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Abstract—Most applications of wireless sensor networks (WSNs) rely on data about the positions of sensor nodes, which are not

necessarily known beforehand. Several localization approaches have been proposed but most of them omit to consider that WSNs

could be deployed in adversarial settings, where hostile nodes under the control of an attacker coexist with faithful ones. Verifiable
multilateration (VM) was proposed to cope with this problem by leveraging on a set of trusted landmark nodes that act as verifiers.

Although VM is able to recognize reliable localization measures, it allows for regions of undecided positions that can amount to the
40 percent of the monitored area. We studied the properties of VM as a noncooperative two-player game where the first player

employs a number of verifiers to do VM computations and the second player controls a malicious node. The verifiers aim at securely
localizing malicious nodes, while malicious nodes strive to masquerade as unknown and to pretend false positions. Thanks to game

theory, the potentialities of VM are analyzed with the aim of improving the defender’s strategy. We found that the best placement for
verifiers is an equilateral triangle with edge equal to the power range R, and maximum deception in the undecided region is

approximately 0:27R. Moreover, we characterized—in terms of the probability of choosing an unknown node to examine further—the
strategies of the players.

Index Terms—Game theory, localization games, security, wireless sensor networks

Ç

1 INTRODUCTION

NODE localization plays a crucial role in most wireless
sensor network (WSN) applications [1], [2] such as

environment monitoring and vehicle tracking. Location can
also be used to improve routing and saving power and to
develop applications where services are location depen-
dent. However, the installation of GPS receivers is often
unfeasible for its costs, while the positions of sensor nodes
are not necessarily known beforehand. In fact, nodes are
often deployed randomly or they even move, and one of the
challenges is computing localization at time of operations.
Thus, several localization schemes have been proposed
(e.g., [3], [4], [5], [6], [7], [8], [9], [10], [11]), but most of the
current approaches omit to consider that WSNs could be
deployed in adversarial settings, where hostile nodes under
the control of an attacker coexist with faithful ones. Wireless
communications are easy to tamper, and nodes are prone to
physical attacks and cloning; thus, classical solutions, based
on access control and strong authentication, are difficult to
deploy due to limited power resources of nodes.

A method, which allows to evaluate node reputation and
the related accuracy of the monitored data, is required. In

this direction, a well-defined approach to localize nodes
even when some of them are compromised was proposed in
[12] and it is known as verifiable multilateration (VM). VM
computes an unknown position by leveraging on a set of
trusted landmark nodes that act as verifiers. Although VM is
able to recognize reliable localization measures (known
as robust computations) and sure malicious behaviors, it
allows for undecided positions (unknown nodes), i.e., cases in
which localization data are not enough to mark a node
as robust or malicious. In the undecided region, a malicious
node can pretend to be in a position that is different from its
true one but still compatible with all verifiers’ information.
In many cases, a large portion of the monitored field is in
the undecided region (even more than 40 percent, as we
shown in Section 3) and therefore, if this region is not
considered, a large area is wasted. Trivially, the number of
deployed verifiers can be incremented, but this requires
higher costs. In this paper, we resort to noncooperative game
theory [13] to deal with the problem of secure localization
where a set of verifiers and a number of independent
malicious nodes are present. The assumption of indepen-
dence between malicious nodes will allow us to adopt a
two-player game, where the first player (defender) employs
a number of verifiers to do VM computations and the second
player (attacker) controls a single malicious node. The
defender acts to securely localize the malicious node, while
the attacker tries to masquerade it as unknown since, when
recognized as malicious, its influence would be ruled out by
VM. Scenarios where attackers can form coalitions and
collude are not considered here, the reason being the
unsuitability of VM for such cases, as we will discuss more
in detail later.

This paper provides two main original contributions.
First, we study how the verifiers should be placed to
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minimize the maximum error the attacker might induce if
the defender accepted also unknown positions and which is
the best pair of positions (where actual and fake positions
differ the most) for the malicious node. We accomplish such
a task by modeling the situation as an extensive-form game
between the verifier player and the malicious node player.
Furthermore, we find the minimum number of verifiers
needed for assuring a given upper bound over the error
the attacker might induce.1

Second, we introduce a probabilistic approach according
which each node is associated with a probability to be
malicious. This can be useful to determine the reputation
of the nodes. In many situations, such as when the
nonmalicious nodes are distributed uniformly over the
monitored area, the probability that a nonmalicious
node appears in the best position a malicious node can
pretend to is zero, and therefore the verifiers, once
observed the positions of all the nodes, can recognize the
malicious node with a probability of one. As a result,
the malicious node could be interested in varying its
positioning strategy in the attempt to masquerade itself as
a nonmalicious one, reducing thus the maximum induced
error. We model this situation as an extensive-form game
with uncertainty and we provide an algorithm to find the
best strategies of the two players.

The paper is organized as follows: Section 2 shortly
describes VM. Section 3 introduces the secure localization
games. Section 4 faces the problem of optimal verifiers
placement. Section 5 studies the distribution of the mal-
icious node. Section 6 provides an overview of the related
works and Section 7 concludes the paper.

2 VERIFIABLE MULTILATERATION

Multilateration is the main technique used in WSNs to
estimate the coordinates of unknown nodes given the
positions of some given landmark nodes—known as anchor
nodes—whose positions are known. The position of an
unknown node U is computed by geometric inference based
on the distances between the anchor nodes and the node
itself. However, the distance is not measured directly;
instead, it is derived by knowing the speed of the
transmission signal, and by measuring the time needed to
get an answer to a beacon message sent to U .

Unfortunately, if this computation were carried on
without any precaution, U might fool the anchors by
delaying the beacon message. However, since in most
settings a malicious node can delay the answer beacon, but
not speed it up, under some conditions it is possible to spot
malicious behaviors. VM uses three or more anchor nodes
to detect misbehaving nodes. In VM, the anchor nodes work
as verifiers of the localization data and they send to the sink
node B the information needed to evaluate the consistency
of the coordinates computed for U . The basic idea of VM is:
each verifier Vi computes its distance bound dbi [16] to U ; any
point P 6¼ U inside the triangle formed by V1V2V3 has
necessarily at least one distance to the Vi enlarged. This
enlargement, however, cannot be masked by U by sending a
faster message to the corresponding verifier.

Under the hypothesis that verifiers are trusted and they
can securely communicate with B, the following verifica-
tion process can be used to check the localization data in a
setting in which signals cannot be accelerated:

Step 1. Each verifier Vi sends a beacon message to U and
records the time !i needed to get an answer.

Step 2. Each verifier Vi (whose coordinates hxi; yii are
known) sends to B a message with its !i.

Step 3. From !i, B derives the corresponding distance
bound dbi (that can be easily computed if the speed of the
signal is known) and it estimates U’s coordinates by
minimizing the sum of squared errors

" ¼
X

i

dbi "
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðxU " xiÞ2 þ ðyU " yiÞ2

q" #2

; ð1Þ

where hxU; yUi are the coordinates to be estimated;2

Step 4. B can now check if hxU; yUi are feasible in the
given setting by two incremental tests: 1) # test: For all
verifiers Vi, compute the distance between the estimated U
and Vi: if it differs from the measured distance bound by
more than the expected distance measurement error, the
estimation is affected by malicious tampering; 2) point-in-
the-triangle test: Distance bounds are reliable only if the
estimated U is within at least one verification triangle
formed by a triplet of verifiers, otherwise the estimation is
considered unverified.

If both the # and the point-in-the-triangle tests are
positive, the distance bounds are consistent with the
estimated node position, which moreover falls in at least
one verification triangle. This implies that none of the
distance bounds were enlarged. Thus, the sink can
consider the estimated position of the node as ROBUST; if
instead one of the tests fails, the information at hands is
not sufficient to support the reliability of the data. An
estimation that does not pass the # test is considered
MALICIOUS. In all the other cases, the sink marks the
estimation as UNKNOWN. In an ideal situation where there
are no measurement errors, there are neither malevolent
nodes marked as ROBUST, nor benevolent ones marked as
MALICIOUS. Even in this ideal setting, however, there are
UNKNOWN nodes, that could be malevolent or not. In
other words, there are no sufficient information for
evaluating the trustworthiness of a node position. In fact,
U could pretend, by an opportune manipulation of delays,
to be in a position P that is credible to be taken into
account. No such points exist inside the triangles formed
by the verifiers (this is exactly the idea behind VM), but
outside them some regions are still compatible with all the
information verifiers have.

Consider jV j verifiers that are able to send signals in a
range R. Let xU and yU be the real coordinates of U . They
are unknown to the verifiers, but nevertheless they put a
constraint on plausible fake positions, since the forged
distance bound to Vi must be greater than the length
of UVi. Thus, any point P ¼ hxi; yii that is a plausible

BASILICO ET AL.: SECURITY GAMES FOR NODE LOCALIZATION THROUGH VERIFIABLE MULTILATERATION 73

1. Preliminary versions of these results are published in [14] and [15].

2. In an ideal situation where there are no measurement errors and/or
malicious delays, this is equivalent to finding the (unique) intersection of
the circles defined by the distance bounds and centered in the Vi and " ¼ 0.
In general, the above computation in presence of errors is not trivial; we
point an interested reader to [17].



falsification of U has to agree to the following constraints,
for each 1 & i & jV j:

y" yið Þ2þ x" xið Þ2 < R2;
y" yið Þ2 þ x" xið Þ2 > yU " yið Þ2 þ xU " xið Þ2;

$
ð2Þ

The constraints in (2) can be understood better by
looking at Fig. 1, where three verifiers are depicted: the
green area around each verifier denotes its power range,
and the red area is the bound on the distance that U can put
forward credibly. Thus, any plausible P must lay outside
every red region and inside every green one (and, of course,
outside every triangle of verifiers).

VM is suitable to be used only when the attacker can
only enlarge distances: this requires the absence of collusion
between malicious nodes, since coalitions can undertake
joint strategies for speeding up of messages, thus violating
the assumptions used to classify nodes as malicious via
distance bounds and geometric inference [12]. In this work,
we consider settings where malicious nodes are indepen-
dent. Dealing with collusion would require to adopt VM
refinements or to develop alternative methods (see [18] for
further discussion).

3 SECURE LOCALIZATION GAMES

Our approach models the interaction between independent
malicious nodes and verifiers as a noncooperative game. For
the sake of presentation, we restrict our attention to a game
played between a group of verifiers and a single malicious
node. Handling multiple independent nodes would call for
simple extensions and scalings of the model we present here.
We will provide some insights along this direction in the
following sections. In the game we consider, the malicious
node acts to masquerade itself as an unknown node while
the verifiers try to face the malicious node at best.

A game is described by a tuple hmechanism, strategiesi:
mechanism defines the rules of the game in terms of number
of players, actions available to the players, outcomes of
actions interplay, utility functions of players; strategies
describe the behaviors of the players during the game in
terms of played actions. Strategies can be pure, when a
player performs one action with a probability of one, or
they can be mixed, when a player randomizes over a set of
actions. The players’ strategies define an outcome (if the
strategies are pure) or a lottery over the outcomes (if
mixed). Players have preferences over the outcomes

expressed by utility functions and each player is rational.
Solving a game means to find a profile of strategies (i.e., a
set specifying one strategy for each player) such that the
players’ strategies are somehow in equilibrium. The most
known equilibrium concept is Nash [13] where each player
cannot improve its utility by unilaterally deviating.

We now formally state our secure localization game by
focusing on a setting with jV j ¼ 3 verifiers (the minimum
number needed to apply VM) and one malicious node. A
secure localization game is a tuple hQ;A; Ui. Set Q contains
the players: a defender v who controls the verifiers and a
malicious player m who controls the unknown nodes, thus
Q ¼ fv;mg. Set A contains the actions available to players.
Given a surface S ' IR2, the actions available to v are all the
possible tuples of positions hV1; V2; V3i of the three verifiers
with V1; V2; V3 2 S, while the actions available to m are all
the possible pairs of positions hU; P i with U; P 2 S (where
U and P are defined in the previous section). We denote by
$v the strategy (possibly mixed) of v and by $m the strategy
(possibly mixed) of m. Given a strategy profile $ ¼ ð$v;$mÞ
in pure strategies, it is possible to check whether or not
constraints (2) are satisfied. The outcomes of the game can
be {MALICIOUS, ROBUST, UNKNOWN}. Set U contains the
players’ utility functions, denoted uvð(Þ and umð(Þ, respec-
tively, that define their preferences over the outcomes. We
define (the verifier is indifferent among the outcomes
{MALICIOUS, ROBUST} since both rule out any malicious
influence) uiðMALICIOUSÞ ¼ uiðROBUSTÞ ¼ 0 for i 2 Q,
while uiðUNKNOWNÞ can be defined differently according
to different criteria. A simple criterion could be to assign
uvðUNKNOWNÞ ¼ "1 and umðUNKNOWNÞ ¼ 1. However,
our intuition is that the UNKNOWN outcomes are not the
same for the players, because m could prefer those in which
the distance between U and P is maximum. The criterion
we adopt in this paper to characterize UNKNOWN outcomes
is maximum deception where um is defined as the distance
between U and P , while uv is defined as the opposite. Other
interesting criteria nonexplored in this paper are deception
area where um is defined as the size of the region S0 ' S
such that P 2 S0 is marked as UNKNOWN, while uv is
defined as the opposite. Another one is the deception shape
where um is defined as the number of disconnected regions
S0 ' S such that P 2 S0 is marked as UNKNOWN, while uv

is defined as the opposite. Players could even use different
criteria, for example, v and m could adopt the maximum
deception criterion and the deception shape respectively.
However, when players adopt the same criterion, the game
is zero-sum, the sum of the players’ utilities being zero, and
its resolution is tractable.

4 PLACEMENT OF VERIFIERS

In this section, we study the optimal placement of the
verifiers to minimize the maximum deception. The results
presented here apply to any node individually trying to
fake its position. Therefore, they do not depend on the
number of malicious nodes in the environment.

4.1 Maxmin Solution with Three Verifiers

We focus on the case with three verifiers. In our analysis of
the game, we consider only the case in which

ViVj & R 1 & i; j & 3; i 6¼ j: ð3Þ
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Fig. 1. Plausible falsification region: P is a plausible fake position for U
since it lays outside every red region and inside every green one whose
radius is R (moreover it is outside the triangle of verifiers).



Indeed, if we allow ViVj > R, then there will be several
unreasonable equilibria. For instance, an optimal verifiers’
strategy would prescribe that the verifiers must be
positioned such that only one point satisfies constraints
(2). This strategy would assure the verifiers the largest
utility (i.e., zero), no UNKNOWN positions being possible.
However, this setting is not interesting, since the total area
monitored by the verifiers collapses in one point.

At first, we can show that for each action of the
verifiers—under the assumption (3)—there exists an action
of the malicious node such that this is marked as
UNKNOWN. Therefore, there is no verifiers’ strategy such
that, for all the malicious node’s actions, the malicious node
is marked as ROBUST or MALICIOUS.

Theorem 1. For each tuple hV1; V2; V3i such that ViVj & R for all
i; j, there exists at least a pair hU; P i such that um > 0.

Proof. Given V1; V2; V3 such that ViVj & R for all i; j, choose a
Vi and call X the point on the line VkVj ðk; j 6¼ iÞ closest to
Vi. Assign U ¼ X. Consider the line connecting Vi to X,
assign P to be any point X0 on this line such that
ViX & ViX0 & R. Then, by construction um > 0. tu

We discuss what is the configuration of the three
verifiers such that the maximum deception is minimized.

Theorem 2. Any tuple hV1; V2; V3i such that ViVj ¼ R for all i; j
minimizes the maximum deception.

Proof. Since we need to minimize the maximum distance
between two points, by symmetry, the triangle whose
vertexes are V1; V2; V3 must have all the edges with
the same length. We show that ViVj ¼ R. It can be easily
seen, by geometric construction, that U must be
necessarily inside the triangle. As shown in Section 2,
P must be necessarily outside the triangle and, by
definition, the optimal P will be on the boundary
constituted by some circle with center at some Vi and
range equal to R (otherwise P could be moved farther
and P would not be optimal). As ViVj decreases, the size
of the triangle reduces, while the boundary is un-
changed, and therefore UP does not decrease. tu

Theorem 3. Let W be the orthocenter of the triangle V1V2V3. The
malicious node’s best responses have polar coordinates3 U ¼
ð% ¼ 2

ffiffi
3
p

3 " 1; & ¼ 3'
2 Þ and P ¼ ð% ¼ ð1"

ffiffi
3
p

3 ÞR; & ¼
3'
2 Þ w.r.t.

pole W ð%Vi ¼ 0Þ, for 1 & i & 3. The best maximum deception
is UP ¼ ð2"

ffiffiffi
3
p
Þ.

Proof. Consider point P in Fig. 2. Any unknown U who
pretended to be in P must be located inside the blue
circles with centers in the Vi and radii ViP , otherwise
the fake distance ViP would be greater than the real one
ViU . Thus, given P , the farthest U is the other
intersection of two circles with centers on the endpoints
Vi; Vj of the triangle edge at the same distance of P from
the edge. The distance UP is maximal when the angle
w.r.t. pole W (%Vi ¼ 0) is 3'

2 and P lays on the edge of
the power range of Vk; k 6¼ i; k 6¼ j. In this case VkP ¼ R
and UP ¼ 2ðR"

ffiffi
3
p

2 RÞ ¼ ð2"
ffiffiffi
3
p
ÞR ¼ 0:2679R. tu

The value of um (i.e., the maximum deception) is then
0:2679R. In other words, when the verifiers compose an
equilateral triangle, a malicious node can masquerade as
unknown and the maximum deception is about 27 percent
of the verifiers’ range R. Interestingly, with this configura-
tion, the area monitored by all the landmark nodes is the
area of the circular triangle [19]

ffiffi
3
p

4 R
2 þ 3

2 ð
'
3 " sinð'3ÞÞR

2, thus
the portion of the region in which VM is effective (i.e., the
area of the triangle V1V2V3) is

ffiffi
3
p

R2

4

ð'"
ffiffiffi
3
p
Þ R2

2

) 61%:

4.2 Maximum Deception with Multiple Verifiers

The results exposed in Section 4.1 are the basis to study
situations with multiple (more than three) verifiers. Our
main result is the derivation of a bound between the
maximum deception and the number of verifiers.

Initially, consider the simple situation in which we have
four verifiers and they constitute two adjacent equilateral
triangles as shown in Fig. 4a. The maximum deception does
not change w.r.t. the case with three verifiers, since some of
the best responses depicted in Fig. 3b are still available.
Indeed, the fourth verifier is useful to rule out only the two
positions that are on the edge V4 faces: on this side any fake
P would surely be marked as MALICIOUS (or even ROBUST
if P * U) since it would be inside the triangle V2V3V4. The
proof is straightforward. Consider (w.l.o.g.) the triangle
V1V2V3 in Fig. 4a. In order for a node not to be marked as
MALICIOUS, U must be in the areas depicted in Fig. 4b.
Moreover, any plausible P cannot be neither inside the
triangle V1V2V3 nor inside the triangle V2V3V4, otherwise the
node would be marked as MALICIOUS. Indeed, any
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Fig. 2. The farthest U pretending to be in position P .
Fig. 3. Malicious node’s best responses (maximum deception is UP ¼
0:2679R).

3. U and P can be expressed more easily with polar coordinates with
origin in W , %V ¼ 0.



plausible fake P , given a U in the blue area between V2 and
V3 (see Fig. 4b), cannot be in regions that are outside both
the triangles V1V2V3 and V2V3V4.

The above observation can be leveraged to give a bound
over the maximum deception with a given number of
verifiers opportunely placed and tuned such that the shape
of the area they monitor is a triangle.

Theorem 4. Given a triangular area, to have a maximum deception
not larger than 0:2679R

2k we need at least 2þ
Pk

j¼0 3j verifiers.

Proof. Consider the basic case with three verifiers (compos-
ing an equilateral triangle) with range R and ViVj ¼ R.
As shown in Section 4.1 the maximum deception is
0:2679R. Let us add now three verifiers such that we
have four equilateral triangles with edge R

2 as shown
in Fig. 5. The range of all the verifiers is set equal to R

2

(i.e., they could just ignore any beacon message that
takes longer than needed to cover the distance R

2 ). Since
the edge of the small triangles is now R

2 , the maximum
deception here is 0:2679R

2 and no U positions are possible
in the central triangle V4V5V6. Indeed, all the edges of the
central triangle are adjacent to the edge of other triangles.
This last result allows us not to consider the central
triangle when we want to reduce the maximal deception,
the malicious node never positioning itself within it. The
basic idea is that if we want to halve the maximum
deception we need to decompose all the triangles
vulnerable to the malicious node by introducing three
verifiers. By introducing three new verifiers per triangle
we obtain four subtriangles with an edge that is half of
the original triangle and therefore the maximum decep-
tion is halved. In general, to have a maximum deception
of 0:2679R

2k , the number of required verifiers4 is 3
2 ð1þ 3kÞ,

as shown in Fig. 6b. In Fig. 6a, we report an example with
k ¼ 2 and 15 verifiers. Notice that, when we introduce
new verifiers, we need to halve the range. In general, we
will have verifiers with multiple different ranges. tu

The number of verifiers increases according to the formula
jV jk ¼ jV jk"1 þ 3k. Asymptotically limk!1

jV jkþ1

jV jk
¼ 3, thus we

need to multiply by three the number of verifiers to divide by

two the maximum deception. Increasing the number of
verifiers requires to add new verifiers with a smaller range
w.r.t. those already present in the network.

5 CHASING MALICIOUSNESS

We now consider the case in which we have three deployed
verifiers that monitor a given area S and a number n of
unknown nodes, among which one is malicious. According
to Theorem 3, the malicious node should pretend to be in
one of three possible positions. However, if nonmalicious
nodes can appear in every position of the monitored area
with a given probability distribution, excluded for degen-
erate probability distributions, the probability with which a
nonmalicious node will appear in the positions that the
malicious node must pretend according to Theorem 3 is
zero. Therefore, the verifiers, once the positions of all the
nodes have been observed, can mark the node in the
position prescribed by Theorem 3 as malicious. As a result,
the malicious node could be interested in changing its
strategy, randomizing over a number of different positions,
to masquerade its position as the position of a nonmalicious
node. To address this problem, we studied a new security
game in which at most one of the n nodes is malicious and v
might physically inspect one of the unknown nodes to spot
if it is malicious. However, we assume that the defender has
limited resources and only one node can be controlled directly,
thus v is interested in a proper estimation of the probability
of maliciousness of the unknown node.

Let’s analyze the scenario depicted in Fig. 7: we have three
verifiers that, according to Theorem 2, were deployed on an
equilateral triangle of edge R. They sense the beacons of
unknown nodes Ui (not present in the figure) and compute
their positions Pi (1 & i & n). At most one Ui is malicious:
only if it is, the computed position is fake. The questions are:
given a number of nodes, with which probability each node
is malicious? Moreover, what is the strategy of the malicious
node that masquerades at best its position?
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Fig. 5. Max deception with six verifiers is UP ¼ 0:2679R
2 .

Fig. 6. Max deception is reduced by adding verifiers.

Fig. 4. Impact of verifiers on U ability to fake positions.

4. The number of vertices in Sierpinski triangle of order k; see [20].



5.1 Game Model

We divide the area S in a finite number jSj of subregions each
identified with its centroid fy1; . . . ;yjSjg. This discretization
process is necessary to make the game model solvable in
practice (a generic game with continuous actions cannot be
solved exactly and approximate solutions can be found only
with very small problems [13]). We describe the game by
referring to its extensive form, i.e., players act by alternating
their moves, thus the game can be represented by a game tree
in which the vertices are decision points of the players and
the edges are the actions available to a player at a given
decision point. We also introduce a nonstrategic player,
known as nature in the game theoretic jargon, here denoted
by N : it plays only the first move and gains no utility in the
game. The game is defined by the tuple hQ;A;Ui, where
Q ¼ fv;m;Ng are the players, A ¼ fAigi2Q the actions, and
U the utility functions for players v and m.

The mechanism defines a game tree G, whose nonterm-
inal vertices are in V and the terminal ones in T . Function
( : V ! Q returns the player that plays at a given vertex,
while function ) : V ! A returns the set of actions available
at vertex i to player (ðiÞ. The game tree is defined by the
function * : V + fAigi2Q ! V [ T that returns the next
vertex given the current vertex and one of the possible
actions according to ) and (. Vertices are grouped in
information sets: two vertices i; j 2 V are in the same
information set H if )ðiÞ ¼ )ðjÞ ^ (ðiÞ ¼ (ðjÞ and the player
knows that it is playing in i or j, but it cannot recognize the
specific vertex in which it is playing.

For simplicity, we assume that there is always one
malicious node. The structure of the game is as follows.

Nature. In the root vertex, according to function (, the
nature N plays first; according to ) the available actions AN
are all the possible assignments yi of the n" 1 (nonmali-
cious) nodes to the subregions of S. Players can only observe
which regions are occupied by nodes (without distinguish-
ing the nodes), thus we can safely restrict ourselves
to ðjSjþðn"1Þ"1

n"1 Þ actions, the number of combinations (with
repetitions) of n" 1 elements out of jSj.N chooses its action
according to a probability distribution ! over AN .

Malicious node. According to function *, each action of N
leads to a different vertex in which, according to function (,
the malicious player m plays one of the actions determined
by ). We assume that m cannot observe the nature’s
moves and therefore all the decision vertices in which the
malicious player acts constitute a unique information
set Hm. The available actions Am are all the possible
assignments of the malicious node to a position x 2 S and

of its fake position to ŷ 2 S. As discussed in detail below,
we can safely consider just the fake positions ŷ and
therefore jAmj ¼ jSj. We denote by $mðŷÞ the strategy of
m, expressing the probability with which m places the
malicious node such that the fake position is ŷ.

Verifiers. According to function *, each action of m leads
to a different vertex in which, according to function (, the
verifier player v acts one of the actions determined by ).
This player observes the positions of all the nodes without
knowing which are malicious or nonmalicious, thus
equivalent cases (v distinguishes only the assignments to
regions) are grouped in proper information sets. The
number of information sets is ðjSjþn"1

n Þ.5 We denote the
ith information set by Hv:i. At each information set, the set
of actions Av available to the verifier player are the choices
of a node (to further inspect) in one of the observed
positions. We denote by $vðHv:i; "yÞ the strategy of v in
information set Hv:i expressing the probability with which
it chooses the node in position y, given that y is an
observed position (v can adopt a different strategy at each
information set). The number of actions changes according
to the information set since the number of observed
positions can vary (recall that two nodes can be in the
same position). The largest number of actions at a given
information set is n. Since the positions are not distinguish-
able by the verifier, the actual node to be inspected is
determined according to a uniform probability, i.e., any
node will be chosen with probability $vðHv:i ;yÞ

jHj . Thus, in all
the information sets where all the nodes (nonmalicious and
malicious) are in the same position, the probability with
which any specific node will be chosen is 1

n . In these
information sets, the strategy of the verifier is fixed.

The utility functions are defined on terminal nodes T
and depend on the capture of the malicious node:

. capture: um ¼ 0 and uv ¼ 1; and

. noncapture: uv ¼ 0 and um ¼ #ðŷÞ where #ðŷÞ is the
max deception given by the fake position ŷ.

Notice that the new obtained game is now general-sum.
Given that each player behaves as a maximizer of the
expected utility, for each fake position ŷ the malicious node
will choose the position such that the deception is
maximum and therefore, as anticipated above, we can
safely reduce the set of actions of the malicious player to
exclusively the fake positions. When the players adopt
mixed strategies, randomizing over their actions, their
utility is defined in expectation over the outcomes as
prescribed in [21].

To clarify the notation, Fig. 8 depicts the game tree of the
following example.

Example 1. We have jSj ¼ 3 with S ¼ fx1;x2;x3g and n ¼ 2
(one malicious and one nonmalicious). The game
formalization (to read together with Fig. 8) follows.
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Fig. 7. Two unknown nodes monitored by three verifiers.

5. For instance, suppose that there are two nodes (one malicious and one
nonmalicious) and three possible positions fy1;y2;y3g, the number of
information sets is six, one for each of the following possible combinations
of two nodes fy1;y1g; fy1;y2g; fy1;y3g; fy2;y2g; fy2;y3g; fy3;y3g since v
cannot distinguish between fy1; ŷ2g and fŷ2;y1g: thus, both choices are
equivalent to a generic fy1;y2g.



Q ¼4 fN ;m;vg

A ¼4 fAN ;Am;Avg
where AN ¼ fy1;y2;y3g;Am ¼ fŷ1; ŷ2; ŷ3g;

Av ¼ f"y1; "y2; "y3g

V ¼4 f,0; ,0:1; ,0:2; ,0:3; ,0:1:2; ,0:1:3; ,0:2:1; ,0:2:3; ,0:3:1; ,0:3:2g

T ¼4 8i 6¼ j : 1 & i; j & 3; f,0:i:j:c; ,0:i:j:"cg
8i : 1 & i & 3; f,0:i:ig

( ¼4 ,0 ! N
8i : 1 & i & 3; ,0:i !m

8i; j : 1 & i; j & 3; ,0:i:j ! v

) ¼4 ,0 ! AN
8i : 1 & i & 3; ,0:i ! Am

8i; j : 1 & i; j & 3; ,0:i:j ! f"yi; "yjg

* ¼4 8i : 1 & i & 3; ð,0;yiÞ! ,0:i

8i; j : 1 & i; j & 3; ð,0:i; ŷjÞ! ,0:i:j

8i 6¼ j : 1 & i; j & 3; ð,0:i:j; "yjÞ! ,0:i:j:c

8i 6¼ j : 1 & i; j & 3; ð,0:i:j; "yiÞ! ,0:i:j:"c

8i : 1 & i & 3; ð,0:i:i; "yiÞ! ,0:i:i

H ¼4 fHm;Hv:1;Hv:2;Hv:3g
where Hm ¼ f,0:1; ,0:2; ,0:3g;

Hv:1 ¼ f,0:1:2; ,0:2:1g;Hv:2 ¼ f,0:1:3; ,0:3:1g;
Hv:3 ¼ f,0:2:3; ,0:3:2g

u ¼4 8i 6¼ j : 1 & i; j & 3; ,0:i:j:c ! ð"; 0; 1Þ
8i 6¼ j : 1 & i; j & 3; ,0:i:j:"c ! ð";#ðŷiÞ; 0Þ

8i : 1 & i & 3; ,0:i:i ! "; 1
2

#ðŷiÞ;
1

2

" #
:

Nature N places n" 1 ¼ 1 nonmalicious nodes on a
position and then m acts by choosing the only fake
position. In Fig. 8, all the decision points of the malicious
player are connected by a dashed line because they all
constitute a unique information set Hm. In all the
situations in which the two nodes (the malicious one
and the nonmalicious one) are in the same observed
position we have a terminal node because the strategy of
the verifier player is determined by a 1

2 probability of
choosing the malicious node (and same probability for the

nonmalicious one). The expected utilities are um ¼ 1
2 #

ðŷiÞ; uv ¼ 1
2 . In the other situations, v has two possible

actions. For instance, the verifier cannot distinguish the
situation in which the malicious node has chosen ŷ1 and
the nonmalicious node has been placed by nature in y2

from the reverse situation. Therefore, these two situations
constitute a unique information set (Hv:1). Consider, as an
example, ŷ1 and y2 as the positions of the malicious and
nonmalicious nodes respectively, if the verifier chooses
"y1, the malicious node will be captured (uv ¼ 1), instead, if
the verifier chooses "y2, the malicious node will not be
captured (um ¼ #ðŷ1Þ).

5.2 Solution Concepts and Equilibrium Constraints

We consider in this section two solution concepts for our
game model. The maxmin strategy and the Nash equili-
brium. The maxmin strategy gives the maximum utility
against the strongest opponent; therefore, the utility
provided by the maxmin strategy is a lower bound. The
maxmin value is known also as the security level of a player.
The computation of a maxmin strategy is easy, requiring
polynomial time in the size of the game. The Nash
equilibrium is the most appropriate solution concept for
general-sum games, but its computation is not easy in the
worst case.6

5.2.1 Security Levels and Strategies

Initially, we focus on the maxmin value of the verifier
player. For simplicity, we compute it by finding the minmax
strategy of the malicious player (i.e., the dual strategy of the
verifier player’s maxmin strategy). The verifier player’s
maxmin value is given by the following linear mathematical
programming problem, where u-vðhÞ denotes the value
of the verifier players’ optimal action at information set h.
This, together with $m, are the variables of the linear
programming problem we formulate:

minimize
u-v;$m

X

h2H
u-vðhÞ þ

X

1&i&jSj

1

2
!ðyiÞ ( $mðŷiÞ; ð4Þ
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Fig. 8. The game tree with n ¼ 2 and jSj ¼ 3 (see Example 1).

6. When a game is zero-sum, the pair maxmin strategies is certainly also
a Nash equilibrium, while there is no guarantee with general-sum games:
computing a Nash equilibrium for a general-sum game is PPAD-complete
and, although P ' PPAD ' NP and therefore it could be the case
PPAD . NP, it is commonly believed that computing a Nash equilibrium
is exponential in the worst case [13].



subject to u-vðhÞ / $mðŷiÞ ( !ðyjÞ ŷi;yj 2 h; i 6¼ j ð5Þ

X

1&i&jSj
$mðŷiÞ ¼ 1; ð6Þ

$mðŷiÞ / 0 1 & i & jSj: ð7Þ

The objective function (4) is written for n ¼ 2; when n is
greater, the second part is more complex: in fact, one has to
consider all the cases in which m plays a fake position
already used one or more times by N .7 Constraints (5)
assure that u-vðhÞ is larger than the value given by every
action available at h; constraints (6)-(7) assure that strategy
$m is well defined. Interestingly, the malicious player’s
minmax strategy matches the probability distribution !
according to which nonmalicious nodes are placed, as
shown by the following lemma.

Lemma 1. With one nonmalicious node, the malicious player’s
minmax strategy is $mðŷiÞ ¼ !ðyiÞ for all 1 & i & jSj and
the verifier player’s maxmin value is 1

2 .

Proof. When $mðŷiÞ ¼ !ðyiÞ for all 1 & i & jSj, function (4) is
equal to 1

2 for every possible !. Indeed, the second term of
the objective function is

P
1&i&jSj

1
2 !ðyiÞ ( !ðyiÞ, and the

first term, by constraint (5), becomes
P

h2H u
-
vðhÞ ¼P

1&i;j&jSj^i6¼j !ðyiÞ ( !ðyjÞ. The sum of these two terms
is equal to 1

2 ð
P

1&i&jSj !ðyiÞÞ
2 that is, by definition of !,

equal to 1
2 . It can be easily shown that it is a minimum

because, when $mðŷÞ is increased by +, reducing, for
example, $mðŷjÞ, then the objective function increases by
+ ( ð1" 1

2 !ðyiÞ " 1
2 !ðyjÞÞ (a strictly positive value). Thus, 1

2
is the minimum. tu

This result shows that the verifier will always choose
the malicious node with at least a probability of 1

2 . With
more than one nonmalicious node, the result is analogous
(we omit the proof, being the same of the case with a single
nonmalicious node).

Lemma 2. With n" 1 nonmalicious nodes, the malicious
player’s minmax strategy is $mðŷiÞ ¼ !ðyiÞ for all 1 & i &
jSj and the verifier player’s maxmin value is 1

n .

Similarly, we can compute the maxmin value for the
malicious player by the following linear mathematical
programming problem:

minimize u-m ð8Þ

subject to
1&i&jSj

u-m / #ðŷiÞ (
1

2
!ðyiÞ þ

X

f"yi ;"yjg2H
"yi 6¼"yj

!ðyjÞ$vðh; "yjÞ

0

BB@

1

CCA

ð9Þ

X

"yk2h
$vðh; "ykÞ ¼ 1 8h 2 H: ð10Þ

$vðh; "yiÞ / 0 "yi 2 h: ð11Þ

Constraints (9) force the maxmin value u-m to be larger
than the expected utility given by every action of the
malicious player; constraints (10) and (11) assure that $v

is a well-defined strategy. In this case, the verifier player’s
minmax strategy is not trivial, as instead it is above in the
case of the malicious player. Therefore, also the case with
more nonmalicious nodes is more complicated and
requires a different linear formulation of constraints (9)
to capture all the possible assignments of nonmalicious
nodes to positions. In this case, the size of the game tree
rises exponentially in the number of nonmalicious nodes
and therefore, although maxmin strategy can be com-
puted in polynomial time in the size of the game, the
maxmin computation is exponential in the number of
nonmalicious nodes.

5.2.2 Nash Equilibria

Under the assumption that each single player knows the
payoffs of the opponent and knows the probability
distribution associated with which the nonmalicious nodes
place in the positions, the appropriate solution concept is
the Nash equilibrium.

Initially, we study the situation in which there is a single
nonmalicious node and, subsequently, we discuss how to
extend it to the general case.

We can formulate the equilibrium constraints for
finding a Nash equilibrium as a mixed-integer linear
mathematical programming problem as follows: Call Hv

the set of information sets of the verifier player and h a
single information set, defined as the pair of observed
positions of two nodes, i.e., h ¼ f"yi; "yjg; we have the
following program:

umð"yiÞ ¼ #ðyiÞ
1

2
!ðyiÞ þ

X

f"yi ;"yjg2H
"yj 6¼"yi

!ðyjÞ$vðh; "yjÞ

0

BB@

1

CCA

1 & i & jSj;

ð12Þ

u-m / u
-
vð"yiÞ 1 & i & jSj; ð13Þ

u-m & u
-
vð"yiÞ þ#1 ( ð1" siÞ 1 & i & jSj; ð14Þ

X

1&i&jSj
si / 1 1 & i & jSj; ð15Þ

si 2 f0; 1g 1 & i & jSj; ð16Þ

$vðh; "yiÞ & si þ 1" sj "yi; "yj 2 h; i 6¼ j; ð17Þ

X

"yi2h
$vðh; "yiÞ ¼ 1 "yi 2 h; h 2 Hv; ð18Þ

$vðh; "yiÞ / 0 "yi 2 h; h 2 Hv: ð19Þ

In these formulae si are slack variables that will be
equal to one if the malicious player takes action ŷi with
positive probability. Parameter #1 is defined as #1 ¼
max1&i&jSj#ðŷiÞ: thus it plays the role of infinity when on

BASILICO ET AL.: SECURITY GAMES FOR NODE LOCALIZATION THROUGH VERIFIABLE MULTILATERATION 79

7. For example, with n ¼ 3 the term becomes:
P

1&i&jSj
1
3 !ðyiyiÞ$ðŷiÞ þP

1&i;j&jSj^i6¼j
1
2 !ðyiyjÞ$ðŷiÞ.



the right side of a “& ” inequality. The size of the above
mathematical program is OðjSj2Þ, both in terms of
number of variables and number of constraints.

The above formulation is inspired to the formulation
presented in [22] based on a mixed integer-linear problem
(MILP), but it is much more compact. In the original
formulation, one binary variable per action for each player
is needed: in our case jSjþ jSj2 binary variables and
unfortunately the hardness of an MILP is due to the
presence of integer variables.8 Instead, our formulation uses
only jSj binary variables and, therefore, we dramatically
improved the efficiency by 2jSj

2

.
We can state the following theorem.

Theorem 5. For every solution ðu-m; u-v;$v; sÞ of the feasibility
problem composed of constraints (12)-(19), we can derive a
Nash equilibrium ð$-v;$-mÞ where the verifier player’s optimal
strategy is defined as $-v ¼ $v and, called

~$mðŷiÞ ¼
0; if si ¼ 0;
!ðyiÞ; otherwise;

$

the malicious player’s optimal strategy is defined as

$-mðŷiÞ ¼
~$mðŷiÞP

1&i&jSj ~$mðŷiÞ
:

Proof. Constraints (12) force each u-vð"yiÞ to be equal to the
expected utility the malicious player receives from
undertaking action ŷi. Constraints (13) and (14) force u-m
to be equal to the expected utility of the best actions of the
malicious player and force si ¼ 0 (i.e., they force the
malicious player not to play action ŷi) for each non-
optimal action ŷi (i.e., those with u-vð"yiÞ < u-mðŷiÞ).
Constraints (15) assure that the malicious player plays
at least one action ŷi, given that constraints (16) force
variables si to be binary. Therefore, constraints (12)-(16)
constitute the equilibrium constraints for the malicious
player, forcing the player to play only its best responses.
Thus, every action ŷi such that si ¼ 1 will be played with a
positive probability in a Nash equilibrium. Constraints
(17) force every strategy $vðh; "yiÞ to be zero only if "yi is not
played and "yj is played. The basic idea is that, if ŷi is not
played, then the verifier player will never choose a node
in position "yi, except for all the cases in which the
malicious player will never play both positions "yi; "yj
composing an information set. In these last cases (never
reachable along the equilibrium path), the strategy of the
verifier player is arbitrary. Thus, if only a position ŷi of an
information set h is played by the malicious player, then
the verifier player will play such position with a
probability of one and vice versa. Instead, if both
positions of an information set are played by the
malicious player, then verifier player will randomize
over them. The constraints over the malicious player
strategies such that verifier player can randomize over the
two choices "yi; "yj of an information set is that
$mðŷiÞ
!ðyiÞ

¼ $mðŷiÞ
!ðyjÞ

, i.e., it is equiprobable that the malicious
player is in both positions. Therefore, since the malicious

player strategy can be easily derived from the si, it can be
omitted from the equilibrium constraint problem. Finally,
constraints (18) and (19) force strategies $vðh; "yiÞ to be
well defined in every information set. tu

The above theoretical results show that the strategy of
the malicious player is equal to ! except for a truncation
(some positions are not played by the malicious player) and
the normalization of the probability to one. Interestingly,
some game instances can admit Nash equilibria in pure
strategies. We report some examples.

Example 2. Suppose that jSj ¼ 3 and that !ðy1Þ ¼ !ðy2Þ ¼
!ðy3Þ ¼ 1

3 . We report in the following table how the Nash
equilibrium strategies change as the values of # change
in five different settings.

It can be observed that: when all the positions have the
same deception, then (as expected) the strategy of the
malicious node is uniform over its action; when a
location has a value of zero, the malicious node does
not play such an action; when a location has a value
remarkably larger than the others’ value, the malicious
node plays that action with probability of one.

Given that a game can admit multiple Nash equilibria, it
can be useful to characterize the range of equilibria. We can
achieve this task by exploiting formulation (12)-(19) together
with a linear objective function. More precisely, we can
study the range of Nash equilibria by finding the equili-
brium maximizing the expected utility of the malicious node
and the equilibrium minimizing the same objective function.
Every other equilibrium will be in the middle. The two
extreme equilibria can be found by solving (12)-(19) with
the maximization and minimization, respectively, of u-m.
The two resulting mathematical programs are MILP.

With more nonmalicious nodes, the mathematical pro-
gram (12)-(19) is more complicated and depends on n. We
provide the program with n ¼ 3:

umð"yiÞ ¼ #ðyiÞ (

 
1

3
!ðyiÞ

2 þ
X

j6¼i
!ðyjÞ

2 ( $vð"yi; "yj; "yjÞ

þ 2
X

j6¼i
!ðyiÞ ( !ðyjÞ ( 1" 1

2
$vð"yi; "yj; "yiÞ

" #

þ
X

j 6¼i

X

k6¼j;k 6¼i
!ðyjÞ ( !ðykÞ ( ð1" $vð"yk; "yj; "yiÞÞ

!

;

ð20Þ
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8. More precisely, MILP techniques create a branch-and-bound tree
whose size rises exponentially in the number of binary variables.



u-m / umð"yiÞ; ð21Þ

u-m & umð"yiÞ þ#1 ( ð1" siÞ; ð22Þ

X

1&i&jSj
si / 1; ð23Þ

$vðyi;yj;ykÞ ¼ $vðyj;yi;ykÞ; ð24Þ

$vðyj;yi;yiÞ ¼ $vðyj;yj;yiÞ; ð25Þ

$vðyi;yj;ykÞ þ $vðyi;yk;yjÞ þ $vðyk;yj;yiÞ ¼ 1; ð26Þ

$vðyi;yj;yiÞ þ $vðyi;yj;yjÞ ¼ 1; ð27Þ

$vðyi;yj;yiÞ & si þ 1" sj ð28Þ

$vðyi;yi;yjÞ & sj þ 1" si; ð29Þ

$vðyi;yj;ykÞ & sk þ 1" ri;j; ð30Þ

ri;j / si; ð31Þ

ri;j / sj; ð32Þ

ri;j & si þ sj; ð33Þ

si 2 f0; 1g; ð34Þ

ri;j 2 f0; 1g; ð35Þ

1 & i; j; k & jSj i 6¼ j; i 6¼ k; j 6¼ k: ð36Þ

The above program is similar to (12)-(19). Constraints (20)-

(23) are the analogous of (12)-(15). Constraints (24)-(27)

enforce the consistency of the verifier’s strategies. Con-

straints (28)-(30) are the analogous of constraints (17). With

n ¼ 3, an additional auxiliary variable r is necessary.

Constraints (31)-(33) enforce ri;j to be equal to the “or”

operator between sj and si.
The game model presented in this section can be easily

extended to take into account the presence of multiple

malicious independent nodes. Under the assumption that,

in such a case, every node would behave in the same way,

the results provided in this section keep to hold. Some new

features could be required. For example, one could redefine

the actions for the verifiers allowing them to inspect

multiple positions in one single action.

5.3 Empirical Evaluations

Differently from the game studied in Section 4, a closed-

form solution of the game presented in this section cannot

be provided. Hence, we provide here an experimental

evaluation of our model.

5.3.1 Simulation Setting

We consider the following scenario composed of:

. three anchors acting as verifiers on an equilateral
triangle;

. from one to four nonmalicious nodes with uniform
probability to appear in the monitored area;

. one malicious node; and

. a number jSj of discretized subregions of S.

For reasons of symmetry, we can work directly on the
space of the deception # instead of the positions y. More
precisely, we assume that the malicious node directly
chooses the deception # associated with its fake position
and then it chooses the fake position with uniform
probability over all the fake positions with deception #.
This reduction is safe and allows us to reduce the
dimensions of the malicious node’s strategy space from
two (S . IR2) to one (# . IR).

Given this reduction and the assumption that each
nonmalicious node can appear uniformly on all the values
of the deception, we derive ! as function of #. ! is a mixed
probability distribution, including discrete probability and
continuous probability measure. More precisely, when
# ¼ 0, ! returns a probability and this probability is the
ratio between the area of the triangle whose vertices are the
verifiers and the total area monitored by the three verifiers:

ffiffi
3
p

R2

4

ð'"
ffiffiffi
3
p
Þ R2

2

) 0:61:

Indeed, if a nonmalicious node appears inside the triangle,
it will be perfectly localized and therefore the deception will
be zero. Instead, if the nonmalicious node appears outside
the triangle, its potential deception is not zero. In this case,

!ð#Þ ¼
6
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
R 1

4"#2 " 2#R
ffiffiffi
3
pq

R2 3
2 ð

'
3 " sinð'3ÞÞ

:

We report in Fig. 9, with blue color, the graph of ! as #
varies between ½0;#11, we recall that in this case
#1 ¼ 0:2679R.

We discretize the possible values of # in jSj regular
intervals. Each interval ½#i;#iþ11 is associated with the
value of the centroid (i.e., # ¼ #iþ1þ#i

2 ) and with probability
at the centroid (i.e., !ð#iþ1þ#i

2 Þ—after the discretization the
probability is normalized such that the sum of all the
probabilities is one). An example of discretization with
jSj ¼ 5 is reported in Fig. 9.

5.3.2 Empirical Results

We provide two empirical results:

. how the strategy of the malicious node varies as jSj
and n vary;9 and

. how the expected utility u-m of the malicious node at
the equilibrium varies as jSj and n vary.
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9. We focus on the strategy of the verifiers because, differently from the
strategy of the verifiers, it can be conveniently graphically represented. In
addition, the strategy of the verifiers can be easily derived from the one of
the malicious node: the verifiers randomize uniformly over all the nodes
whose deception is played with strictly positive probability by the
malicious node.



At first, we study how the strategy of the malicious node
at the equilibrium changes as discretization grain jSj
changes and as the number of nonmalicious nodes changes.
We searched for a Nash equilibrium with jSj 2 ½10; 501 and a
step of 2 applied to the experimental setting described in
the previous section. Given that multiple Nash equilibria
can coexist in a single game, each with different properties,
we searched a specific Nash equilibrium to have a
consistent comparison of the strategies. More precisely,
we searched for the Nash equilibrium minimizing the
expected utility of the malicious node by solving the
mathematical programming problems described in Sec-
tion 5.2.2 with the objective function min u-m. In Figs. 10a
and 10b, we report the most significant experimental
results, with jSj 2 f10; 50g, for different values of n (plots
with other values of jSj are omitted due to reasons of space).
Each subfigure reports in gray the values of deception that
are played by the malicious node with strictly positive
probability (the strategy can be easily recovered by assign-
ing each action # with the probability !ð#Þ and then
normalizing the probabilities to one).

It can be observed that the strategy of the malicious node
is characterized by a minimal played deception # such that
all the deceptions # < # are not played, while all the
deceptions # / # are played. Thus, strategies can be
conveniently characterized by studying how # varies as
the values of the parameters change. Initially, we evaluate
how # varies as jSj varies. When jSj increases, # rapidly
converges to a stable value. In our experiments, we
observed that increasing jSj, # reduces and the difference
in terms of # between a given jSj and jSjþ 1 goes to zero.
For instance, when there is only one nonmalicious node, the
difference between # with jSj ¼ 50 (i.e., 0:26#1) and with
jSj ¼ 10 (i.e., 0:32#1) is about 13 percent, while
the difference between # with jSj ¼ 50 (i.e., 0:26#1) and
jSj ¼ 26 (i.e., 0:28#1) is about 7 percent. It can be easily
derived that with jSj ¼ 50 the exact equilibrium (without
discretization) is 22% w.r.t. the approximate equilibrium
(with discretization). jSj ¼ 50 is thus is a satisfactory
discretization. It can be observed that with n > 2 results

are similar. We evaluated also how # changes as the
number n of nonmalicious nodes changes. It can be
observed that # increases as the number of nonmalicious
nodes increases. Summarily, this is because the probability
with which the malicious node will be chosen by the
verifiers decreases as the number of nonmalicious nodes
increases and the malicious node can focus its strategy on
larger deceptions (as a result the expected utility increases,
as shown also below). The details follow: the optimal
verifiers’ strategy is to randomize with uniform probability
over all the nodes whose deception is played with strictly
positive probability by the malicious node. In the case, the
randomization is over all the nodes, the probability to
choose the malicious node is 1

n and therefore it reduces as
Oð1nÞ as n increases. If # increases, the probability that a
nonmalicious node appears on a deception that is not
played by the malicious node increases and therefore the
probability with which the malicious node is chosen by the
verifiers increases. On the other hand, increasing #, the
malicious node increases its utility. The optimal strategy is
given by a tradeoff between the minimization of the
probability to be chosen and the maximization of #. With
two nonmalicious nodes, # increases by 0:02#1 w.r.t. the
case with a single nonmalicious node. When the number of
nonmalicious nodes goes to infinity the detection prob-
ability of the malicious node goes to zero, and therefore the
optimal strategy of the malicious node is to play #1 with a
probability of one. Indeed, as the number of nonmalicious
nodes goes to infinity, also the number of nodes at # ¼ #1
is infinity and therefore the probability to choose the
malicious one is zero. From the above considerations, #
increases monotonically as the nonmalicious nodes increase
and converges to #1. (The analysis with n > 5 is
computationally hard given that the game tree rises
exponentially with n and requires the development of ad
hoc exact and approximate algorithms; this issue is beyond
the aim of this paper.)

Finally, we evaluate how the expected utility of the
malicious node at the equilibrium changes as jSj and the
number of nonmalicious nodes changes. Given that multi-
ple equilibria can coexist in a game, we evaluate also the
range of the expected utility for all the possible equilibria by
finding the Nash equilibrium maximizing the expected
utility of the malicious node and that minimizing it. In
addition, we evaluate the safety value of the malicious node
to compare it w.r.t. the expected utility of the Nash
equilibria. Surprisingly, the maxmin value, the value of
the best Nash, and value of the worst Nash perfectly
overlap for almost all the values of jSj and, when they do
not overlap, the difference is very small, being about
1 percent. This shows that the maxmin value is a very close
approximation of the expected utility of the Nash equilibria.
In addition, it shows that all the Nash equilibria are
essentially the same and these equilibria overlap with the
malicious node’s maxmin strategy. The result is of para-
mount importance, because computing the maxmin value is
easy, while computing a Nash equilibrium is hard, and
therefore, by exploiting the maxmin formulation, the
algorithm can scale and solve much larger settings.
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9. We focus on the strategy of the verifiers because, differently from the
strategy of the verifiers, it can be conveniently graphically represented. In
addition, the strategy of the verifiers can be easily derived from the one of
the malicious node: the verifiers randomize uniformly over all the nodes
whose deception is played with strictly positive probability by the
malicious node.

Fig. 9. Probability distribution ! as function of #
#1

(when #
#1
¼ 0, ! is a

probability, when #
#1

> 0, ! is a probability measure) and a discretization
with jSj ¼ 5.



Now, we evaluate how the expected utility varies as jSj
varies, see Fig. 11a. It reduces as jSj reduces converging to a
given value. As already discussed above, the convergence is
relatively fast and at jSj ¼ 50 the expected utility results
stable. In addition, we anticipated above, the expected
utility of the malicious node increases as the number of
nonmalicious node increases. Given the impossibility to
solve settings with a very large number of nodes, even by
using the maxmin formulation, we estimate by regression
how the expected utility of the malicious node increases. We
used an exponential regression, given that, when n ¼ 1, the
utility of the malicious node is 0 and, when n! þ1, it is 1.
The resulting regression curve is depicted in Fig. 11b with
n 2 ½5; 1001. It can be observed that the expected utility of the
malicious node is relatively small when n is not excessively
large, showing that although the malicious node can pretend
a fake position with deception #1, the fake position the
malicious node pretends in average is much smaller
(e.g., 30:2#1 with n ¼ 10) and therefore our approach
allows one to dramatically improve the security of VM.

6 RELATED WORKS

The employment of game theoretical tools for security is
currently explored in a number of different scientific
communities, including computer security, artificial in-
telligence and robotics, and telecommunications. The most
studied scenario consists in the strategic allocation of
resources in adversarial settings. Customarily, a security
game takes place in an environment where a player (called
attacker) threatens the engagement of malicious activities
and a player (called defender) operates in the continuous
attempt of detecting them. Customarily, the attacker has a
finite number of targets (e.g., nodes, packets, locations) of
interest where to start an attack. On the other side, the
defender has a finite number of resources per time unit to
protect a subset of targets. The impossibility of securing all
targets at the same time entails the need for computing a
(randomized) resource allocation strategy. Against this
background, solving a security game means to apply a
solution concept to the corresponding two-player non-
cooperative game [13] to derive the optimal strategy for
the players.

Starting from the seminal work of von Neumann’s hide-
and-seek games [23] to date, security games have been
adopted in different scenarios. Several works addressed the
situation in which the defender controls a pursuer with the
objective of clearing the environment from the presence of
an evader, which, in turn, is controlled by the attacker [24].
When no assumptions are made over the movement of
pursuer and the evader, the games are named infiltration
games [25]. When the evader starts from a source and tries to
reach a target without being intercepted by the pursuer, the
games are named interdiction games [26]. Other interesting
variations of security games are search games [27], where
the defender’s objective is to identify the location of a
stationary malicious activity. Opposite situations, where the
attacker can move a resource and the defender cannot, come
under the name of ambush games [28].
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Fig. 11. (a) Expected utility at the Nash equilibrium as a function of jSj
for different numbers of nonmalicious nodes. (b) Regression curve for
the malicious node’s expected utility at the equilibrium.

Fig. 10. Optimal malicious strategies’ supports (gray) for different jSj with 1, 2 (a), 3, and 4 (b) nonmalicious nodes.



In the specific field of WSNs, four main applications for
security are currently studied in the literature (see [29] for a
detailed survey): preventing denial of services (DoS) attacks
[30], [31], [32], intrusion detection [33], [34], [35], strength-
ening security [36], [37], coexistence of malicious and
nonmalicious nodes [38]. In the following, we briefly
review the main works.

The basic model to prevent DoS attacks is a two-player
general-sum noncooperative game between the attacker
node and the WSNs [31]. Given a fixed node i, the
attacker’s available actions are: attack sensor node i does
not attack at all, or attack a different actor sensor node;
while the WSNs’ available actions are two: defend sensor
node i, or defend a different sensor node. The authors
resort to the notion of equilibrium to design novel schemes
for preventing DoS attacks.

In [33], McCune et al. study sensor network broadcast
environment, where malicious sensor nodes can deprive
other sensor nodes from receiving a broadcast message.
They model the situation as a zero-sum two-player game
between the attacker and the intrusion detection system.
The attackers’ best strategy is to compromise all neighbor
sensor nodes of the base station in such a way to achieve
maximum payoff. Once the attacker is detected, its payoff
goes to zero.

In [36], Agah et al. propose a secure auction-based
routing protocol by means of the First-Price auction. Both
malicious and nonmalicious sensor nodes compete to
forward incoming packets and, by doing so, each sensor
node improves its reputation among other sensor nodes.
The sensor nodes decide by themselves to whether to
participate in an auction, whereas a malicious sensor node
tries its best to win the bid, drop the packets, and corrupt
the network. The payoff of each sensor node is calculated
based on battery power and reputation.

In [38], Wang et al. analyze the interactions between a
malicious sensor node and a nonmalicious sensor node in
WSNs. The coexistence can give both the malicious and
nonmalicious sensor nodes different benefits. The authors
model the interactions as a pair of games. The first game
is a signaling game (i.e., Bayesian extensive-form game).
The second game is played when the nonmalicious sensor
node knows confidently that its opponent is a malicious
sensor node.

The work described in this paper proposes a problem
different from those above. Indeed, the adversarial secure
localization problem appears to be original in the literature.
In addition, our work distinguishes from the others on
WSN security for the following reasons: the other works
propose simple game theoretical models without posing
attention on the computation of solution in practice, instead
in our work we provide a lot of computational results
directed to find equilibria. In terms of computational
contributions, our work is closer to [39], [40], [41], [42],
where the aim is the development of algorithms to find
optimal strategies in large settings, including securing the
Los Angeles International Airport, mobile robot patrolling,
and malicious packet detection in computer networks.

7 CONCLUSIONS

In this paper, we studied a novel game theoretical scenario
for WSNs where verifiable multilateration is employed to
assess the presence of malicious nodes. We built a game
theoretical framework where verifiers and malicious nodes
compete one against each other as rational players. First, we
studied the best placement of the verifiers to minimize
the maximum deception of the malicious node and we
derived the equilibrium prescribing the optimal strategy for
the verifiers and for the malicious node. We studied the case
with three verifiers and subsequently we extended the result
to an arbitrary number of verifiers showing how, as this
number increases, the maximum deception of the malicious
node decreases. Second, we studied how the malicious node
changes its strategy when a number of nonmalicious nodes
are present. We did this by considering the best strategy for
the malicious node when verifiers can inspect one node. To
find the equilibrium, we provided a mixed-integer-linear
programming formulation and we experimentally showed
that the Nash equilibria of the game almost everywhere
coincide with the malicious node’s maxmin strategy.

One of the future directions of this work will be along
the theoretical analysis our model in the attempt to prove
that the malicious node’s maxmin strategy corresponds to
the optimal strategy at the Nash equilibrium. We also aim
at extending our framework to handle multiple malicious
nodes, additional security countermeasures, and energy
constraints.
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