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Abstract The estimation of the 3D trajectory, the class and
the dimensions of a vehicle represents three relevant tasks for
traffic monitoring. They are usually performed by separate
sub-systems and only few existing algorithms cope with the
three tasks at the same time. However, if these tasks are inte-
grated, the trajectory estimation enforces the classification
with temporal consistency, and at the same time, the esti-
mation of the vehicle class and dimensions can be used to
increase the trajectory estimate accuracy. In this work, we
propose an algorithm to estimate the 3D trajectory, the class
and the dimensions of vehicles simultaneously by means of
a Backward-Simulation Particle Smoother whose state con-
tains both continuous (vehicle pose and dimensions), and
discrete (vehicle class) quantities. To integrate the class esti-
mate in the Particle Smoother we model the class predic-
tion as a Markov Chain. We performed experimental tests
on both simulated and real datasets; they show that the pose
and dimension estimation reaches centimeter-accuracy and
the classification accuracy is higher than 95 %.
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1 Introduction

Three very common tasks in traffic monitoring are the esti-
mations of the 3D trajectory, the class and the dimensions
of a vehicle. The vehicle trajectory estimation is usually
called tracking, and it is frequently performed by means of a
Bayesian Filter [14–16,29]. The vehicle classification algo-
rithms usually compare the vehicle image to a set of models,
each representing a different vehicle class. Some classifica-
tion algorithms also accomplish the dimension estimation by
fitting an adaptive model on the image data.

Few contributions focus on the integration of these tasks,
although a single estimator capable of estimating the 3D
trajectory, the class and the vehicle dimensions simultane-
ously would be of great interest for traffic flow monitoring
and vehicle counting. The interaction among these pipelines
could also lead to more effective results with respect to those
obtained by the separate sub-systems. Indeed, trajectory esti-
mation enforces the classification with temporal consistency,
while vehicle class and dimension estimation increases the
model-based trajectory estimation accuracy. Moreover, the
dimension estimation with an adaptive model makes the clas-
sification more robust, and in turn, the trajectory more accu-
rate, since a model that fits well the vehicle image has a
reduced bias on the pose estimation.

With the aim of more accurate and reliable performance
in traffic monitoring, in this paper, we propose two main con-
tributions to accurately accomplish the aforementioned three
estimation tasks simultaneously. First, we design a tracking
system with a hybrid state whose peculiarity is the simultane-
ous representation of continuous (pose and dimensions) and
discrete (class) components. To take into account the twofold
nature of this state representation, we model the transition
between classes as a Markov Chain. The second contribution
is the estimation by means of a Backward-Simulation Parti-
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Fig. 1 The six different class models. Their dimensions change during
in the estimation process; here, we report the initial values

cle Smoother that reaches more accurate results with respect
to a Particle Filter and handles suitably well the hybrid nature
of the state.

The proposed system significantly improves the capabili-
ties of the systems presented in [17,26,28]. In those contribu-
tions we developed two Monte Carlo estimation systems to
reconstruct the trajectory of a vehicle and to estimate its class
independently: one of the two systems implements a Viterbi-
based approach, while the other is a Particle Smoother. In
[28], we showed the reasons why the Particle approach
overcomes the Viterbi-based algorithm. The current paper
presents a significantly different approach; indeed, we pro-
pose a single Monte Carlo estimator to obtain a joint estima-
tion of the trajectory, the class and the dimensions of tracked
vehicles; conversely, in [17,26], we employed a set of inde-
pendent estimators, one for each fixed-sized model, then we
choose the most likely one. Therefore, in those approaches,
the class and the dimensions were not estimated jointly by
the Monte Carlo estimators (neither the Viterbi-based nor
the Particle Smoother). Moreover, in the previous works we
adopted a simple parallelepiped model, while in the proposed
system we adopt more realistic models for each vehicle class
(see Fig. 1), and now, we jointly estimate its dimensions.

In Sect. 2 we overview existing systems that perform 3D
tracking and classification. In Sect. 3 we outline the pre-
sented algorithm and in Sect. 4 we explain the design of
our Backward-Simulation Particle Smoother with the hybrid
state. Finally, in Sect. 5, we show experimental results on
synthetic and real datasets.

2 Related works

Vehicle trajectory estimation is usually named as tracking:
2D tracking algorithms estimate the trajectory of an object

in the image plane, while 3D ones compute the trajectory in
the world coordinates. To simplify the 3D tracking task, the
existing algorithms assume camera calibration to be known
(see [8]). In a vehicle tracking scenario, they also assume the
Ground Plane Constraint: a vehicle always lies on the road
plane [13], so its unknown poses have 3 degrees of freedom
instead of 6. In recent tracking systems, 3D tracking is the
most widespread approach when dealing with vehicles (see
[5]).

Both 2D and 3D tracking are usually based on Kalman
Filter (KF), or on the Extended Kalman Filter (EKF) [2].
A KF estimates iteratively the evolution of the vehicle pose;
beginning with a convenient initialization, it predicts the pose
at time t from the pose at time t − 1, according to a motion
model (prediction step), and then, it estimates the pose at time
t by adjusting the predicted state according to its likelihood
with respect to a measure of the observed vehicle (update
step).

The likelihood calculation is a challenging step for 3D
trackers because of the comparison between a 2D measure
on the image plane and the 3D predicted pose. To accom-
plish this comparison, most 3D tracking algorithms project
a 3D model of the vehicle on the image plane, and then they
compare this projection with the vehicle measurement, which
lays on the image plane too. Some of them, e.g., [11,15,32],
compute the likelihood as the distance of all the line segments
of the projected model from the edges of the vehicle image,
i.e., the more a segment is close to an edge, the more the
predicted pose is likely. An analogous approach computes
the gradient of the image and compares the projected model
with it: the more a segment is perpendicular to high gradient
direction, the more the predicted pose is likely [13]. These
two approaches are named edge based, and in the update step,
they minimize the distance between the model segments (in
the former case), or their normals (in latter case), and the
image edges, or the gradients. These approaches are very
robust to brightness changes, but they are affected by local
minima [13]: if the model is not sufficiently close to the
right position, the minimization procedure could estimate a
wrong vehicle position where the model segments are close to
the wrong edges (or gradients). Therefore, edge-based track-
ing requires that the (estimated) pose of the model before
the minimization process is very close to the real tracked
vehicle.

On the other hand, the so-called region-based approaches
[6,18,31] compute the likelihood as the overlap of the vehicle
blob (connected region in the image, which corresponds in
our case to the vehicle) with the convex hull of the 3D model
projection on the image plane. The authors in [3] propose
a sophisticated approach that compares the vehicle silhou-
ette to an appearance-based model. In [3,6,18] the tracking
is performed with a Kalman Filter, while in [31] the authors
propose a Markov Chain Monte Carlo (MCMC) method to
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collect hypotheses and put them together via the Viterbi algo-
rithm to form the vehicles trajectories. This approach relies
on blob estimation with a background subtraction algorithm
(see [20,25,27]); therefore, it is more sensitive to brightness
changes with respect to edge-based ones. On the other hand,
the comparison via overlap is more robust to local minima
issues and the vehicle model can be a coarse estimation of
the tracked one (see [13]).

Few of the region-based algorithms, we have listed inte-
grate the computation of the 3D trajectory with vehicle clas-
sification. For instance in [6,11,19], the authors use a set of
models representing different vehicle classes and estimate
the vehicle class as the most likely model. This is a very
straightforward approach, but if none of the models fits well
the tracked vehicle, it may lead to misclassification. To make
the classification more robust, the authors in [12] fit a box
model with variable dimensions to the vehicle blob, then they
infer the vehicle class. This work presents good dimension
estimation results, but does not provide a unified framework
to estimate directly both the dimensions and the class.

Other authors focus their attention on the vehicle dimen-
sion estimation process. The algorithm in [24] estimates the
dimension by means of a Generalized Deformable Model
(box shaped) parametrized with respect to the vanishing point
of the images; the authors focus on the problem of vehicle
inter-occlusion, and their system neglects the tracking and
dimension estimation problems. The algorithm proposed by
[10] provides a unified framework to estimate both the 3D
vehicle trajectory and the vehicle dimensions by means of
a deformable 3D box model, but its authors do not face the
class estimation problem. In a more recent system proposed
in [34], the authors fit a complex 12-segment model to the
vehicle edges so as to properly handle very different vehi-
cle shapes; however, they do not estimate the vehicle 3D
trajectory.

Our overview clarifies that an integrated approach to esti-
mate the vehicle 3D trajectory, its class and its dimensions
simultaneously does not currently exist, at least to the best of
our knowledge. The literature contribution that is closer to
our objectives is the ones in [4,6], which perform 3D track-
ing via Kalman Filter (KF) and vehicle classification with a
region-based approach; however, this proposals do not esti-
mate the vehicle dimensions. In [4,6], the 3D pose likeli-
hood computation is based on the overlap score between
the model projection and the blob region, but the authors
could not directly integrate this likelihood in the KF update
step; to overcome this limitation, they propose to extract
some hypotheses around the KF-predicted 3D position and to
choose the most likely one as the new vehicle measurement.
By doing this, they discard hypotheses that could provide a
better estimate of the vehicle position, although resulting in
a lower likelihood because of occlusions, perspective distor-
tions, and/or noise.

In this paper, instead, we propose a Backward-Simulation
Particle Smoother which natively deals with hypotheses
weighting; moreover, we adopt a hybrid filter state to esti-
mate, at the same time, the 3D pose, the class and the dimen-
sions of a vehicle.

3 The proposed approach

As in [6] we choose a region-based approach to estimate the
vehicle 3D trajectory rather than an edge-based one. Indeed,
a region-based approach does not need an accurate model
of the tracked vehicle, and it is well known for being more
robust with respect to edge-based ones to the local minima
issue during the pose estimation process [13]. Finally, the
vehicle classification results to be more robust with respect
to the edge-based approach; indeed, it is quite easy to distin-
guish if a blob comes from a car, a truck, or a motorcycle.
An empirical evidence of this effectiveness is that most clas-
sification algorithms adopt a region-based approach.

As mentioned above, Kalman Filter tracking has a seri-
ous limitation when we adopt a region-based approach: in
the measurement integration step, a simple overlap score
between the image blob and the vehicle 3D model projected
on the image plane cannot be used directly. We overcome
this issue by means of a Monte Carlo approach, in partic-
ular adopting the so-called Backward-Simulation Particle
Smoother (BSPS): this method natively weights hypotheses
with a likelihood score, that, in our case, can be derived from
the overlap between the vehicle blob and the model back-
projection on the image plane. Moreover, BSPS can estimate
multi-modal distributions, and although we use a BSPS for
each vehicle, we like the perspective of being able to estimate
the 3D pose, class and dimension of more than one vehicle
at a time with a single estimator, similarly to what has been
proposed in [31].

Since we aim at estimating also the actual dimensions of
each vehicle, we cannot rely on a fixed-size vehicle model for
all the classes. Instead, we use a set of models whose dimen-
sions can change during the estimation process. In Fig. 1 we
show the models we use and we also report the default, i.e.,
initial dimensions for each of them. We adopt six classes: Car,
Truck, Light Truck, Van, City Car and Motorcycle, being the
difference between Car and City Car related to dimensions
and shape, see Fig. 1. This choice is induced by the kind
of vehicles that traverse the roundabout in our region, and
they are sufficient to represent the majority of the vehicles
in our experiments. However, if needed, we could use other
models very easily, for instance bike, sedan, hatchback or
SUV classes which might be more appropriate for different
application scenarios.

Our current implementation of the proposed algorithm
relies on the outcome of the 2D data association performed
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Fig. 2 Schema of the proposed algorithm

by a 2D tracking algorithm, named VeTRA (see [21,22]);
therefore, we already know which blob is associated to which
vehicle. As a consequence, our algorithm focuses on the state
(3D pose, class and dimensions) estimation process and does
not accomplish the full tracking task, as it does not perform
the data association in 3D. In Fig. 2 we show a sketch of
the current implementation of the proposed algorithm and its
integration with VeTRA [22].

4 Backward-Simulation Particle Smoothing with a
hybrid state

A Backward-Simulation Particle Smoother is an estimator
that applies a first Particle Filter iteration to follow the evolu-
tion of the state, i.e., in our case, the trajectory of the vehicle,
and then, starting from the last set of particles it performs a
backward filtering with a second Particle Filter. For a detailed
and formal explanation see [7,30, p. 167]. In the following,
we explain how we design the Particle Filter that performs the
forward iteration, named Forward Particle Filter (FPF) and
in the end, we describe the Backward Particle Filter (BPF).

A Particle Filter (PF) is a well-known Bayesian estima-
tor that asymptotically reaches the Maximum A-Posteriori
estimate of the distribution of a stochastic variable st (for an
introduction to PF see [1]). A PF represents the state proba-
bility distribution by means of a set of samples from the state
probability distribution. Starting from a convenient initial-
ization (see Sect. 4.3), the PF estimation entails a prediction
step (or state transition), which generates a set of state pro-
posal samples from the previous state samples, and an update

step, which usually encompasses a resampling stage, based
on the likelihood of the samples.

Our algorithm implements a PF with a hybrid state for
each vehicle detected by the VeTRA 2D tracker. At time t ,
the vehicle state is the following:

st =
⎡
⎣

[xt yt θt ]
[lt ht wt ]
ct

⎤
⎦ =

⎡
⎣

pt

dt

ct

⎤
⎦; (1)

it is composed by the vehicle pose pt (where (xt , yt ) are the
coordinates of the vehicle centroid on the road plane and θt

is the vehicle orientation), its dimensions dt (where lt is the
length, ht the height, and wt the width) and its class ct . The
first six state variables are continuous, while the vehicle class
c is a discrete quantity.

4.1 The prediction step

A big challenge to design a PF with a hybrid state is to define
a convenient state transition function that accomplishes the
prediction step of the PF. We model the transition between
two consecutive states with a motion model f for the vehicle
centroid 3D coordinates, and a transition function g for the
class and the dimensions:

st =
⎡
⎣

pt = f (pt−1)[
dt

ct

]
= g(dt−1, ct−1)

⎤
⎦ . (2)

This subdivision in the transition function keeps the predic-
tion of the pose pt independent from the class and dimen-
sions: we predict a new pose, by applying the classical con-
stant velocity motion model, as in most tracking algorithms,
while in the following section we explain how we deal with
the prediction of dimensions and class (i.e., the discrete
component of the state). Although a possibly more accurate
model for predicting the vehicle pose, taking into account its
class and dimensions, could be conceived, this independence
assumption is not in contrast with the idea of jointly estimat-
ing the trajectory, the class and the dimensions: indeed only
the prediction step is affected, while the resampling stage
estimates jointly the three state subspaces. In principle, the
proposed framework is able to deal also with a motion model
where the 3D pose prediction depends on class and dimen-
sions (e.g., it may change the orientation variances together
with the dimensions), but this has not been implemented in
the current version of the algorithm and thus we mention
it here only for completeness. In the latter case, i.e., pre-
diction model that takes into account class and dimensions,
pt = f (pt−1), would become pt = f (pt−1, ct−1, dt−1).

One contribution of this paper is the design of a conve-
nient function g that manages the state transition of both the
discrete quantity c and the related dimensions of the vehicle.
The transition from class ct−1 to ct takes into account that
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Fig. 3 The Markov Chain that models the class transition

Fig. 4 Schema of the simple approach to predict a new state (i.e.,
particle). First the new pose and class are computed, then a new value
for the dimension is extracted, relying on the class choice

Table 1 Transition matrix T

Car Truck Light truck Van Motorcycle City car

Car 0.5 0.1 0.1 0.1 0.1 0.1

Truck 0.1 0.5 0.1 0.1 0.1 0.1

Light truck 0.1 0.1 0.5 0.1 0.1 0.1

Van 0.1 0.1 0.1 0.5 0.1 0.1

Motorcycle 0.1 0.1 0.1 0.1 0.5 0.1

City car 0.1 0.1 0.1 0.1 0.1 0.5

the true class of a vehicle does not change over time. Never-
theless, our belief about it can change, due to ambiguities in
the model projection and vehicle measurement in the image;
for instance, a car may be misclassified as a light trucks or
a van, due to the perspective. We assume that the transition
of the belief of the class ct−1 to a class ct only depends on
the previous class belief ct−1; we model this transition as
the Markov Chain as in Fig. 3. We illustrate the transition
dependencies in the graphical model in Fig. 4.

We model the probability of a class change with a transi-
tion matrix T represented in Table 1. We choose the prob-
ability of the class change equal to 0.5, and we spread it

evenly among all other classes (i.e., if ct−1 = Car, then
p(ct = Car) = 0.5 and p(ct �= Car) = 0.5 = ∑

ct �=Car 0.1).
A more complex choices of T would be possible: T could

be estimated, for instance, by computing the confusion matrix
from real datasets. Nevertheless, we choose this T context-
independent not to bias the results with respect to a specific
dataset, and above all, we found that the T in Table 1 leads
to very good results.

The value of ct affects in turn the definition of the dimen-
sions dt = [lt , ht , wt ]. If the class ct differs from ct−1, then
dt is set to the reference dimensions of the new class model;
for each class, we fixed the average reference dimensions
depicted in Fig. 1. Instead, if the class ct matches ct−1, then
we sample dt from the following distribution:

dt ∼ N

⎛
⎜⎜⎝dt−1,

⎡
⎢⎢⎣

σ 2
lc 0 0

0 σ 2
hc 0

0 0 σ 2
wc

⎤
⎥⎥⎦

⎞
⎟⎟⎠ (3)

where the values of σ 2
lc , σ 2

hc and σ 2
wc represent the variances

of dimensions of each vehicle class. We set these variances
according to the heuristic: “larger dimensions are associ-
ated to larger variances”, and zeroed, for simplicity, the non-
diagonal elements; thus, these values depend on the vehicle
class. For instance, the variance of a truck length is larger
than the variance of a motorcycle or a car length (see Sect. 5
for further consideration about these values).

Notice that Eq. (3), in principle, would allow a vehicle of
a class to take a size that is totally unrealistic, as no explicit
mechanism for limiting the dimensions is imposed. Such pos-
sibility is neglected, because of two reasons. First, the stan-
dard deviations in Eq. (3) refer to intra-class variations, so,
for instance, it is extremely unlikely to obtain a sample repre-
senting a car with the size of a truck. Second, the resampling
step would prevent this drift of the dimensions

What is outlined so far hides a critical issue. If T is the
transition matrix, n steps of the Markov Chain, without any
observation, lead to an n-step transition probability repre-
sented by the transition matrix T n , which usually converges
to a value T̂ . In Table 2 we show the transition matrix T
after six steps: the transition probabilities have almost the

Table 2 Transition matrix T after 6 step, i.e., T 6

Car Truck Light truck Van Motorcycle City car

Car 0.171 0.166 0.166 0.166 0.166 0.166

Truck 0.166 0.170 0.166 0.166 0.166 0.166

Light truck 0.166 0.166 0.170 0.166 0.166 0.166

Van 0.166 0.166 0.166 0.170 0.166 0.166

Motorcycle 0.166 0.166 0.166 0.166 0.170 0.166

City car 0.166 0.166 0.166 0.166 0.166 0.170
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same values, which means leveling the probability of class
change. Even if we rely on the resampling stage of the PF
to have the class converge to a likely value, we have found
experimentally that enforcing this resampling step is needed.
From Eq. (2) we can write the prior probability of st as:

p(st |st−1) = p(pt |pt−1)p(dt , ct |dt−1, ct−1). (4)

From the state st−1 we propose a new particle in the following
way. We sample pt from the probability p(pt |pt−1) accord-
ing to the motion model as previously presented. Then, we
adopt an MCMC-based strategy [23] to sample dt and ct from
p(dt , ct |dt−1, ct−1) .

We extract d ′
t and c′

t according to the transition of the
Markov Chain and the dimension estimation of Eq. (3); we
define s1

t = [
pt , d ′

t , c′
t

]T and s2
t = [

pt , dt−1, ct−1
]T ; we

extract a random number β in [0, 1). Finally, we define

P(dt−1, ct−1, d ′
t , c′

t ) = P(dt−1, ct−1)

P(d ′
t , c′

t ) + P(dt−1, ct−1)
(5)

and the new state st becomes

st =
{

[pt , d ′
t , c′

t ]T , if β > P(dt−1, ct−1, d ′
t , c′

t )

[pt , dt−1, ct−1]T , if β < P(dt−1, ct−1, d ′
t , c′

t )
. (6)

4.2 The update step

After the prediction step, the PF compares each predicted
state (i.e., particle) with the current measurement of the vehi-
cle, i.e., the blob on the image extracted by VeTRA 2D. In this
update step, the PF weights each predicted particle according
to its likelihood.

To understand how this likelihood is computed, let zt be
the measure, i.e., the blobs extracted by the VeTRA 2D track-
ing system, and let

ŝt = [xt , yt , θt , lt , ht , wt , ct ]T

be the current predicted state particle. Likelihood calculation
follows these four steps:

1. Project on the image plane a model of class ct with dimen-
sions lt , ht , wt , which is located on the road plane in
(xt , yt ) and with orientation θt (e.g., the red polygon in
Fig. 5).

2. Compute overlap area:

– Compute the blob area Ablob (the yellow + green
region in Fig. 5);

– Compute the visible model projection area Amv (the
blue + green region in Fig. 5);

– Compute the overlap area between the blob and the
model projection Aoverlap (Fig. 6).

Fig. 5 Regions involved in the likelihood calculation: e1 captures how
much of the measured blob is not captured by the predicted projected
model, e2 captures how much of the predicted model is not reflected by
the measured blob

Fig. 6 Difference between Amv and Am (shaded area)

3. Compute the two errors e1 and e2 (Fig. 5), as

e1 = Ablob − Aoverlap (7)

e2 = Amv − Aoverlap (8)

4. Define the score term:

e = λ1e1 + λ2e2

Ablob
, (9)

where λ1 and λ2 are the weights for e1 and e2 such that
λ1 + λ2 = 1 (we set simply λ1 = λ2 = 0.5).

Likelihood is then defined as p(zt |st ) = 1−e. In some cases
it may happen that 1 − e < 0, i.e., Ablob < λ1e1 + λ2e2; this
essentially corresponds to two possible configurations: (a)
the blob is negligible by itself, due to background subtraction
failure, or (b) the model under evaluation is very big with
respect to the blob. In both cases, we choose to assign a
likelihood equal to 0. In the former situation, i.e., case (a),
all the particles have likelihood equal to 0 and the estimator
applies only the prediction step; this is the expected behavior,
since the observation for the current state is almost missing.
In the latter situation, i.e., case (b), we force the likelihood
to 0 since the current state model deeply differs from the
observed blob.
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Algorithm 1: Resampling algorithm

Input: {ŝi
t , w

i
t }Nsamples

i=1 states-particles to resample and their
weights (i.e. their likelihood)

Output: {s̄ j
t }Nsamples

j=1 resample states-particles

Create the Cumulative distribution function (CDF):
Initialize the CDF: c1 = 0;
for i = 2 to Nsamples do

ci = ci−1 + wi
t ;

Start from the beginning of the CDF: i = 1;

Sample the first point: u1 ∼ U[0, N−1
s ];

for j = 1 to Nsamples do
Scan the CDF: u j = u1 + N−1

samples( j − 1);

while u j > ci do
i = i + 1;

s̄ j
t = ŝi

t ;

The overall likelihood reads as

p(zt |st ) =
{

1 − e, if 1 − e > 0

0, if 1 − e < 0
. (10)

Only the visible part of the model projection concurs to com-
pute the likelihood score. So Amv is not the entire area of the
projected model, but the projected area cropped to the current
camera image. Figure 6 shows the difference between Amv

and the area of the entire projected model, Am .
Our algorithm, as described so far, works on a single-

camera setting, but we can easily extend it to a multi-camera
scenario by enhancing the likelihood computation as follows.
Let z j

t be the blob of one vehicle perceived by the j th cam-
era (C j ), and nc the number of cameras. Let p j (z

j
t |st ) be the

likelihood calculated for each camera j according to Equa-
tion (10); this value is weighted according to how much of
the vehicle is perceived by C j , i.e., according to the weight

w j = A j
mv

A j
m

. The overall likelihood becomes a weighted aver-

age of the likelihood for each camera:

ptot(zt |st ) =
∑nc

j=1 w j p j (z
j
t |st )∑nc

j=1 w j
(11)

The weight w j = A j
mv

A j
m

is designed to take into account dif-

ferent situations. Therefore, if N cameras perceive the whole
vehicle, we weight each corresponding likelihood 1

N ; if one
camera does not see the vehicle, its contribution to the like-
lihood computation is 0; if one camera observes the vehicle
only partially, its contribution to the overall likelihood com-
putation is proportional to the observed vehicle percentage.

Each sample likelihood becomes the sample’s weight;
then, we update our Particle Filter by performing the classi-
cal resampling stage [1], which steers the particles according
to the information carried by the new measurement, encoded

Fig. 7 Computation of initial value of θ

in the weights’ distribution. In the Algorithm 1, we sketch
the classical resampling algorithm we have used.

4.3 The initialization

Up to now we assumed the PF to be somehow already ini-
tialized, but to achieve a proper functioning, we have to pro-
vide a convenient set of sample to bootstrap our PF and thus
provide such initialization. To this extent, assume we have
Nsamples samples in the PF (currently in our implementation
Nsamples = 1200); for each sample i , we choose uniformly
a random class and we set the value d of this sample to
the reference dimensions of the sampled class (see Fig. 1).
Then, let t = 0 the frame where the vehicle first completes
blob is visible, i.e., when the vehicle is completely inside
the camera field of view, thus sufficiently far from the image
margin. Project the blob at frame 0 and the blob at frame 1
on the plane parallel to the ground, passing through the cen-
ter of the vehicle model under evaluation, i.e., with height

equals to
hi

0
2 when evaluating the i th particles; let the resulting

points be (x0, y0) and (x1, y1), respectively, and θt defined
as the orientation of the vector from (x0, y0) to (x1, y1) (see
Fig. 7).

We now extract one sample from a trivariate Gaussian dis-
tribution having mean (x0, y0, θ0) and a diagonal covariance
structure reflecting the independence of the three components
(we set the diagonal elements to σ 2

x = 0.5 m, σ 2
y = 0.5 m

and σ 2
θ = π

6 rad). Independence is a reasonable assump-
tion to simplify the tuning of the system, but a non-diagonal
covariance matrix could be used if available. Each of these
samples represents a vehicle state, i.e., vehicle position and
orientation on the roundabout plane at time 0. A simplified
example of this process is shown in Fig. 8 and in Algorithm
2 we summarize this process.

4.4 The choice of the model

After each vehicle filter reaches the end of the trajectory, i.e.,
the vehicle disappears from the image, we select the class
and the dimensions of the model.
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Algorithm 2: Initialization of the Forward Particle Filter
Input: b1 . . . bT blobs history from VeTRA 2D

Output: {si }Nsamples
i=1

j = First blob completely inside the image;
for i = 1 to Nsamples do

ci
1, di

1 = Extract a random class and its default dimensions;

x1, y1 = Back-project the centroid of b j in 3D;

x2, y2 = Back-project the centroid of b j+1 in 3D;

θ1 = Orientation from (x1, y1) to (x2, y2);

p1 = extract a sample from

N

⎛
⎝[x1, y1, θ1],

⎡
⎣

σ 2
x 0 0

0 σ 2
y 0

0 0 σ 2
θ

⎤
⎦

⎞
⎠ (12)

si = p1, d1, c1

Fig. 8 Example of 2D vehicle center projected on the plane passing
through the 3D model center. We extract the pose samples from the
Gaussian centered on this projection

The first step is to choose the class at the end of the transit:
at each frame, we count the occurrences of each class among
the the particles with the highest likelihood score, then we
choose the class c that appears more frequently.

Then, we define the dimensions of the model by comput-
ing the mean of the dimensions of the particles of class c,
weighted according to the likelihood score.

In Algorithm 3, we show the pseudo-code of this model
choice routine.

4.5 The Backward pass

Once we have selected the vehicle model, i.e., the vehicle
class and dimensions, we refine the reconstructed 3D tra-
jectory by means of a Backward PF that implements the
Backward-Simulation of the Particle Smoother. The state of
the Backward Particle Filter is

sback
t =

[
xback

t , yback
t , θback

t

]T
. (13)

The initialization of this estimator is based on the last parti-
cles extracted by the (Forward) Particle Filter belonging to

Algorithm 3: Selection of the Best Model algorithm

Input: {st
i , wi

t }Nsamples,Nframes
i=1,t=1

Output: c class of the selected model
Output: d dimensions of the selected model

Choose the best set of particles for each frame:
for t = 1 to Nframes do

{s̄t , w̄t } = Pick the
Nsamples

100 samples with the highest weight;

Count the frequency of each class:
Initialize a vector {counter j }Nclasses

j=1 = 0 for t = 1 to Nframes do

for i = 1 to
Nsamples

100 do
curClass = class of s̄best−i

t ;

countercurClass = countercurClass + 1;

Choose the best class and dimensions:
c = max(counter);

{s̄best , w̄best } = samples and weight in {s̄t , w̄t } with class = c;

d = average of the dimensions of s̄best weighted over the
corresponding weight in w̄best ;

the selected class, and just to consider the reverse motion of
the vehicle, we apply a symmetric backward motion model
with respect to the Forward Particle Filter. In the Algorithm
4, we show the pseudo-code of the whole proposed system.

5 Experimental results

The aim of our algorithm is to estimate the trajectory on the
road plane, the class and the dimensions of vehicles from
a sequence of images. We set up different experiments to
evaluate the performances of our proposal. Our evaluations
are based on two classical metrics and two robust metrics
to evaluate errors statistics (see [9]): the mean of absolute
values (MAE), the standard deviation (StD), the median and
the Median Absolute Deviation (MAD), where, for a certain x
vector, the MAD is defined as median(|xi −median(x)|∀i ).
In our case, the vector x represents the errors between the
estimated state and the ground truth along the trajectory. The
MAE and the median error represent the absolute error of
the trajectory estimate, while the StD and the MAD are error
dispersion indexes; the smaller they are, the more accurate the
algorithm is. We use both kinds of metrics, i.e., classical and
robstified ones, since non-robust metrics give a general idea
about the accuracy of the estimate, but in our experiment,
we noticed that the highest errors are concentrated in the
beginning and the ending of the trajectory, especially for the
Monza dataset and this biases significantly the evaluation. So,
to provide a more realistic accuracy evaluation, we reported
also the two robust metrics which drop the transient errors.

In the following experiments, we choose the vehicle model
reference dimensions as listed in Table 3.
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Algorithm 4: Complete algorithm
Input: b1 . . . bT blobs history from VeTRA 2D
Output: p1 . . . pT vehicle’s 3D pose
Output: c class and dimensions of the vehicle

Forward Particle Filter(FPF):

{s j
i }Nsamples

i=1 , j = FPF Initialization;

{w j
i }Nsamples

i=1 = Likelihood of {s1
i }Nsamples

i=1 ;

FPF:
for f = 2 to T do

for i = 1 to Nsamples do
ŝi = Predict from si−1 with the forward motion model;

wi = Likelihood of ŝi ;

{st
i , wi

t }Nsamples
i=1 = Resample({ŝt

i
, wi

t }Nsamples
i=1 );

c, d = Choose the Best Model ({st
i , wi

t }Nsamples
i=1 );

Backward Particle Filter (BPF), keeps c, d fixed:

BPF Initialization:
for i = 1 to Nsamples do

(xT , yT , θT ) = Extract the 3D pose from si
T ;

wi = Likelihood of (xT , yT , θT )

BPF:
for t = T − 1 to 1 do

for i = 1 to Nsamples do
ŝi = Predict from si+1 with the backward motion model;

wi = Likelihood of ŝi ;

{st
i , wi

t }Nsamples
i=1 = Resample({ŝt

i
, wi

t }Nsamples
i=1 );

Extract the vehicle trajectory:
for t = T − 1 to 1 do

St = si
t |wi

t >= mean({wi
t }Nsamples

i=1 );
pt = average(St );

Table 3 Reference dimensions of the models and their variances

l (m) h (m) w (m) σ 2
l σ 2

h σ 2
w

Car 3.8 1.45 1.7 0.25 0.15 0.15

Truck 15.0 4.5 2.5 2.5 0.5 0.3

Light truck 7.0 3.5 2.5 0.8 0.3 0.3

Van 4.6 2.0 1.8 0.25 0.15 0.15

Motorcycle 2.0 1.4 0.65 0.05 0.05 0.05

City car 2.5 1.4 1.5 0.005 0.005 0.005

5.1 Synthetic dataset

We tested the algorithm on two synthetic datasets (Fig. 9); to
make the simulation realistic, we used the projection para-
meters estimated with camera calibration on the real data
corresponding to two real datasets. In the first case, the cam-
era is very far from the scene: it is on a high pole in the
center of a roundabout, hence the scene is observed from a
distant point of view. This condition gives us the possibility to

evaluate our algorithm on curvilinear trajectories similar to
those performed by the real vehicles. In the second case, the
camera is very close to the scene: the camera is on a short pole
beside the road, hence the camera is so close to the scene that
large vehicles do not fit into the image plane: all trajectories
are linear, but the substantial perspective distortion creates
very challenging conditions. See Fig. 10 for some examples
of the two real views (on the first row the Ghisalba setup and
on the second row the Monza one).

Once we choose the calibration matrix to generate the data,
we generated the trajectories and performed the experiments
as follows. For each camera, we defined a set of possible tra-
jectories: for the synthetic Ghisalba, we choose three ground
truth trajectories, while in the synthetic Monza we created a
linear trajectory with two motion equations (constant and
variable velocity) for each of the two directions. For each
pose in the trajectory, we created the history of the blobs
by projecting the vehicle model on the image plane. These
blobs became the input to our algorithm. In the first dataset,
we used a vehicle model for each of the six different classes:
car, truck, motorcycle, van, light truck, and city car. In the
second dataset we used only a subset of these classes (i.e.,
car, motorcycle, van and city car): since the camera was very
close to the road, a truck or a light truck would have covered
almost the entire image for a large amount of time, making
their shapes impossible to be distinguished.

The results obtained in the simulated datasets represent an
upper bound to the performance of our algorithm in terms of
accuracy, since the blobs are noise free and their shapes cor-
respond exactly to the model’s ones. In Table 4, we show the
errors for the model dimensions and pose estimates on the
two simulated scenarios. The algorithm correctly classified
the vehicle in all the test cases (100 % classification accu-
racy). Moreover, the pose estimation results to be accurate
(centimeter-accuracy for x and y and less than a degree for
θ ). Notice that the pose estimation errors increase monoton-
ically along with the class dimensions (i.e., motorcycle, city
car, car, van, light truck and truck), since the dimension vari-
ance increases too.

5.2 Real datasets

We also tested our algorithm on two custom real datasets
(Ghisalba and Monza) and on the standard PETS 2000
sequence.1 A fair comparison, i.e., evaluation on common
datasets annotated with ground truth information against
other state-of-the-art methods, was not possible. Indeed, we
are proposing a novel algorithm which jointly estimates the
3D trajectory, the class, and the dimensions of the tracked
vehicles; up to now the existing algorithms compared their

1 PETS 2000: First IEEE International Workshop on Performance Eval-
uation of Tracking and Surveillance.
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Fig. 9 Examples of the
estimation results in the
synthetic datasets. In the Monza
datasets, trucks and light trucks
cannot be perceived due to the
camera perspective

Fig. 10 Illustrative frames from the real datasets; each row shows a different dataset: from top to bottom we have Ghisalba, Monza and PETS
2000

performances on 2D trajectory estimation and on the track-
ing task (not exactly the same of trajectory reconstruction).
Moreover, the existing datasets do not provide a complete
3D trajectory annotation to evaluate our estimate; at most,
they provide the calibration matrix, so we could evaluate our
algorithm only qualitatively by watching the video results.
Among the proposed joint tasks, we could only evaluate the
classification performances, but on different datasets with
respect to state of the art methods.

In this section, we show a wide variety of experiments
that emphasize the accuracy reached with our method, to be
ascribed to the joint estimation of the trajectory, class and
dimensions.

In Fig. 10 we show three illustrative sequences of these
datasets, while in Fig. 11 we show some results of the esti-
mated pose, class and dimension. In the video at http://youtu.
be/MRbwfRHQ_Ws and http://youtu.be/Hho35ng_eNI we
illustrate more examples.
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Table 4 Errors of 3D pose and
vehicle dimension estimated in
the synthetic dataset. We list
errors on the x and y
coordinates, and on the
orientation

Synthetic Ghisalba Synthetic Monza

Mean StD Median MAD Mean StD Median MAD

Car

x (m) 0.059 0.072 0.014 0.058 0.250 0.813 0.006 0.017

y (m) 0.138 0.185 0.061 0.072 0.540 0.709 −0.399 0.276

θ (deg) 1.300 1.674 0.542 0.764 4.205 9.423 −0.741 −1.545

L (m) 0.128 0.248 −0.008 0.013 0.177 0.250 0.032 0.216

H (m) 0.187 0.076 −0.221 0.017 0.066 0.085 −0.035 0.043

W (m) 0.126 0.092 0.130 0.087 0.090 0.140 0.007 0.050

Truck

x (m) 0.114 0.187 0.046 0.073 − − − −
y (m) 0.230 0.358 0.159 0.269 − − − −
θ (deg) 1.451 1.847 0.195 1.097 − − − −
L (m) 0.516 0.517 0.503 0.497 − − − −
H (m) 0.210 0.318 −0.074 0.012 − − − −
W (m) 0.075 0.078 −0.080 0.023 − − − −

Motor-cycle

x (m) 0.032 0.050 0.003 0.024 0.019 0.033 −0.009 0.012

y (m) 0.092 0.151 0.023 0.040 0.146 0.200 −0.038 0.100

θ (deg) 1.291 1.601 0.573 0.905 1.652 2.523 −0.001 1.122

L (m) 0.031 0.054 −0.018 0.032 0.026 0.034 0.015 0.011

H (m) 0.014 0.015 −0.009 0.006 0.026 0.039 0.000 0.035

W (m) 0.020 0.024 −0.012 0.015 0.017 0.015 0.023 0.005

Van

x (m) 0.048 0.050 0.040 0.022 0.091 0.034 −0.040 0.048

y (m) 0.100 0.137 0.034 0.051 0.113 0.034 0.162 0.205

θ (deg) 1.099 1.590 0.206 0.687 1.600 2.424 −0.515 0.582

L (m) 0.164 0.150 −0.011 0.058 0.285 0.313 0.310 0.006

H (m) 0.088 0.053 0.085 0.048 0.024 0.031 0.010 0.007

W (m) 0.110 0.119 −0.104 0.048 0.083 0.082 −0.051 0.029

Light truck

x (m) 0.145 0.181 0.071 0.078 − − − −
y (m) 0.301 0.344 −0.152 0.264 − − − −
θ (deg) 1.365 1.879 0.347 0.863 − − − −
L (m) 0.282 0.112 0.313 0.070 − − − −
H (m) 0.369 0.450 0.227 0.278 − − − −
W (m) 0.454 0.741 −0.039 0.083 − − − −

City car

x (m) 0.031 0.038 0.015 0.019 0.027 0.445 −0.014 0.019

y (m) 0.093 0.122 0.029 0.056 0.157 0.193 −0.163 0.255

θ (deg) 1.620 2.077 0.634 1.040 2.463 3.004 0.424 3.894

L (m) 0.003 0.003 −0.002 0.002 0.006 0.005 0.006 0.005

H (m) 0.003 0.005 0.001 0.001 0.003 0.002 0.003 0.001

W (m) 0.003 0.005 −0.000 0.004 0.003 0.003 −0.003 0.001

In the Ghisalba dataset the camera is fixed on a very high-
lighting pole in a roundabout, in the same point of view
adopted in the the first synthetic dataset. One of the cap-

tured vehicles was equipped with a RTK-GPS and an inertial
sensor: these sensors give accurate estimates of the vehicle
positions and orientations, and represent a reliable ground
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Fig. 11 Examples of the estimation results in the real datasets. From top to bottom: two rows from Ghisalba, two rows from Monza, and the last
row from the PETS2000 dataset

truth. To obtain a proper result, the comparison between poses
requires the two poses (the estimated and the ground truth) to
be taken at the same time. However, synchronization between
RTK-GPS devices, inertial sensors and camera was clearly
not perfect; in addition, the sensors and the camera working

frequencies were different. Then, the estimate provided by
the sensors and our algorithm cannot be considered perfectly
synchronous.

In Table 5 we show the errors of the 3D pose estimate
comparing the 2D VeTRA estimator, a simple Particle Fil-
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Table 5 Accuracy comparison among 2D VeTRA, our system w/o the
backward pass and the proposed system, i.e., with the backward pass,
in the real scenario (Ghisalba). Errors are in meters

Mean StD Median MAD

x (m)

VeTRA 2D [22] 0.520 0.688 0.292 0.338

w/o Back. Pass 0.318 0.188 −0.322 0.139

w/ Back. Pass 0.211 0.200 –0.175 0.154

y (m)

VeTRA 2D [22] 0.789 2.013 –0.317 0.284

w/o Back. Pass 0.185 0.303 0.026 0.187

w/ Back. Pass 0.159 0.222 0.017 0.159

θ (deg)

VeTRA 2D [22] – – – –

w/o Back. Pass 3.356 11.607 0.323 3.374

w/ Back. Pass 2.827 6.051 1.720 2.397

Best values are in bold

ter and the Backward-Simulation Particle Smoother. Results
show the effectiveness of the backward pass: the Particle
Smoother clearly overcomes VeTRA and the Particle Filter,
without the backward iteration; the only metric supporting
the standard Particle Filter is the median of orientation errors,
likely due to a little bias. Nevertheless, the backward pass
corrects most of the significant errors on it as Fig. 12 shows.
In particular, in Fig. 12 we plot the position and orientation
errors both in the Particle Filter and in Backward-Simulation
Particle Smoother case (we plotted all vehicle transits one
after the other to make the plot concise). A small bias affects
the x estimate, it is likely to be ascribe to the ground truth:
indeed, the GPS station mounted on the vehicle was not
perfectly in the centroid of the vehicle. In addition to the

Table 6 Accuracy comparison among the 3D trajectory reconstruction-
only [28] and the proposed system, i.e., with the backward pass in the
real scenario (Ghisalba). Errors are in meters

Mean StD Median MAD

x (m)

[28] 0.247 0.445 –0.180 0.236

Proposed 0.211 0.200 –0.175 0.154

y (m)

[28] 0.189 0.238 0.058 0.135

Proposed 0.159 0.222 0.017 0.159

θ (deg)

[28] 4.882 4.942 4.156 2.446

Proposed 2.827 6.051 1.720 2.397

Best values are in bold

comparison, Table 5 shows that our algorithm produces very
accurate estimates, especially taking into account the syn-
chronization issue which may introduce additional errors.
However, the videos http://youtu.be/MRbwfRHQ_Ws and
http://youtu.be/Hho35ng_eNI show qualitatively very accu-
rate estimates.

In Table 6 we compared the proposed system, which
jointly estimates the trajectory, the class and the dimensions
of the tracked vehicles, against the system proposed in [28]
which performs a disjoint estimation of the class after the
trajectory estimation through the Backward-Simulation Par-
ticle Smoother (i.e., in [28] the Backward-Simulation Parti-
cle Smoother estimates the trajectory for a set of different
models independently, then the proposed system chooses the
most likely model). The results in the table show how the
joint estimation improves significantly the accuracy of the

Fig. 12 Plots of the estimation results in the Ghisalba dataset. We plot subsequently the errors related to all the transits of the sensor-equipped
vehicle
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Table 7 Confusion matrix with the classification results

Estimated real Car Truck Light
truck

Van Motor-
cycle

City
car

Car 230 0 0 0 0 0

Truck 0 21 2 0 0 0

Light truck 0 3 48 2 0 0

Van 7 0 3 61 0 0

Motorcycle 0 0 0 0 7 0

City car 1 0 0 0 0 4

Class accuracy 97 % 88 % 90 % 97 % 100 % 100 %

Fig. 13 Example of the inaccurate representation of an articulated
truck

estimate confirming the claims we proposed in the introduc-
tion of this paper.

In the Monza dataset, the camera is mounted few meters
over the ground plane and observes a straight road (as in the
second point of view of the synthetic dataset). In this case and
in the PETS 2000 sequence, we did not have the ground truth
for the 3D pose. Thus, the pose estimation accuracy cannot
be reported for these two datasets, but both the Fig. 11 and
the provided videos show very good estimation results.

In the synthetic dataset we aimed at evaluating the accu-
racy of the dimension estimation process. Unfortunately, in
the real cases we could not provide a reliable numeric evalua-
tion for the dimension estimates because of the errors affect-
ing the camera calibration, mainly due to perspective effects.

In the Ghisalba dataset we could not use the classical
chessboard pattern, together with the classical software tools
to calibrate the extrinsic parameters, since the ground plane
was too far from the cameras (around 25 m); thus, we geo-
referenced some landmarks on the ground planes with the
RTK-GPS and used the DLT algorithm [8] to estimate the
extrinsic calibration matrix: the obtained calibration is accu-
rate on the ground plane but rapidly degrades as soon as

Table 8 Classification accuracy comparison

References Classification
accuracy (%)

[18] 91.5

[4] 89.8

[3] 92.1

Proposed 95.3

the height increases. In the Monza dataset, the challenging
perspective (and camera distortions) makes the extrinsic cal-
ibration very noisy: the point at the infinity is quite unsta-
ble and the standard chessboard extrinsic calibration process
[33] provides a poor estimate. In those two scenarios, when
the model fits the vehicle image, i.e., when the algorithm
provides a good estimation, it is likely that the dimension
values are different from the real ones, and we cannot ascribe
the error to our algorithm.

In the PETS 2000 dataset, the algorithm shows accu-
rate estimate of the vehicle dimensions qualitatively. In this
case, the calibration is known but we are not able to find
the vehicle producer and model so we cannot infer the real
dimensions.

In Table 7, we list the results of classification over a set
of 389 vehicles captured in the three scenes (only 8 of them
belong to the Monza dataset and 3 belongs to the PETS2000
sequence, and these are all correctly classified). We anno-
tated the datasets manually before running our algorithm.
The classification results quite accurate for cars, city cars,
motorcycles and vans, and the algorithm properly classifies
most of the light trucks too. Trucks, are usually classified
correctly, but the dimensions are sometimes not precisely
estimated. The reason behind such issue stems from the fact
that trucks are usually articulated: if an articulated truck turns
significantly, the shape of the corresponding blob is quite dif-
ferent from the model (see Fig. 13) and our algorithm some-
times tends to estimate as a light truck only one of the two
articulated parts of the truck.

In Table 8 we show the comparison with the average clas-
sification accuracy of the state-of-the-art methods. As men-
tioned in the beginning of this section, the datasets are differ-
ent with respect to the ones provided in this paper; however,
the scenarios considered for our experiments are similar, so a
qualitative comparison is possible. The table shows that our
algorithm reaches 95.3 % classification accuracy, better than
the other algorithms, despite the issue with the articulated
trucks (not appearing in the datasets on which the other algo-

rithms were tested). We computed this accuracy as
N cc

vehicles
Nvehicles

,
where N cc

vehicles is the number of vehicles correctly classified,
and Nvehicles is the total number of vehicles.
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Fig. 14 Six examples of how the class estimate evolves for six dif-
ferent vehicle transits (one example for each class). Each plot shows
how many particles belong to the six classes, frame-by-frame. The last
region of the plots shows a change in the class distribution except for

the motorcycle case; this happens when the vehicle reaches the image
borders, so the corresponding blob looks like a vehicle from smaller
class

In Fig. 14 we report six examples of how the class distrib-
utions evolve among the particles of the proposed Backward-
Simulation Particle Smoother; each example corresponds to
a different estimated class value. In each plot we represent,
for each frame, how many particles belongs to each of the six

different classes. This figure shows how the filter states con-
verge to the right class value (each plot in the figure refers
to a single vehicle for a different class). At the end of the
trajectory the filter state tends to diverge from the final class,
but this is due to the fact that the vehicle is disappearing from
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the image and its blob looks like a vehicle in a smaller class.
We did not introduce any heuristic to deal with the latter
issue since it turns out not being critical in terms of overall
classification accuracy.

6 Conclusions and future works

In this paper, we presented a Backward-Simulation Particle
Smoother with a hybrid state to estimate simultaneously the
3D trajectory, the class, and the dimensions of the observed
vehicles from an image sequence. In vehicle monitoring,
those are three relevant tasks; the existing systems only per-
form one or two of them simultaneously, usually by means of
one or more vehicle models. A unifying framework is worthy,
since the synergy of the three processes makes the estimation
robust: trajectory estimation enforces classification with tem-
poral consistency, and at the same time, the knowledge about
the vehicle class and dimensions can be used to increase the
accuracy of the trajectory estimate.

As in many vehicle tracking systems, we framed our
algorithm according to the Bayesian estimation framework.
Differently from existing algorithms, our proposed estima-
tor deals with continuous (pose and dimensions) and dis-
crete (class) quantities, and this requires an estimator with
a hybrid state. To manage the hybrid state in a Bayesian
Estimator, the major challenge came from the design of a
convenient state transition function for the prediction step.
We split the prediction step into two stages: in the first one,
we generated a new pose according to a classical motion
model; in the second one, we choose the class and the
dimension by modeling the class transition as a Markov
Chain.

Moreover, in this paper we proposed to accomplish the
Bayesian estimation via the Backward-Simulation Particle
Smoother, and the reasons were twofold. First, a Monte
Carlo estimation process, as the Particle Smoother, resulted
to be the most convenient choice to deal with the likelihood
estimation (compared to the Kalman Filter or Smoother),
when adopting a region-based approach. In particular, with
the Particle Smoother we could simply compute an overlap
score between the vehicle model projection and the vehicle
measurement to weigh the pose hypotheses. Secondly, we
choose a Particle Smoother to perform a more accurate esti-
mation with respect to the filtering approach; in particular,
the Backward-Simulation Particle Smoother let us to esti-
mate both the poses and the vehicle model, i.e., the class and
the dimensions, with the Forward iteration, while we used
the Backward iteration to refine the poses estimate.

We tested our algorithm on both synthetic and real
datasets. The synthetic datasets gave us a quantitative eval-
uation on an ideal case especially for pose and dimension
estimation: the results are very accurate, usually the error

was about few centimeters in displacement and less than one
degree. In the three real datasets (Ghisalba with ground truth,
Monza and PETS 2000), the overall accuracy of the pose and
dimension estimate is good. The classification success rate
is more than 95 %. The only weak results are related to the
articulated truck estimation.

As a future work, we aim at introducing and managing a
more complex truck model which should take into account
the articulation, and a more complex motion model.
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