

2
U2EAk2B

L

2

and the force exerted on the supportN = EAkBU . Assuming that ω,N,W are not significantly
altered if the rigid support is replaced with a deformable half space, N induces a displacement
D of the half space given by eq.(21) and the dissipation is:

∆W = −πN Im[D] = πE2A2k2BU
2 1

µ
kT gN(ν)

leading to:

Q =
L

EA

µcT

gN(ν)

1

ω
(34)

Similarly, for a bending mode ψ(x)U characterized by a given wave number kB (e.g. kBL =
1.875 in the first mode) and normalised such that∫ L

0

ψ2ds = L,

the maximum stored energy is W = (1/2)EILk4BU
2, while the bending couple and shear force

read
B = 2EIk2BU, R = 2EIk3BβU, with β =

sin kBL− sinh kBL

cos kBL+ cosh kBL

If only the shear force is considered (bending dissipation is usually negligible):

Q =
L

4EJk2Bβ

µcT

gR(ν)

1

ω
(35)

where ω =
√
EI/(ρA)k2B. Formulas (34) and (35) coincide with the ones given by [9], Table

1.
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4 APPLICATION: ANALYSIS OF A BISTABLE BEAM

The motion of a beam of length L subjected to a compressive force P and undergoing large
displacements is governed, as a first approximation, by the non-linear equation:

ρA
∂2w

∂t2
+ EI

∂4w

∂x4
+

[
P − EA

2L

∫ L

0

(
∂w

∂x

)2

dx

]
∂2w

∂x2
= 0 (36)

where w is the beam deflection, A is the cross-section area, I is the inertia modulus and E is
the Young modulus. In eq.(36) the classical equation of slender beams has been corrected for
the presence of the uniform axial force

n(t) = −P +
EA

L

∫ L

0

1

2

(
∂w

∂x

)2

dx

In particular we start considering the quasi-static post-buckling response of a clamped-clamped
beam, i.e. the evolution beyond the critical load Pc = 4π2EI/(L2) as P is slowly increased.

Let φ denote the buckling mode:

φ =
1

2

(
1− cos

2πx

L

)
Assuming that the beam deflection has the expression w(x) = bφ(x), one obtains a non-linear
relationship between P and b:

P = Pc + b2
EA

2L

∫ L

0

d2φ

dx2
dx

We now study the small vibrations around a postbuckling state, characterized by a given b:

w(x, t) = bφ(x) + u(x, t), |u(x, t| << b|φ(x)| (37)

A linearization of eq.(36) yields:

ρA
∂2u

∂t2
+ EI

∂4u

∂x4
+ Pc

∂2u

∂x2
− EAb2

L

d2φ

dx2

∫ L

0

dφ
dx
∂u

∂x
dx = 0 (38)

An explicit and simple expression for the quality factor can be obtained with very good approxi-
mation for small values of b/V . In this case it is reasonable to assume that Φ(x) is the buckling
mode. Assuming that the greatest contribution to dissipation is due to axial loads:

N = αEA
b

L

π2

2
→ ∆W = N2 b

µL2

(
4π3

√
1 + ν

3
gN(ν)

)

and the quality factor is:

Q
HV 2

L3
=

1

b̃

(
1

8π3

1

gN(ν)

1

1 + ν

√
3

1 + ν

)
(39)
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