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Abstract

A new MILP formulation for the Green Vehicle Routing Problem is introduced
where the visits to the Alternative Fuel Stations (AFSs) are only implicitly consid-
ered. The number of variables is also reduced by pre-computing for each couple of
customers an efficient set of AFSs, only given by those that may be actually used
in an optimal solution. Numerical experiments on benchmark instances show that
our model outperforms the previous ones proposed in the literature.
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1 Introduction

In the Vehicle Routing Problem (VRP), fuel autonomy is usually assumed
sufficient to serve customers in every route. However, with Alternative Fuel
Vehicles (AFVs), refuels along the route are needed. Moreover, since Alter-
native Fuel Stations (AFSs) are not widespread on road networks, refueling
stops should be a priori planned to prevent drivers to remain stuck along their
routes. The Green VRP (G-VRP) [1] consists in serving a set of customers
with a fleet of m AFVs that leave fully refueled from a single depot and can
be refueled at AFSs, along their routes. The objective is to minimize the total
travel distance. The refueling time is fixed. A fuel consumption rate (r) is
given and tanks are totally replenished at AFSs. A maximum route duration
(Thnaz) is imposed. The G-VRP is modeled in [1] including dummy copies
of the AFSs to manage multiple visits at the same AFS. Hereafter we refer
to such a formulation as the EMH model. A further formulation in which
the AFSs are implicitly addressed is proposed in [2], together with a Branch-
and-Cut method (hereafter, KK-B&C). In this paper, the G-VRP is modeled
by Mixed Integer Linear Programming (MILP) without cloning AFSs, since
this increases the number of nodes and, consequently, the problem complexity.
The number of variables employed is also reduced by pre-computing for each
couple of customers an efficient set of AFSs, including only those that may be
actually used in an optimal solution. Our formulation is tested on two sets of
benchmark instances taken by [1], showing that it outperforms both the EMH
model and the KK-B&C.

2 A New MILP Model for the G-VRP

The G-VRP is defined on a directed complete graph G = (N, A), where N =
I'U{0}, with I set of customers and 0 the depot, and A = {(i,7) :i € N,j €
N, i # j}. The set F of available AFSs is known. The following data are
given: Vi € NU F,Vj € NUF,i # j, travel time, ¢;;, and travel distance, d;;;
Vi € I, p; is the service time, while Vs € F' it represents the refueling time; )
is the refueling capacity. Our model is based on the computation of the sets
L;; of AFSs that may be convenient for an AFV to move in a feasible way
from i to j, V(i,7) € A. These sets are computed in the following way. Let
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s* = arg minseF:disg%dsjg%{dis +d,;}. At the beginning L;; := F and for each
s € Fif d;s > dis~ and dgj > dg+j or d;s > % or ds; > %, the AFS s is removed
from L;;. Moreover, fijs = tis +ts; — t;; is the detour time of an AFV to visit
s € L;; going from ¢ to j and cZ,-jS = d;s + ds; — d;j is its detour distance. We
model the G-VRP through the following binary variables: routing variables
z;j, V(i,j) € A, equal to 1 if node j is visited just after node i (directly or
through an AFS), 0 otherwise; z;;5, V(i,7) € A, Vs € L;; equal to 1 if AFS
s is employed to go from ¢ to j, 0 otherwise. Moreover, we use the following
continuous variables Vi € N: the residual fuel level y; of AFV at i; the time
7; on which ¢ is reached. The MILP model is detailed in the following:

(1) min Z dijzi; + Z zflj,;zlj,;
(i,j)eA s€L;j
s.t.
(2) Z Zijs < xij V(i) € A
s€L;j
(3) > oawy=1 Viel
JEN:j#i
(4) Z xj = Z x; VjeN
iEN:A] iENA]
(5) Z Zoj <m
JEN#0
(6) > zp<m
FEN#0
(7) T > T+t + pyj).TiJJrZ (fus +ps)zijs—lo(1—xy;) Vie NVjel i#j
seLi
(8) 75 < Tonaw = (b0 +25) = Y (Fjos + 25200 Vi € N\ {0}
s€Ljo
) <D (Q-r-dy)z QU= >z ) Ve LVie it
SE€L;j s€L;j

(10) Yy <wyi—redy+2Q1—zy+ Y z) Vi€LVieNi#j
€Lij

(11) yi > 1 - dio(i0 — Z Zigs) Vi€ T
s€L;j

(12) > oredous<Q Vi€l

s€L;j
(13) vi> Y (redizig) V(,j) € A
eL.

(14) Yo < Q

(15) z; €{0,1} V(i,j) € A

(16) v, >0, ;>0 Vie N

(17) Zijs € {0, 1} V(?j) c A Vs e L,‘_/,'

Fig. 1. New formulation for the G-VRP.

Objective function (1) minimizes the total travel distance. Between each



pair of customers, at most one AFS may be visited (2) while each customer
must be visited exactly once (3). Route continuity is assured by (4). The
number of AFVs is limited by (5)-(6). Arrival time at each node is ruled
by (7) that also exclude sub-tours. Maximum route duration is enforced by
(8). Fuel level, at each node, is ruled by (9)-(10). An AFV, after visiting its
last customer, must have enough fuel to return to the depot either without
refueling (11) or refueling (12). In case of refueling, (13) guarantee the AFV
can reach the selected AFS. The AFVs leave fully recharged from the depot
thanks to (14). Finally, the variables nature is specified in (15)-(16)-(17).

3 Some Numerical Results

We tested the performances of our model on the benchmark instance sets S1
and S3 of [1], each one with 10 instances and every instance with 20 customers,
on average. Both our model and EMH one are solved with CPLEX12.5 with
a CPU time limit of 3,600 s. In the EMH model, for each AFS, m copies are
introduced. Concerning S1, our model optimally solves 7 instances with an
average CPU time of 1,772 s and an average Relative MIP Gap (RMG) of
3.22%. Instead, EMH always reaches the CPU time limit (never certifying the
optimality) with an average RMG of 29.97% and, for one instance, it is not able
even to find a feasible solution. For three instances, it finds the same optimal
value of ours, without certifying its optimality, thus showing that their lower
bound is too weak. Comparing our results with those of KK-B&C (Table
5 of [2]), despite they use a more powerful computer, we detect two more
optimal solutions with a lower average CPU time (theirs is 2,373 s) and with
a lower average RMG (theirs is 3.5%). About S3, our model performs better
than on S1, probably because the greater number of AFSs allows exploiting
better the variables saving given by the non-generation of dummy copies of
the AFSs. Indeed, our model solves to the optimality 9 over 10 instances with
an average CPU time of 1,040 s and an average RMG of 0.68%. While, EMH
always reaches the CPU time limit with an average RMG of 22.42%. On five
instances it is not able even to find a feasible solution within the time limit and
only on two instances, the optimal value is found. Comparing our results with
those of the KK-B&C, two more optimal solutions are found, with a lower
average CPU time (theirs is 1,204 s) and average RMG (theirs is 1.38%).
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