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tries to protect from the attacker’s intrusions by committing to a strategy. To reach their
goals, players use resources such as patrollers and intruders. Security games are Stackelberg
games where the appropriate solution concept is the leader—follower equilibrium. Current

Keywords: algorithms for solving these games are applicable when the underlying game is in normal
Security games form (i.e., each player has a single decision node). In this paper, we define and study
Adversarial patrolling security games with an extensive-form infinite-horizon underlying game, where decision
Algorithmic game theory nodes are potentially infinite. We introduce a novel scenario where the attacker can

undertake actions during the execution of the defender’s strategy. We call this new game
class patrolling security games (PSGs), since its most prominent application is patrolling
environments against intruders. We show that PSGs cannot be reduced to security games
studied so far and we highlight their generality in tackling adversarial patrolling on
arbitrary graphs. We then design algorithms to solve large instances with single patroller
and single intruder.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Security applications for transportation, shipping, airports, ports, and other infrastructures have recently received an
increasing interest in the artificial intelligence literature [39,40,52,62]. The mainstream approach models a security problem
as a two-player non-cooperative game [27] between a defender and an attacker with the aim to find effective strategies for the
defender [51]. The basic ingredients are a number of targets, each with a value (possibly different for the two players), and a
number of resources available to the defender to protect the targets and to the attacker to intrude them. In most situations of
interest, the resources available to the defender are not enough to protect all the targets at once. This induces the defender
to randomize over the possible assignments of resources to targets to maximize her expected utility. Furthermore, while
the defender continuously and repeatedly protects the targets, the attacker is assumed to be in the position to observe the
defender and derive a correct belief over her strategy. This last assumption pushes the defender to commit to a strategy
and places security games in the more general class of leader—follower (also said Stackelberg) games where the leader is the
defender and the follower is the attacker [64].

A leader-follower game is characterized by an underlying game and by the property that the leader can commit to a
strategy. Von Stengel and Zamir studied this class of games in [64]. They show that, by committing to a particular strategy
in a two-player normal-form underlying game, the leader cannot receive a utility worse than that she would receive when
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playing a Nash equilibrium. The leader-follower equilibrium is thus proposed as the appropriate solution concept. Letchford
and Conitzer recently showed that the same result holds also when the underlying game is in extensive form [45].

In the last few years, several works have addressed the field of security games. For example, one of the most influential
works is [51], where the problem of placing checkpoints to protect some targets from intrusions is studied (the approach
has been practically applied at the Los Angeles International Airport [52]). The works proposed in this field are based on
an underlying game in normal form (both players have a single decision node) and focus on the equilibrium computation
problem, i.e., on the development of efficient algorithms to compute a leader-follower equilibrium.

The currently available models are not applicable when the attacker has the option to exploit the observation of the
execution of the defender’s actions to decide when to attack during the realization of the defender’s plan without being
subject to any temporal deadline (namely, with the possibility of waiting indefinitely for attacking). In [29], the author
shows that by exploiting this option an attacker can drastically improve her expected utility.

In this paper, we propose a variant of security games that accounts for such an option. To do so, we consider a security
game with an underlying game in extensive form with infinite horizon, players having multiple (potentially infinite) decision
nodes. This contribution constitutes, to the best of our knowledge, an extension to the state of the art in security games.

The main theoretical motivation behind our work is that the currently available techniques are not efficient with this
variant of security games. Indeed, their resolution requires techniques, largely unexplored in the security games literature, to
reduce the size of the game instances. The main practical motivation behind our work is that the above option is available to
the attacker in many scenarios, among which the most studied is probably adversarial patrolling, where one or more patrollers
(the resources controlled by the defender, usually consisting in autonomous mobile robots) move within an environment
to protect it and one or more intruders (the resources controlled by the attacker) wait outside the environment for the
best time to attack. We focus on patrolling as reference scenario for our game models and we call them patrolling security
games (PSGs). Formulating the adversarial patrolling problem as a PSG allows us to deal with environments represented as
arbitrary graphs with targets. The drawback is that the needed computational effort is much larger than that required to
solve settings with special topologies without targets (e.g., with closed perimeters [3]).

Our main original contributions, aiming at addressing the equilibrium computation problem for PSGs, follow.

(i) We model a PSG as a two-player multi-stage game with infinite horizon, where the defender moves a single resource
on the vertices of an arbitrary graph environment to protect the targets while the attacker intrudes the environment by
placing, for some time, a resource on a selected target vertex. We show that the equilibrium computation problem is
a multi-quadratic mathematical programming problem that does not scale to realistically large settings. To tackle these
limitations, we propose the following techniques.

(ii) We study the problem to find, when it exists, an equilibrium in pure strategies (namely, deterministic patrolling strate-
gies). We show that this problem is a currently unexplored variant of the travel salesman problem (TSP) and that,
although NP-complete, it can be efficiently solved by a constraint satisfaction programming algorithm, that solves with
high success rate (> 90%) significantly large instances (> 500 targets) in short time (< 10 s).

(iii) We develop reduction techniques to find a mixed strategy equilibrium (namely, non-deterministic patrolling strategies) in
large game instances when no pure strategy equilibrium exists. We provide some reduction algorithms based on the
combination of removal of dominated actions and abstractions and we show that no further general reductions ex ante
the actual resolution can be provided. We show that with first-order Markovian strategies (that depend only on the
vertex visited last by the patroller) our algorithm optimally solves medium-size game instances (up to 75 vertices and
15 targets) and sub-optimally solves large-size game instances (up to 166 vertices and 30 targets). We show that the
quality of optimal and sub-optimal first-order Markovian solutions is at least 99% and 86%, respectively, of the quality
of the optimal high-order Markovian solutions.

The structure of the paper follows. In Section 2, we survey the related works on security games and on robotic patrolling.
In Section 3, we describe our game model and we extend the known techniques to solve it, showing their limitations. In
Section 4, we discuss how a pure strategy equilibrium can be found when it exists. In Section 5, we provide techniques to
reduce game instances and speed up the (mixed strategy) equilibrium computation. Our algorithm is summarized in Sec-
tion 6 and experimentally evaluated in Section 7. Section 8 concludes the paper. Appendices A, B, and C report extensions,
proofs, and complete experimental data, respectively.

2. Related works

We review security games and leader—follower equilibrium computation in Section 2.1. Next, we survey the main works
on robotic patrolling in Section 2.2 and on other related fields in Section 2.3.

2.1. Security games and leader—follower equilibrium computation
The seminal work on security games is probably the von Neumann'’s hide-and-seek game [24]. It is a strategic-form zero-

sum game played in grid environments where the hider chooses a location wherein to hide and the seeker chooses a set of
locations wherein to seek. Starting from this work, several significant variations have been proposed in the literature.
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A number of works study the problem where some pursuers search for evaders [1]. Game models in which both players
are mobile are said infiltration games [8]. When the pursuer is mobile and the evader is immobile, we have search games [28].
When the situation is the reverse, we have ambush games [56]. A variation is the interdiction game [65] where the evader
moves from a source to a sink (target), while the pursuer acts to prevent the evader to reach the target. All these works are
defined on arbitrary graphs, but they do not consider targets with different importance.

Several variations of the interdiction games where targets have varying importance have been recently proposed with
the goal to design randomized policies under scheduling constraints to protect targets. We call these works protection games.
Significant examples are [39,40,50-52,62].

The PSG model we propose in this paper considers a mobile defender and an attacker on an arbitrary graph with
targets of different importance. The attacker directly appears on a target and can be detected during the intrusion at the
target (this model can be extended considering movements of the attacker). This is because intruding a target requires
the attacker to spend some time on it. PSGs lay at the intersection between protection games, interdiction games, and
search games. As the protection games, PSGs consider different targets with different importance with the aim to prevent
intrusions. As in interdiction games, the pursuer can capture the attacker during the approach to the target. However, the
attacker can also be captured after she reached a target, during the time she spends there for the intrusion. As in search
games, the defender is mobile and the attacker can be immobile because, while intruding a target, she stays there for some
time.

A crucial point of PSGs, common with protection games, is that the appropriate solution concept is the leader-follower
equilibrium. Algorithms for computing a leader-follower equilibrium constitute a recent result. The seminal work, described
in [20], shows that the computation of a leader-follower equilibrium can be formulated as a multi-linear mathematical
programming problem with as many linear programs as the number of the follower’s actions. This result shows that a
leader—follower equilibrium can be found in polynomial time. An alternative formulation is provided in [50] where the
problem is formulated as a mixed-integer linear mathematical programming problem.

2.2. Robotic patrolling

A broad definition of patrolling is “the act of walking or traveling around an area, at regular intervals, in order to
protect or supervise it” [46]. Among the many scientific aspects that are involved in developing autonomous robots for
patrolling (e.g., hardware and software architectures [46]), we focus on algorithms for producing patrolling strategies. We
classify existing algorithms for patrolling along three main dimensions.

The first dimension concerns the patrolled area representation. It can be graph-based or continuous (by means of geo-
metrical primitives, e.g., lines and polygons). With graph-based representations, there are four cases: open perimeter, closed
perimeter, fully connected (every vertex is connected to all the others), and arbitrary. In all these cases, an environment may
have only identical vertices or special vertices of interest, called targets.

The second dimension is the patroller’s objective function. It can explicitly take into account the presence of adversaries
(adversarial) or do not (non-adversarial). In the non-adversarial case, objective functions are mainly related to some form of
repeated coverage, where the aim is to repeatedly cover the locations of a given area. Frequency-based objective functions
related to repeated coverage can be defined as constraint satisfaction functions (e.g., patrolling all locations with the same
frequency) or as functions that maximize some measure, e.g., the maximal average frequency of visits (also called average idle-
ness), or the maximal minimum frequency of visit (also called worst idleness). When the environment has targets, frequencies
of visits are expressed relative to targets. Other cases can be encountered that refer to ad hoc objective functions. In the
adversarial case, there are two kinds of objective functions: expected utility with fixed adversary, where the expected utility
of the patroller is maximized given a fixed non-rational model of the adversary, and expected utility with rational adversary,
where the adversary is modeled as a rational decision maker.

The third dimension is the number of adopted patrollers (i.e., available resources). It can take single agent or multiagent
values.

Table 1 shows the classification of the main works on robotic patrolling according to the above dimensions. The symbols
<& and * denote the contributions we provide in Sections 4 and 5, respectively. In the following, we review the main related
works on patrolling reported in the table, organizing the discussion according to the representation of the environment.

The work in [23] provides efficient algorithms to find multiagent patrolling strategies for open-ended fences (i.e., open-
ended polylines) that minimize different notions of idleness for realistic models of robot motion. Patrolling open perimeters
is challenging because it is intrinsically inefficient, since robots must re-visit the just visited areas when they reach an
endpoint and turn back. The work in [23] divides the continuous open polylines in discrete segments and determines the
actions of the robots accordingly.

The work presented in [3] provides an efficient (polynomial time) algorithm to solve closed perimeter multiagent pa-
trolling settings in a game theoretical fashion. The perimeter is continuous but is divided into segments that can be easily
mapped to the vertices of a ring-like graph. The solving algorithms are referred to this discretized environment, as opposed
to the algorithms that are based on continuous environments, like that in [38], for example. For this reason, we classify
this work under graph-based environments. A possible intruder can enter any vertex and is required to spend a given time
(measured in turns and called penetration time) to have success. The intruder and the patrollers have no preferences over
the vertices and the intruder will enter the vertex in which the probability to be captured is minimum. The patrollers are
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Table 1
Related works on robotic patrolling. The symbols x and < denote the contributions of this paper.
Graph-based
0 Closed Fall Continuous
pen ose vy Arbitrary
perimeter perimeter connected

g Constraint single agent (66], © [48]

@ . .
- _i satisfaction multiagent (33.66] [32.35]
§ % Maximization single agent
o =
il of a measure multiagent [23] [7,18,22,46,59]

single agent
Others
multiagent [47,54]

Expected utility with single agent
]
£ fixed adversary multiagent (6] (58]
g )
2 Expected utility with single agent [29] [9],

rational adversary multiagent (2345]

synchronous. The problem is essentially a zero-sum game and the solution (i.e., the patrolling strategy) is the patrollers’
maxmin strategy. In [4] and [5] the model is extended by considering realistic uncertainty over the robots’ sensing and over
adversary’s knowledge. In [2] both the presence of events and different times of detection of the intruders, which yield
different rewards to the patrollers, are considered. Finally, in [6] non-rational intruders are considered.

In [29] the author considers a fully connected topology graph where the (single) patroller and the intruder can have
different preferences over the target vertices and provides an algorithm to compute a Nash equilibrium.

The approach in [66] considers single and multiagent patrolling on arbitrary graphs, but the goal is to patrol edges and
not vertices. The objective function is the blanket time criterion and so the patrolling agents have to cover all the edges
with the same frequency. The proposed ant-based algorithm is shown to converge to an Eulerian cycle in a finite number
of steps and to re-visit edges with a finite period. A similar work is reported in [33].

Some works address the covering of environments represented as arbitrary graphs. The work in [46] deals with mul-
tiagent patrolling of vertices of graphs whose edges have unitary lengths. Several agent architectures are experimentally
compared according to their effectiveness in minimizing the idleness. The approach is generalized in [7] to graphs in which
edges have arbitrary lengths, and analyzed from a more theoretical perspective in [18]. Moreover, another work [59] pro-
poses reinforcement learning as a way to coordinate patrolling agents and to drive them around the environment.

The work in [22] efficiently computes patrolling strategies for multiple agents minimizing the worst idleness in arbitrary
graphs. Patrolling strategy is calculated exploiting a minimal Hamiltonian cycle.

In [47] and in [54] the authors consider multiagent patrolling settings with multi-criteria objective (e.g., idleness and
distribution probabilities over the occurrence of incidents), which is pursued exploiting MDP techniques.

The work in [58] studies different adversaries: a random adversary, an adversary that always chooses to penetrate
through a recently visited node, and an adversary that predicts the chances that a node will be visited. Some patrolling
strategies for multiple agents are experimentally evaluated by simulation, showing that no strategy is optimal for all the
possible adversaries.

In [9], the authors study arbitrary topology graphs providing an on-line heuristic approach to find the optimal strategies
for a single patroller.

The contribution we provide in Section 4 (< in Table 1) studies a setting in which different targets of an arbitrary
graph must be visited by a single agent with (at least) some frequencies, specific for each target, thus satisfying a set
of constraints. The main differences with [66] are that we are patrolling vertices (and not edges) and that these vertices
can have different requirements in terms of frequency of visits. Furthermore, our approach is not directly comparable with
the other approaches for finding deterministic patrolling strategies, because we solve a feasibility problem (i.e., finding
a patrolling strategy that satisfies some constraints), while other approaches solve an optimization problem (with some
criterion).

The contribution we provide in Section 5 (x in Table 1) generalizes both the works in [3] and [29] to arbitrary graphs
with targets, but it is less computationally efficient for the settings to which both approaches are applicable. Moreover, it
extends [58], capturing a rational adversary.

For completeness, we cite also some works that deal with continuous environments, even if they are not directly com-
parable with our graph-based approach. In [32], a system composed of multiple air vehicles that patrol a border area is
presented. The environment is represented as a continuous two-dimensional region that is divided in sub-regions. Each
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sub-region is assigned to an air vehicle that repeatedly patrols it with a spiral trajectory, ensuring that every point is cov-
ered. Also [35] considers multirobot patrolling of continuous environments. In this case, the environment is partitioned in
sub-regions using a Voronoi tessellation, robots are assigned to sub-regions, and each robot patrols its sub-region in order
to have a complete coverage. The movements of a robot are determined by a neural network model that allows to deal with
dynamically varying environments. Finally, in [48], unpredictable chaotic trajectories are produced to have a robot covering
a continuous environment.

2.3. Other related works

A large amount of works closely related to our patrolling problem can be found in the operational research literature as
variations of the Traveling Salesman Problem (TSP). These works are close to graph-based frequency-based patrolling works,
but the objective functions they adopt are not suitable for patrolling problems, as we discuss below.

In the deadline-TSP [63], vertices have deadlines over their first visit and some time is spent traversing arcs. Rewards are
collected when a vertex is visited before its deadline, while penalties are assigned when a vertex is either visited after its
deadline or not visited at all. The objective is to find a tour that visits as many vertices as possible. However, differently
from what happens in patrolling, the reward/penalty is received only at the first visit.

In the vehicle routing problem with time windows [41], deadlines are replaced with fixed time windows, during which visits
of vertices must occur. The time windows do not depend on the previous visits of the patroller, as it happens in patrolling.
In the period vehicle routing problem [34], constraints could impose multiple visits to a same vertex in a time period.

Cyclical sequences of visits are addressed in the period routing problem [19,26], where vehicle routes are constructed to
run for a finite period of time in which every vertex has to be visited at least a given number of times. In the cyclic inventory
routing problem [53] vertices represent customers with a given demand rate and storage capacity. The objective is to find a
tour such that a distributor can repeatedly restock customers under some constraints over visiting frequencies.

Despite these works have different similarities with the patrolling problem we consider in this paper, the application of
such techniques to our setting is not straightforward and limited to very particular scenarios.

3. Game model, solution concept, and basic algorithm

In this section we introduce our approach. In particular, in Section 3.1 we describe the model of the PSGs, in Section 3.2
we discuss the appropriate solution concept, and in Section 3.3 we provide a solving algorithm inspired by the current state
of the art.

3.1. Patrolling security game model
At first we describe the patrolling setting in Section 3.1.1 and then the game model in Section 3.1.2.

3.1.1. The patrolling setting

The patrolling setting is composed of an environment and of two players, an attacker a and a defender d, each with some
specific resources. We assume discrete time (developing in turns) and we model the environment by means of a directed
graph G =(V, A, T, v,d). Set V contains vertices representing the areas of the environment. Set A contains arcs connecting
vertices in V, providing the topology of the environment (graph representations can be extracted from real environments
by, e.g., [43]); we represent A by a function a:V x V — {0, 1}, where a(i, j) =1 if (i, j) € A and a(i, j) = 0 otherwise. Set
T C V contains the vertices, called targets, with some values for the defender and the attacker. v is defined as a pair of
functions v = (vq, va), where vq:T — R™ assigns each target t the value for the defender of successfully protecting t € T
and v,:T — R™ assigns each target t € T the value for the attacker of successfully intruding t. Function d: T — N\ {0}
assigns each target t € T the time that the attacker needs to spend on t for completing an intrusion and getting v,(t).

The attacker is modeled as follows: she can wait indefinitely outside the environment observing the defender’s actions
and perfectly deriving the defender’s strategy (as in [3,51]); she can use a single resource, called intruder, to attack a target
directly placing it on the target; once she has attacked a target t, she cannot control the intruder for a number of turns
equal to d(t), after which she removes the intruder from the environment.

The defender is modeled as follows: she can move a single resource, called patroller, along G spending one turn to cover
one arc (as in the simplest motion model adopted in [3]); the patroller can sense only (and perfectly) the area corresponding
to the vertex in which she is; once the patroller has sensed the intruder, the intruder is captured.

The simplifying assumptions on players do not prevent to capture realistic applicative scenarios. For example, the fact
that an attacker can directly pose its resource on a target can be encountered in situations in which a patroller can detect
an intruder only when this last one is not moving. On the defender’s side, the simplified movement model represented
by fixed weights on the graph’s arcs can model the situation in which the patroller is a software agent traveling between
nodes of a sensor network deployed in the environment and performing some data analysis on the current node. Moreover,
these limitations can be partially relaxed as we show in Appendix A.3 and Appendix A.4 for the attacker and the defender,
respectively.

Since in our patrolling setting each player has a unique resource, in the following we will use interchangeably the terms
‘patroller’ and ‘defender’, and similarly the terms ‘intruder’ and ‘attacker’.
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08
d(08)

Fig. 1. The graph representing the patrolling setting used as running example. In each vertex we report: the number of the vertex, the penetration time
d(-), and, between parentheses, the value of the defender and of the attacker, respectively.

Example 3.1. Fig. 1 depicts a patrolling setting where the circled numbers identify the vertices, arcs are depicted as arrows,
and the set of targets is T = {06, 08, 12, 14, 18}; in each target t we report d(t) and (vq4(t), va(t)).

3.1.2. The game model

PSGs are defined as two-player multi-stage games with imperfect information and infinite horizon [27]. Each stage of
the game corresponds to a turn in the patrolling setting in which the defender and the attacker act simultaneously. The
defender’s available actions are denoted by move(j) where j € V is a vertex adjacent to the patroller’s current one. If action
move(j) is played at turn k, then at turn k+ 1 the patroller visits vertex j and checks it for the presence of the intruder. The
attacker’s available actions are denoted by wait and enter(t) with t € T. Playing action wait at turn k means not to attempt
any intrusion for that turn. Playing action enter(t) at turn k means to start an intrusion attempt in target t and prevents the
attacker from taking any other action in the time interval {k+ 1, ...,k + d(t) — 1}. Notice that playing enter(t) will make
the game to conclude by d(t) turns. The attacker’s actions are not perfectly observable and thus the defender, when acting,
does not know whether or not the intruder is currently within a target. The game has an infinite horizon, since the attacker
is allowed to wait indefinitely for attacking.

The possible outcomes of the game are: no-attack: when the attacker plays wait at every turn k, i.e., it never attacks
any target; intruder-capture: when the attacker plays enter(t) at turn k and the patroller visits target t in the time interval
I={k,k+1,...,k+d(t) — 1} (and consequently detects the intruder); penetration-t: when the attacker plays enter(t) at turn
k and the patroller does not visit target t in the time interval I defined above.

Example 3.2. Fig. 2 reports a portion of the game tree of the PSG for the setting of Fig. 1, given that the initial position of
the patroller is vertex 01. Branches represent actions and players’ information sets are depicted as dotted lines. Each turn
of the game corresponds to two levels of the tree, where the defender and the attacker act simultaneously. We assume that
players cannot observe each other’s actions in the same turn.
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Fig. 2. A portion of the game tree for the setting of Fig. 1 (patroller is initially in 01).

Agents’ utility functions are defined as follows. The defender’s utility function uq returns the total amount of preserved
targets’ value:

Yier va(d, X = intruder-capture or no-attack

ug(x) = { ZieT\{t} vq(i), x = penetration-t

Notice that the defender gets the same utility when the intruder is captured and when the intruder never enters. This
is because, in the case a utility surplus is given for capture, the defender could prefer a lottery between intruder-capture
and penetration-t to no-attack. This behavior is not reasonable, since the defender’s primary purpose in a typical patrolling
setting is to preserve as much value as possible and not necessarily capture the intruder.

The attacker’s utility function u, returns a penalty in case the intruder is captured, otherwise it returns the value of the
attacked target:

0, X = no-attack
Ua(x) = { va(t), x=penetration-t
—€, x = intruder-capture

where € € RT is the penalty. In words, the status quo (i.e., no-attack) is better than intruder-capture for the attacker.

We denote by H the space of all the possible histories h of vertices visited by the patroller (or, equivalently, actions
undertaken by the defender). For example, in Fig. 1, given that the patroller starts from vertex 01, a possible history is
h = (01,02, 03,07,08). We define the defender’s strategy (also called patrolling strategy) as oq4:H — A(V) where A(V) is
a probability distribution over the vertices V. Given a history h € H, the strategy o4 gives the probability with which the
patroller will move to vertices at the next turn. The defender’s strategy does not depend on the actions undertaken by the
attacker, these being unobservable for the defender.

We distinguish between deterministic and non-deterministic patrolling strategies. When o4 is in pure strategies, assigning
a probability of one to a single vertex for each possible history h, we say that the patrolling strategy is deterministic.
Otherwise, the patrolling strategy is non-deterministic.

We define the attacker’s strategy as o,: H — A(T U {wait}) where A(T U {wait}) is a probability distribution over T (or,
equivalently, over the corresponding actions enter(t)) and the action wait.

Example 3.3. In Fig. 1, a deterministic patrolling strategy could prescribe the cycle (04, 05,06, 11, 18,17, 16, 10, 04), while
a non-deterministic patrolling strategy when the patroller is in vertex 01 after a history h could be:

01 with a probability of 0.25
oq(h) = { 02 with a probability of 0.25
06 with a probability of 0.5

An example of attacker’s strategy is: play action wait for all the histories whose last vertex is not 04 and play enter(18)
otherwise.

3.2. Solution concept

We initially discuss the appropriate solution concept when the defender cannot commit to a strategy (Section 3.2.1) and
then we show that committing to a strategy is never worse for the defender (Section 3.2.2).
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3.2.1. Solution concept in absence of any commitment

We consider the defender’s strategy in absence of any commitment. The appropriate solution concept for a multi-stage
game with imperfect information is the sequential equilibrium [44], which refines Nash equilibrium.

The presence of an infinite horizon complicates the study of the game. With an infinite horizon, classic game theory
studies a game by introducing symmetries, e.g., a player will repeat a given strategy every k turns. Introducing symmetries
in our game model amounts to force the players’ strategies to be defined on histories with a maximum finite length I. As a
result, the strategies are Markovian with a memory of order .

Example 3.4. When [ = 0, actions prescribed by the defender’s strategy do not depend on any previous action and the prob-
ability to visit a vertex is the same for all the vertices where the patroller is. Notice that imposing [ = 0 is not satisfactory
for non-fully connected graph, where the set of actions available to the defender depends on the current vertex. When
I =1, the defender chooses her next action on the basis of her last action (equivalently, the next action depends only on
the current vertex of the patroller). In this case, the patrolling strategy is first-order Markovian.

Obviously, when increasing the value of [, the defender’s expected utility cannot decrease, because the defender considers
more information to select her next action. Classical game theory [27] shows that games with infinite horizon admit a
maximum length, say I, of the symmetries such that the expected utility does not increase anymore with I >1 (e.g, =0
in [55]). Usually, [ =1 [27]. In our model, this means that, when the defender’s strategy is defined on the last | vertices
visited by the patroller, with [ > the defender’s expected utility is the same she receives with | =I. Notice that the number
of possible pure strategies oq(h) and o,(h) is O(n'), where n is the number of vertices. Therefore, we expect that, when
increasing the value of [, the computational complexity for finding a patrolling strategy exponentially increases. In practical
settings, the selection of a value for [ is a trade-off between expected utility and computational effort.

3.2.2. Translation to a strategic-form game for a given |

Given a value for [, a PSG can be translated to a strategic-form game with additional constraints over the defender’s
strategies. In the strategic-form game, the defender’s actions are all the feasible probability assignments for {ay ;}, where
ap,; is the probability to execute action move(i) given history h. The attacker’s actions are enter-when(t, h), with t € T,
h € H, and stay-out. Action enter-when(t, h) corresponds to make wait until the patroller has followed history h and then
make enter(t); stay-out corresponds to make wait forever. The additional constraints, formally defined in Section 3.3.1 below,
take into account that the defender’s strategies in the original extensive-form game are repeated every [ turns. Notice that
the game does not depend on the initial vertex of the patroller. This is because the defender’s and attacker’s strategies do
not depend on it.

Example 3.5. Consider Fig. 1. With [ =1, the available defender’s strategies are all the consistent probability assignments to
{aj,j} with i, j € V, while the attacker’s actions are enter-when(t, j) with t € T, j € V and stay-out.

It can be easily observed that this reduced game is strategically equivalent to the original game and therefore every
equilibrium of this game is an equilibrium of the original game. Since a Nash equilibrium of a strategic-form game is also
a sequential equilibrium, we have that a Nash equilibrium in the reduced game is a sequential equilibrium in the original
game.

Since the attacker can wait outside the environment observing the defender’s strategy, the defender’s commitment to a
strategy is credible. Therefore, the leader-follower equilibrium is the appropriate solution concept for PSGs. We state the
following result, whose proof is an easy application of the result discussed in [64].

Proposition 3.6. Given the game described above with a fixed 1, the leader never gets worse when committing to a leader—follower
equilibrium strategy.

3.3. Basic algorithm

We apply the algorithm presented in [20] to our setting: we discuss in Section 3.3.1 how to compute the capture
probabilities under the constraint that the patrolling strategies are repeated every [ turns, and in Sections 3.3.2 and 3.3.3
how a leader-follower equilibrium can be computed when the game is zero-sum and general-sum, respectively. Then, we
show in Section 3.3.4 that first-order Markovian strategies might not be optimal and we discuss the main limits of the
approach in Section 3.3.5.

3.3.1. Computing the intruder capture probabilities

We denote by P.(t,h) the intruder capture probability related to action enter-when(t, h), defined as the probability that
the patroller, starting from the last vertex of h, reaches target t by at most d(t) turns. P(t, h) depends on {¢, ;} in a highly
non-linear way with degree d(t). A bilinear (i.e., a special case of quadratic) formulation for the computation of P.(t, h) can
be provided by applying the sequence-form [42] and imposing constraints over the behavioral strategies. From here on we
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consider the formulation with [ =1 (in this case the history h reduces to a single vertex, i.e.,, h € V). We define yl."‘;’t as
the probability with which the patroller reaches vertex j in w turns, starting from vertex i and not sensing target t. The
constraints are:

ajj=0 Vi,jeV 0
Zai,j=1 VieV o)
jev
ajj<ad,j) Vi, jev 5
vii=aij VteT, i, jeV\{t} @
Vif;,r — Z (yl_yvi—uaxﬁj) Ywe(2,....d}, teT, i,jeV\{t} (5)
xeV\({t}
_ d(t),t
Pethy=1— ) " VteT. heV .
jev\ig)

Constraints (1), (2) express that «; j are well defined probabilities; constraints (3) express that the patroller can only move
between two adjacent vertices; constraints (4), (5) express the first-order Markov hypothesis over the defender’s decision
policy; constraints (6) define P.(t,h). The bilinearity is due to constraints (5). In the worst case (with fully connected

graphs), the number of variables «; ; is 0(]V|?) and the number of variables yit";.’[ is O(|T| - |V|? - max.{d(t)}), while the

number of constraints is O(|T| - |V|? - max.{d(t)}). As we show in Appendix A.1, the above formulation can be extended
to the case in which [ is arbitrary but, in practice, it is intractable, because the number of variables and constraints grows
exponentially in I: the number of variables «; ; is O(|V|"1 and the number of variables yh";’j}tlz is O(T|- V2 max{d(®))),

while the number of constraints is O(|T| - |V|? - max.{d(t)}). (A more efficient formulation, (about) halving the number of
variables and constraints, is reported in Appendix A.2.)

3.3.2. Solving zero-sum patrolling security games

When the defender and the attacker share the same preferences over the targets (i.e., vq(t) = va(t) for all t € T) the
resulting game is essentially zero-sum. It is not rigorously zero-sum because two outcomes (i.e., intruder-capture and no-
attack) provide the defender with the same utility and the attacker with two different utilities (i.e.,, —e and 0, respectively).
However, we can temporarily discard the outcome no-attack, assuming that action stay-out will not be played by the attacker.
We will reconsider such action in the following. Without the outcome no-attack the game is zero-sum. In this case, the
defender’s leader-follower strategy corresponds to its maxmin strategy, i.e., the strategy that maximizes the defender’s
minimum expected utility. We provide a mathematical programming formulation to find it. We introduce the variable u, as
the lower bound over defender’s expected utility.

Formulation 3.7. The leader-follower equilibrium of a zero-sum PSG is the solution of:

max u
constraints (1), (2), (3), (4), (5), (6)
u < ug(intruder-capture) Pc(t, h) + uq(penetration-t)(1 — Pc(t,h)) VteT, heV (7)

Constraints (7) define u as a lower bound on the defender’s expected utility. By solving this problem we obtain the
maximum lower bound u*, i.e., the maxmin value. The values of variables {«; ;} corresponding to u* represent the optimal
patrolling strategy. The number of constraints (7) is O(|T| - |V|). The formulation is bilinear and cannot be reduced to a
linear problem because constraints (5) and (6) are not convex [17].

Now, we reconsider action stay-out and its corresponding outcome no-attack. Easily, from the solution of the above
mathematical programming problem, we compute the attacker’s expected utility, say v*, as the utility of the attacker’s best
response given the capture probabilities corresponding to u*. If v* < 0, then the attacker will play stay-out. Otherwise, she
will play the optimal action prescribed by the above mathematical program.

3.3.3. Solving general-sum patrolling security games

The mathematical programming formulation for the general-sum case is an extension of the multi-linear programming
approach described in [20] (the approach proposed in [50] cannot be adopted here because we would obtain a mixed-
integer quadratic problem and, currently, no solver would be able to solve it). In our case, the programming problem is a
multi-bilinear one.

We define two mathematical programming problems. The first one checks whether or not there exists at least one
defender’s strategy oq such that stay-out is a best response for the attacker. If such a strategy exists, then the defender will
follow it, its utility being maximum for stay-out.
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Formulation 3.8. A leader-follower equilibrium in which the attacker’s best strategy is stay-out exists when the following
mathematical programming problem is feasible:

constraints (1), (2), (3), (4), (5), (6)
ua(intruder-capture) Pc(t, h) + ua(penetration-t)(1 — Pc(t,h)) <0 VteT, heV (8)

Constraints (8) express that stay-out is better than enter-when(t, h) for all t and h. The number of constraints (8) is O(|T| -
VD.

If the above formulation is not feasible, we need to search for the attacker’s best response such that the defender’s
expected utility is the largest. For each action enter-when(s, q) we calculate the optimal defender’s expected utility under
the constraint that such action is the attacker’s best response.

Formulation 3.9. The largest defender’s expected utility when attacker’s best response is enter-when(s, q) is the solution of:

max ud(penetration-s)(l — Pc(s, q)) + ugq(intruder-capture) P (s, q)
constraints (1), (2), (3), (4), (5), (6)
ua(intruder-capture) (Pc(s, q) — Pc(t, h)) + ua(penetration-s)(1 — Pc(s, q))
— ua(penetration-t)(1 — Pc(t,h)) >0 VteT, heV (9)

The objective function maximizes the defender’s expected utility. Constraints (9) express that no action enter-when(t, h)
gives a larger value to the attacker than action enter-when(s, q) (which is assumed to be the best response). The number of
constraints (9) is O(|T| - |V ).

We calculate the patrolling strategies {c; ;} of all the |T|-|V| above mathematical programming problems (one for
each action enter-when(s, q) assumed to be the best response). The leader-follower equilibrium is the strategy {c; ;} that
maximizes the defender’s expected utility.

Example 3.10. We report in Fig. 3 the patrolling strategy corresponding to the leader-follower equilibrium for the setting of
Fig. 1. We have omitted all the vertices that are never visited by the strategy. The corresponding attacker’s best response is
enter-when (08, 12).

3.3.4. Non-optimality of first-order Markovian strategies

The algorithm for solving PSGs reported in the previous sections has been formulated for | = 1. We showed in [12] that,
when the graph representing the environment is fully connected, | = 0 and therefore no strategy with [ > 0 is better than
the optimal strategy with [ = 0. The problem of determining I for an arbitrary graph is very complex and largely beyond the
scope of this paper. However, an interesting insight on this problem is given by the following proposition, whose proof is in
Appendix B.1:

Proposition 3.11. There are settings in which first-order Markovian patrolling strategies provide an expected utility strictly smaller
than higher-order Markovian patrolling strategies.

The above result entails that, in general, | may be larger than one. We can provide a lower bound over the efficiency of
first-order Markovian strategies. Call u”—* the efficiency of a patrolling strategy o, where u is the patroller’s expected utility
of playing o and u* is the patroller’s expected utility of playing the optimal high-order Markovian strategy.

Theorem 3.12. No topology-independent lower bound over the efficiency of a first-order Markovian leader-follower equilibrium strat-

egy o tighter than ﬁ can be provided, where u is the patroller’s expected utility of playing o.

The proof is based on the fact that, given the values of a set of targets, we can always build a topology such that the
deterministic strategy exists.
The following theorem shows a lower bound independent of the values of the targets (proof is reported in Appendix B.2).

Theorem 3.13. The lower bound over the efficiency of a first-order Markovian leader—follower equilibrium strategy o is % and can be
asymptotically achieved.
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Fig. 3. Optimal patrolling strategy for Fig. 1 (the omitted vertices and arcs are never covered by the strategy).

3.3.5. Limits

The basic algorithm presented in the previous sections and based on the combination of results presented in [20]
and [42] has two main limits.

The first limit of the approach is its computational hardness for solving realistically large game instances. In general, solv-
ing non-linear mathematical programming problems requires remarkable computational efforts. As we will discuss in our
experimental evaluations, only small settings (w.r.t. the number of vertices and targets) can be solved with [ = 1. Solving
settings with [ > 1 is practically intractable because, as we showed in Section 3.3.1, the number of variables and constraints
rise exponentially with 2I. This fact has two consequences. On the one hand, the limited scalability w.r.t. the settings’ size
prevents the model from being applied to practical scenarios, even with [ = 1. On the other hand, the practical impossi-
bility of increasing the value of | precludes the opportunity to find more effective patrolling strategies, whose existence is
suggested by Proposition 3.11.

To tackle these issues, we propose two approaches. In the first one (Section 4), we limit the generality of the solution
by looking only for deterministic (pure) strategies. We show that the limit on the value of | can be overcome in the specific
case of deterministic strategies. More specifically, if a PSG admits an equilibrium deterministic strategy oq for an arbitrary
value of I such that the associated intruder’s best response is stay-out, then oq can be efficiently found by exploiting the
structure of the problem, avoiding mathematical programming and reducing the computational burden. This is because the
computation of equilibrium deterministic strategies is treated separately from the computation of more general equilibrium
non-deterministic strategies. The second approach (Section 5) is based on the idea of simplifying the patrolling setting
by introducing a pre-processing phase that eliminates variables and constraints, while preserving the game theoretical
consistency and the solution optimality. As a consequence, a reduced patrolling setting can be solved more efficiently for
non-deterministic patrolling strategies.

The second limit is that the resulting patrolling strategies may be inconsistent. This happens when an attacker’s best
response enter-when(t, x) has the property that x is never visited by the patroller after an infinite number of turns. In
Fig. 4 we report an example of an inconsistent patrolling strategy. The intruder’s best response given the patrolling strategy
depicted in figure is enter-when(12, 14), but the probability for the patroller of visiting 14 after an infinite number of turns
is zero.

Essentially, a strategy inconsistency is due to the fact that a single patroller cannot patrol effectively all the targets. For
maximizing its expected utility, the defender will patrol only a subset of the (most important) targets, leaving uncovered
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Fig. 4. Inconsistent strategy in a zero-sum PSG: some vertices cannot be covered even after an infinite number of turns. For example, vertex 14 cannot be
reached from vertex 06.
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other (less important) targets, and the attacker may prefer to attack a patrolled target rather than a non-patrolled one. In
Fig. 4, the attacker prefers attacking target 12, even if the capture probability is strictly positive, rather than attacking target
14 with a capture probability of zero. An inconsistent patrolling strategy is not practically effective and must be discarded.
In Section 6.2, we provide an algorithm that deals with inconsistencies. The algorithms we present in the following sections
are not influenced by the presence of inconsistencies.

4. Finding deterministic patrolling strategies in large games

In this section, we describe a method to compute a deterministic patrolling strategy, a problem we initially addressed
in [11]. In Section 4.1, we formally state the problem. We discuss its computational complexity in Section 4.2, we determine
an upper bound over the solution’s length and we propose a simple but inefficient algorithm in Section 4.3, and we provide
a more efficient algorithm in Section 4.4.

4.1. Problem formulation

A deterministic patrolling strategy o4 can be conveniently represented as a sequence of vertices, allowing [ to be arbi-
trary. Apart from degenerate cases due to strategy inconsistencies (discussed in Section 6.2), a leader-follower equilibrium
of a PSG can be in pure strategy (or deterministic) if the attacker’s best response is stay-out, otherwise the defender can gain
more by randomizing. By definition, when a deterministic equilibrium strategy is adopted by the patroller, each target t is
left uncovered for a number of turns not larger than its penetration time d(t) and thus every action enter-when(t, j) would
result in a capture for the intruder. This kind of solution is close to those produced by the frequency-based approaches, but
these are not applicable when the visit of each specific vertex is subject to specific constraints, as it happens in our case.

Without loss of generality, a deterministic strategy can be defined only on targets, assuming that the patroller will
move between two targets along the shortest path. Accordingly, we reduce graph G = (V,A, T, v,d) to a weighted graph
G' =(T,A’,w,d), where targets T are the vertices of G’; A" is the set of arcs connecting the targets defined as a function
a:T x T — {0,1} and derived from set A as follows: for every pair of targets i, j € T and i # j, d’(i, j) = 1 if at least one
of the shortest paths connecting i to j in G does not visit any other target, a’(i, j) = 0 otherwise; w is a weight function
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Fig. 5. (a) Reduced graph G’ corresponding to that of Fig. 1. (b) The same graph as in (a), but with different (relaxed) penetration times.

defined as w:T x T — N\ {0} where w(i, j) is the length of the shortest path between i and j in G (w(i, j) is defined
only when d’(i, j) = 1 and is the number of turns the patroller spends for going from target i to target j); and d is the
same function defined as in G. The reduction from G to G’ can be obtained by applying Dijkstra’s algorithm to every pair
of targets in G. For the sake of presentation, in the rest if this section we denote by o a deterministic patrolling strategy
over G’ and we refer to vertices of G’, instead of targets of G.

Example 4.1. Consider the graph reported in Fig. 1. The corresponding reduced graph G’ is reported in Fig. 5(a). G’ is
composed of only 5 vertices. (The graph in Fig. 5(b) differs from that in (a) in the values of penetration times; we will use
it in a later example.)

Pure strategy equilibria are usually found by iterating over players’ best responses or by sampling strategy profiles.
However, here the problem is different: we know the best response of the intruder, i.e., stay-out, and we need to search
efficiently for the patroller’s best strategy. The application of best response search methods would lead us to enumerate
all the possible strategies and to check them one after another. This would be very inefficient, the search space being very
large. We can provide a more convenient formulation based on constraint programming.

We define a function o :{1,2,...,s} — T that represents a sequence of vertices of G’, where o (j) is the jth element
of the sequence. The length of the sequence is s and is not known a priori. The temporal length of a sequence of visits is
computed by summing up the weights of covered arcs, i.e., Zj;]l w(o (j),o(j+1)). The time interval between two visits of
a vertex is calculated similarly, summing up the weights of the arcs covered between the two visits. A solution is a sequence
o such that: (i) o is cyclical, i.e., the first vertex coincides with the last one, namely, o (1) = o (s); (ii) every vertex in T is
visited at least once, i.e., there are no uncovered vertices; (iii) when indefinitely repeating the cycle, for any i € T, the time
interval between two successive visits of i is never larger than d(i).

Let us denote by 0;(j) the position in o of the jth occurrence of vertex i and by o; the total number of i’s occurrences
in a given o. For instance, consider Fig. 5(a): given o = (14, 08, 18,08, 14), Ogg(1) =2 and O0¢g(2) = 4, while ogg = 2 and
006 = 0. (Notice that, given a sequence o, quantities O;(j) and o; can be easily calculated.) With such definitions, we can
formally re-state the problem in a constraint programming fashion (the presence of highly non-linear constraints makes it
hard to resort to integer linear programming formulations, extending the works discussed in Section 2.3).

Formulation 4.2. A deterministic patrolling strategy o such that the intruder’s best response is stay-out is a solution of:
o(l)=0() (10)
0i=>1 VieT (11)
dc(—1,0())=1 Vje{2,3,....5) (12)
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0;(k+1)—-1

> wle(.o(+1)<dl) VieT, Vke(l.2.....0;—1} (13)
j=0i(k)
0i(1)—1 s—1

Y w(e(.o(+D)+ Y. w(o@().o(+1D)<di) VieT (14)
j=1 j=0i(0i)

Constraint (10) states that o is a cycle, i.e., the first and last vertices of o coincide; constraints (11) state that every vertex
is visited at least once in o; constraints (12) state that for every pair of consecutively visited vertices, say o (j — 1) and
o(j), d(o(j—1),0()) =1, ie, vertex o(j) can be directly reached from vertex o (j — 1) in G’; constraints (13) state
that, for every vertex i, the temporal interval between two successive visits of i in o is not larger than d(i); similarly,
constraints (14) state that for every vertex i the temporal interval between the last and first visits of i is not larger than
d(i), i.e., the deadline of i must be respected also along the cycle closure.

Example 4.3. Consider the graph of Fig. 5(a), no sequence o of visits satisfies all the constraints listed above. Indeed, the
shortest cycle covering only vertices 06 and 08, i.e., (06, 08, 06), has a temporal length larger than the penetration times of
both the involved vertices, so there is no way to cover these vertices (and others) within their penetration times. As we will
show below, the graph of Fig. 5(b) admits a deterministic equilibrium strategy.

4.2. NP-completeness

Call DET-STRAT the problem of deciding if a deterministic patrolling strategy such that the intruder’s best response is
stay-out, as defined in the previous section, exists in a given G'.

Theorem 4.4. The DET-STRAT problem is NP-complete.

The proof, reported in Appendix B.3, shows that the Direct Hamiltonian Circuit problem can be reduced to the DET-STRAT
problem. Although the DET-STRAT is a hard problem, we will show that it is possible to design a constraint programming
based algorithm able to efficiently compute a solution for settings composed of a large number of targets.

4.3. An upper bound on the solution length and a simple algorithm

The peculiarity of the problem stated in Formulation 4.2 is that the length of the solution s and the number of oc-
currences o; of vertex i are not known a priori, but they are part of the solution. The common approach adopted in the
constraint programming literature to tackle problems with an arbitrary number of variables involves two phases: initially
analytical bounds over the number of the variables are derived and then a set of problems, each one with the number of
variables fixed to a value within the bounds, are solved. Although our problem resembles problems of cyclical CSP-based
scheduling (e.g., [21]), to the best of our knowledge, the situation where the number of variables is part of the solution
itself is still unaddressed. We derive a non-trivial upper bound over the temporal length of the solution.

Theorem 4.5. If an instance of Formulation 4.2 is feasible, then there exists at least a solution o with temporal length no longer than
maxeer{d(t)}.

We report the proof in Appendix B.4. Exploiting Theorem 4.5, upper and lower bounds for the solution length s can be
derived. They are defined respectively as s = [%] and s =|T| + 1. Once we have fixed a value for s, upper and
lower bounds over the number of occurrences of each vertex t are 0r =5s—|T|+1 and o =1 respectively. By using these
bounds we can use Algorithm 1 to solve an instance of Formulation 4.2.

Algorithm 1: SIMPLE_DET-STRAT

1 for allthesin{s,s+1,..., 5} do

2 for ﬂll[h€0=(0(1) ..... O(‘T‘)) in{l1,2,..., S—‘T|+l}‘T| do
\\ assign o < CSP(s,0)

if o is not empty then
| return o

L% I Y]

6 return FAILURE

The call to CSP(s,0) solves a standard constraint programming problem where the value of s and the number of tar-
gets’ occurrences are fixed. This task can be easily accomplished with commercial CP solvers [37]. Despite its simplicity
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and the possibility to use off-the-shelf solvers, Algorithm 1 is not efficient and requires a long time even for simple
patrolling settings because it requires the resolution of many constraint programming problems and, for most of them,
CSP(s,0) explores the whole search space, which is exponential in the worst case. This pushes us to design an ad hoc
algorithm.

4.4. Solving algorithm

We present our basic algorithm in Section 4.4.1, we report an execution example in Section 4.4.2, and we show how to
improve it in Section 4.4.3.

4.4.1. Basic algorithm
We consider each o (j) as a variable with domain F; C T. The constraints over the values of the variables are (10)-(14).
We search for an assignment of values to all the variables such that all the constraints are satisfied. Our algorithm basically
searches the state space with backtracking exploiting forward checking [57] in the attempt to reduce the branching of the
search tree. Despite its simplicity, it is very efficient in practice. We report our method in Algorithms 2, 3, and 4.
Algorithm 2 assigns o (1) a vertex i € T. Since the solution o is a cycle that visits all vertices, every vertex can be
assigned to o (1) without affecting the possibility to find a feasible solution.

Algorithm 2: FIND_soLUTION(T, A, w, d)

1 select a vertex i in T
2 assign o(1) <—i
3 call RECURSIVE_CALL(T, A’, w,d,0,2)

Algorithm 3 assigns o (j) a vertex from domain F; C T, which contains available values for o (j) that are returned by
the forward checking algorithm (Algorithm 4). If F; is empty or no vertex in F; can be successfully assigned to o (j), then
Algorithm 3 returns failure and a backtracking is performed.

Algorithm 3: RECURSIVE_CALL(T, A’, w,d, o, j)

1 if 0 (1) =0 (j — 1) and constraints (11) hold then

2 if constraints (14) hold then

3 | return o

4 else

5 | return FAILURE

6 else

7 assign Fj < FORWARD_CHECKING(T, A", w,d, o, j)
8 for all theiin F; do

9 assign o (j) < i
10 assign o’ < RECURSIVE_CALL(T, A", w,d, o, j+1)
11 if o/ is not FAILURE then
12 | return o’
13 | return FAILURE

Algorithm 4 restricts F; to the vertices that are directly reachable from the last assigned vertex o (j — 1) and such that
their visits do not violate constraints (13)-(14). Notice that checking constraints (13)-(14) requires knowing the weights
(temporal costs) related to the arcs between vertices that could be assigned subsequently, i.e., between the variables o (k)
with k > j. For example, consider the graph of Fig. 5(b) and suppose that the partial solution currently constructed by
the algorithm is o = (14). In this situation, we cannot check the validity of constraints (13)-(14) since we have no in-
formation about times to cover the arcs between the vertices that will complete the solution. Therefore, we estimate the
unknown temporal costs by employing an admissible heuristic (i.e., a non-strict underestimate) based on the minimum
cost between two vertices. The heuristic being admissible, no feasible solution is discarded. We denote the heuristic value
by w, e.g., w(i,o (1)) denotes the weight of the shortest path between i and o (1). We assume w(i,i) = 0 for any ver-
tex i.

Given a partial solution o from 1 to j — 1, the forward checking algorithm considers all the vertices directly reach-
able from o (j — 1) and keeps those that do not violate the relaxed constraints (13)-(14) computed with heuristic values.
More precisely, it considers a vertex i directly reachable from o (j — 1) and assumes that o(j) =i. Step 5 of Algo-
rithm 4 checks relaxed constraints (14) with respect to i, assuming that the weight along the cycle closure from o (j) =i
to o (1) is minimum. In the above example, with o (1) = 14, the vertices directly reachable from o (1) are 08 and 18.
The algorithm considers o (2) = 08. By Step 5, we have w(o(1),08) + w(08,0(1)) =4 < d(08) = 18 and then Step 5



N. Basilico et al. / Artificial Intelligence 184-185 (2012) 78-123 93

is satisfied. It can be easily observed that such condition holds also when o (2) = 18. Step 8 of Algorithm 4 checks re-
laxed constraints (14) with respect to all the vertices k # i, assuming that both the weight to reach k from o (j) =i
and the weight along the cycle closure from k to o (1) are minimum. Consider again the above example. It can be
easily observed that when o(2) = 08 such conditions hold for all k. Instead when o(2) = 18 and k = 06, we have
w(o (1),18) + w(18,06) + w(06,0 (1)) = 16 > d(06) = 14. The relaxed constraint is violated and vertex 18 will not be
inserted in F;. Similarly, Step 6 checks relaxed constraints (13) with respect to i and Step 9 checks relaxed constraints (13)
with respect to any k assuming that the weight to reach k from o (j) =i is minimum. In the above example, starting from
o = (14), the relaxed constraints are satisfied only when i =08 and therefore F; = {08}. Finally, we notice that Steps 5
and 8 are checked only when o; =0 and oy = 0, respectively, since it can be easily proved that when o; > 0 and o, > 0
these conditions always hold.

Algorithm 4: FORWARD_CHECKING(T, A", w,d, o, j)

1 assign Fj < ¢
2 assign s« j—1
3 for all members i in T such thata’(o (s),i) =1 do

4 if conditions
5 (0j=0A Zf;ll wo),ocl+1))+w(o(s),i)+w(i,o (1)) <d() or
6 0; >0A Zf:’éi(u” w(o (), o+ 1))+ w(o(s),i) <d(i)) and,
7 forallk #1i,
8 0k =0A Z,S;ll wo(),o(l+ 1))+ w(o(s),i)+w(,k)+wk,o(1)) <dk) or
9 | >0ANIT) o WO D, oU+1)+w(o(s), i)+ Wi, k) < dk)
10 hold then
1 | additoF;

12 return Fj

We state the following theorem, whose proof is in Appendix B.5.
Theorem 4.6. The above algorithm is sound and complete.

4.4.2. Example

We apply our algorithm to the example of Fig. 5(b). We perform a random selection in Step 1 of Algorithm 2 (to
choose the first visited vertex of the sequence) and in Step 7 of Algorithm 3 (to choose the elements of F; as part of
the current candidate solution). We report part of the execution trace (Fig. 6 depicts the complete search tree). (a) The
algorithm assigns o (1) = 14. (b) The domain F, (depicted in the figure between curly brackets beside vertex o (1) = 14) is
produced (according to the discussion of the previous sections) as follows: vertex 08 is added to F», since all the conditions
in Algorithm 4 with i =08 are satisfied; vertex 18 is not added to F,, since the condition in Step 8 of Algorithm 4 with
k =06 is not satisfied, formally, w(14, 18) + w(18, 06) + w(06, 14) > d(06); no other vertex is added to F;, since no other
vertex is directly reachable from 14. (c) The algorithm assigns o (2) = 08. (d) The domain F3 is produced similarly as above,
yielding to F3 = {06}. (e) The algorithm assigns o (3) =06 and continues.

Some issues are worth noting. In the 10th node of the search tree, a sequence o with o (1) = o (s) and including all the
vertices was found. However, this sequence does not satisfy constraints (14). If the search is not stopped and backtracked
at the 10th node (in Step 5 of Algorithm 3), the algorithm would never terminate. Indeed, the subtrees that would follow
this vertex would be the infinite repetition of part of the tree already built. Finally, in the 6th node, no possible successor
is allowed by the forward checking, and therefore the algorithm backtracks.

4.4.3. Improving efficiency and heuristics

Our algorithm can be improved as follows. Consider the conditions in Steps 5 and 8 of Algorithm 4. Except for the first
execution of Algorithm 4 (i.e., when j = 2), the satisfaction of the condition at Step 5 for a given j is guaranteed if the
condition in Step 8 for j — 1 is satisfied. Therefore, we can safely limit the algorithm to check the conditions at Step 5
exclusively when j = 2. The same considerations hold also for the conditions in Steps 6 and 9. Therefore, we can safely
limit the algorithm to check the conditions at Steps 6 and 9 exclusively when j =2.

We introduce a more sophisticated stopping criterion called LSC (Length Stopping Criterion) based on Theorem 4.5 and
such that if 215;11 wl),oc(l+ 1)) +w(o(s),o(1)) > maxcer{d(t)}, then the search is stopped and backtracked. We also
introduce an a priori check (IFC, Initial Forward Checking): before starting the search, we consider each vertex as the root
node of the search tree and we apply the forward checking. If at least one domain is empty, the algorithm returns failure.
Otherwise, the tree search is started.

Finally, we propose some heuristic criteria for choosing from set F; the next vertex to expand in Step 8 of Algorithm 3:
lexicographic (h;), random with uniform probability distribution (h;), maximum and minimum number of incident arcs
(hmaxa and hping), less visited (hpiny ), and maximum and minimum penetration time (hpaxg and hpying). For all the ordering
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Fig. 6. Search tree for the example of Fig. 5(b); bold nodes and arrows denote the obtained solution; Fjs are reported besides nodes o (j — 1); xth denotes
the order in which the tree’s nodes are analyzed.

criteria except h, we use a criterion for breaking ties that randomly selects a vertex with a uniform probability (RTB,
Random Tie Break). We can use the same heuristics also for selecting the initial node of the search tree in Step 1 of
Algorithm 2. In Section 7, we will experimentally evaluate these heuristics.

5. Finding non-deterministic patrolling strategies in large games

In this section, we describe techniques to reduce game instances to make the computation of non-deterministic patrolling
strategies affordable for large games. In Section 5.1 we present some algorithms to remove agents’ dominated strategies. In
Section 5.2 we discuss how to compute utility lossless abstractions and in Section 5.3 how to compute abstractions with
utility loss.

5.1. Removing dominated strategies

Action a dominates action b when the expected utility of playing a is larger than that of playing b independently of
the actions played by other agents and, therefore, no rational agent will play a. Removing dominated actions allows one
to obtain an equivalent (with the same equilibria) but smaller game with a consequent reduction of the computational
time needed for its resolution. We present two techniques to remove the defender’s and attacker’s dominated actions in
Section 5.1.1 and Section 5.1.2, respectively, and then we discuss the possibility to iterate the removal in Section 5.1.3.

5.1.1. Removing defender’s dominated actions

A defender’s action move(j) is dominated when, if such action is removed from the set of defender’s available actions
and thus the defender cannot visit vertex j, its expected utility does not decrease. This happens when, after removing
move(j), no capture probability P.(t,i) Vte T, i€ V \ {j} (i.e,, for each attacker’s strategy) decreases. Practically, removing
move(j) means removing vertex j and all its incident arcs from G.

Defender’s dominated actions are identified in two steps. The first one focuses on vertices and corresponding incident
arcs and is based on the following theorem, whose proof is reported in Appendix B.6.

Theorem 5.1. Visiting a vertex that is not on any shortest path between any pair of targets is a dominated action.
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Fig. 7. Graph G, for the patrolling setting of Fig. 1, obtained by removing the defender’s dominated strategies.

When there are multiple shortest paths connecting the same pair of targets (t1, t3), visiting each vertex of some of them
can be a dominated action. We state the following theorem, whose proof is reported in Appendix B.7.

Theorem 5.2. Given targets t1 and t; and two shortest paths P = (t1, ..., pi,...,t2)and Q = (t1,...,qj..., t2) of length L between
them,ifforallk € {2,...,L—1}andt € T \ {t1, t2} we have dist(py, t) > dist(qy, t), then visiting each internal vertex of P (i.e., all p;
excluding t1 and ty) is dominated.

The first step identifies actions that are dominated independently of the current vertex of the patroller. If move(j) is
dominated, then the patroller should not visit j from any adjacent vertex.

In the second step we account for the current vertex occupied by the patroller by considering all the defender’s actions
move(j), when the current vertex is i. We state the following theorem, whose proof is in Appendix B.8:

Theorem 5.3. If the patroller is in vertex i € V \ T, remaining in the same vertex i for a further turn is a dominated action.

The application of Theorem 5.3 allows us to remove all the self-loops of V \ T. No more defender’s strategies can be
removed independently of the attacker’s strategy, otherwise the capture probabilities and the defender’s expected utility
could decrease. Therefore, the above theorems allow one to remove all the defender’s dominated strategies.

We call G, = (Vy, A, T, v,d) the reduced graph produced by removing from G all the vertices and arcs according to
Theorems 5.1, 5.2, and 5.3. From here on, we work on G,, instead of G.

Example 5.4. We report in Fig. 7 the graph G; for our running example of Fig. 1 after having removed the vertices and arcs
corresponding to the defender’s dominated strategies.

5.1.2. Removing attacker’s dominated actions

Attacker’s action enter-when(t, i) is dominated by action enter-when(s, ) if EUa(enter-when(t, i)) < EUa(enter-when(s, j))
for every (mixed) strategy oq, where EU,(-) is the attacker’s expected utility. Checking whether an action is dominated can
be formulated as an optimization problem.
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Formulation 5.5. Action enter-when(t, i) is dominated by enter-when(3, j) if the result of the following mathematical pro-
gram is not strictly positive:

max [ (15)
constraints (1), (2), (3), (4), (5), (6)
ua(penetration-t)(1 — P(t, 1)) — ua(penetration-5)(1 — Pc(3, j))

+ ua(intruder-capture) (Pc (£, 1) — Pc(5, j)) = p (16)

Constraints (16) define p as a lower bound on the difference between the expected utilities of actions enter-when(t, i)
and enter-when(s, j). u corresponds to the maximum achievable difference and therefore, if not positive, enter-when(t, i) is
dominated by enter-when(s, j). The above problem has (asymptotically) the same number of constraints of Formulation 3.7.

The non-linearity, the size of each problem, and the large number of problems to be solved (one for each pair of actions),
make Formulation 5.5 computationally expensive for the removal of the attacker’s dominated actions. However, by exploiting
the problem structure, we can design a more efficient algorithm. Initially, we state the following theorem that provides two
necessary and sufficient conditions for dominance (we exploit fully mixed strategies in which every action is played with
strictly positive probability to remove even weakly dominated strategies); the proof is in Appendix B.9.

Theorem 5.6. Action enter-when(t, i) is dominated by enter-when (s, j) if and only if for all fully mixed strategies g4 it holds that:

(i) ua(z_ve_netration—f_) < ua(penetration-s) and
(il) Pc(t,i) > Pc(S, j).

Now we provide an efficient algorithm that removes dominated actions by using conditions (i) and (ii) of Theorem 5.6.
We report it as Algorithms 5 and 6. The algorithm builds trees where each node q contains a vertex n(q). For each target t,
we build a tree of depth d(t) where the root is t and the successors of a node q are all the nodes ¢’ such that: n(q’)
is adjacent to n(q) (i.e., a(n(q),n(@)) =1) and n(q’) is different both from 7(q) and from the vertex contained by the
father of q (i.e., n(q’) # n(q), n(q") # n(father(q))). We introduce the set domination(t, v) containing all vertices i such that
enter-when(t, i) is dominated by enter-when(t, v). We build this set iteratively by initially setting domination(t,v) =V for
allt e T, v eV and, every time a node q is explored, updating it as follows:

domination(t, 11(q)) = domination(t|n(q)) N {n(p), p € predecessors(q)}

where predecessors(q) is the set of predecessors of q. After the construction of the tree with root t, domination(t, v) contains
all (and only) the vertices v’ such that P.(t, v) < P.(t, v). This is because, to reach t from v by d(t) turns the patroller
must always pass though v’ € domination(t, v) and therefore, by Markov chains with perturbation, P.(t, v) = P.(t, V') - ¢ <
P.(t, V') with ¢ < 1. Thus, conditions (i) and (ii) of Theorem 5.6 being satisfied, enter-when(t, v’) is (weakly) dominated by
enter-when(t, v).

Using the trees of paths we identify dominations within the scope of individual targets. However, dominations can exist
also between actions involving different targets. To find them, we set:

tabu(t) = {v € V s.t. 3t', t € domination(t’, v), ua(penetration-t) < ua(penetration-t') }

for all t € T. tabu(t) contains all the vertices v such that there exists a pair t' € T, t' #t, v/ € V with u,(penetration-t) <
ua(penetration-t’) and P.(t,v) > P.(t’, v') and then, conditions (i) and (ii) of Theorem 5.6 being satisfied, enter-when(t, v)
is dominated by enter-when(t’, v'). We set

nondominated(t) =V \ { U domination(t, v) U tabu(t)}

veV

for all t € T. All (and only) the actions enter-when(t,i) such that i € nondominated(t) are not dominated. We state the
following theorem, whose proof is trivial due to the construction of the algorithm.

Algorithm 5: INTRUDER_DOMINATION

1 for eacht € T do
2 tabu(t) = {}
for each v e V do
| domination(t, v) =V

for eacht € T do
L tabu(t) ={v € V |Vt 3t’, t € domination(t’, v), ua(penetration-t) < u,(penetration-t')}

3
4
5 EXPAND(t, t, {t}, 0)
6
7
8 nondominated(t) = V \{UveV\(r) domination(t, v) U tabu(t)}
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Algorithm 6: EXPAND(V, t, B, depth)

N ={f | father(v) #n(f) #v, am(f),v) =1}
for each f € N do
|_ domination(t, n(f)) = domination(t, n(f)) N n(B)

if depth < d(t) then
L for each f € N do

DU A WN =

|_ EXPAND(f,t, {BU f},depth+1)

—O—6—0O0—0—

@_>

Fig. 8. Search tree for finding dominated actions for target 06 of Fig. 7, white nodes constitute the nondominated(06) set.

Theorem 5.7. Algorithms 5 and 6 are sound and complete.

The worst-case computational complexity is O (|T|-b™{d®}) where b is largest outdegree of the vertices. Although the
complexity is exponential in max;{d(t)}, in practice the computational time is negligible even for large patrolling settings,
as we will show in Section 7.

Example 5.8. In Fig. 8, black nodes denote vertices i such that actions enter-when(06,i) are dominated; e.g., enter-
when(06, 13) is dominated since every occurrence of 13 in the search tree has a node with 14 as child.

Finally, on the basis of the result of Algorithms 5 and 6, we can discard some targets if they appear only in dominated
actions.

Corollary 5.9. Target t € T such that the actions enter-when(t, i) for all i are dominated will never be entered by the intruder and then
can be discarded.

5.1.3. Iterated dominance
After the removal of defender’s and attacker’s dominated strategies (in this order), we can only remove some other
defender’s dominated strategies. We state the following theorem, whose proof is reported in Appendix B.10.

Theorem 5.10. Assigning a positive probability to o, with t € T is a dominated action if the attacker’s action enter-when(t, t) is
dominated.
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Fig. 9. Abstraction over vertices 01, 03.

No more steps of iterated dominance are possible because, after the removal of the arcs prescribed by Theorem 5.10,
the attacker’'s dominated strategies do not change.! We remark that, by resorting to the concept of never best response [60],
additional attacker’s actions can be removed. However, differently from what happens for removal of dominated actions, to
remove never best responses we cannot avoid using non-linear mathematical programming. As a result, removing a never
best response has the same computational complexity of solving an instance of Formulation 3.9.

5.2. Utility lossless abstractions

Although the removal of dominated strategies greatly reduces the computational time, the resolution of realistic-size
games is still hard (as we show in Section 7). An effective technique that has received a lot of attention in the literature to
deal with large games is strategy abstraction [30,31]. In this section we apply utility lossless abstractions to PSGs. We intro-
duce the definition of abstractions in Section 5.2.1, we define a general class of utility lossless abstractions in Section 5.2.2,
and we discuss how they can be applied to a PSG in Section 5.2.3.

5.2.1. Abstraction definition

The basic idea behind abstractions is to group together multiple actions into a single macro action. This allows one
to reduce the size of the game. The most interesting kind of abstractions are those without loss of utility (also called
information lossless), allowing one to find the optimal solution of a game by solving the abstracted one. A number of works
on abstractions have been devoted to extensive-form games with imperfect information and, in particular, to poker games
[30,31]. However, the application of the seminal result in [30] to a PSG produces a game that is exactly the same size as
the original one, because PSGs are general-sum and without chance moves. This pushes us to define ad hoc abstractions.

Definition 5.11. An abstraction over a pair of non-adjacent vertices i, j is a pair of defender’s macro actions move-along(i, j)
and move-along(j, i) with the following properties?:

(a) when the defender makes macro action move-along(i, j), the patroller moves from the current vertex i to vertex j along
the shortest path visiting turn by turn the vertices composing the path,

(b) the completion of move-along(i, j) requires a number of turns equal to the length of the shortest path between i and j,

(c) during the execution of a macro action the defender cannot take other actions,

(d) the attacker can intrude a target during the defender’s execution of a macro action.

Example 5.12. Consider Fig. 9. By applying an abstraction over vertices 01, 03 we remove the arcs labelled with o1 02,
002,01, 02,03, 03,02 (Where «; ;j corresponds to action move(j) from i) and we introduce the arcs labelled with o1 03,
«03,01. When the patroller is in 01 and goes to 03, it will spend two turns, during which it moves from 01 to 02 (first turn)
and from 02 to 03 (second turn). When the patroller is in 02, it cannot stop the execution of the current macro action and
make another action.

Definition 5.13. An abstraction over G is the result of the application of some abstractions over pairs of vertices. We obtain
it by removing from G some disjoint connected subgraphs G’ C G and introducing in G for each G’:

(a) a set of arcs {(i, j)}, where i, j are vertices in G\ G’ and both i and j are adjacent to vertices in G’ (each arc (i, j)
corresponds to a macro action move-along(i, j)),
(b) a function e:V x V — N assigning each arc the time needed by the patroller for traversing it.

T We notice that, after the removal of attacker’s dominated actions, we can discover that some targets will never be entered by the attacker. However, in
our case, these targets are on some shortest paths connecting other targets and therefore they cannot be removed.

2 For the sake of presentation, we consider a situation in which the two vertices are connected by a single shortest path. If this is not the case, we can
define a pair of macro actions for each shortest path between two vertices.
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Fig. 10. An example of abstraction.
Thus, an abstraction over G involves a number of abstractions over pairs of (non-adjacent) vertices.
Example 5.14. We report an example of abstracted G in Fig. 10.

The main problem to address is the selection of the vertices to be removed such that the obtained abstracted setting
preserves the equilibrium strategies.

5.2.2. Defining utility lossless abstractions
When the patroller moves along an abstracted arc (i, j), the attacker can take advantage, because it knows some of the
next defender’s moves.

Example 5.15. Consider Fig. 9. If the defender decides to move from 01 to 03 and the attacker observes the patroller in 02
after having observed it in 01, then the intruder knows that the patroller will reach 03 at the next turn.

We produce utility lossless abstractions such that the set of attacker’s dominated strategies (computed as discussed in
Section 5.1.2) is an invariant, namely they are left unchanged by the application of abstractions. This is motivated by the
following theorem, whose proof is trivial and then omitted.

Theorem 5.16. A necessary condition for an (ex ante) abstraction to be without utility loss is that the set of attacker’s dominated
strategies is invariant.

We provide some necessary conditions for a vertex to be removed without changing the set of attacker’s dominated
strategies.

Corollary 5.17. The removal of a vertex i during the application of an abstraction can be without utility loss if :

(a) wheni ¢ T, forallt € T, actions enter-when(t, i) are dominated,
(b) whenieT,forallt € T, actions enter-when(t, i) are dominated and, for all j € V, actions enter-when(i, j) are dominated.

It is not enough to assure that the set of attacker’s dominated strategies does not change, because we need to assure
that solving the abstracted game we can find a strategy no worse than the optimal strategy in the non-abstracted game.
We denote by dom(i, t) the set of vertices i’ such that enter-when(t, i’) is not dominated and dominates enter-when(t, i) (as
calculated in Section 5.1.2). We state the following theorem, whose proof is reported in Appendix B.11.

Theorem 5.18. Given an abstraction over G, if, for all the abstractions over pairs of vertices i, j and for all vertices k on the shortest
path connecting i and j:

(a) dist(i, dom(k, t)) > dist(i, k) and
(b) dist(j, dom(k, t)) > dist(j, k)

forall targets t € T, then the set of attacker’s dominated strategies is invariant and solving the abstracted game gives a strategy as good
as the optimal strategy for the original game.
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Notice that, after having abstracted a PSG by using our utility lossless abstractions, we can directly solve it without
removing other attacker’s dominated strategies, these being invariant w.r.t. the non-abstracted game. General abstractions
stronger (in terms of the number of removed vertices) than those described in the above theorem can be provided in
specific cases, but their computation is not efficient. For instance, abstractions that take the set of never best responses as
an invariant can be stronger, but they require the use of non-linear mathematical programming.

5.2.3. Computing utility lossless abstractions

Call C C V the set of vertices that satisfy Corollary 5.17. We introduce the binary variables x; € {0, 1} with i € C, where
xi = 1 means that vertex i is removed by a utility lossless abstraction and x; = 0 means that it is not. We introduce the
integer variables s;; € {0,...,n} with i€ V and t € T (n is the number of vertices in V), where s;; gives the distance
between vertex i and target t once abstractions have been applied. We call succ(i, j) the set of vertices adjacent to i in the
shortest paths connecting i and j.

Formulation 5.19. An abstraction is without utility loss if the following integer linear mathematical programming formula-
tion associated with the abstraction is feasible:

Sie=dist(i,t) Vi¢C,teT (17)
Si¢ > dist(i,t) VieC,teT (18)
Si¢ < dist(i,t) +nx; VieC,teT (19)
Sit<Sjr+1—n(1—-x) VieC, teT, jesucc(,k), kedom(,t) (20)
Sit=Sje+14+n(1—x) VieC, teT, jesucc(,k), kedom(,t) (21)
Si¢ < dist(j,t) VieC, teT, jedom(,t) (22)

Constraints (17) force s;; to be equal to the distance between i and ¢t (for all the non-removable vertices i); constraints (18)
force s;; to be equal to or larger than the distance between i and ¢ (for all the removable vertices i); constraints (19)
force s;; to be equal to the distance between i and ¢t if x; =0 (for all the removable vertices i); constraints (20) and
constraints (21) force s;; to be equal to sj 4+ 1 with j e succ(i, k) where k € dom(i, t) if x; =1 (for all the removable
vertices i); constraints (22) force s; to be not larger than dist(j, t) with j € dom(i, t).

The above formulation allows us to check whether or not an abstraction is without loss of utility. We are now interested
in finding the strongest abstraction that produces the game that requires the minimum computational effort to be solved,
namely the game with the minimum number of « variables (arcs). Call ¢; the outdegree of vertex i. By removing vertex i
from the graph we remove 2¢; arcs (corresponding to 2¢; variables o) and we introduce ¢;(¢; — 1) new arcs (corresponding
to ¢i(¢; — 1) new variables o). In practice, we can reduce the number of variables only if ¢; < 3.

Formulation 5.20. The strongest utility lossless abstraction is obtained as the solution of the following integer linear opti-
mization mathematical programming problem:

max E Xi

ieC
XiZO ViEC, ¢i>3
constraints (17), (18), (19), (20), (21), (22) (23)

We call A’ the set of arcs of the abstracted game and we represent A’ with function a’:V x V — {0, 1}. An abstracted
game, presenting arbitrary (larger than one) weights, cannot be solved by using Formulation 3.7. An extension of such
formulation working with arbitrary weights is presented in Appendix A.4. Notice that the above result implicitly shows that
we cannot discard all the non-targets vertices.

5.3. Utility loss abstractions

The application of utility lossless abstractions has the potential to drastically reduce the size of PSGs making their
computation more affordable. However, for very large games (especially those containing cycles), utility lossless abstractions
produce abstracted games that are still hard to solve. For these games, we can relax the utility lossless constraints to
produce reduced games whose solutions are not guaranteed to be optimal for the non-abstracted game.

3 Rigorously speaking by removing vertex i we remove also a number of variables y; however, we experimentally observed that the computational effort
depends more strongly on the number of variables « than on the number of variables y.



N. Basilico et al. / Artificial Intelligence 184-185 (2012) 78-123 101

While utility lossless abstractions produce a game in which the set of attacker’s dominated strategies is invariant, with
utility loss abstractions we produce a game in which a weaker condition holds: each target is not exposed. More precisely, we
say that a target t is exposed when there is an action enter-when(t, x) such that the related capture probability is zero. This
happens when the vertex x can be visited by the patroller and dist(t, x) > d(t). Essentially, finding utility lossless abstractions
and utility loss abstractions is conceptually similar, the main difference being in the definition of the upper bound on s; ;:
when abstractions are without utility loss, we need that s; ; be not larger than the maximum distance between dom(i, t)
and t, instead, when abstractions are with utility loss, we need that s; be not larger than d(t). This kind of utility loss
abstractions is the strongest one. Indeed, removing further vertices would introduce a delay that makes a target exposed
and therefore would make the associated capture probability equal to zero. All the candidates C that can be removed are
all the vertices except the targets.

Formulation 5.21. An abstraction is with utility loss if the following integer linear mathematical program associated with
the abstraction is feasible:

constraints (17), (18), (19)
Sit <Sje+1—n(1—x) VieC, teT, jesucc(,t)

Sig=Sje+14+n(1—x) VieC, teT, jesucc(,t)

(
> (
Sie <dist(i,t)+1—n(1—x;) VieC,teT, succ(i,t) =9, 3k, a(i,k) =1, dist(k, t) = dist(i, t) (
Sie =>dist(i,t) +1+n(1 —x;) VieC, teT, succ(i,t) =9, 3k, a(i,k) =1, dist(k, t) = dist(i, t) (27
sig =dist(i,t) VieC, teT, succ(i,t) =9, Vk, a(i,k) =1, dist(k, t) < dist(i, t) (
sie<d(t) VieC,teT (

Constraints (24), (25), and (29) relax the corresponding (utility lossless) constraints (17), (18), and (22) considering directly
target t instead of the set dom(i, t). Constraints (26), (27), and (28) are analogous to constraints (24) and (25), but they are
applied when, for a given vertex i and a target t, there is not any successor (i.e., succ(i, t) = ). This happens in the presence
of cycles and precisely when i is the farthest vertex from t. Constraints (26) and (27) are applied when there exists a vertex
k that is as far as i from t, while constraints (28) are applied when x is the farthest vertex.

As we did for utility lossless abstractions, we search for the strongest abstractions that produce the smallest game.

Formulation 5.22. The strongest utility loss abstraction for a PSG is obtained as the solution of the following integer linear
optimization mathematical programming problem:

max E Xi

ieC, ;<3
constraints (17), (18), (19), (24), (25), (26), (27), (28), (29)

As in the previous section, we call A’ the set of arcs of the abstracted games and we represent A’ with function a’: V x
V —{0,1}.

Example 5.23. In Fig. 11 we report the setting obtained after the application of the strongest utility loss abstraction on the
setting of Fig. 1.

The application of utility loss abstractions produces a reduced game whose attacker’s dominated strategies are poten-
tially different from those in the original game. Furthermore, Algorithms 5 and 6 cannot be applied to the abstracted game
because they do not consider the possibilities that the distance between vertices is larger than one and that the intruder can
enter some target when the patroller is moving from a vertex to another. We present in Appendix A.5 an extension of Al-
gorithms 5 and 6 applicable to graphs generated with utility loss abstractions. Once we have removed attacker’s dominated
strategies, the computation of the leader-follower equilibrium is based on the same mathematical programming formula-
tion used for utility lossless abstractions (Section 5.2.3) except that, for each non-dominated action enter-when(t, v), we use
d(t) — delay(t, v) instead of delay(t, v).

6. Summarizing the solving algorithm and addressing inconsistencies

We collect the algorithmic results of previous sections in Section 6.1 and we discuss how inconsistencies can be ad-
dressed in Section 6.2.
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Fig. 11. Utility loss abstraction for the setting of Fig. 1.

6.1. Global solving algorithm

Algorithm 7 summarizes the proposed approach for solving large instances of PSGs. The deterministic strategy is com-
puted (Step 1) by reducing the game as described in Section 4.1 and (Step 2) by solving a CSP as described in Section 4.4. If
no deterministic solution exists (Step 5), then a non-deterministic strategy is searched for. The game is reduced (Step 6) as:
if lossless abstractions are used, agents’ dominated actions are removed as described in Sections 5.1.1, 5.1.2, and 5.1.3 and
then abstractions are found as described in Section 5.2; if, instead, lossy abstractions are used, defender’s dominated actions
are removed as described in Section 5.1.1, then abstractions are found as described in Section 5.3, and finally the intruder’s
actions are removed as described in Appendix A.5. After the reduction of the game, the leader-follower equilibrium is found
(Step 7) by solving the mathematical programs as described in Sections 3.3.2, 3.3.3, and 5.2.3.

Algorithm 7: soLVING(G)

reduce G to G’

search for a deterministic strategy of G’

if G’ admits a deterministic strategy then
| return it

else
remove agents’ dominated actions and find abstractions
solve the associated mathematical programming problems
return it

NSO A WN =

6.2. Addressing inconsistencies

We recall that an inconsistent strategy is characterized by an attacker’s best response enter-when(t, x) such that x is
never visited by the patroller after an infinite number of turns. The problem of checking whether or not a strategy is
consistent can be formulated as the problem of checking, for each best response enter-when(t, x) and once arcs not covered
by the strategy are removed, whether or not there is a connected portion of G including both t and x. If this connected
portion exists, then the strategy is consistent. If a strategy is inconsistent, two cases are possible: (i) when the uncovered
portion of G does not contain targets, replacing G with its covered portion is safe: it is trivial to see that by solving the
obtained reduced game we obtain a non-worse equilibrium strategy for the defender; (ii) when the uncovered portion of G
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contains targets, discarding the uncovered portion is not safe: intuitively, the presence of non-patrolled targets can worsen
the defender’s utility since the intruder can attack them with a guarantee of not being captured. The second case is more
complex. An inconsistent strategy must be discarded and we need to recompute it on a sub-portion of the graph. However,
simply discarding the uncovered portion of the graph (with the targets it contains) does not provide any guarantee on the
solution’s optimality. This situation raises the problem of finding the optimal subset of targets to cover. We provide an
algorithm to address this problem.

Call T, C T the set of targets to cover and T_. =T \ T, the set of targets that are not covered. We call G(T,) the reduced
patrolling setting that comprises only the targets T.. We obtain it by removing T_. from G’s sets of vertices V and targets T
and then taking the intersection of all the connected components of the graph in which all the remaining targets T. are
present. Note that for some T. the setting G(T.) can be empty, for example when the removal of T_. splits the graph
in two connected components each one containing at least one target. Our algorithm enumerates all the possible T, and
computes the leader-follower equilibrium in G(T) explicitly considering that the attacker can attack a target in T_. with
a capture probability of zero. This is done by introducing in Formulations 3.7 and 3.9 additional actions available to the
attacker: attacking targets t € T_. with a utility equal to v,(t) independently of the defender’s strategy. Finally, we select
the consistent strategy that maximizes the defender’s expected utility.

Guarantees on solution’s optimality provided by this simple algorithm stem from the following lemma, whose proof is
reported in Appendix B.12.

Lemma 6.1. If solving G(T) for some T returns an inconsistent strategy oq, then the defender’s expected utility from o4 is not larger
than the defender’s expected utility when restricting to the targets covered by o4.

Therefore, there is at least a consistent patrolling strategy o4 with T; C T, such that o4 is not worse than oq for the
defender. Then, we provide some insight to limit the number of possible sets T. to be enumerated. We state the following
lemma, whose proof is reported in Appendix B.13.

Lemma 6.2. For any T, and T, with T, C T, if the optimal strategy on G(T) is consistent, then the defender’s expected utility of the
optimal strategy in G(T/) is not better.

The above lemma shows that, when the resolution of the game with all the targets returns a consistent strategy, solving
patrolling settings in which the patroller is limited to patrol a subset of targets does not return a better strategy. We state
the following theorem, whose proof is in Appendix B.14.

Theorem 6.3. Algorithm 8 with T, = T returns the optimal solution.

Algorithm 8: REMOVING_INCONSISTENCY(G, T¢)

1 solve G(T,)
2 if the solution is consistent then
3 |_ return the defender’s utility

4 else

5 assign u =0

6 for allt € T, do

7 |_ u = max{u, GENERAL_SUM _INCONSISTENCY(G, T \ {t})}
8 return u

7. Experimental evaluation

In this section, we evaluate scalability and solution quality of our algorithm in patrolling settings comparable with those
encountered in real-world scenarios [43]. Experiments have been conducted on a Linux (2.6.24 kernel) machine equipped
with an Intel XEON 2.33 GHz CPU, 4 GB RAM, and 4 MB cache. We evaluate our algorithm to find deterministic and non-
deterministic patrolling strategies in Section 7.1 and Section 7.2, respectively. In Section 7.3 we evaluate the quality of the
non-deterministic solutions.

7.1. Finding a deterministic equilibrium strategy

Without loss of generality, we abstract away from the specific topology of the original patrolling setting and concen-
trate only on G’. We developed a random generator of graph instances G’ with two parameters as input: the number of
vertices n (corresponding to targets in the original graph G) and the number of arcs m (corresponding to what we would
obtain applying the reduction procedure of Section 4.1 to G). Given n and m, a random connected graph with n vertices
is produced, m — n arcs are added and their weights are set to 1. Values d(k) are uniformly drawn from the interval
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Fig. 12. Percentage of termination for the most significant algorithm configurations for finding deterministic patrolling strategies (for the sake of presenta-
tion, we split the configurations on two different subfigures; n is the number of targets).
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Fig. 13. Computational times for the most significant algorithm configurations for finding deterministic patrolling strategies (for the sake of presentation,
we split the configurations on two different subfigures; n is the number of targets).

[min; j{w(, j) + W(j, D)}, 2n? max; j W(i, j)], where w(i, j) is the length of the shortest path between vertices i and j. The
lower bound of the interval comes from the consideration that settings with d(k) < min; j{w(i, j) + w(j, 1)} are unfeasible
and our algorithm immediately detects it (by IFC). The upper bound is justified by considering that if a problem is fea-
sible, then it will always admit a solution shorter than 2n? max; j{w(i, j)}. The program for generating graphs and those
implementing our algorithms have been coded in C.

Since our objective is to find a solution that satisfies all the constraints and not the optimal solution according to a given
metric (e.g., minimizing the cycle length), we evaluate: the termination percentage (either with a solution or with a failure)
of the algorithm within 10 minutes, the computational time in the case of termination, the success percentage in the case of
termination (i.e., the percentage with which a solution has been found).

For each ordering criterion introduced in Section 4.4.3 (i.e., h;, hr, hmaxa, Aminag> Pminv, Amaxd> Amind)» With and without
LSC and IFC, we consider n € {3, 4, 5,6, 7, 8,100, 250, 500} and, for each n, we produce 1000 instances of G’ with m uni-
formly drawn from the interval [n, (n — 1)n] (if m < n the graph is not connected, if m > (n — 1)n at least a pair of vertices
is connected by more than one arc).

The most significant experimental results are summarized in Fig. 12 (termination percentages) and Fig. 13 (average com-
putational times), while an exhaustive view is reported as Table 2 in Appendix C. We do not report all the combinations
of heuristics for improving efficiency because some of them are not enough significant. All the values are averaged over
the 1000 instances. The results on the success percentages appear less significant, being strictly correlated to the termina-
tion percentages. Essentially, the lower the termination percentage the higher the success percentage. This is because the
algorithm almost always terminates when a solution is found. Proving that an instance does not admit any solution usually
requires the algorithm to explore the entire tree and this can rarely happen within 10 minutes.
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For all the algorithm configurations, the average computational time keeps reasonably short (few seconds) even with
large values of n. On the other hand, the termination percentage varies significantly in different configurations. This behavior
resembles that of many constraint programming algorithms, whose termination time is usually either very short (when a
solution is found) or the deadline is exceeded. Moreover, the obtained results present outliers that can be detected by
observing the maximum computational times in Table 2. Some cases were harder than the average to solve and required
an amount of time significantly larger (in practice, these cases both reduce the percentage of termination and increase
the computational time). These hard cases represent outliers within the population of instances obtained with the random
graph generator. They are typically characterized by tangled topologies or oddly-distributed relative deadlines.

We now comment the performance of the techniques of Section 4.4.3 for improving the efficiency of our algorithm.

The best ordering criterion seems to be hpin, with RTB. The experimental results with hmaxa, Amina,» Nmaxd,» Amind are
very similar to those obtained with h; and then omitted. The criterion hpi,, with RTB leads the algorithm to terminate
with a percentage close to h, for small values of n and about 80% larger for large values of n. Instead, h; provides very bad
performance, especially for large values of n, when the algorithm terminates with percentages close to 0%.

The LSC improved stopping increases the termination percentage by a value between 0% and 2%, without distinguishable
effects on the computational time. This improvement depends on the configuration of the algorithm since it affects the
construction of the search tree. Its adoption increases the percentage of termination without finding any solution.

The IFC criterion increases the termination percentage by a value between 1% and 4%, reducing the computational time
(since many non-feasible settings can be recognized before starting the construction of the tree). This improvement does not
depend on the configuration of the algorithm since it does not affect the search, working before it. Its adoption increases
the percentage of termination without finding any solution.

Hence, the best algorithm configuration appears to be hpiny with RTB, LSC, and IFC. The results are satisfactory: the
termination percentage is high also for large settings, even with 500 targets, and the corresponding average computational
time, about 5.5 s, is reasonably short. The above results justify our decision to set the threshold at 10 minutes (600 s).

7.2. Simplifying large patrolling security games and finding a randomized equilibrium strategy

Given the different and heterogeneous formulations of the patrolling problem proposed in the literature (and summarized
in Table 1), the definition of a data set for experimentation and comparison has not yet been addressed (at least, to the
best of our knowledge). Some partial attempts to define experimental settings for non-adversarial patrolling can be found
in [59] (used also in [47]) where the authors propose two arbitrary topology maps with about 50/60 vertices. The lack of a
suitable data set for our experimental activity pushes us to develop an ad hoc data set.

Our data set for adversarial patrolling is partitioned in two parts. The first one is composed of settings with perimeter
topologies (in which we further distinguish between open and closed topologies), while the second part is composed of
settings with arbitrary topologies. The settings with arbitrary topologies have been obtained both by introducing targets in
the setting presented in [59] and by producing new patrolling settings inspired by environments in RADISH (a repository
containing data sets of environmental acquisitions performed with real robots [36]). We characterize the patrolling settings
w.r.t. the number n of vertices and the density § of targets, representing the percentage of targets over vertices (i.e., § =
IT|/n).

We evaluated and compared multiple configurations of our algorithm that differ in the efforts devoted to the pre-
processing phase. More precisely, given a PSG instance, we consider: basic algorithm (basic): we plainly compute the optimal
strategy as described in Section 3.3 on the original setting without exploiting any kind of reduction; removal of dominated
strategies (dom): we apply the algorithms described in Section 5.1 to reduce the game, then we solve it with the basic
algorithm; utility lossless abstraction (lossless): we remove the players’ dominated strategies, we apply the strongest utility
lossless abstraction, as described in Section 5.2, and finally we solve it with the basic algorithm; utility loss abstraction
(lossy): we apply the strongest utility loss abstraction as described in Section 5.3, we remove the intruder’s dominated
strategies from the obtained game, and finally we solve it with the basic algorithm.

We imposed a time deadline: one hour for the zero-sum settings and 24 hours for the general-sum ones. We coded our
algorithm in MATLAB and we formulated all the mathematical programming problems with AMPL [25]. We used CPLEX [37]
and SNOPT [61] for solving the linear and non-linear mathematical programs, respectively.

7.2.1. Open perimetral settings

We generated our settings with the following features (see Fig. 14(a) for an example): n € {10,...,200} and § €
{10%, ..., 50%}; targets are randomly selected among the vertices with the constraint that the two extreme vertices must be
targets; for each target t a random value vq4(t) is chosen under the global constraint ZteT vq(t) =1 and penetration times
d(t) are independently drawn from the interval {D;, D; + 1,...,2D; — 1} where D; is the maximum distance of t from
an extreme vertex (a penetration time shorter than D; could make a target to be exposed, while with penetration times
longer than 2D; — 1 deterministic equilibrium strategies exist). For general-sum settings, for each target t a random value
in [0, 1] is chosen for v,(t). For each pair of values (n,§) we generated 5 patrolling settings and we analyzed the average
values.

The removal of dominated actions allows one to discard about 95% of the attacker’s actions on average and up to 99%
(details can be found in Table 3, see Appendix C). The number of non-dominated attacker’s actions happens to be very small
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Fig. 15. Computational times for different algorithm configurations in open and closed perimetral settings.

(no more than 12) even with large settings (with more than 10 vertices). This is essentially due to two reasons. First, each
attacker’s action enter-when(t, h) where h is not an extreme vertex is dominated by enter-when(t, h’) where h’ is extreme.
Second, a large number of targets in non-extreme vertices will never be attacked because there is some other target with a
larger value and presenting a strictly smaller capture probability.

The application of lossless abstractions allows one to generate abstracted graphs discarding, after the removal of domi-
nated actions, about 70% of the vertices on average and up to 93% (see Table 4 in Appendix C). This is essentially due to the
very low number of non-dominated actions. Since there are few non-dominated actions and each of them imposes a set of
constraints over the computation of the abstractions, the associated optimization problem is weakly constrained and many
vertices can be discarded.

Graphs in Fig. 15 (left-hand side) show how the computational time (of the terminated executions) varies w.r.t. n and §
for the zero-sum case. With general-sum instances the results are similar. To give a general idea, the average computational
time for a general-sum instance is roughly the number of (non-dominated) attacker’s actions multiplied by +10% of the
computational time of a zero-sum instance. The detailed data for zero-sum and general-sum instances can be found in
Table 5, see Appendix C.
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For all the configurations, the computational times rise exponentially as §". The basic configuration (top left graph of
Fig. 15) requires a large amount of computational time even with small settings and it is applicable only up to n =40
vertices and § = 10% of targets. Going beyond this limit is impractical. The dom configuration (middle left graph of Fig. 15)
solves much larger settings thanks to a significant reduction of the defender’s actions. In this case, the computational limit
is for n > 100 and it is due to the excessively large number of vertices and therefore of defender’s actions. The percentage
of the pre-processing time over the total computational time with dom is 4% on average (the max is 18% and the min is
1%). The lossless configuration (bottom left graph of Fig. 15) solves larger instances composed up to 200 vertices and 50%
of targets thanks to a reduction of the actions of the attacker and the defender. The percentage of the pre-processing time
over the total computational time with lossless is 76% on average (the max is 99% and the min is 9%). Given that realistically
large open perimetral settings (more than 200 vertices and 100 targets) are solvable with the lossless configuration, we did
not apply the lossy configuration.

7.2.2. Closed perimetral settings

Closed perimetral settings are generated as squares with edges whose length is f vertices such that (see Fig. 14(b) for an
example): n € {10,...,200} and § € {10%, ..., 50%}. Targets are randomly selected among the vertices with the constraints
that the four corners are targets and that the graph is not reducible, by removal of patroller’s dominated actions, to an
open setting; penetration times d(t) are independently drawn from the interval {2f,2f + 1,...,n — 1} (a penetration time
shorter than 2 f could make a target to be exposed, while with penetration times longer than n—1 deterministic equilibrium
strategies exist). The agents’ values over targets are generated as for the open perimetral settings. For each pair of values
(n, 8) we generated 5 patrolling settings and we analyzed the average values.

The removal of dominated actions applied to the original settings discards about 41% of the attacker’s actions on average
and up to 50% (see Table 6 in Appendix C). The number of removed actions is much lower than with open perimeters. This
is essentially because there are not extreme vertices.

The lossless abstractions do not remove any vertex. The set of removable vertices is empty because every vertex appears
(as t or h) in at least one non-dominated action enter-when(t, h). The lossy abstraction allows one to generate abstracted
graphs discarding about 50% of the vertices on average and up to 70% (see Table 7 in Appendix C). The application of
removal of dominated actions applied to lossy abstraction graphs allows one to discard up to 50% of the actions (see again
Table 6).

Graphs in Fig. 15 (right-hand side) show how the computational time (of the terminated executions) varies w.r.t. n and §
for the zero-sum case. The computational time of a general-sum instance is roughly (+9%) the number of (non-dominated)
attacker’s actions multiplied by the computational time of a zero-sum instance. The detailed data are in Table 8, Appendix C.

Closed perimetral settings are more difficult w.r.t. open ones. The basic configuration (top right graph of Fig. 15) ran
out of memory with n = 44 vertices and § = 20% of targets and only slight improvements are obtained when enabling the
removal of dominated strategies. With the dom configuration (middle right graph of Fig. 15), the limit over the setting size
is only improved to 44 vertices and 30% targets. The percentage of pre-processing time w.r.t. the total computational time
with dom is < 1% on average (the max is 2%, and the min is < 1%). The lossless configuration provides the same results of
dom. The lossy configuration (bottom right graph of Fig. 15) allows one to solve large instances composed up to 84 vertices
and 50% of targets. The percentage of the pre-processing time over the total computational time with lossy is 53% on average
(max is 99% and min is 12%).

Notice that in the specific case in which all the vertices are targets and all the targets present the same value (for both
agents) and the same penetration time, settings can be solved by applying the algorithm presented in [3]. In this case, such
algorithm outperforms ours, requiring polynomial time.

7.2.3. Arbitrary settings

We developed a software tool [14] to compose patrolling settings and we generated arbitrary settings. In addition
to the settings proposed in [59], we considered a subset of the indoor environments from RADISH repository: albert-b-
laser, austin_ aces3, cmu_nsh_level_a, DLR-Spatial_Cognition, fr079, kwing_wld, intel_oregon, mit-csail-3rd-floor, sdr_site_b,
stanford-gates1, and ubremen_cartesium. Fig. 16 shows two examples.

For every topology, we manually reproduced several bidimensional grids representing the map for different n and §
where n € {50, ...,166} and § € {5%, ..., 30%}. Broadly speaking, with large values of n, each cell is associated to a small area
of the environment, while, with smaller n, each cell represents a larger part of the environment. Target cells are randomly
selected for different values of 8 and penetration times d(t) are randomly chosen in the interval {D;, D +1,...,2D; — 1}
where D; is the maximum distance of t from any vertex. The target values are generated as in the open and closed perime-
tral settings. For each topology and each pair of values (n,8) we generated 5 patrolling settings and we analyzed the
average values. In this case, we did not consider any time threshold in experiments, therefore memory was the only limited
computational resource.

The performance of our reduction techniques is between that of the open and that of the closed perimetral settings. The
removal of dominated actions applied to the original setting eliminates about 58% of the attacker’s actions on average and
up to 83% (see Table 9 in Appendix C). The application of lossless abstractions generates abstracted graphs discarding, after
the removal of dominated actions, about 20% of the vertices on average and up to 35% (see Table 10 in Appendix C). The
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Fig. 16. Two examples of arbitrary patrolling settings (white cells are associated to vertices, targets are denoted with circles) with 166 vertices and 10%
targets.
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Fig. 17. Computational times for different algorithm configurations in arbitrary settings.

lossy abstraction generates abstracted graphs discarding about 55% of the vertices on average and up to 76% (Table 10). The
application of removal of dominated actions applied to lossy abstraction graphs discards up to 75% of the actions (Table 9).

Graphs in Fig. 17 show how the computational time varies w.r.t. n and § for the zero-sum case. Results are reported for
terminated executions (those which did not exceed the memory limit) and for all the obtained strategies no inconsistencies
were observed. With general-sum instances the results are similar: the computational time of a general-sum instance is
roughly (£10%) the number of (non-dominated) attacker’s actions multiplied by the computational time of a zero-sum
instance. The detailed data for zero-sum and general-sum instances can be found in Table 11 in Appendix C.

We solved the game instances only with the lossless and lossy configurations (results with dom are worse than those with
lossless, while with basic all the instances required more than 4 GB RAM). As it can be seen from Table 11, arbitrary settings
turned out to be less hard than closed perimetral ones. By employing the lossless configuration we encountered a limit with
n =75 vertices (cells) with § = 10% of targets. The lossy configuration allowed us to solve instances up to 166 cells with
10% of targets. The computational time spent for pre-processing for both lossless and lossy configurations is similar to that
found for closed perimetral settings.

As a last experiment, we relaxed the penetration times in the above instances such that they admit a pure strategy
equilibrium for which the intruder acts stay-out. We solved these instances with the lossless and lossy configurations. The
average computational times are close to those reported in Table 11. They are about 10% larger than those obtained with
the algorithm specific for deterministic strategies we described in Section 4. In addition, the solutions returned by the non-
deterministic algorithm (being first-order Markovian) do not assure the patroller to capture the intruder with a probability
of one. These findings justify our approach of looking for deterministic strategies with a specialized algorithm and not with
the general algorithm for non-deterministic strategies.
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Fig. 18. Efficiency of first-order Markovian strategies (with lossless and lossy abstractions) for different settings when there is a non-first-order Markovian
deterministic strategy. Grey boxes report the efficiency for the baseline uniform strategy.

7.3. Solution quality evaluation

We evaluate the quality of the solutions produced by our algorithms in terms of efficiency as discussed in Section 3.3.4:
we evaluate the efficiency of first-order Markovian strategies w.r.t. higher-order Markovian strategies and we evaluate the
efficiency of solutions produced with lossy abstractions w.r.t. solutions produced with lossless abstractions.

For all the previous settings (open, closed, and arbitrary topologies), the value u* of the corresponding optimal (high-
order Markovian) strategy is not known. In this case, as discussed in Section 3.3.4, we can calculate a lower bound on
efficiency considering ), vq(i) instead of u*. With respect to the results presented in the previous sections, the average
value of this lower bound on efficiency is 0.97 for the lossless configurations (max is 0.99, min is 0.95) while 0.92 for the
lossy ones (max is 0.99, min is 0.81).

In order to obtain a more accurate evaluation of solutions’ quality, we considered settings which admit a deterministic
equilibrium strategy. Hence, for these settings, u* is known in advance and is equal to the sum of all the targets’ values. In
these settings, efficiencies can be computed exactly without resorting to a lower bound. The arbitrary graphs we generated
in this phase have the following features: n € {40,...,75} and § € {5%, ..., 20%}; targets are randomly selected and their
value is chosen as in the open and closed perimetral settings. The penetration times are the smallest values such as there
exists a non-first-order Markovian deterministic strategy, but there is not any first-order Markovian deterministic strategy.
This represents the worst case for the non-deterministic first-order Markovian strategies. (Obviously, relaxing the penetration
times, first-order Markovian non-deterministic strategies perform better.) For each pair of values (n,§) we generated 10
patrolling settings and we analyzed the average values.

Graphs in Fig. 18 show the solutions’ efficiency for first-order Markovian strategies with lossless and lossy abstractions for
zero-sum instances. Strategies are compared against a baseline case whose efficiency is reported in grey boxes. The baseline
strategy is a Markovian strategy that assigns a uniform probability of movement to adjacent vertices on the abstracted
(lossless and lossy, respectively) graph and in settings with a small target density (§ = 5%). A remarkable improvement in
efficiency is generally obtained when passing from the baseline case to a Markovian equilibrium strategy. Results obtained
for general-sum instances are similar. The detailed data are in Table 12 in Appendix C.

Lossless first-order Markovian strategies are very effective, providing at least 99% of the utility provided by the deter-
ministic strategy. The expected utility strictly increases in §, the defender preserving more targets.

The employment of lossy first-order Markovian strategies is very satisfactory, providing at least 85% of the utility pro-
vided by the deterministic strategy. As in the lossless case, the expected utility strictly increases in §.

We additionally compared the quality of the solutions with lossy abstractions w.r.t. lossless abstractions in all the settings
used in Sections 7.2.2 and 7.2.3. In these cases the loss in efficiency is not larger than 5%. This, being an average case, is
consistent with the worst case discussed above.

Finally, a remark about inconsistencies is worth. The absolute utility loss of a consistent strategy w.r.t. the optimal (high-
order Markovian) strategy is upper bounded by minct v (t) Pc(t, h) where enter-when(t, h) is a valid best response for the
intruder. This happens because at the equilibrium (excluding some very particular topologies) the intruder is likely induced
to attack the covered target with the lowest value for the defender. This guarantees some relatively limited (w.r.t. targets’
values) absolute utility loss. When inconsistencies are present, the set of covered targets can change, resulting in a larger
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minimum value. Thus, the upper bound on absolute utility loss can be large with a consequent arbitrary degradation of the
solution’s quality.

8. Conclusions and future works

Security games constitute a class of games that are receiving an increasing attention in artificial intelligence and are used
in several security applications. They are characterized by two players, a defender and an attacker, and by a set of targets
with some values. The attacker wants to intrude a target, while the defender wants to protect the targets. Both attacker
and defender can deploy some resources to accomplish their goals. Security games are usually modeled as leader-follower
games where the defender can commit to a strategy and where the underlying games are in normal form.

In this paper, we studied security games by taking into account the situation in which the attacker can observe the
realization of the strategy of the defender and decide, on the basis of this observation, when to attack without being subject
to any temporal deadline. This option, if available, will be always exploited by the attacker, which could gain a larger utility.
We extended the currently available models introducing an underlying game in extensive form and with infinite horizon.
Since the “natural” application of this model is to mobile robot patrolling, we called patrolling security games (PSGs) this new
game class. Our model allows one to study adversarial patrolling problems where the topology of the area to be patrolled
is represented with an arbitrary graph with targets. We limited our study to the case in which each agent has a single
resource: an intruder and a patroller for the attacker and the defender, respectively. The main contribution of our work has
been the development of algorithmic techniques for the computation of the leader-follower equilibrium in large instances
of PSGs.

Differently from the state of the art in security games, in our setting the leader’s commitment is directly in behavior
strategies and the problem to compute a leader-follower equilibrium can be formulated as a bilinear mathematical pro-
gramming problem. The non-linearity is due to the presence of Markovian constraints introduced for dealing with infinite
horizon. This makes the computation of the equilibrium a hard problem to solve even for small settings. To get around this
limitation we developed specific techniques to find an equilibrium in pure strategies, when possible, and to reduce the size
of the game instances, when we need to resort to mixed strategies.

The computation of an equilibrium in pure strategies for PSGs can be formulated as a variant of the TSP. Although it is
NP-complete, we showed that an efficient algorithm can be designed by resorting to constraint programming. The compu-
tation of a mixed strategy equilibrium is much harder and is tractable in practice only in the case of first-order Markovian
strategies. We designed reduction techniques based on the removal of dominated strategies and on utility lossless and utility
loss abstractions (these techniques constitute an original contribution to security games). In this way, we drastically reduce
the size of the game and can solve large instances. Furthermore, we showed that, in some cases, first-order Markovian
strategies produce solutions whose quality is comparable with that of optimal (high-order) solutions.

Several issues are worth further investigation. The first one is the improvement of our model and techniques for the
specific patrolling problem we studied. The model could be extended along the following directions: the exploitation of
multiple resources for the attacker and the defender (preliminary results are reported in [15]), the refinement of the move-
ment models of the intruder and of the patroller, and the refinement of the patroller’s sensing capabilities. Results along this
direction have been presented in [13], where the intruder is refined by introducing a more realistic movement model and
restricting its observation capabilities. Moreover, it would be interesting to study new algorithms to generate abstractions
that keep into account also the defender’s expected utility [10], thus searching for the best abstraction for a given trade-off
between computational time and expected utility. The second issue for future work is the application of the PSG model to
novel applications. We are currently exploring two applications: the patrolling by active mobile cameras (preliminary results
are reported in [16]) and computer security. A third issue is the employment of some of the techniques proposed in this
paper to problems different from PSGs. For instance, our abstractions could be used for general security games on graphs to
speed up the generation of optimal schedules preserving the expected utility.

Appendix A. Extensions and refinements
A.1. Formulation with arbitrary |

We provide a generalization of the formulation presented in Section 3.3.1 to compute intruder capture probabilities
when the history length [ is arbitrary. Let us introduce some notation. We denote by H(l) the space of all the possible
histories h with length | whose first and last vertices are h! and h!, respectively. With a slight overload of notation, we
denote with k=1 and h~! the histories obtained from h by removing its first and last vertices respectively. We introduce
the notion of adjacent histories. Given a history h the set of all its adjacent histories is AH(h) = {hy € H(), h~! = hx"}.
For example, given the environment of Fig. 1 and the history of length 5, h = (06, 01, 02, 03, 07), a history adjacent to h is
hy, = (01, 02,03, 07, 08). The general formulation is the following:

apj=0 YheH(), jeV (30)

Y anj=1 VheH( 31)
jev
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anj<a(h,j) YheHW), jeV (32)
)/h1”h2 = ah1,h'2 VteT, h e AH(hy), (33)
Vs = 2 nm o) YWe{2....dO), teT, hihy e HO), hy #t, (34)
hxeAH (hy)
té¢hy
Pe(thp=1— Y yhdl(t) " VteT, hy e H() (35)
hyeH ()
tehy

The meaning of the constraints is similar to that of the corresponding constraints of Section 3.3.1.
A.2. Reducing the number of variables and constraints

Constraints (1)-(6) can be rewritten in a more efficient way for reducing the number of variables and constraints. We
start by giving the intuition with an example.

Example A.1. Consider enter-when(14,12) in Fig. 1. Focus on the event in which the patroller starting from 12 reaches 12
after 2 turns without passing through 14 and call Vlz 12 the probability associated with it. If this event happens, then the
probability with which the patroller reaches 14 by d(14) = 9 turns is zero, because the distance between 12 and 14 is 9
and only 7 turns are left, and therefore the intruder cannot be captured. As a result, in the computation of the capture
probability related to enter-when(14, 12), we can safely discard all the events following the one associated with y122',1142.

Consider action enter-when(t, h) with [ = 1: when the attack to ¢ is started, the patroller is in vertex h and, in order to
capture the intruder, it has to visit target t at least once in the following d(t) turns. In such scenario, a sufficient condition
for a successful intrusion is the following: if after some turns, say p, the patroller has not yet visited ¢t and occupies a vertex
i such that p +dist(i, t) > d(t), then the intrusion has success, where dist(i, j) is the shortest distance between two vertices
i and j. In other words, if the realization of the patroller’s path drove it in a vertex from which t cannot be reached by its
penetration time, the intruder cannot be captured at all. We can easily determine the minimum value of p for a target t
when the patroller occupies a generic vertex i as p(i, t) =d(t) — dist(i, t) + 1. We can now reduce the number of variables
of the form yh'f”]ft that are included in the computation of P.(t, h) by setting p(j,t) as the upper bound of index w. To do
this, constraints (5) and (6) are replaced with the following ones:

yl."’;.’t= Z (v ”ax,j), teT,i,jeV, j#t, Ywe{2,...,p(j.0)} (36)
xeV\{t}
wp(x,t)
P30t Jt
Pc(t,h):1—< D74 A D DD DS A aj,x> VteT, heV (37)
JjeV\{t} jeV\{t}w<p(j,t)—-1 xeV\{t}
w2p(x,t)

Constraints (36) are the same as constraints (5) with the addition of the upper bound o(j, t) on the w index of each yit’;‘[
variable. The term enclosed between parentheses in constraints (37) is the success probability of an action enter-when(t, i).
Its first addendum accounts for all the path realizations that start from i and end in a vertex j exactly after p(j,t) turns.
The second addendum accounts for all the path realizations that end in a vertex x at a turn w > p(x, t) given that at turn
w — 1 they visited a vertex j without having reached the corresponding upper bound p(j, t). The exact number of variables
and constraints eliminated by this refinement strongly depends on the specific instance of the PSG. From our experimental
evaluations, we observed that, on average, both the number of variables yif”;’t and the number of constraints approximately
halve.

A.3. Capture probability formulation with intruder movements

In this section we provide an extension that considers a more realistic movement model for the intruder. We assume
that, when performing an attack, the intruder follows some path starting from an access vertex and ending in a target.
For the sake of simplicity, we denote with ¢ the length of a path and we assume that the intruder can disappear from a
target after a number of turns equal to the penetration time of that target. (Modeling situations in which the intruder, once
completed an intrusion, escapes from the environment following another path is an easy further extension of the results
presented in this section.) We call P the set of all possible paths and we denote with p € P a single path whose ith vertex
is p!. The actions available to the intruder now are defined as enter-when(p, i), namely attack following path p as soon as
the patroller is in vertex i. Performing such action, the intruder will spend ¢ turns to cover the path and d(p%) turns to
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complete the intrusion in the target and, therefore, it will be detectable for £ +d(p®) turns. Assuming that p% = p® if w > ¢,
the capture probabilities can be computed by replacing constraints (4)-(6) of Section 3.3.1 with the following ones:

vl =ij VpeP, ieV, jeV—{p'} (38)

yij’;’p: Z (y,."’;_l’pax,j) vwel2,....,e+d(p")}, peP, i, jeV, j#p* (39)
xeV—{pw-1}

Pc(p,i) = Z )/ffd(pe)’p VieV,peP (40)
jev—{p4}

A.4. Capture probability formulation for graphs with arbitrary weights

In order to compute the intruder capture probabilities when graphs have edges with arbitrary weights, we need the
following constraints that capture the possibility that traversing arcs can require more than one turn:

ajj<d(,j) Vi, jeV (41)
v =iy VteT i jev, j£t (42)
ot = Yoo () ywel2..pGn) teT i jeV, j£t (43)
xeV\{t}
w<p(x.0)

w2e(i,x)+e(x, J)

Pet.)=1— Y yfI0t— 3 3 Wt N gy, VteT.ieV (44)

jev\ie JeV\ith w<p(i-1 xeV\(t)
w2e(i.j)+p(x.0)

Substituting the above constraints to constraints (3), (4), (36), and (37), respectively, in Formulations 3.7, 3.8, and 3.9 we
can calculate the equilibrium patrolling strategies.

Using graphs with arbitrary weights makes the patroller movement model more expressive, allowing one to capture the
time spent in movements. In order to make this model even more expressive, we could combine arbitrary weight graphs
with the model used in [3], where the patrolling robot has a heading and changing the heading requires one turn during
which the robot stays in the same vertex. The resulting model would lead to define the states of the patroller as a pair:
a vertex and an orientation. This more realistic model has the drawback to increase the number of patroller’s states and,
therefore, it would make finding a leader-follower equilibrium harder.

A.5. Removing attacker’s dominated strategies with abstracted games

The algorithm to remove the attacker’s dominated strategies in the abstracted game is a simple variation of the algorithm
presented in Section 5.1.2. We report it as Algorithms 9 and 10.

Algorithm 9: INTRUDER_DOMINATION

1 for eacht € T do

VWO NS U1LhWN

-

tabu(t) = {}

for eachv e V do
domination(t,v) =V

L delay(t,v) =0

EXPAND(t, t, {t}, 0)
for each v e V do
for each w € domination(t, v) do
if dist(v, w) < delay(t, w) then
L |_ domination(t, v) = domination(t, v) \ {w}

for eacht € T do

tabu(t) = {v € V |Vt 3t’, t € domination(t’, v), ua(penetration-t) < u,(penetration-t’)}
nondominated(t) =V \{UveV\([) domination(t, v) U tabu(t)}

Algorithm 9 works exactly as Algorithm 5 except for the following points. In Step 2 it defines a variable delay(t, v) =0,
in Step 3 the length of the paths is measured in terms of temporal cost, in Step 5 for each vertex 1n(q) we consider the
largest number of turns (i.e., the delay) the patroller must spend along the abstracted arcs to reach 7n(q), and in Step 6 the
set domination is reduced considering also the delay delay(t, v). In particular, focusing on this last step, given a target t
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Algorithm 10: ExPAND(V, t, B, depth)

N ={f | father(v) # n(f) #n(v), am(f),n(v)) =1}
for each f € N do

\‘ domination(t, n(f)) = domination(t, n(f)) N n(B)

if dist(n(v), n(f)) > 1 then
| delay(t, n(v)) = max{delay(t, n(v)), dist(n(v), n(f)) — 1}

b WN =

a

if depth < d(t) then
for each f € N do
| ExeanD(f,t,{B U f}, depth+ 1)

®© N

and domination(t, v) computed as described in Steps 3-5, a vertex v dominates v’ only if delay(t, v) < dist(v, v’). Indeed,
if delay(t, v) > dist(v,v’), we have not any guarantee that the capture probability of enter-when(t, v) is smaller than the
capture probability of enter-when(t, v’) with a delay of delay(t, v’).

Appendix B. Proofs
B.1. Proof of Proposition 3.11

Consider the setting of Fig. 1 with the following penetration times:

d(06) = 14, d(08) =18, d(12) =23, d(14) =22, d(18) =18

This PSG admits a leader-follower deterministic patrolling strategy where the patroller follows a cycle over the targets
moving along the shortest paths (i.e., 14, 08, 06, 18,12, 18, 06, 08, 14). The best intruder’s action is stay-out independently
of the value of €, otherwise it would be captured with a probability of one. It can be easily observed that this patrolling
strategy implies [ = 2. Suppose to apply Formulation 3.8 to such a game. We can show that we can always find a value
of € such that there is no patrolling strategy with [ =1 such that stay-out is the intruder’s best response. Consider action
enter-when(06, 23), the associated capture probability is always smaller than one when I = 1. Indeed, the values «/11; with
i € {06, 12,18} are strictly positive to assure that the patroller can cover all the targets. Then, by Markov chains, it follows
that the probability that the patroller reaches vertex 06 starting from vertex 23 within 9 turns is strictly smaller than
one. We can always find a strictly positive value of € such that, when the patroller follows the strategy with [ =1, the
intruder strictly prefers to attack a target rather than not to attack. Since the intruder will attack and the probability of
being captured is strictly lower smaller one, the utility expected by the patroller from following the strategy with [ =1 will
be strictly smaller than that expected utility from following the deterministic equilibrium strategy with [ = 2.

B.2. Proof of Theorem 3.13

No first-order Markovian leader-follower equilibrium strategy can provide less than 0.5-)"; v4(i). Assume by contra-
diction that a leader-follower equilibrium strategy o* gives less than 0.5 ; vq(i). Then there is a target t such that
va(t) > 0.5->"; vq(i). If the defender covers only such target with a probability of one, it would gain at least 0.5-)"; vq(i).
Therefore, o* cannot be a leader-follower strategy and we have a contradiction.

We now show that efficiency % can be arbitrarily achieved. Consider a setting with two targets t; and t, both with
penetration time equal to d and value, for the defender, equal to M. Assume that the topology is linear with the two targets
as extreme vertices. Assume that the number of vertices (including targets) is 2d — 2. This setting admits a deterministic
equilibrium strategy and therefore the optimal high-order strategy gives the defender 2M. The first-order Markovian leader-
follower equilibrium strategy is such that, as d — +o0, the capture probability of enter-when(ty, t;) and enter-when(t,, t1)
(i.e., the two best responses) go to zero. Therefore, the defender’s expected utility approaches to M and the efficiency is
arbitrarily close to .

B.3. Proof of Theorem 4.4

We prove the NP-completeness by reducing the Directed Hamiltonian Circuit problem (DHC) [49] to the DET-STRAT
problem. DHC is the problem of determining if a Hamiltonian path, i.e., a path that visits each vertex exactly once, exists in
a given directed graph. This is a well-known NP-complete problem. Let us consider a generic instance of the DHC problem
given by a directed graph Gy = (Vj, Ap) where Vj, is the set of vertices and Ay is the set of arcs. In order to prove that
DHC can be reduced to the DET-STRAT problem, we show that for every instance G, of the DHC problem an instance Gj of
the DET-STRAT problem can be built in polynomial time and that, by solving the DET-STRAT problem on G}, we obtain also
a solution for the DHC problem on Gj. An instance G = (Ts, As, Ws, ds) can be easily constructed from G, in the following
way: Ts = Vj, As = Ap, for every v € T; we impose d(v) = |Vy| and wg(v,v’) =1 for all v, v’ € Ts. It is straightforward to
see that a solution of G, if it exists, is a Hamiltonian cycle. Indeed, since the relative deadline of every target is equal to the
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number of targets, a deterministic equilibrium strategy should visit each target exactly once, otherwise at least one relative
deadline would be violated (being ws(v,v’) =1 for all v, v’ € Ts). Therefore, computing the solution for G} provides by
construction a solution for Gy or, in other words, the DHC problem can be reduced to the DET-STRAT problem, proving its
NP-completeness (the proof is completed by noting that it is trivially polynomial to verify that a given sequence of vertices
is a solution of the DET-STRAT problem).

B.4. Proof of Theorem 4.5

In order to prove the theorem it is sufficient to prove that, if a problem is solvable, then there exists a solution o in
which there is at least a vertex that only appears once, excluding o (s). Indeed, if this statement holds then the maximum
temporal length of o is bounded by d(i) where i is the vertex that appears only one time in o. It easily follows that, in the
worst case, the maximum temporal length of o is max;er{d(t)}.

We now prove that, if the problem is solvable, then there is a solution in which at least a vertex appears only once.
To prove this, we consider a solution o wherein o (1) is the vertex with the minimum relative deadline, i.e., o (1) =
arg mingc7{d(t)}. (Notice that this assignment does not preclude finding a solution.) We call k the minimum integer such
that all the vertices appear in the subsequence o (1) —o (k). We show that, if the problem is solvable, then it is not necessary
that vertex v = o (k) appears again after k. A visit to v after k would be observed if either it is necessary to pass through v
to reach o (1) or it is necessary to re-visit v, due to its relative deadline, before o (1). However, since all the vertices but
v =0 (k) are visited before k, all the vertices but v can be visited without necessarily visiting v. Furthermore, the deadline
of o (1) is by hypothesis harder than o (k)'s one and then the occurrence of v = o (k) after k is not necessary. Therefore,
vertex o (k) occurs only one time.

B.5. Proof of Theorem 4.6

We initially prove the soundness of the algorithm. We need to prove that all the solutions it produces satisfy con-
straints (10)-(14). Constraints (10), (11), and (14) are satisfied by Algorithm 3. If at least one of them does not hold, no
solution is produced. The satisfaction of constraints (12) is assured by Algorithm 4 in Step 3, while the satisfaction of
constraints (13) is assured by Algorithm 4 in Steps 6 and 9.

In order to prove completeness we need to show that the algorithm produces a solution whenever at least one exists.
In the algorithm there are only two points in which a candidate solution is discarded. The first one is the forward checking
in Algorithm 4. Indeed, it iteratively applies constraints (13)-(14) to a partial sequence o exploiting a heuristic over the
future weights (i.e., the time spent to visit the successive vertices). Since the employed heuristic is admissible, no feasible
candidate solution can be discarded. The second point is the stopping criterion in Algorithm 3: when all the vertices occur
in o (at least once) and the first and the last vertex in o are equal, no further successor is considered and the search
is stopped. If o satisfies all the constraints, then o is a solution, otherwise backtracking is performed. We show that, if
a solution can be found without stopping the search at this point, then a solution can be found also by stopping the
search and backtracking (the vice versa does not hold). This issue is of paramount importance since it assures that the
algorithm terminates (in Section 4.4.2 we provide an example in which, without this stopping criterion, the search could
not terminate). Consider a o such that o (1) = o (s) and including all the vertices in T. The search subtree following o (s)
and produced by the proposed algorithm is (non-strictly) contained in the search tree following from o (1). This is because
the constraints considered by the forward checking from o (s) on are (non-strictly) harder than those considered from o (1)
to o (s). The increased hardness is due to the activation of constraints (13) that are needed given that at least one occurrence
of each vertex is in o. Thus, if a solution can be found by searching from o (s), then a shorter solution can be found by
stopping the search at o (s) and backtracking. This concludes the proof of completeness.

B.6. Proof of Theorem 5.1

Call z a vertex that is not on any shortest path between any pair of targets. If a strategy og prescribes that the patroller
can make action move(z) with a strictly positive probability, then it can be easily observed that, if the patroller does not
make such action, it cannot decrease its expected utility. Indeed, the intruder capture probability P.(t,x) for any t € T and
x € V cannot decrease since visiting z would only introduce an unnecessary temporal cost.

B.7. Proof of Theorem 5.2

The proof is trivial. When the patroller moves along Q for going from t; to t,, the intruder capture probabilities are not
smaller than in the case in which the patroller moves along P.

B.8. Proof of Theorem 5.3

The idea is that by setting «(i,i) =0 for every i € V \ T, the intruder capture probabilities do not decrease. We consider
a simple situation with two vertices adjacent to j, but the same argument can be applied to situations in which j has any
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Fig. 19. Example used in the proof of Theorem 5.3.

number of adjacent vertices. Consider Fig. 19 where all vertices are not targets. Given o2 01, @02,02, ®02,03, the probability

to reach 01 from 02 after an infinite number of turns is ]“02 0L “while the probablllty to reach 03 from 02 after an infinite

0‘02,02 =0, and &g, o3 =

02,03
number of turns is =, 0 . By setting “02,01 = m, m the probabilities to reach 01 and

03 from 02 do not decrease for any possible number of turns. Therefore, we obtain the thesis. Of course, it is easy to see
that the same does not hold when we set «; ; =0 withi € T.

B.9. Proof of Theorem 5.6

We prove the ‘if part. (i) and (ii) imply (1 — Pc(E,1))ua(penetration-t) < (1 — P¢(S, j))ua(penetration-s) for every
fully mixed strategy oq4. By continuity, with non-fully mixed strategies we have (1 — P.(f,i))ua(penetration-t) < (1 —
P¢ (S, j))ua(penetration-5), that, since u,(intruder-capture) is non-positive, implies the definition of dominance.

We prove the ‘only if' part of (i). For all the possible patrolling settings, if u,(penetration-t) > u,(penetration-3s), it is
possible to find a fully mixed strategy o4 such that EU,(enter-when(t, i)) > EUa(enter-when(s, j)) in the following way. We
set all the probabilities leading to § from j equal to 1 —€ with € > 0 arbitrarily small. If the path connecting t to iis
not strictly contained in the path connecting s to j, then we can set some probability in the path connecting t to i equal
to € and thus (1 — P¢(,i)) ~1 and (1 — PcGs, 7)) ~ 0, satisfying the previous inequality. If the path connecting ttoiis
strictly contained in the path connectmg 5 to j, we have (1 — P(t, 1)) < (1—P¢(3, J)). However, we can set the probabilities
leading to § from f equal to 1— €’ such that P (s, 7) > (1 —€)*P.(t, i) where k is the distance between f and 5. It is always
possible to find an €’ such that P.(3, j) — Pc(t i) is arbitrarily small and, since the difference between u,(penetration-t) and
ua(penetration-5) is finite, EU,(enter-when(t, i)) > EU, (enter-when(s, j)).

‘We prove the ‘only if part of (ii). If there exists a strategy oq such that P¢(t,i) < Pc(3, j), then the path connecting f
to i is not strictly contained in the path connecting s to j. In this case, we can find a oq (as we discussed above) such that
(1 = Pc(t,i)) ~1 and (1 — Pc(5, j)) ~0, and therefore action enter-when(t, i) is not dominated.

B.10. Proof of Theorem 5.10

The proof is trivial. The intruder’s action enter-when(t, t) being dominated, the intruder will never enter t when the
patroller is in t. Therefore, setting oy = 0, the probability that the intruder will be captured when it enters ¢ will never
decrease.

B.11. Proof of Theorem 5.18

The proof has two steps. In the first one, we show that, after the application of the lossless abstractions, the set of
intruder’s dominated strategies is left unchanged, and therefore we can focus only on the dominant strategies. In the second
one, we show that, for any strategy o in the non-abstracted game, we can find, by solving the abstracted game, a strategy
o’ that gives the patroller a utility not smaller than that given by o. With abuse of notation, we denote by P.(x, y, z) the
probability that the intruder is captured after z turns once it entered vertex x when the patroller was at vertex y.

We prove the first step by showing that in the abstracted game the intruder’s probabilities to be captured when it takes
a dominated action (in the non-abstracted original game) are larger than when it takes a dominant action (in the original
game). Exactly, given an abstraction over a pair of vertices i, j and called k a vertex belonging to the shortest path between
i and j, we need to prove that, for every target t and dom(k, t):

Pe(k,t,d(t)) = Pc(dom(k, t),t,d(1))

By applying our abstractions, we have:

Pc(k,t,d(t)) =max{Pc(i,t,d(t) — dist(k, 1)), Pc(j, t,d(t) — dist(k, j))}
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and
d(t)—dist(i,t)
Pc(dom(k, t),t,d(t)) = max: > Pr(dom(k,t).i,h) - Pe(i.t,d(t) —h),
h=dist(dom(k,t),i)
d(t)—dist(j,t)
> Pr(dom(k,t), j,h) - Pc(j, t,d(t) —h)}

h=dist(dom(k,t), j)
Since dist(dom(k, t), j) > dist(k, j) and dist(dom(k, ), i) > dist(k, i):

d(t)—dist(i,t) d(t)—dist(j,t)
Pc(k,r,d<t>)>max{ Y Prk i hy- Pe(istd@®) —h), Y Pr<k,j,h>-Pc(j,r,da)—h)}
h=dist(k,i) h=dist(k, j)

> Pc(dom(k, 1), t,d(t))

We prove the second step. Consider the basic situation of Fig. 9. Suppose that probabilities «o1,02, ®02,01, ®02,03, ®03,02
constitute a part of a leader-follower equilibrium. We can show that we can always find values of «o1,03, 03,01 such that the
capture probabilities in the abstracted game are not smaller than those in the non-abstracted game. Assign ®o1,03 = 01,02
and 03,01 = 03,02 Assume for simplicity that, once the arc (01, -) is traversed, the probability to come back to 01 is equal
to zero. The probability to reach 03 from 01 within 2 turns in the abstracted game is o1,03. The probability to reach 03
from 01 within an infinite number of turns in the original game is:

+00

I
01,02+ (1 — @02,01) Y_ (01,02 - @02.01)' =
1=0

01,02 - (1 —@o2,01)
1 — ap1,02 - ®02,01

1—002,01 01,02 (1—-002,01) : : :
Tor o2 a0 < 1 we have that a0 oo < 901,03 and therefore the abstraction preserves the optimality of

the solution. Given an arbitrary information lossless abstraction, we can apply iteratively the above procedure showing that
computing equilibrium strategies in the abstracted game allows one to find strategies as good as those in the original game.

Being 1=

B.12. Proof of Lemma 6.1

If a patrolling strategy is inconsistent, then all the best response constraints related to the attack of the targets that are
not patrolled are not active. This is because the expected utility of the attacker is larger than the value of the non-patrolled
targets. As described in Section 6.2, solving the game in which the non-patrolled targets are removed from G is equivalent to
substitute the best response constraints related to the non-patrolled targets with new relaxed constraints. These constraints
being relaxed, the optimal solution is at least good as in the initial problem.

B.13. Proof of Lemma 6.2

The proof is by contradiction. Assume that G(T.) admits a consistent solution. Assume, by contradiction, that a sub-
partition T, C T, leads to better consistent solutions. Consider targets T \ T,. These targets are not attacked in the solution
of G(T/), otherwise the solution of G(T.) would be worse than that of G(T.), and the associated capture probabilities are
zero. However, if targets T, \ T, were not attacked in the solution of G(T;), they would not be attacked neither in G(T.)
and therefore the defender could improve its utility by not patrolling such targets, but this leads to a contradiction.

B.14. Proof of Theorem 6.3

The algorithm is optimal because it enumerates all the possible partitions of targets in T, and T_. except considering
sub-partitions of T, when solving G(T.) returns a consistent strategy. By Lemma 6.2, these sub-partitions cannot contain
better solutions than that associated to G(T.).

Appendix C. Experimental results tables

Table 2
Computing a deterministic patrolling strategy: experimental results for finding a deterministic patrolling strategy with the most significant configurations
of the algorithm (we set a time deadline of 10 minutes). Best configurations are in bold.

n 3 4 5 6 7 8 100 250 500
Bminy term (%) 100 100 100 99.8 99.6 99.5 98.9 96.6 90.2
RTB time (s) <0.01 <0.01 <0.01 0.32 010 0.05 0.16 0.87 5.50
ISC dev (s) <0.01 <0.01 <0.01 517 178 0.96 3.52 14.47 30.28
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Table 2 (continued)

n 3 4 5 6 7 8 100 250 500

IFC max (s) <0.01 <0.01 <0.01 98.00 35.00 19.00 78.26 316.9 413.94
min (s) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.01 0.07
suc (%) 60 58 62 59 61 60 61 63 64

hy term (%) 100 100 100 98.5 97.5 96.5 95.1 55.1 9.8

LSC time (s) <0.01 <0.01 0.11 0.09 0.16 0.02 134 2.52 4.66

IFC dev (s) < 0.01 <0.01 1.64 1.70 173 0.18 6.19 16.75 51.62
max (s) <0.01 <0.01 32.00 33.00 24.00 2.00 93.36 513.66 590.87
min (s) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.01 0.07
suc (%) 60 58 62 59 62 62 62 78 92

hy term (%) 100 100 99.0 97.2 96.7 95.5 94.0 53.0 8.9

IFC time (s) <0.01 0.44 3.65 0.14 0.26 0.01 135 341 5.94
dev (s) <0.01 8.68 38.89 2.24 2.36 0.16 39.32 18.02 55.14
max (s) < 0.01 173.55 594.10 43.03 31.86 2.09 561.95 501.72 582.77
min (s) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.01 0.07
suc (%) 60 58 62 59 63 63 63 80 93

hminv term (%) 100 100 100 96.7 96.0 95.5 95.0 933 86.2

RTB time (s) <0.01 <0.01 0.34 2.98 0.16 0.01 0.30 1.00 6.19

LSC dev (s) <0.01 <0.01 6.29 33.77 224 0.11 6.50 15.32 35.77
max (s) < 0.01 < 0.01 125.03 519.75 42.22 241 145.22 366.42 498.04
min (s) < 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.01 0.07
suc (%) 60 58 62 60 63 63 63 63 67

hy term (%) 100 100 100 95.4 93.9 92.5 91.2 52.4 7.7

LSC time (s) <0.01 <0.01 0.79 3.04 0.30 0.03 1.36 3.48 5.83
dev (s) <0.01 <0.01 13.58 24.32 2.77 0.21 39.53 18.46 55.65
max (s) < 0.01 <0.01 270.03 303.72 41.53 2.83 566.04 531.64 596.42
min (s) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.02 0.01 0.07
suc (%) 60 58 62 61 63 64 64 82 94

hr term (%) 100 100 98.7 94.2 93.0 91.8 90.3 51.0 71
time (s) <0.01 7.45 245 478 138 0.14 137 3.74 6.18
dev (s) <0.01 55.45 28.61 4213 9.96 1.03 6.28 18.45 56.80
max (s) <0.01 556.92 506.72 496.84 140.31 12.86 93.26 516.72 576.52
min (s) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.02 0.01 0.07
suc (%) 60 58 62 61 63 64 65 83 95

hy term (%) 100 99.2 91.0 81.1 75.3 69.0 39 2.3 15

LSC time (s) <0.01 7.45 245 4.78 138 0.14 0.10 0.01 0.07

IFC dev (s) <0.01 55.45 28.61 4213 9.96 1.03 <0.01 <0.01 <0.01
max (s) <0.01 548.41 505.74 497.46 140.11 12.01 <0.01 0.01 0.07
min (s) <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 <0.01 0.01 0.07
suc (%) 60 58 65 <0.01 <0.01 <0.01 <0.01 0.01 0.07

hy term (%) 100 99.2 88.0 78.0 71.7 65.0 0.0 0.0 0.0
time (s) <0.01 742 2.61 512 1.61 0.20 - - -
dev (s) <0.01 55.23 28.66 42.65 10.57 1.29 - - -
max (s) <0.01 548.41 505.74 497.46 140.11 12.01 - - -
min (s) < 0.01 <0.01 <0.01 <0.01 <0.01 <0.01 - - -
suc (%) 60 58 67 71 74 86 - - -

Table 3

Computing a non-deterministic patrolling strategy in open perimetral settings: number of candidate best responses for the basic case (without any reduc-
tion) and the dom case (once dominated strategies have been removed).

Number of Percentage of targets/vertices (8)

E’e)f“ces 10% 20% 30% 40% 50%

n

basic dom basic dom basic dom basic dom basic dom

10 10 2 20 2 30 3.8 40 4 50 4.6
20 40 2 80 3.2 120 4 160 4.8 200 6
30 90 3.4 180 4.4 270 4 360 5.28 450 5.8
40 160 2.8 320 5.4 480 5.2 640 7 800 9.2
60 360 5 720 7 1080 7 1440 7.8 1800 7.6
80 640 6 1280 6.2 1920 8.6 2560 8.2 3200 8

100 1000 5.6 2000 5.8 3000 9.4 4000 8.6 5000 9.2

130 1690 11.8 3380 7.2 5070 7.8 6760 9 8450 9.2

160 2560 6.6 5120 8.4 7680 7.4 10,240 11.2 12,800 9

200 4000 6.2 8000 8.8 12,000 7.4 16,000 10 20,000 11.8
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Table 4
Computing a non-deterministic patrolling strategy in open perimetral settings: number of remaining vertices after the application of lossless abstractions.
Number of Percentage of targets/vertices ()
vertices (1) 10% 20% 30% 40% 50%
10 5 5 52 52 5.6
20 6 6.4 6.6 6.4 7.2
30 6.6 7.2 7.8 8 8.4
40 7.2 8.2 8.8 9.6 10.4
60 8.6 9.8 10.2 10.6 10.2
80 9.8 9.2 11 11.8 11
100 10.2 9.4 12.4 11.8 12.2
130 10.4 10.8 11.4 12.2 12.6
160 11.2 12.8 11.8 14.2 13
200 11 12.75 11.5 14.4 15.4
Table 5

Computing a non-deterministic patrolling strategy in open perimetral settings: computational times and standard deviations (in parentheses) with zero-sum
(top line) and general-sum (bottom line) settings.

Number of Percentage of targets/vertices (8)
vertices (n) 10% 20% 30% 40% 50%
10 basic 0.36 (0.1) 0.39 (0.2) 0.48 (0.2) 0.57 (0.2) 0.77 (0.2)
3.44 (15) 751 (12) 15.01 (2.4) 22.87 (3.0) 39.01 (4.6)
dom 0.05 (0.0) 0.05 (0.0) 0.07 (0.0) 0.08 (0.0) 0.08 (0.0)
0.12 (0.0) 0.16 (0.0) 0.29 (0.0) 0.30 (0.1) 037 (0.1)
lossless 0.08 (0.0) 0.08 (0.0) 0.09 (0.0) 0.10 (0.0) 0.11 (0.0)
0.11 (0.0) 0.15 (0.0) 0.36 (0.1) 0.43 (0.1) 0.57 (0.2)
20 basic 586.34 (1.2) 23.55 (5.9) 46.45 (20) 77.38 (24) 150.99 (84)
23,018 (1502) 1899 (393) 5782 (963) 12,531 (1283) 33,912 (4142)
dom 0.29 (0.1) 0.59 (0.2) 0.39 (0.3) 0.63 (0.3) 0.51 (0.4)
0.61 (0.2) 1.98 (0.6) 1.65 (0.7) 2.89 (0.9) 313 (0.9)
lossless 0.12 (0.0) 0.15 (0.0) 0.15 (0.0) 0.18 (0.0) 0.21 (0.1)
0.22 (0.0) 0.51 (0.0) 0.59 (0.1) 0.82 (0.1) 143 (0.3)
30 basic 122.24 (24) 506.68 (259) 1304 (516) 1941 (638) 2336 (679)
11,731 (1331) - - - -
dom 1.69 (1.5) 147 (1.7) 431 (3.6) 2.59 (4.4) 2.69 (5.7)
5.82 (0.7) 7.01 (1.3) 16.64 (4.2) 14.61 (5.3) 15.91 (5.5)
lossless 0.19 (0.1) 0.23 (0.1) 0.32 (0.1) 0.36 (0.1) 0.42 (0.1)
0.71 (0.2) 1.04 (0.3) 1.52 (0.7) 1.84 (0.8) 232 (0.9)
40 basic 1614.14 (315) - - - -
dom 494 (11) 5.13 (1.9) 6.10 (2.1) 5.85 (2.5) 8.88 (2.8)
13.92 (2.4) 28.18 (3.9) 31.98 (4.1) 4051 (4.7) 79.14 (11.5)
lossless 0.36 (0.1) 0.44 (0.1) 0.80 (0.2) 1.02 (0.2) 1.61 (0.3)
1.01 (0.2) 237 (0.5) 419 (0.9) 721 (1.0) 14.90 (2.7)
60 basic - - - - -
dom 30.66 (18) 2523 (18) 43.24 (20) 22.83 (25) 37.57 (29)
153.30 (26.1) 176,61 (30.2) 302.68 (45.2) 178.07 (54.6) 285.53 (60.4)
lossless 0.67 (0.1) 1.22 (0.3) 1.77 (0.3) 3.10 (0.9) 448 (1.3)
3.35 (0.5) 8.61 (1.0) 13.00 (2.4) 2421 (4.2) 33.84 (6.3)
80 basic - - - - -
dom 4743 (21) 54.68 (24) 83.51 (29) 103.74 (70) -
dom 250.82 (30.1) 341.63 (53.1) 73142 (85.2) 867.42 (93.1)
lossless 1.63 (0.3) 2.64 (0.7) 457 (0.8) 7.66 (1.9) 10.55 (2.5)
9.72 (14) 16.87 (2.6) 39.52 (5.7) 66.42 (9.2) 89.09 (13.6)
100 basic - - - - -
dom 100.25 (36) 120.08 (41) - - -
568.12 (69.4) 701.42 (100.7)
lossless 732 (0.6) 434 (0.7) 10.23 (1.9) 14.89 (2.5) 24.03 (2.9)
40.99 (8.7) 25.17 (6.6) 96.16 (11.5) 128.62 (16.3) 230.63 (42.7)
130 basic - - - - -
dom - - - - -
lossless 432 (0.5) 11.79 (3.0) 24.09 (2.5) 39.25 (3.7) 59.25 (3.6)
50.88 (8.2) 90.47 (14.5) 190.31 (26.6) 366.12 (40.1) 569.72 (237.6)

160 basic - - - - -
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Number of Percentage of targets/vertices (§)
vertices (n) 10% 20% 30% 40% 50%
dom - - - - -
lossless 9.15 (2.1) 28.78 (7.3) 51.25 (7.6) 95.47 (11) 129.95 (15)
60.52 (8.5) 213.50 (32.5) 380.09 (56.2) 1067 (156) 1201 (137)
200 basic - - - - -
dom - - - - -
lossless 2211 (5) 67.24 (9) 117.20 (10) 220.73 (21) 367.06 (51)
14212 (21.2) 561.25 (70.2) 856.29 (99.1) 22,018 (583) 4118 (973)
Table 6

Computing a non-deterministic patrolling strategy in closed perimetral settings: number of candidate best responses for the basic case (without any reduc-
tion) and the dom case (once dominated strategies have been removed) when no abstractions or lossy abstractions are used.

Number of Percentage of targets/vertices (8)
E’e)f“ces 10% 20% 30% 40% 50%
n
basic dom basic dom basic dom basic dom basic dom
16 no 32 22 64 40 77 46 103 55 178 78
lossy 14 10 21 17 44 26 63 37 80 49
20 no 40 25 80 38 120 83 160 102 200 121
lossy 16 18 36 20 49 34 80 52 120 76
24 no 96 32 116 62 173 114 231 121 178 153
lossy 15 17 44 27 70 48 117 69 160 92
28 no 112 55 157 99 236 154 314 195 392 206
lossy 27 22 56 40 117 70 156 94 224 118
32 no 128 78 205 118 308 190 410 204 512 296
lossy 18 18 72 45 126 84 204 113 288 165
44 no 194 117 388 212 580 300 - -
lossy 44 38 96 66 221 123 357 209 528 273
64 no - - - - -
lossy 66 49 208 126 418 238 800 309 1088 556
84 no - - - - -
lossy 112 76 391 192 725 432 - -
Table 7

Computing a non-deterministic patrolling strategy in closed perimetral settings: number of remaining vertices after the application of lossy abstractions.

Vertices Percentage of targets/vertices ()
() 10% 20% 30% 40% 50%
16 7 7.2 8.8 10.6 10
20 7.8 9 8.2 10.4 12.4
24 6 8.8 10.4 13.2 14.4
28 9 10.8 12.8 13.2 16.2
32 6 11.8 14.2 17.6 18.2
44 11.6 12 17.4 21.2 24
64 114 16 224 30.8 34.2
84 14 23 29.8 - -
Table 8

Computing a non-deterministic patrolling strategy in closed perimetral settings: computational times and standard deviations (between parentheses) with
zero-sum (top line) and general-sum (bottom line) settings.

Number of
vertices (n)

Percentage of targets/vertices (8)

10% 20% 30% 40% 50%
16 basic 587 (1.5) 583 (2.5) 7.92 (3.6) 12.85 (4.6) 15.04 (5.1)
198.53 (25.37) 386.75 (42.73) 609.47 (120.34) 1324 (300.08) 1929 (546.99)
dom 3.32(13) 3.79 (2.2) 3.82 (14) 6.40 (2.7) 737 (3.0)
73.04 (12.29) 155.24 (20.64) 178.04 (35.72) 358.00 (80.11) 574.86 (130.73)

(continued on next page)
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Table 8 (continued)

Number of Percentage of targets/vertices ()
vertices (1) 10% 20% 30% 40% 50%
lossy 1.58 (0.4) 0.25 (0.1) 037 (0.2) 1.95 (0.7) 1.44 (0.8)
16.52 (3.75) 425 (2.17) 9.62 (5.63) 72.15 (10.80) 70.56 (11.67)
20 basic 14.89 (4) 20.07 (9) 39.81 (10) 70.07 (25) 93.61 (26)
1190 (167.63) 1725 (238.41) 4521 (550.98) 11,315 (2452) 18,362 (4873)
dom 8.45 (3.0) 5.96 (3.0) 3741 (17) 40.55 (20) 54.87 (21)
380.12 (98.81) 207.54 (50.24) 3007 (784.21) 3952 (996.55) 6426 (1652)
lossy 0.52 (0.25) 0.25 (0.1) 0.64 (0.3) 2.07 (1.6) 551 (2.9)
9.42 (2.43) 4.77 (1.00) 21.53 (4.09) 100.57 (33.72) 419.00 (167.52)
24 basic 65.43 (35) 82.88 (43) 214.00 (51) 33217 (111) 406.66 (101)
6280 (1263) 9421 (3172) 37,009 (9730) 73,962 (23,662) -
dom 39.71 (21) 33.03 (16) 137.96 (30) 111.86 (35) 219.53 (53)
2496 (762) 1875 (540) 14,422 (5927) 13,526 (4227) 30,624 (10,826)
lossy 0.56 (0.2) 0.38 (0.2) 1.94 (1.1) 6.28 (4.1) 1117 (3.5)
9.57 (2.09) 11.58 (3.72) 93.11 (25.82) 433.73 (102.37) 1042 (296)
28 basic 85.46 (0.1) 32544 (2.0) 637.50 (12) 1064.62 (14) 1178 (22)
9562 (3712) 51,938 (27,261) - - -
dom 150.67 (41) 188.01 (101) 330.47 (176) 468.69 (152) 494,90 (282)
8421 (2536) 18,225 (5116) 48,722 (17,428) 78,625 (22,945) -
lossy 0.37 (0.1) 227 (13) 11.69 (3.6) 16.99 (21) 37.39 (41)
8.66 (2.33) 91.72 (19.85) 788.72 (204.57) 1567 (308.63) 4412 (1037)
32 basic 246.38 (92) 706.17 (278) 1774 (392) 1885 (413) 2319 (415)
31,488 (10,535) - - - -
dom 130.46 (84) 346.72 (130) 555.53 (270) 673.56 (339) 1474 (460)
10,140 (3261) 47,420 (17,822) - - -
lossy 0.25 (0.1) 2.57 (1.7) 15.52 (5.9) 61.39 (56) 158.57 (65)
452 (131) 11531 (33.71) 1352 (273.67) 6725 (2.887) 26,735 (8.113)
44 basic 2390 (68) 3306 (964) - - -
dom 794.68 (536) 3076 (1029) 2691 (1122) - -
lossy 474 (21) 6.35 (4.1) 120.51 (65) 515.58 (143) 1494 (981)
180.23 (65.11) 38762 (128.51) - - -
64 basic - - - - -
dom - - - - -
lossy 12.09 (3.9) 208.26 (100) 862.59 (166) 2319 (411) 3276 (534)
572.62 (200.87) 2654 (686.99) - - -
84 basic - - - - -
dom - - - - -
lossy 69.22 (22) 1381 (546) 3261 (853) - -

4862 (1.555)

Table 9
Computing a non-deterministic patrolling strategy in arbitrary settings: number of candidate best responses for the basic case (without any reduction) and
the dom case (once dominated strategies have been removed) when no abstractions or lossy abstractions are used.

Number of Percentage of targets/vertices (8)
E’e)ftlces 5% 10% 20% 30%
n
basic dom basic dom basic dom basic dom
50 no 150 22 250 81 500 237 750 321
lossy 75 8 110 26 202 88 345 163
75 no 300 43 600 91 - -
lossy 136 18 272 53 420 158 638 262
100 no - - - -
lossy 143 49 332 102 560 247 870 271
133 no - - - -
lossy 232 65 468 160 702 303 -
166 no - - - -

lossy 413 79 663 195 - -
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Table 10
Computing a non-deterministic patrolling strategy in arbitrary settings: number of remaining vertices after the application of lossless and lossy abstractions.
Number of Percentage of targets/vertices (§)
vertices (n) 5% 10% 20% 30%
50 lossless 36.25 40.25 40 42
lossy 25.25 21.75 20.25 23.25
75 lossless 51.75 53.5 - B
lossy 34.33 34 28.25 29
100 lossless - - - -
lossy 28.67 33.25 28 29
133 lossless - - - -
lossy 34.33 35.5 27 -
166 lossless - - - -
lossy 57.66 39 - -
Table 11

Computing a non-deterministic patrolling strategy in arbitrary settings: computational times and standard deviations (between parentheses) with zero-sum
(top line) and general-sum (bottom line) settings.

Number of Percentage of targets/vertices (§)
vertices (1) 5% 10% 20% 30%
50 lossless 10.34 (6.8) 210.97 (184.57) 2923 (1479.8) 6972 (4068)
269.13 (35.12) 15,084 (2367) - -
lossy 0.32 (0.14) 139 (1.32) 110.05 (137.67) 1073 (1310)
2.56 (0.53) 33.61 (4.59) 9415 (1089) -
75 lossless 311.14 (285.54) 4615 (6421) - -
13,624 (4852) -
lossy 0.53 (0.3) 53.77 (47.04) 1219 (695.3) 6351 (2898)
9.58 (1.28) 2849 (771) - -
100 lossless - - - -
lossy 6.79 (3.47) 1017 (882.57) 5704 (2741) 4045 (1644)
332.71 (49.31) - - -
133 lossless - - - -
lossy 115.62 (29.72) 3710 (938) 4375 (1399) -
7435 (994) - - -
166 lossless - - - -
lossy 625.82 (296.56) 11,442 (1318) - -
49,055 (11,462) -
Table 12

Defender’s expected utility by using first-order Markovian strategies (with lossless and lossy abstractions) for different zero-sum and (between parentheses)
general-sum settings when there is a non-first-order Markovian deterministic strategy with a value of 1.

Vertices Percentage of targets/vertices (8)

(n) 5% 10% 20%

40 lossless 0.997 (0.998) 0.998 (0.998) 0.999 (0.999)
lossy 0.888 (0.902) 0.920 (0.937) 0.970 (0.965)

50 lossless 0.997 (0.994) 0.998 (0.999) 0.999 (0.999)
lossy 0.848 (0.899) 0.951 (0.976) 0.990 (0.992)

60 lossless 0.997 (0.998) 0.998 (0.994) 0.999 (0.999)
lossy 0.940 (0.952) 0.961 (0.983) 0.981 (0.996)

75 lossless 0.991 (0.989) 0.999 (0.999) 0.999 (0.998)
lossy 0.924 (0.953) 0.977 (0.982) 0.994 (0.997)
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