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Abstract—The equivalence of peeling decoding (PD) and Belief
Propagation (BP) for low-density parity-check (LDPC) codes over
the binary erasure channel is analyzed. Modifying the scheduling
for PD, it is shown that exactly the same variable nodes (VNs)
are resolved in every iteration than with BP. The decrease of
erased VNs during the decoding process is analyzed instead of
resolvable equations. This quantity can also be derived with
density evolution, resulting in a drastic decrease in complexity.
Finally, a scaling law using this quantity is established for
spatially coupled LDPC codes.

Index Terms—finite-length performance, spatially-coupled
LDPC codes

I. INTRODUCTION

Recently, it was shown that spatially-coupled low-density
parity-check (SC-LDPC) codes can achieve the channel ca-
pacity of binary-input memoryless symmetric (BMS) channels
under Belief Propagation (BP) decoding [1], [2]. The Tanner
graph of a block code with M variable nodes (VNs), referred
to as the uncoupled LDPC code graph, is duplicated L times
to produce a sequence of identical graphs, where L is the
chain length of the SC-LDPC code. The different copies are
connected to form a chain by redirecting (spreading) certain
edges. The asymptotic analysis of SC-LDPC code ensembles
shows that they exhibit a BP threshold close to the maximum-
a-posteriori (MAP) threshold of the uncoupled LDPC code
ensemble for sufficiently large L [3]. In addition, SC-LDPC
code ensembles can be designed with a linear growth of
the minimum distance with M [4]. Indeed, the minimum
distance growth rate for the coupled LDPC ensemble is often
better than for the uncoupled ensemble [5]. Several families
of SC-LDPC code ensembles are compared in [5], [6] using
asymptotic arguments, namely BP threshold and minimum
distance growth rate.

The performance of finite-length LDPC codes over a binary
erasure channel (BEC) using a BP decoder is analyzed in
[7], [8] by studying an alternative decoder, namely peeling
decoding (PD). Following this approach, the finite-length
performance of SC-LDPC code ensembles over the BEC has
recently been analyzed in [9], [10]. To the authors knowledge,
the single attempt to generalize the PD-based finite-length
analysis to a general message passing BP decoder is due
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to Ezri, Montanari and Urbanke in [11], [12], where scaling
laws are conjectured for (l, r)-regular LDPC ensembles for
the binary additive white Gaussian noise (BIAWGN) channel
and scaling parameters are derived from the correlation of
messages sent within the decoder. However, applying this
analysis to SC-LDPC codes is prohibitively complex.

In this work, we present a finite-length analysis approach
based on BP similar to the one base on PD in [8]. After
showing the equivalence of BP and a particular form of PD
with modified scheduling, we replace the analyzed random
process used to predict the probability of a decoding failure
and examine the decrease of erased VNs per iteration during
the decoding process. We show that our approach predicts the
waterfall performance correctly. Our substitute can also be de-
rived from BP density evolution (DE), which has significantly
lower complexity than graph evolution for PD.

After introducing parallel peeling decoding (PPD), its equi-
valence to BP is shown and we derive a graph evolution
for PPD applied to protograph-based SC-LDPC codes. The
properties shown in [10] are discussed using PPD. We then
introduce and analyze the decrease of unresolved VNs per
iteration and compare it with the number of resolvable check
nodes (CNs) available in each iteration. Finally, we establish
a scaling law based on the decrease of unresolved VNs and
verify the results with simulations.

This paper is structured as follows. Section II introduces
construction and notation. In Section III, we introduce a
modified form of PD called PPD and BP and discuss their
equivalence. After deriving the graph evolution for PPD, we
show exemplary that properties and differences between code
ensembles observed with standard PD can still be observed
from PPD. The analysis of the decoding trajectory based on
resolved VNs per iteration for PPD and BP is discussed in
Section IV. In Section V, we establish a scaling law based on
this random process.

II. SC-LDPC CODE CONSTRUCTIONS

We introduce two types of constructions, randomly cons-
tructed regular codes as proposed in [1], [9], and a construction
based on protographs [10]. After defining the BEC, we define
the residual graph degree distribution after transmission.

We denote vectors and matrices with v = (v1, v2, . . . , vn)
and M, respectively. Extending the notation for unit vectors,
ei,j,k is a vector where all entries are zero except the entries
at positions i,j, and k which are 1, whereas 1 denotes a vector
where all entries are ones. We also define av = av11 a
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where the exponent is set to 0 for any vi ≤ 0. |v| =
∑n
i=1 vi

as L1 norm is the sum of all entries of v. Denote by X =
(X1, . . . , Xn) a vector of n random variables (RVs).

The message passed from CN c to VN v in iteration `
is denoted with µc→v(`). We denote the set of VNs (CNs)
connected to a specific CN c (VN v) with Nc (Nv).

a) Randomly Constructed (l, r, L)u SC-LDPC Codes:
Let there be L uncoupled (l, r) regular LDPC codes where
l is the VN degree and r is the CN degree, r ≤ l, l

r ∈ N.
Each of the L (l, r) regular LDPC codes has M VNs and
l
rM CNs and the codes are placed at L consecutive positions.
The (l, r, L)u code is obtained by spreading l edges of each
VN along consecutive positions, so that each VN at position
u is connected to a CN at positions u, . . . , u + l − 1 and
a chain of connected codes is obtained as depicted with an
example in Fig. 1. When the CNs at each position are chosen at
random, their maximum degree is fixed to r. However, there is
randomness in the number of connections to VNs of a specific
position. Note that there are (l− 1) additional positions at the
end of the chain of coupled codes without any VNs but with
CNs connected to VNs of codes on previous positions of the
chain. For large L, the code rate tends to r(l,r,L)u

= 1− l
r .

+ + + + + + + + + + + +

Fig. 1. Construction of the (l, r, L)u = (3, 6, 4)u coupled protograph with
M = 4 VNs per code. The CNs at positions 3 and 4 are regular and have
degree r = 6.

b) Protograph-based (l, r, L) SC-LDPC Codes: The pro-
tographs as proposed by Thorpe in [13] are first copied N
times before edges of the same type are permuted to avoid
small cycles in the resulting code. Such a protograph can be
represented compactly by its bi-adjacency matrix B, called
the base matrix. Every 1 in B is replaced by an N × N
permutation matrix1. With v VNs in the protograph, M = Nv
VNs are obtained. All possible matrices H derived from all
possible combinations of N ×N permutation matrices give a
code ensemble. The design rate r of this code ensemble can
be directly computed from the protograph since the Tanner
graph of H inherits the degree distribution (DD) and graph
neighborhood structure of the protograph.

+ + + + + + + +

Fig. 2. Construction of the (l, r, L) = (3, 6, 3) coupled protograph.

1Entries > 1 in B, represent multiple edges between a pair of specific node
types. These entries are replaced by a sum of N ×N permutation matrices.

We couple (l, r)-regular LDPC codes according to [3] with
r
l = k ∈ N. L protographs are then connected to an (l, r, L)
coupled protograph by connecting each VN at position u, 1 ≤
u ≤ L to the CNs at positions u, . . . , u + l − 1 as shown in
Fig. 2 for L = 3. Each uncoupled protograph has v = k VNs
and one CN so that we obtain M = 2N VNs per coupled
code after lifting the construction. We obtain a code length
n = kLN bits and obtain a code rate of r(l,r,L) = 1− (L+l−1)

kL .

A. The Binary Erasure Channel

Denote by X(t) ∈ {0, 1} the binary channel input at a
discrete time t and the corresponding channel output Y (t) ∈
{0, 1,∆} where ∆ denotes an erasure. We drop the indices
for time where possible and use s if Y ∈ {0, 1} is known and
solved. A symbol is erased during transmission with proba-
bility ε so that we have P (Y (t) = ∆) = ε. With uniformly

1 1

∆

0 0
1 − ε

1 − ε

ε
ε

X(t) Y (t)

Fig. 3. The binary erasure channel at time instance t.

distributed input X , i.e. P (X = 1) = P (X = 0) = 1
2 , the

capacity of the BEC is CBEC = H(Y )−H(Y |X) = 1− ε.

B. Degree Distribution of the Residual Graph After Transmis-
sion

After transmitting VNs v1, . . . , vn over a BEC, a certain
fraction of VNs is erased as illustrated in Fig. 4. The graph of
edges connected to erased VNs is often called residual graph
since it represents the set of parity equations which remain to
be solved to recover the whole codeword.
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Fig. 4. Residual graph after transmission over a BEC.

To define the degree distribution (DD), we label each edge
in the protograph connecting a different pair of nodes with 1
to m. In the Tanner graph representation of the parity check
matrix H of a code generated by a protograph, we denote the
type a particular edge was copied from with j ∈ {1, 2, . . . ,m}.
We denote the type of a VN with v = (d1, . . . , dm), where



dj ∈ N0 represents the number of edges of type j connected
to this VN type. Similarly, we define the type of a CN by c
and represent the number of VNs (CNs) of type v (c) in the
Tanner graph of H with Lv (Rc). The set of VN (CN) types
in the graph is denoted by Fv (Fc).

Fig. 5 shows the labeling of an uncoupled (2, 4) LDPC
ensemble as an example and possible outcomes of CNs in the
residual graph after transmission. Observe that there are two
edges of type 1 and two of type 2. As discussed in [10], many
combinations of known and unknown edges are possible for a
CN type before transmission. We denote the set of CN types
after transmission with Fc. Note that there are no additional
VN types after transmission so that the set of VN types in the
residual graph is still Fv .

+
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Fig. 5. CN types after transmission.

III. DECODERS FOR THE BINARY ERASURE CHANNEL

Consider transmission over a BEC with erasure probabi-
lity ε. In this section, sequential peeling decoding (SPD), PPD
and BP are introduced. We formulate SPD and PPD in terms of
messages sent, and split the messages sent from VNs to CNs
into forward messages if the CN is connected to the residual
graph, and backward messages if all other VNs connected to
the respective CN are already resolved.

A. Sequential Peeling Decoder
All known VNs of the graph and their connected edges are

removed to obtain the residual graph. A deg-1 CN is a CN
of this residual graph with only one connected unknown VN.
In every iteration `, a single deg-1 CN c is chosen and the
connected VN v is resolved. We remove v and all adjacent
edges to CNs c′ ∈ Nv from the residual graph. To calculate
messages, we have

µc→v(`) =

{
s, if all µv′→c(`) = s, v′ ∈ Nc \ {v}
∆, else,

(1)

for any VN v and any CN c of the graph. If any µc→v(`), c ∈
Nv is resolved, then v is resolved and becomes fixed, and all
outgoing µv→Nv

(`+i) stay resolved in further iterations `+i:

µv→c(`+ 1) =

{
s, if µc′→v(`) = s for some c′ ∈ Nv
∆, else.

(2)

We call µv→c(` + 1) = f(µc′→v(`)), c ∈ Nv \ {c′} the mes-
sages passed forwards from v and µv→c(`+1) = f(µc→v(`))
the message fed backwards. Note that with SPD, µv→c(`+ 1)
is a function of µc→v(`).
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Fig. 6. Decoding using SPD.

An example of SPD is illustrated in Fig. 6 for the residual
graph shown in Fig. 4. Since in every iteration the deg-1 CN
to be resolved is picked randomly, the sequence of residual
graphs for several decoding realizations may differ for a given
transmission realization.

B. Parallel Peeling Decoder
PPD uses a different scheduling than SPD. Instead of

resolving only a single deg-1 CN per iteration, all available
deg-1 CNs are resolved.
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Fig. 7. Decoding using PPD.

Fig. 7 depicts PPD iterations for the residual graph of Fig. 4.
Note that PPD is deterministic since for a given transmission
realization, all available deg-1 CNs are resolved in every step
and thus the sequence of residual graphs does not differ.

C. Belief Propagation Decoder
For BP decoding, we apply iterative message passing as

described in [14], [15]. After initializing the VNs with their
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Fig. 8. Decoding using BP.

corresponding channel output after transmission, messages
are passed from VNs to their adjacent CNs and back again
as illustrated in the example in Fig. 8. The CN function is
identical to PPD. However, every µv→c(`) from VN v to any
adjacent CN c depends only on messages received from all
other adjacent CNs in Nv \ {c} than c:

µv→c(`+ 1) =

{
s, if µc′→v(`) = s for some c′ ∈ Nv \ {c}
∆, else.

Since µv→c(`+1) fed backwards does not depend on µc→v(`),
the messages sent in both directions can differ. BP for Fig. 4
is depicted in Fig. 8. Since all other messages are resolved,
we only show the messages in the remaining residual graph.
BP is also deterministic.

D. Equivalence of SPD and PPD

We compare SPD and PPD. We define stopping sets and
show that with infinitely many iterations, both decoders give
the same result.

Definition III.1 (Stopping Set [16])
A stopping set S is a subset of the set of all VNs of the code
C such that all neighbor CNs of S are connected to S at least
twice.

a) Same result for SPD and PPD: SPD and PPD always
obtain the same decoding result. This can be explained in-
tuitively since decoding on the BEC equals solving a linear
system of equations. Thus, SPD and PPD always fail for un-
derdetermined parts of the system of equations, and therefore
obtain the same decoding result as discussed in [16].

b) Messages sent within S stay erased: Consider using
SPD, PPD, and BP. The CN functions of all three decoders
are identical and the decoders can resolve a VN v connected
to a CN c with µc→v(`) only if all other incoming messages
to c from VNs v′ ∈ Nc\{v} are known in iteration `. All CNs
adjacent to VNs of S are connected to unresolved VNs of S at
least twice. Thus, none of the decoders is able to resolve any
message µc→v(`), v ∈ S, c ∈ Nv sent to any of the adjacent
VNs v ∈ Nc in any iteration `. Note that not only messages
passed within a stopping set S can never be resolved, but also

messages sent from S to the rest of the residual graph can
never be resolved during the decoding process.

Note that PPD consists of a series of (sampled) states of a
particular realization of the random SPD.

E. Equivalence of PPD and BP
According to [14], the erasure probability of every VN

is monotonically decreasing during the decoding process. Di
showed in [16] that an iterative decoder will obtain a specific
solution for a given realization of a codeword transmitted over
the BEC. However, the behavior of different decoders during
decoding is not discussed in detail.

Theorem III.1
Given any transmission realization over the BEC, PPD and
BP recover exactly the same VNs at each iteration.

The full proof is given in Appendix A. As an outline, we
first show that without stopping sets, both PPD and BP recover
exactly the same erased VNs using messages only passed
forwards. We then show that the message fed backwards using
the PPD does not resolve any additional VNs, and thus the two
decoders resolve the same VNs in every iteration if starting
with the same residual graph.

F. Graph Evolution of deg-1 CNs During PPD
Traditionally, the statistical evolution of deg-1 CNs during

PD is used to analyze the finite-length behavior of a given code
ensemble [8], [9]. In every iteration, PPD removes every deg-
1 CN, the respective adjacent VN and all attached edges, i.e.
the probability of removing any deg-1 CN during an iteration
is 1 unlike for SPD. The normalized DD is defined as

lv(`)
.
=
Lv(`)

M
, rc(`)

.
=
Rc(`)

M
, (3)

for all v ∈ Fv, c ∈ Fc. We obtain the sum of deg-1 CNs by

c1(`) =

m∑
j=1

rej
(`). (4)

As for SPD, the threshold ε∗ of an SC-LDPC code ensemble
is given by the maximum ε for which the expected sum of
deg-1 CNs E [c1(`)] is positive for any ` during the decoding
process, i.e. E [c1(`)] > 0, ` ∈ (0,Ω] where Ω is the stopping
time such that all VNs are recovered.

The average error probability is also dominated by the
probability that c1(`) survives as discussed in [8]. We modify
and extend the expected graph evolution of the SPD to adapt
it for PPD and the analysis must take into account solving
multiple deg-1 CNs in every iteration as explained in Appendix
B. For each iteration, we apply the following steps:
• For each VN, calculate the probability that it is connected

to any deg-1 CN;
• Erase all connected deg-1 CNs;
• Update all other connected CNs.
Since we focus only on the graph evolution for protograph-

based codes, Fig. 9 compares simulated results for E [c1(`)]
at ε = 0.45 for the (3, 6, 50) and the (3, 6, 50)u ensemble
averaged over 5000 transmissions. We refer to the phase where
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Fig. 9. Simulated E [c1(`)] for (3, 6, 50) and (3, 6, 50)u at ε = 0.45.

c1(`) is constant as critical phase, and use for it the symbol
c1(∗). Observe that c1(∗) is lower for the (3, 6, 50)u ensemble,
similar to what was observed for SPD in [10]. Thus, more
iterations are needed to recover all VNs which results also in a
longer critical phase. Having a longer critical phase with lower
c1(∗) also explains why the (3, 6, 50)u ensemble performs
worse as observed in [10].

IV. TOWARDS FINITE-LENGTH ANALYSIS FOR BP

The smaller (ε∗ − ε) is, the more iterations are needed for
decoding. As in [12], we define the normalized time τ for the
PPD and BP as

τ = ` · (ε∗ − ε) (5)

so that the previous iteration is τ − (ε∗ − ε).
The initial channel erasure probability of a VN is denoted

with ε. We extend the notation and denote by ε(τ) the average
erasure probability of VNs in iteration τ . Note that ε(τ) can be
calculated in two ways. On one hand, ε(τ) can be calculated
with the evolution described in Section III-F. On the other
hand, we can also apply DE for BP which is discussed in
Appendix C. DE for the BEC has low complexity and is a
common analysis tool.

In general, the complexity of calculating the SPD graph
evolution is much higher than for DE. For each CN type c ∈
Fc, we have |Fc| = 2dc types after transmission considered
during the graph evolution and only dc erasure probabilities.
In total, there are |Fc| CN types to track for graph evolution
whereas for DE, we only need to track the erasure probabilities

0 0.5 1 1.5 2 2.5 3 3.5
0.15

0.2

0.25

0.3

normalized iteration τ

E [c1(τ)]

E [L∆ε(τ)]

Fig. 10. E [c1(τ)] and E [L∆ε(τ)] for (3, 6, 50). Simulated results are
plotted as gray lines for verification.

of m =
∑

c∈F dc edge types. As an example, consider again
the (3, 6, 3) example from Fig. 2 with M = 4000 and ε =
0.45. We have |Fc| = 104 CN types in Fc and therefore
104 CN types need to be tracked during ` = 4500 iterations
of the graph evolution. Using DE, there are only 18 erasure
probabilities to track for the respective edge types of the code
ensemble and we need only 6 iterations.

Denote with ∆ε the change of ε between two consecutive
iterations. In order to compare c1(τ) with the decrease of
erased VNs, we propose to study a random process based on
ε(τ)

L∆ε(τ) = L[ε(τ − (ε∗ − ε))− ε(τ)] (6)

which refers to the number of variable nodes resolved per
BP iteration of a SC-LDPC code ensemble with L coupled
codes, normalized by M as done in (3). This decrease in
erasure probability is closely related to the convergence speed
[17] where the velocity of the propagation wave is measured.
There, in place of the total decrease in erasure probability per
iteration, it was analyzed how many iterations `+ I, I ∈ N, it
takes until the erasure probabilities of the VNs at code position
u + 1 are reduced to the erasure probabilities of the VNs at
positions u in iteration `.

Fig. 10 shows the analytical predictions of E [c1(τ)] and
E [L∆ε(τ)] verified with 5000 transmissions for a (3, 6, 50)
code with M = 4000. Simulation and prediction fit accurately.
Observe E [c1(τ)] ≥ E [L∆ε(τ)] in the critical phase. This
motivates the use of ∆ε(τ) as a surrogate for c1(τ) and we
can state that in fact, c1(τ − (ε∗ − ε)) is an upper bound of
L∆ε(τ).

Theorem IV.1
Assume transmission over a BEC. For any PPD and BP
process, c1(τ − (ε∗ − ε)) is an upper bound on L∆ε(τ):

L∆ε(τ) ≤ c1(τ − (ε∗ − ε)). (7)

Proof: We normalize with respect to M and τ . L∆ε(τ)
VNs are resolved in an iteration. VNs can only be resolved
if they are connected to a deg-1 CN and every deg-1 CN
can resolve a single VN of the residual graph as discussed in
Section III-E. We know that in iteration τ , c1(τ − (ε∗ − ε))
deg-1 CNs will be resolved. If every of these resolved CNs
is connected to a different VN, c1(τ − (ε∗ − ε)) VNs will be
resolved. If j ≥ 1 deg-1 CNs are connected to any VN v,
c1(τ − (ε∗− ε))− (j−1)

M VNs will be resolved. Thus, it is not
possible to resolve more VNs.

A. Mean Evolution During the Decoding Process

As mentioned before, DE can be applied in order to compute
E[ε(τ)] and thus to evaluate the process E [L∆ε(τ)]. The DE
solution to E [L∆ε(τ)] can be used not only to characterize the
asymptotic behavior, i.e. to compute the decoding threshold
of the ensemble, but also to determine quantities needed to
assess the finite-length performance of the code. Similar to
[8], the average error probability over the ensemble of codes is
dominated by the probability that the process ∆ε(τ) survives,
i.e. it does not hit the zero plane. Therefore, characterizing the
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Fig. 11. E [L∆ε(τ)/(ε∗ − ε)] for the (3, 6, 50) ensemble.

critical phase and ∆ε(τ) at that time determines the SC-LDPC
finite-length performance.

B. Analysis of the Moments of ∆ε(τ)

We approximate the expected fraction of recovered VNs per
coupled code during the critical phase, for ε close to ε∗, with

L∆ε(τ) ≈ γ(ε∗ − ε), (8)

where γ is a positive constant. As shown in Fig. 11, this
approximation is reasonable and accurate.

We approximate Var [L∆ε(τ)] during the decoding process
with δ = M Var [L∆ε(∗)] during the critical phase. Observe
in Fig. 12 (a) that δ is constant for different (ε∗ − ε).

We also examine Cov [L∆ε(τ), L∆ε(τ ′)] during the deco-
ding process. Fig. 12 (b) shows Cov [L∆ε(τ), L∆ε(τ ′)] for
τ ′ = 1.5 and τ ′ = 1.75 during the critical phase of the
decoding. Observe that the decay of Cov [L∆ε(τ), L∆ε(τ ′)]
behaves similar for both values of τ ′ during the critical phase.

C. Stability of the Process During the Critical Phase

We now compare the ratios

αc1(τ) =
E [c1(τ)]√
Var [c1(τ)]

, α∆ε(τ) =
E [∆ε(τ)]√
Var [∆ε(τ)]

. (9)

Note that αL∆ε(τ) = α∆ε(τ) so that the normalization with L
is not needed. The two quantities are plotted for the (3, 6, 50)
code with M = 4000 in Fig. 13. Observe that during the whole
decoding process, they are very close. In the critical phase, we
have αc1 = 6.049 and α∆ε = 6.376 as listed in Table I.

V. STATISTICAL MODELS FOR FAILURE PROBABILITIES

Given the above results, it is reasonable to follow the
argumentation for c1(τ) and SPD in [8] and to model ∆ε as a
Markov process. For SC-LDPC codes, mean and variance are
constant in the critical phase as for c1 in [9], and we extend the
model of ∆ε to a Stationary Gaussian Markov process, more
specifically to an Ornstein-Uhlenbeck (OU) process. Since the
decoding fails when ∆ε(τ) hits 0 before the decoding finishes,
we consider the first-passage time (FPT) across 0 of such a
process.
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Fig. 12. In (a), simulated and normalized M Var [L∆ε(τ)] for the
(3, 6, 50) ensemble with M = {1000, 2000, 4000} and ε = 0.45 (solid),
respectively ε = 0.46 (dashed) from 5000 simulated transmissions. In
(b), simulated Cov [L∆ε(τ), L∆ε(τ ′)] for the (3, 6, 50) ensemble with
M = {1000, 2000, 4000} and ε = 0.45 for τ ′ = 1.5 and τ ′ = 1.75.

A. Ornstein-Uhlenbeck Processes

Let t1 < · · · < tn. A stationary Gaussian Markov Process
is also called OU process if X(t1), . . . , X(tn) are jointly
distributed as a multivariate Gaussian distribution where
mean and variance are constant and Cov [X(t+ T ), X(t)] ∝
exp−αT with constant α > 0, and T > 0. The OU process is
obtained by adding a state-dependent drift to a Wiener process
[18]:

dX(t) = −Θ(µ−X(t))dt+ σdW (t), (10)

where W (·) denotes a standard Wiener process and X(·) is
the unknown. Let the process start in its mean value so that

0 0.5 1 1.5 2 2.5 3 3.5

100.5

101

normalized iteration τ

αc1 (τ)

α∆ε(τ)

Fig. 13. αc1 (τ) and α∆ε(τ) for (3, 6, 50).



µ = X(0) = x0. Using f(X(t), t) = X(t) eΘt[19], we have

X(t) = x0 e−Θt +µ(1− e−Θt) + e−Θt

∫ t

0

σ eΘs dW (s),

(11)

with σ =
√

2b as in [9]. Since x0 is a constant, we have

X(t) ∼ N
(
x0,

b

Θ

)
(12)

and the expectation of the mean is E [X(t)] = x0. Assume
that min(t, u) = t. For the covariance, we have

Cov [X(t), X(u)] ≈ b

Θ

(
e−Θ|t−u|

)
(13)

for sufficiently large t+ u. With the observed quantities from
Section IV-B, we have

E [X(t)] = x0 = γ(ε∗ − ε), (14)

Var [X(t)] =
b

Θ
=

δ

M
. (15)

B. First-Passage Time Distribution
We analyze the average time when ∆ε(τ) takes the value

0 the first time. Using the symmetry of OU processes, we
change the initial state to X(0) = 0 and set a fixed boundary
s = x0. We define the FPT Ts as the time period before the
first crossing in s:

Ts = inf
t≥0
{t : X(t) ≥ s}. (16)

Denote by µ0 = E [Ts] the mean FPT from the zero initial state
to the boundary s. Evaluating the pdf of Ts becomes a complex
problem when s

b/Θ → 0 without any existing closed-form
expression [20]. For a reasonably large ratio s

b/Θ , it is shown
in [21] that the pdf of the FPT converges to an exponential
distribution

pTs
(t) ∼ 1

µ0
e
−t
µ0 , (17)

and according to [21], [22], µ0 can be explicitly calculated
with

µ0 =

√
2π

Θ

∫ s√
b/Θ

0

Φ(z) e
1
2 z

2

dz

=

√
2π

Θ

∫ γ√
δ1

√
M(ε∗−ε)

0

Φ(z) e
1
2 z

2

dz (18)

where Φ(z) is the cdf of the standard Gaussian distribution.

C. The Scaling Law for ∆ε(τ)

The smaller (ε∗ − ε) is, the more iterations are needed for
decoding. For ε very close to ε∗, it is reasonable to model
the decoding process as a continuous-time process as done
in [8] for SPD. Similar to [8], the average error probability
over the ensemble of codes is dominated by the probability
that the process ∆ε(τ) survives, i.e. it does not hit the zero
plane. Therefore, characterizing the critical points and the
expected ∆ε(τ) at that time determines the SC-LDPC finite-
length performance.
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Fig. 14. Predicted trajectories for (3, 6, 100) in (a) and (4, 8, 100) in (b)
for M = {2000, 4000} using γc1 and γ∆ε. Simulated results are included
as dashed lines.

Based on the statistics describing the ∆ε(·) process, we
model its critical phase with an OU process as described in
Section V-B. Denote with τeff the duration of the critical phase
of a decoding process:

τeff = τpredicted − τcorr = tpredicted(ε∗ − ε)− τcorr, (19)

where τpredicted is calculated with DE and τcorr is a correction
term taking into account the time before and after the critical
phase. Note that τeff is a function of L and the given ensemble.
The probability of a block error P ∗b equals the probability of
a zero-crossing before τeff:

P ∗b = Pr(Ts ≤ τeff) ≈ 1− exp

(
−τeff

µ0

)
, (20)

since with (17), Ts is approximately exponentially distributed.

D. Comparison to Estimates from SPD

The obtained parameters are summarized in Table I. Fig. 14
compares the estimates using c1(τ) and ∆ε(τ) for the
(3, 6, 100) and (4, 8, 100) ensembles. The estimate using αc1
is almost identical with the one obtained using SPD in [10].



TABLE I
BEC BP THRESHOLD ε∗ , αc1 , α∆ε , Θ, τEFF AND τCORR FOR SC-LDPC

CODE ENSEMBLES WITH L = 100.

ε∗ αc1 α∆ε Θ τeff τcorr
(3, 6, 100) 0.4881 6.049 6.376 2.0 4.73 1.37
(4, 8, 100) 0.4977 5.112 5.390 2.0 6.96 0.91

Note that error probability prediction using the L∆ε(τ) pro-
vides slightly overconfident estimates, despite it still correctly
captures the slope of the simulated error probability curve.

VI. SUMMARY AND CONCLUSIONS

We showed that parallel peeling decoding (PPD) and Belief
Propagation (BP) resolve exactly the same variable node (VN)
in every iteration. Differences between code ensembles can
also be observed with PPD. Instead of analyzing c1(τ), ∆ε(τ)
can also be used. This is a significant complexity reduction
since it can be derived from the less complex BP analysis.
For further research, it will be interesting to obtain further
moments of ∆ε(τ) analytically. A more profound link between
the bounds of Aref et. al for the convergence speed and ∆ε
in this work would also be interesting.
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APPENDIX A
EQUIVALENCE OF PPD AND BP

We first show that without stopping sets, both PPD and
BP recover exactly the same erased VNs using messages only
passed forwards. We will then show that the message sent back
using the PPD does not resolve any additional VNs, and thus
the two decoders resolve the identical VNs in every iteration
if applied to the same residual graph.

A. Forward Recovery of VNs
We do not consider µv→c(` + 1) sent back from VN v to

CN c as a function of µc→v(`) so that this analysis holds for
both decoders.

Assume a residual graph without any stopping set S. Denote
by Ci(`) the set of all CNs in the residual graph connected to
unknown VNs i times in iteration `. We divide all CNs in the
residual graph into classes:
• C1(`): CNs connected to unknown VNs once in iteration
`,

• C≥2(`): CNs connected to unknown VNs two or more
times.

Since the CNs in C1(`) are connected to only one unknown
VN, both decoders can resolve these VNs in iteration `. VNs
connected only to C≥2(`) cannot be resolved by neither of the
two decoders. Therefore, these VNs do not change their state
and remain erased in iteration `.

a) First iteration: Since the residual graph does not
contain any stopping set, it must be resolvable with any of
these decoders according to [16]. Thus, there must be at least
one CN c connected to only one erased VN v, i.e. C1(`) is
non-empty. An example is depicted in Fig. 15.

All other µv′→c(`), v′ ∈ Nc \ {v} apart from µv→c(`) are
known from the transmission. Since µc→v(`) = f(µv′→c(`)),
v cannot get erased again in any later iterations `+i. If there is
another CN c′ ∈ Nv\{c} , µv→c′(`+1) will be resolved. Since
µv→c′(`) is resolved as soon as any other CN ∈ Nv sends a
resolved message to v, it will stay resolved independently of
the state of the other CNs ∈ Nv in any later iterations ` + i.
If c′ has degree j in the first iteration and is connected to k
resolved VNs, c′ ∈ Cj−k(2) of the following iteration.
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v +
c′

+
c

X

X
µv′′→c(`)
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Fig. 15. VN v resolved by CN v forwarding the solution.

b) ` − th iteration: If C1(`) is non-empty and contains
any CN c, the connected unknown VNs are resolved. If there is
any CN c′ ∈ Cj(`), j > 1, connected to k such resolved VNs,
c′ will be in Cj−k(`+1). µc′→v(`+1) will again stay resolved
since they are a function of c ∈ C1(`) whose messages cannot
become erased again.

If C1(`) is empty, the decoding process does not resolve any
further VNs and stops. The residual graph does not contain any
VNs any more since without any S, it would contain at least
a CN connected to only one erased VN.

c) Graphs with stopping sets: The set C≥2(`) is defined
as the set that contains all CNs connected to remaining
unknown VNs at least twice. This set also includes CNs
connected to stopping sets. Denote CNs connected to S with
S . Since messages sent from S to the rest of the residual graph
can never be resolved during the decoding process, we replace
S with erased messages sent from S to the rest of the residual
graph as illustrated with an example in Fig. 16.

residual graph

S ⋃SS+
+

∆

∆

∆

∆

∆

∆

Fig. 16. Residual graph including S and S.

The CNs in S are a part of C≥2(`) and therefore do not
change and stay erased during all iterations. Using any of the
two decoders, the decoding of the VNs of the residual graph
proceeds identically until C1(`) is empty.

B. Backward messages of VNs

The decoding of any part of the residual graph depends
only on messages sent forward into the residual graph of the
respective iteration. Since VNs outside the residual graph are
already known, messages sent back outside the residual graph
cannot recover any additional VNs.

Theorem A.1
PPD and BP recover exactly the same VNs at each iteration.

Proof: Using PPD, the message fed back also changes
to resolved once a VN is known. The decoding proceeds
by resolving the residual graph per iteration which does not
depend on the message fed back to the graph outside the

residual graph. Thus, PPD and BP recover exactly the same
VNs in every iteration.

C. Observation for messages fed back
Using BP, messages sent back outside the graph are only

resolved if a VN is connected to two CNs of C1(`) in any
iteration `.

APPENDIX B
EXPECTED GRAPH EVOLUTION IN A SINGLE ITERATION OF

PPD
Assume we know the graph DD {lv(`), rc(`)}v∈Fv,c∈Fc

at a particular time `. We compute the expected graph DD
evolution for the next iteration

E[Rc(`+ 1)−Rc(`)
∣∣∣{lv(`), rc(`)}v∈Fv,c∈Fc

]. (21)

Using the PPD, only deg-1 CNs can be removed directly and
in an iteration, we remove all deg-1 CNs along with all VNs
connected to them and edges attached to these VNs. Removing
these edges resolves also edges for some other CNs and the
VNs are connected with as well, so that the type of such a
CN is modified from c1 ∈ Fc to c2 ∈ Fc. We therefore
have an indirect removal of a CN of type c1 from the residual
graph and an insertion of a CN of type c2. We assume that by
lifting the constructions as described in Section II we obtain
independent edges.

The calculation of the graph evolution is outlined as follows:
• For each VN type, calculate the number of edges of an

edge type being resolved directly. Take into account that
all edges connected to this VN type are in the residual
graph and an edge can be resolved by multiple deg-1
CNs.

• For each non-deg-1 CN type in the residual graph, cal-
culate the probability of being connected to any resolved
VN and resolving the connecting edges indirectly.
d) Directly resolved edge types: Any deg-1 CN of type

ej , j ∈ [1,m] is directly removed from the graph as depicted
in Fig. 17. To track the changes in the graph, we change to an
edge perspective. Denote with pdir(`) = (P dir

1 (`), . . . , P dir
m (`))

the probability that an edge of a particular type is directly
removed from the graph. Assume that messages along different
edges are independent due to the lifting with large N . P dir

j (`)
can be calculated with

P dir
j (`) =

rej (`)∑
c:cj>0

rc(`)
, (22)

for j = 1, . . . ,m, which we define to be 0 for rej
(`) = 0.

e) Resolved VN types: A VN of type v is resolved if it
is connected to at least one deg-1 CN. Having lv(`) VNs of a
specific type, we obtain the number of resolved VNs of type
v with

lv(`) (1− (1− pdir(`))
v) . (23)

Note that we assume that the probability that an edge type is
directly removed is independent of the removal of other edges
in the graph.



f) Indirectly resolved edge types: Denote with Pj,indir(`)
the probability that an edge of type j was resolved indirectly.
These edges of type j are not connected to a deg-1 CN but
to any other possible CN of type c in the residual graph with
cj > 0:

Pj,indir(`) = (1− P dir
j (`)) ·

(
1− (1− pdir(`))

v−ej
)
. (24)

The total number of indirectly resolved edges of type j in the
residual graph is obtained with∑

c:cj>0

rcPj,indir(`). (25)

g) Indirectly resolved edges of CN types: Denote with
pc,indir(`) = (Pc,1,indir(`), . . . , Pc,m,indir(`)) the probabilities
that a CN of type c, |c| > 1, is connected to a resolved VN
via a specific edge type j = 1, . . . ,m. Using (22) and (24),
we calculate Pc,j,indir(`) with

Pc,j,indir(`) =
rc∑

c′:cj>0

|c′|>1

rc′
· Pj,indir(`)

=
rc∑

c′:cj>0

|c′|>1

rc′
·
∑

c:cj>0 rc(`)− rej
(`)∑

c:cj>0

rc(`)

·
(
1− (1− pdir(`))

v−ej
)

=
rc∑

c′:cj>0

rc′
·
(
1− (1− pdir(`))

v−ej
)
. (26)

An indirect resolving of an edge connected to a CN of type
c is illustrated in Fig. 17. We can now calculate the number
of indirectly resolved CNs of type c which we denote with
E−c (`):

E−c (`) = rc(`)(pc,indir(`))
c. (27)

+
ej

v

+
c

j

X X

Fig. 17. VN v connected to a CN of type ej resolving an edge of type j,
in turn resolving a socket of a CN of type c.

Since it is also possible that not all edges of a CN are
indirectly resolved, we obtain the fraction of CNs of type c
reduced to a CN of type c′ with

E−c,c′(`) =rc(`)(pc,indir(`))
c−c′(1− pc,indir(`))

c′ . (28)

This corresponds to resolving all other edges of c than there
are remaining in c′.

h) Indirectly added CN types: CNs of other types can be
added to the residual graph if not all edges of an indirectly
resolved CN are resolved. From (28), we have

E+
c′(`) =

∑
c∈Fc

E−c,c′(`). (29)

i) Expected evolution in a single PPD iteration: We now
calculate the expected evolution of the number of CNs of type
c in the graph in a single PPD iteration. For any CN type
c ∈ Fc such that c 6= ej , j ∈ [1,m], the overall evolution is

E[Rc(`+ 1)−Rc(`)] = E+
c (`)− E−c (`). (30)

For any deg-1 CN of type ej , j ∈ [1,m], we have

E[Rej
(`+ 1)−Rej

(`)] = E+
ej

(`)− rej
(`). (31)

APPENDIX C
DENSITY EVOLUTION FOR BP

We transmit over a BEC. We represent each symbol trans-
mitted with a VN which is erased with probability ε. Since
PPD and BP are equivalent, ∆ε can also be obtained from
the analysis of BP, for which we apply DE [14]. Denote
the erasure probability of the channel with εch. The erasure
probability is tracked for each edge type of the protograph
separately. For any edge type s ∈ {1, . . . ,m}, we denote the
erasure probability of messages sent from the VN in iteration
` with xs(`) and from the CN with ys(`). We denote them as
vectors with

x(`) = (x1(`), . . . , xm(`)), (32)
y(`) = (y1(`), . . . , ym(`)). (33)

Since we calculate edge type erasure probabilities, we do not
consider the additional CN types after transmission in the
residual graph and we consider the initial CN types c ∈ Fc.
Using the constructions described in Section II, the edge type
s is only connected to one VN type v ∈ Fv and one CN type
c ∈ Fc. The CN and VN functions can be calculated exactly
with

ys(`) = 1− (1− x(`− 1))c−0∼s , c ∈ Fc, (34)

xs(`) = εy(`)v−0∼s , v ∈ Fv, (35)

where all exponents are ≥ 0 and punctured VNs types are
initialized with ε = 0. Denote the erasure probability of a VN
type v ∈ Fv after the `-th iteration

εv(`) = εchy(`)v, v ∈ Fv. (36)

We calculate the erased VNs per iteration with

ε(`) =
∑
v∈Fv

lvεv(`). (37)

As shown in [14], εv for every VN type v ∈ Fv is monoton-
ically decreasing during the decoding process.
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