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Sponsored Search Auctions (SSAs) constitute one of the most successful applications 
of microeconomic mechanisms. In mechanism design, auctions are usually designed to 
incentivize advertisers to bid their truthful valuations and, at the same time, to guarantee 
both the advertisers and the auctioneer a non-negative utility. Nonetheless, in sponsored 
search auctions, the Click–Through–Rates (CTRs) of the advertisers are often unknown 
to the auctioneer and thus standard truthful mechanisms cannot be directly applied and 
must be paired with an effective learning algorithm for the estimation of the CTRs. This 
introduces the critical problem of designing a learning mechanism able to estimate the 
CTRs at the same time as implementing a truthful mechanism with a revenue loss as small 
as possible compared to the mechanism that can exploit the true CTRs. Previous work 
showed that, when dominant-strategy truthfulness is adopted, in single-slot auctions the 
problem can be solved using suitable exploration–exploitation mechanisms able to achieve 
a cumulative regret (on the auctioneer’s revenue) of order Õ (T

2
3 ), where T is the number 

of times the auction is repeated. It is also known that, when truthfulness in expectation is 
adopted, a cumulative regret (over the social welfare) of order Õ (T

1
2 ) can be obtained. In 

this paper we extend the results available in the literature to the more realistic case of 
multi-slot auctions. In this case, a model of the user is needed to characterize how the 
CTR of an ad changes as its position in the allocation changes. In particular, we adopt 
the cascade model, one of the most popular models for sponsored search auctions, and we 
prove a number of novel upper bounds and lower bounds on both auctioneer’s revenue 
loss and social welfare w.r.t. the Vickrey–Clarke–Groves (VCG) auction. Furthermore, we 
report numerical simulations investigating the accuracy of the bounds in predicting the 
dependency of the regret on the auction parameters.
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1. Introduction

SSAs constitute one of the most successful applications of microeconomic mechanisms, producing a revenue of about 
$6 billion dollars in the US alone in the first half of 2010 [1]. In an SSA, a number of advertisers bids to have their spon-
sored links (from here on ads) displayed in some slot alongside the search results of a keyword. SSAs currently adopt the 
pay-per-click payment scheme, which requires positive payments from an advertiser only when its ad is clicked. Given an 
allocation of ads over the available slots, each ad is associated with a CTR, corresponding to the probability of being clicked 
by the user. CTRs play a crucial role in the definition of the auction, since the auctioneer relies on (estimates of) the CTRs to 
determine the allocation of ads over slots and to compute the payment of each ad. Models similar to SSAs are also used in 
many other advertisement applications. For instance, in contextual advertising, the text of a website is scanned for keywords 
and an auction is used to select the ads to display in vertical/horizontal slots on the basis of the advertisers’ bids and CTRs
of the ads in the given context [2].

In microeconomic literature, SSAs have been formalized as a mechanism design problem [3], where the objective is to 
design an auction that incentivizes advertisers to bid their truthful valuations (needed for economic stability) and that guar-
antees both the advertisers and the auctioneer to have a non-negative utility. The most common SSA mechanism is the 
Generalized Second Price (GSP) auction [4,5]. As shown in [4], this mechanism is not truthful and advertisers may imple-
ment bidding strategies that pay more than bidding their truthful valuations.

While the GSP is still popular in many SSAs, the increasing evidence of its limits is strongly pushing towards the adoption 
of the more appealing Vickrey–Clarke–Groves (VCG) mechanism, which is already successfully employed in the related 
scenario of contextual advertising, by Google [2] and Facebook [6]. The first drawback of the GSP is that its equilibria 
may be inefficient (in terms of social welfare) w.r.t. the VCG outcome: considering the whole set of Nash equilibria in full 
information, the Price of Anarchy (PoA) of the GSP is upper bounded by about 1.6, while considering the set of Bayes–Nash 
equilibria the PoA is upper bounded by about 3.1 [7]. Similarly, the revenue of a (full information) Nash equilibrium can be 
arbitrarily small w.r.t. the VCG outcome, while in the Bayesian case the revenue is upper bounded by 6 [8]. Furthermore, 
the automated bidding strategies, used in practice by the advertisers to find their best bids, may not even converge to 
any Nash equilibrium and, under mild assumptions, the states they converge to are shown to be arbitrarily inefficient [9]. 
When externalities are introduced, it is known that no Nash equilibrium of the GSP provides a larger revenue than the VCG
outcome [10,11]. Finally, there is a recent increase in the use of additional features (such as larger formats, reviews, maps, 
or phone numbers) arranged by the search engines on the web page together with the ads to increase the attention of the 
user. It is known that the GSP behaves poorly in this setting, while the VCG is almost equivalent to the standard setting [12].

In this paper, we focus on the problem of designing truthful mechanisms when the CTRs are not known and need to be 
estimated in SSAs with multiple slots. This problem is particularly relevant in practice because the assumption that all the 
CTRs are known beforehand is rarely realistic. Furthermore, it also poses interesting scientific challenges since it represents 
one of the first examples where online learning theory and mechanism design—two important fields in artificial intelligence 
that recently received a lot of attention in the literature—are paired to obtain effective methods to learn under equilibrium 
constraints (notably the truthfulness property). For the sake of completeness, we remark that the combination of these ideas 
have been used also in the other fields, e.g., crowdsourcing [13].

Related works. The problem of estimating the CTRs and identifying the best allocation of ads can be effectively formal-
ized as a Multi-Armed Bandit (MAB) problem [14], where each ad is an arm and the objective is to minimize the cumulative 
regret either on the auctioneer’s revenue or the social welfare, i.e., the difference in revenue or social welfare, respectively, 
of the mechanisms implemented over time estimating the CTRs and of the mechanisms that can exploit the true CTRs. The 
problem of budgeted advertisers (i.e., auctions where the total amount of money each advertiser is willing to pay is lim-
ited) with multiple queries is considered in [15]. This problem is formalized as a budgeted multi-bandit multi-arm problem, 
where each bandit corresponds to a query, and an algorithm is proposed with theoretical guarantees on auctioneer revenue 
regret. Nonetheless, the proposed method works in a non-strategic environment, where advertisers do not try to influence 
the outcome of the auction and always bid their true values. The strategic dimension of SSAs is partially taken into con-
sideration in [16], where the advertisers are assumed to play a bidding strategy at the equilibrium of the GSP w.r.t. a set 
of estimated CTRs available to both the auctioneer and the advertisers. The authors introduce a learning algorithm which 
explores different rankings of the ads to improve the CTR estimates and, at the same time, to avoid that the advertisers have 
incentives to deviate from the aforementioned equilibrium strategy. In [17,18], the authors formulate for the first time the 
problem of designing truthful learning mechanisms according to the notion of truthfulness in high probability in multi-slot 
SSAs. The single-slot online advertising is studied also in [19] where the notion of Bayesian Incentive Compatibility (BIC) is 
taken into consideration and an asymptotically BIC and ex ante efficient mechanism is introduced.

The most complete study of truthful bandit mechanisms so far is reported in [20] and [21]. These works provide a 
complete analysis on the constraints that truthfulness forces on the MAB algorithm with single-slot SSAs, proving that 
no dominant-strategy truthful bandit mechanism can achieve a regret (over social welfare or auctioneer’s revenue) smaller 
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than �̃(T
2
3 ) and that the exploration and exploitation phases must be separate.1,2 The lower bound over the regret holds 

also when the truthfulness is in expectation w.r.t. the click realizations. Finally, they also provide nearly-optimal algorithms 
matching the lower bound on the regret. In both [20] and [21], advertisers’ utility is not subject to any form of time discount, 
in contrast with what happens in practice, where advertisers may favor early small gains over larger gains in the future. 
However, the mechanisms introduced in [20] and [21] are truthful even in presence of discount since the sharp separation of 
exploration and exploitation would still force advertisers with discounting to reveal their true valuation.3 When the notion 
of truthfulness is relaxed, adopting truthfulness in expectation w.r.t. the mechanism randomness, it is possible to obtain in 
the case of single-slot SSAs a regret Õ (T

1
2 ) (over the social welfare) without separating the exploration and exploitation 

phases [23].
When multiple slots are present, a user model is needed to describe how the CTR of an ad changes as its position in 

the allocation changes. All the models available in the literature assume that the CTR is given by the product of two terms: 
the probability that an ad is clicked once observed by the user, and the probability that the user observes an ad given 
the complete allocation of ads over slots. The basic model (commonly referred to as separability model) prescribes that the 
probability of observing an ad depends only on its position [3]. Recently, more accurate models have been proposed and 
one of the most popular models is the cascade model. According to this model, the user scans the slots from top to bottom 
and the probability that she moves from a given slot to the next depends on the former slot itself and the identity of 
the ad displayed in it (this kind of user is commonly called Markovian user) [24,25]. As a result, the overall probability of 
observing an ad depends on the slot in which it is displayed and on all the ads allocated above it. The validity of the cas-
cade model has been evaluated and supported by a wide range of experimental investigations [26,27]. The only results on 
learning mechanisms for SSAs with multiple slots are described in [28], where the authors characterize dominant-strategy 
truthful mechanisms and provide theoretical bounds over the social welfare regret for the separability model. However, 
these results are partial (e.g., they do not consider the common case in which the slot-dependent parameters are mono-
tonically decreasing over slots), and they cannot be easily extended to the more challenging case of the cascade model (see 
Section 3.3).

Original contributions. In the present paper, we build on the results available in the literature and we extend the partial 
results presented in [29] to a wider range of cases, providing also a number of contributions when the separability model 
and the cascade model are adopted. More precisely, our results can be summarized as follows.

• Separability model with monotonically decreasing parameters/only position-dependent cascade model: in this case, there are 
two groups of parameters, one related to the ads (called quality) and one to the slots (called prominence). We studied 
all the configurations of information incompleteness. When only qualities are unknown, we provide a non-randomized 
learning mechanism that is dominant-strategy truthful a posteriori w.r.t. the click realizations and with a regret of 
Õ (T

2
3 ) (while it is an open problem whether it is possible to obtain a better upper bound adopting truthfulness 

in expectation).4 When only prominences are unknown, we provide a non-randomized learning mechanism that is 
dominant-strategy truthful in expectation w.r.t. the click realizations with a regret of 0 and a randomized learning 
mechanism that is dominant-strategy truthful in expectation w.r.t. the realizations of the random component of the 
mechanism with a regret of O (1). We also show that any dominant-strategy truthful a posteriori w.r.t. all the sources 
of randomness learning mechanism would have a regret of �(T ). When both groups of parameters are unknown, we 
provide a random learning mechanism that is dominant-strategy truthful in expectation only w.r.t. the realizations of 
the random component of the mechanism with a regret of Õ (T

2
3 ),

• Cascade model: in the non-factorized cascade model (i.e., when the observation probabilities can be arbitrary) we show 
that it is possible to obtain a regret of Õ (T

2
3 ) in dominant-strategy truthful in expectation w.r.t. all the sources of 

randomness learning mechanisms when only the qualities of the ads are unknown.5 We show also that in the factorized 
cascade model (i.e., when the observation probabilities are the products of terms depending on either the slot or the 
ads, as used in [24]), any non-randomized learning mechanism that is dominant-strategy truthful (even in expectation 
w.r.t. the click realizations) has a regret of �(T ) even in the special case in which only the ad-dependent parameters 
are unknown (while it is an open problem whether it is possible to obtain a better upper bound adopting a randomized 
mechanism and truthfulness in expectation w.r.t. the realization of the random component of the mechanism),

1 The Õ/�̃/�̃ notation hides both constant and logarithmic factors, i.e., we say the regret is Õ(T
2
3 ) if there exist a and b such that the regret is 

≤ aT
2
3 logb T .

2 The need for having separated phases between exploration and exploitation to limit the strategic manipulation of the mechanism is underlined also 
in [16], where the authors study learning approaches for the GSP. Interestingly, experimental simulations show that having exploration phases in which no 
payment is applied can allow the auctioneer to have even a short-term gain [22].

3 In our paper, we focus on the no-discount case and we use learning mechanisms that separate the phases of exploration and exploitation. As in [20]
and [21], our learning mechanisms keep to be truthful even when discounting is present.

4 This result has already been presented in [29] and is here reported for sake of completeness.
5 A preliminary version of this result has already been presented in [29] and was here refined in its dependence from the number of slots K and ads N , 

changing from Õ (T
2
3 K

2
3 N) to Õ (T

2
3 K

4
3 N

1
3 ), as postulated in the aforementioned paper.
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• Learning parameters: for each setting described above we provide practical guidelines on how the learning parameters 
can be tuned to minimize the bound over the regret depending on the characteristics of the auction (e.g., number of 
slots and advertisers),

• Numerical simulations: we investigate the accuracy of all the theoretical regret bounds in predicting the dependency of 
the regret on the auction parameters by numerical simulations. We show that the theoretical asymptotic dependency 
matches the actual dependency we observed by simulation.

Paper organization. The paper is organized as follows. In Section 2, we briefly review the basics of mechanism design 
and MAB learning. Section 3, formalizes SSAs, introduces the corresponding online learning mechanism design problem, and 
it provides a more formal overview of existing results and the new findings of this paper. In Sections 4 and 5, we report and 
discuss the main regret bounds in the case of position-dependent and position- and ad-dependent externalities. In Section 6, 
we report numerical simulations aiming at testing the accuracy of the theoretical bounds. Section 7 concludes the paper 
and proposes future directions of investigation. The detailed proofs of the theorems are reported in Appendices A–J.

2. Preliminaries

2.1. Economic mechanisms

In this section we provide an overview on the definitions and results of mechanism design that are relevant to the paper. 
The objective of mechanism design [30] is to design allocation and payment functions satisfying some desirable properties 
when agents are rational and retain private information representing their preferences—also referred to as the type of the 
agent. Without loss of generality, mechanism design focuses on specific mechanisms, called direct, in which the only action 
available to the agents is to report their (potentially non-truthful) type. On the basis of the agents’ reports the mechanism 
determines the allocation of resources to agents and the agents’ payments.

The main desirable property of a mechanism is truthfulness, often referred to as Incentive Compatibility (IC), which re-
quires that reporting the true types constitutes an equilibrium strategy profile for the agents.6 When a mechanism is not 
truthful, agents should try to optimize their (untruthful) strategies on the basis of some model about the opponents’ be-
havior, but, in absence of common information, no normative model for rational agents exists. This leads the mechanism to 
be economically unstable, given that the agents continuously change their strategies. Different notions of truthfulness are 
available. The most common ones are Dominant Strategy Incentive Compatibility (DSIC)—i.e., reporting the true types is the 
best action an agent can play independently of the actions of the other agents, ex post incentive compatibility (ex post IC)—i.e.,
reporting the true types is a Nash equilibrium, and BIC—i.e., reporting the true types is a Bayes–Nash equilibrium. Inter-
estingly, DSIC and ex post IC are equivalent notions of truthfulness in absence of interdependency among the types of the 
agents, while BIC is weaker than DSIC, since it only requires that every agent has a Bayesian prior over the types of the 
other agents and IC is defined in expectation w.r.t. the prior. When there are other sources of randomness in the mechanism 
design problem (not due to the distribution of probabilities over the types of the agents), e.g., random components of the 
mechanism or the realization of events, weaker solution concepts, said in expectation, are commonly adopted, e.g., DSIC in 
expectation or ex post IC in expectation. Instead, we use the term “a posteriori” when the truthfulness holds for every realiza-
tion. In presence of multiple sources of randomness, a mechanism may be in expectation w.r.t. some sources and a posteriori
w.r.t. other sources. When we use only DSIC a posteriori without specifying the source of randomness, we mean DSIC a 
posteriori w.r.t. all the sources of randomness. Moreover, mechanisms can exploit the realizations of the events adopting 
different payment functions for each different realization. These mechanisms are said Execution Contingent (EC) [31,32].

In addition to IC, other desirable properties include: Allocative Efficiency (AE)—i.e., the allocation maximizes the social 
welfare, Individual Rationality (IR)—i.e., each agent is guaranteed to have no loss when reporting truthfully, and Weak 
Budget Balance (WBB)—i.e., the mechanism is guaranteed to have no loss. In presence of sources of randomness, IR and 
WBB can be in expectation w.r.t. all the possible realizations, or a posteriori if they hold for every possible realization. As 
for IC, in presence of multiple sources of randomness, these properties may be in expectation w.r.t. some sources and a 
posteriori w.r.t. other sources. When we use only IR (or WBB) a posteriori without specifying the source of randomness, we 
mean IR (or WBB) a posteriori w.r.t. all the sources of randomness.

The economic literature provides an important characterization of the allocation functions that can be adopted in IC
mechanisms when utilities are quasi linear [30]. Here, we survey the main results related to DSIC mechanisms where no 
sources of randomness are present. In unrestricted domains (i.e., the agents’ types are defined over spaces with arbitrary 
structure) for the agents’ preferences, only weighted maximal-in-its-range allocation functions can be adopted in DSIC mech-
anisms [33,34]. More precisely, a weighted maximal-in-its-range allocation function chooses, among a subset of allocations 
that does not depend on the types reported by the agents (i.e., the range), the allocation maximizing the weighted social 
welfare, where each agent is associated with a positive (type-independent) weight. It trivially follows that, when the range 
is composed of all the possible allocations and all the agents have the same weights, only AE mechanisms can be DSIC.

6 We use the same acronym also for ‘Incentive Compatible’ referred to a mechanism.
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When weighted maximal-in-its-range allocation functions are adopted, only weighted Groves payments lead to DSIC mech-
anisms [30]. The most common DSIC mechanism is the VCG [30], in which the range is composed of all the allocations and 
all the weights are unitary. The idea of the VCG mechanism is that each agent pays the difference between the social welfare 
of the optimal outcome when she does not participate to the mechanism and the social welfare of the outcome obtained 
when she participates minus its contribution (we leave a more formal and detailed description of the VCG mechanism to 
Appendix A). Notice that the VCG mechanism satisfies also IR and WBB and, among all the Groves mechanisms, it is the one 
maximizing the revenue of the auctioneer. We refer to the weighted version of the VCG as Weighted Vickrey–Clarke–Groves 
(WVCG).

When the domain of the agents’ preferences is restricted (i.e., the types are defined over spaces with specific structure, 
e.g., compact sets or discrete values), weighted maximal-in-its-range property is not necessary for DSIC. The necessary 
condition is weakly monotonicity [30], which is also sufficient for convex domains. In specific restricted domains, weak 
monotonicity leads to simple and operational tools. For instance, when the preferences of the agents are single-parameter 
linear—i.e., the agents’ value is given as the product between the agent’s type and an allocation-dependent coefficient 
called load [35], monotonicity requires that the load is monotonically increasing in the type of the agent. In this case, 
any DSIC mechanism is based on the Myerson’s payments defined in [35,36].7 Notice that the VCG mechanism is still the 
mechanism maximizing the auctioneer’s revenue among all the DSIC mechanisms, including those that are not AE. The 
Myerson’s payments include an integral that may be not easily computable. However, by adopting a random mechanism 
and accepting DSIC in expectation w.r.t. the realizations of the random component of the mechanism, such integral can be 
easily estimated by using samples [37]. Another drawback of the payments described in [35,36] is that they require the 
off-line evaluation of the social welfare of the allocations for some agents’ types different from the reported ones and this 
may be not possible in many practical situations. A way to overcome this issue is to adopt the result presented in [23], in 
which the authors propose an implicit way to calculate the payments. More precisely, given an allocation function in input, 
a random component is introduced such that with a small probability the reported types of the agents are modified to 
obtain the allocations that are needed to compute the payments in [35,36]. The resulting allocation function is less efficient 
than the allocation function given in input, but the computation of the payments is possible and it is executed online.

2.2. Multi-armed bandit

The MAB [14] is a simple yet powerful framework formalizing the online decision-making problem under uncertainty. 
Historically, the MAB framework finds its motivation in optimal experimental design in clinical trials, where two treatments, 
say A and B , need to be tested. In an idealized version of the clinical trial, T patients are sequentially enrolled in the trial, 
so that whenever a treatment is tested on a patient, the outcome of the test is recorded and it is used to choose which 
treatment to provide to the next patient. The objective is to provide the best treatment to the largest number of patients. 
This raises the challenge of balancing the collection of information and the maximization of the performance of the trial, 
a problem usually referred to as the exploration–exploitation trade-off. On the one hand, it is important to gather information 
about the effectiveness of the two treatments by repeatedly providing them at different patients (exploration). On the other 
hand, as the estimate of effectiveness of the treatments becomes more accurate, the (estimated) best treatment should be 
selected more often (exploitation). This scenario matches with a large number of applications, such as online advertisements, 
adaptive routing, and cognitive radio.

In general, the MAB framework can be adopted whenever a set of N arms (e.g., treatments, ads) is available and the 
rewards (e.g., effectiveness of a treatment, CTR of an ad) associated with each of them are random realizations from un-
known distributions. Although this problem can be solved by dynamic programming methods and notably by using the 
Gittins index solution [38], this requires a prior over the distribution of the reward of the arms and it is often computa-
tionally heavy (high-degree polynomial in T ). More recently, a wide range of techniques have been developed to solve the 
bandit problem. In particular, these algorithms formalize the objective using the notion of regret, which corresponds to the 
difference in performance over T steps between an optimal selection strategy which knows in advance the performance 
of all the arms and an adaptive strategy which learns over time which arms to select. Although a complete review of the 
bandit algorithms is beyond the scope of this paper (see [39] for a review), we only discuss two results which are relevant 
to the rest of the paper. The exploration-separated algorithms solve the exploration–exploitation trade-off by introducing a 
strict separation between the exploration and the exploitation phases. While during the exploration phase all the arms are 
uniformly selected, in the exploitation phase only the best estimated arm is selected until the end of the experiment. The 
length τ of the exploration phase is critical to guarantee the success of the experiment and it is possible to show that, if 
properly tuned, the worst-case cumulative regret scales as Õ (T

2
3 ), matching the lower bound �̃(T

2
3 ). Another class of al-

gorithms relies on the construction of confidence intervals for the reward of each arm and it does not separate exploration 
and exploitation steps. In particular, the Upper-Confidence Bound (UCB) algorithm [40] gives an extra exploration bonus to 
arms which have been selected only few times in the past and it achieves a worst-case cumulative regret of order Õ (T

1
2 ), 

matching the lower bound �̃(T
1
2 ).

7 See Appendix B for the definition of monotonicity in single-parameter linear environments and Myerson’s payments.
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Table 1
Notation adopted throughout the paper.

Symbol Description

N Number of ads

N = {1, . . . , N} Set of the ads indexes

ai , i ∈ N i-th ad

qi ∈ [0,1], i ∈ N Quality for ad ai

V = [0, V ], V ∈R
+ Set of the possible values/types for an ad

vi ∈ V, i ∈ N Value/type for ad ai

vmax = maxi∈N vi Maximum value

v = (v1, . . . , v N ) Values profile

v−i = (v1, . . . , vi−1, vi−1, . . . , v N ) Values profile excluding the value for the i-th ad

K , K < N Number of available slots

K = {1, . . . , K } Set of the available slots indexes

sm,m ∈ K m-th slot

K′ = K
⋃{K + 1, . . . , N} Extended set of the available slots indexes

θ = {〈sm,ai〉 : m ∈ K′, i ∈ N } Generic allocation

� Set of all the possible allocations

π : N × � → K′ Given an allocation θ , π(i; θ) returns the index of the slot in which ai is allocated

α : K′ × � → N Given an allocation θ , α(m; θ) returns the index of the ad allocated in slot sm

γm,i ,m ∈ K, i ∈ N Probability that a user, observing ad ai in slot sm , observes the ad in the next slot sm+1

	m(θ),m ∈ K, θ ∈ � Cumulative probability that a user observes the ad displayed at slot sm in allocation θ

SW(θ,v) Social welfare of allocation θ for ads with values profile v

λm ∈ [0,1],m ∈ K Prominence associated with slot sm

ci ∈ [0,1], i ∈ N Continuation probability associated with ad ai

clicki
m(t) ∈ {0,1} No-click/click event for the ad ai allocated in slot sm at step t

f : VN → � Allocation function

pi : VN →R Payment function for the i-th ad

v̂ i Reported value for ad ai

v̂ = (v̂1, . . . , v̂ N ) Reported values profile

v̂−i = (v̂1, . . . , v̂ i−1, v̂ i−1, . . . , v̂ N ) Reported values profile excluding the value for the i-th ad

θ∗ Allocation that maximizes the social welfare given the reported types

θ∗
−i Allocation that maximizes the social welfare given the reported types when advertiser ai is not present

SW−i(θ,v) Cumulative expected value of the allocation θ minus the expected value of advertiser ai

RT (A) Expected revenue regret of algorithm A over T steps

RSW
T (A) Expected social welfare regret of algorithm A over T steps

3. Problem statement

In this section we introduce all the notation used throughout the rest of the paper. In particular, we formalize the SSA
model, we define the mechanism design problem, and we introduce the learning process.

3.1. SSA model

We resort to the standard model of SSAs [3]. The notation described in the sequel is summarized in Table 1. We denote 
by N = {1, . . . , N} the set of ads indexes and by ai with i ∈N the i-th ad (we assume w.l.o.g. each advertiser has only one 
ad and therefore we can identify by ai the i-th ad and the i-th advertiser indifferently). Each ad ai is characterized by a 
quality qi corresponding to the probability that ai is clicked once observed by the user, and by a value vi ∈ V = [0, V ] that 
ai receives when clicked (ai receives a value of zero if not clicked). We denote by v the values profile (v1, . . . , v N) and by 
v−i the values profile obtained by removing vi from v. While the qualities {qi}i∈N may be known by the auctioneer with 
some level of accuracy, the values {vi}i∈N are private information of the advertisers. We denote by K = {1, . . . , K } with 
K < N , the set of slot indexes and by sm , with m ∈K, the m-th slot from top to bottom. For notational convenience, we also 
define the extended set of slots indexes K′ =K ∪ {K + 1, . . . , N}.8

We use the ordered pair 〈sm, ai〉 to indicate that ad ai is allocated to slot sm , while we denote by θ an allocation, defined 
as a collection of pairs 〈sm, ai〉, and by � the set of all the possible allocations. Although in an auction only K ads can be 
actually displayed, we define an allocation as θ = {〈sm, ai〉 : m ∈ K′, i ∈ N } where both m and i occur exactly once and any 

8 Although K < N is the most common case, the results could be smoothly extended to K > N .
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ad assigned to a slot sm with m > K is not displayed. We define two maps π : N × � → K′ and α : K′ × � → N such 
that π(i; θ) returns the index of the slot in which ai is displayed in allocation θ and α(m; θ) returns the index of the ad 
displayed in slot sm in allocation θ . Given θ ∈ �, we have that π(i; θ) = m if and only if α(m; θ) = i.

With more than one slot, it is necessary to adopt a model of the user describing how the value of an advertiser varies 
over the slots. We assume that the user behaves according to the cascade model defined by [24,25]. In the cascade model, the 
user’s behavior is defined by a Markov chain whose possible states correspond to the slots, which are observed sequentially 
from the top to the bottom, and a transition matrix that defines, given the current slot, the probability that the user observes 
the ad ai displayed in the next slot or stops observing any other ad. More precisely, the probability may depend on the index 
of the slot (i.e., π(i; θ)), in this case the externalities are said position-dependent, and/or on the ad that precedes ai in the 
current allocation θ (i.e., aα(π(i;θ)−1;θ)), in this case the externalities are said ad-dependent.

In the general case, the cascade model can be described by introducing a set of parameters γm,i defined as the probability 
that a user, observing ad ai in slot sm , observes the ad in the next slot sm+1. The probability that a user observes the ad 
displayed at slot sm in allocation θ is denoted by 	m(θ) and it is defined as:

	m(θ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if m = 1

m−1∏
l=1

γl,α(l;θ) if 2 ≤ m ≤ K

0 otherwise

. (1)

Given an allocation θ , the CTR of an ad ai is the probability to be clicked once allocated according to θ and it is computed 
as 	π(i;θ)(θ)qi , corresponding to the joint probability that the user arrives at observing the slot in which the ad is displayed 
and then clicks on it. Similarly, the CTR of the ad displayed at slot sm can be computed as 	m(θ)qα(m;θ) . We notice that, 
according to this model, the user may click multiple different ads at each impression. Given an allocation θ , the expected 
value (w.r.t. the click realizations) of advertiser ai from θ is 	π(i;θ)(θ)qi vi , that is, the product of the CTR 	π(i;θ)(θ)qi by 
the value of the advertiser vi . The advertisers’ cumulative expected value from allocation θ , commonly referred to as Social 
Welfare (SW), is:

SW(θ,v) =
N∑

i=1

	π(i;θ)(θ)qi vi .

In [24,25], the authors factorize the probability γm,i as the product of two independent terms: the prominence λm , which 
only depends on the slot sm , and the continuation probability ci , which only depends on the ad ai .9

Finally, we denote by clicki
m ∈ {0, 1} the no-click/click event for ad ai allocated in slot sm .

3.2. Mechanism design problem

A direct-revelation economic mechanism for SSAs is formally defined as a tuple (N , V, �, f , {pi}i∈N ) where N is the 
set of the agents’ (i.e., the advertisers) indexes, V is the set of the types of the agents (where the type of ad ai is the 
single-parameter valuation vi ), � is the set of the outcomes (i.e., the allocations), f is the allocation function defined as 
f : VN → �, and pi is the payment function for advertiser ai defined as pi : VN → R. We denote by v̂ i the value reported 
by advertiser ai to the mechanism, by v̂ the profile of reported values, and by v̂−i the profile obtained by removing v̂ i
from v̂.

At the beginning of an auction, each advertiser ai reports its value v̂ i . The mechanism chooses the allocation on the 
basis of the values reported by the advertisers using f (v̂) and subsequently computes the payment of each advertiser ai
as pi(v̂). The expected utility of advertiser ai is defined as 	π(i; f (v̂))( f (v̂))qi vi − pi(v̂), corresponding to the value expected 
by advertiser ai minus the payment prescribed by the payment function. Notice that the utility is linear in the type of the 
agent. Since each advertiser is an expected utility maximizer, it will misreport its value (i.e., v̂ i 
= vi ) whenever this may 
lead to increase its utility. Mechanism design aims at finding an allocation function f and a vector of payments {pi}i∈N
such that some desirable properties—discussed in Section 2.1—are satisfied [30].

When the parameters qi and γm,i are known, the VCG mechanism satisfies DSIC in expectation w.r.t. the click realizations, 
IR in expectation w.r.t. the click realizations, WBB a posteriori w.r.t. the click realizations, and AE. DSIC and IR do not hold a 
posteriori. In the VCG mechanism, the allocation function, denoted by f ∗ , maximizes the SW given the reported types as

θ∗ = f ∗(v̂) ∈ arg max
θ∈�

{SW(θ, v̂)} (2)

9 The allocation problem when either all the prominence probabilities λms or all the continuation probabilities ci s are equal to one can be solved in 
polynomial time, while, although no formal proof is known, the allocation problem with arbitrary λms and ci s is commonly believed to be NP-hard [24]. 
However, the allocation problem can be solved exactly in specific settings, and in many other cases, efficient approximation algorithms can be used [41]. In 
this paper, we ignore approximation schemes and we only focus on optimal allocation functions.
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and the payments are defined as

p∗
i (v̂) = SW(θ∗

−i, v̂−i) − SW−i(θ
∗, v̂), (3)

where:

• θ∗
−i := f ∗(v̂−i), i.e., the optimal allocation when advertiser ai is not present in the auction, and

• SW−i(θ
∗, ̂v) := ∑

j∈N , j 
=i 	π( j;θ∗)(θ
∗)q j v̂ j , i.e., the cumulative expected value of the optimal allocation θ∗ minus the 

expected value of advertiser ai .

The payment of advertiser ai is the difference between the SW that could be obtained from allocation θ∗
−i , computed 

removing ad ai from the auction, and the SW of the efficient allocation θ∗ without the contribution of advertiser ai . In 
other words, this corresponds to the cost in terms of efficiency of the presence of ai in the auction. The VCG mechanism 
can be easily extended to weighted case (the WVCG mechanism). The weighted SW is SWw(θ, v) =∑N

i=1 	π(i;θ)(θ)qi vi wi
where wi is the weight of advertiser ai . In the WVCG, the allocation maximizing the weighted SW is chosen, while the 
payment is defined as pw

i (v̂) = 1
wi

(SWw(θ∗
−i, ̂v−i) − SWw

−i(θ
∗, ̂v)), where SWw

−i(θ, ̂v)) =∑
j∈N , j 
=i 	π( j;θ)(θ)q j v j w j .

The WVCG mechanism is DSIC in expectation w.r.t. the click realizations and IR in expectation w.r.t. the click realizations, 
but, WVCG being a generalization of the VCG, these properties do not hold a posteriori. This is because an advertiser may 
have a positive payment even when its ad has not been clicked. Nonetheless, the mechanism can be easily modified to 
satisfy DSIC w.r.t. the click realizations and IR a posteriori w.r.t. the click realizations by using pay-per-click payments p∗,c

i as 
follows:

p∗,c
i (v̂, clicki

π(i;θ∗)) = SW(θ∗
−i, v̂−i) − SW−i(θ

∗, v̂)

	π(i;θ∗)(θ∗)qi
× clicki

π(i;θ∗). (4)

The contingent formulation of the payments is such that E[p∗,c
i (v̂, clicki

π(i;θ∗))] = p∗
i (v̂), where the expectation is w.r.t. 

the click event, which is distributed as a Bernoulli random variable with parameter coinciding with the CTR of ad ai in 
allocation θ∗ , i.e., 	π(i;θ∗)(θ∗)qi . Similar definitions hold for the WVCG mechanism.

3.3. Online learning mechanism design problem

In many practical problems, the parameters (i.e., qi and γm,i ) are not known in advance by the auctioneer and must be 
estimated at the same time as the auction is run. This leads to the definition of an iterative process where the auction is 
repeated over T steps using different estimates of the CTRs. This introduces a tradeoff between exploring different possible 
allocations, so as to collect information about the parameters, and exploiting the estimated parameters, so as to implement 
a truthful high-revenue auction (i.e., a VCG mechanism). This problem could be easily cast as a MAB problem [14] and 
standard techniques could be used to solve it, e.g., [42]. Nonetheless, such an approach would completely overlook the 
strategic dimension of the problem: advertisers may choose their reported values at each step t ∈ {1 . . . , T } to influence the 
outcome of the auction at t and/or in future steps in order to increase their cumulative utility over all the steps of the 
horizon T . Thus, in this context, truthfulness requires that reporting the truthful valuation maximizes the cumulative utility 
over the whole horizon T . The truthfulness can be in dominant strategies if advertisers know everything (including, e.g., the 
ads that will be clicked at each step t if displayed) or in expectation. As customary, we adopt four forms of truthfulness:

• DSIC a posteriori w.r.t. the click realizations and the realizations of the random component of the mechanism (if such a 
component is present),

• DSIC in expectation w.r.t. the click realizations and a posteriori w.r.t. the realizations of the random component of the 
mechanism (if such a component is present),

• DSIC in expectation w.r.t. the realizations of the random component of the mechanism and a posteriori w.r.t. the click 
realizations, and

• DSIC in expectation w.r.t. both randomization sources.

Here we face the challenging problem where the exploration–exploitation dilemma must be solved so as to maximize the 
revenue of the auction under the hard constraint of truthfulness. Let A be a mechanism run over T steps. In particular, we 
only focus on mechanisms which are (at least) DSIC in expectation w.r.t. all sources of randomization, since for non-truthful 
mechanisms the dynamics of bids is unpredictable. At each step t , A defines an allocation θt and prescribes an expected 
payment pi,t(v) for each ad ai . The objective of A is to minimize the loss of the auctioneer w.r.t. the revenue provided by 
the VCG mechanism computed on the actual parameters, and to preserve the properties of IR and WBB. More precisely, we 
measure the performance of A as its cumulative expected regret over T steps:

RT (A) = T
N∑

p∗
i (v) −E

[
T∑ N∑

pi,t(v)

]
, (5)
i=1 t=1 i=1
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where the expectation is taken w.r.t. the click realizations and the realization of the random component of the mechanism 
if present. Indeed, we remark that the regret is not defined on the basis of the pay-per-click payments asked on a specific 
sequence of clicks but on the expected payments pi,t(v). Furthermore, we notice that since the learning mechanism A
estimates the CTRs from the observed (random) clicks, the expected payments pi,t(v) are random as well. Finally, the 
payments are computed on the true valuations v constant over time since the mechanism A is truthful by definition and 
thus the best option for all advertisers is to bid their true value at any step. The mechanism A is a no-regret mechanism if 
its per-step regret RT (A)/T decreases to 0 as T increases, i.e., lim

T →∞ RT (A)/T = 0. Another popular definition of performance 
[17,21] is the SW regret, that measures the performance of A as follows:

RSW
T (A) = T · SW(θ∗,v) −E

[
T∑

t=1

SW(θ̃t,v)

]
, (6)

where θ̃t is the allocation prescribed by the learning mechanism at step t and the expectation, as before, is taken w.r.t. the 
click realizations and the realization of the random component of the mechanism if present. We notice that minimizing the 
SW regret RSW

T does not coincide with minimizing RT . In fact, once the quality estimates are accurate enough, such that 
θt is equal to θ∗ , the SW regret drops to zero. On the other hand, since pi,t(v) is computed according to the estimated 
qualities, RT (A) might still be positive even if θt = θ∗ . In addition, we believe that in practical applications, providing a 
theoretical bound over the regret of the auctioneer’s revenue is more important rather than a bound on the regret of the 
SW. Nevertheless, we show that the same approach we use to derive the bounds over the auctioneer’s revenue can be 
employed to derive similar bounds over the SW. Finally, we refer to Appendix G for an alternative definition of the regret, 
related to the deviation between payments.

The study of the problem when K = 1 is well established in the literature. More precisely, the properties required to 
have a mechanism that is DSIC a posteriori w.r.t. the realizations of the random component of the mechanism are studied 
in [20] and it is shown that any learning algorithm must split the exploration and the exploitation in two separate phases 
in order to incentivize the advertisers to report their true values. This condition has a strong impact on the regret R T (A)

of the mechanism. In fact, while in a standard bandit problem the distribution-free regret is of order �(T
1
2 ), in single-slot 

auctions, DSIC a posteriori mechanisms have a regret �(T
2
3 ). The same result holds for DSIC a posteriori w.r.t. the realizations 

of the random component of the mechanism and in expectation w.r.t. the click realizations. In [20], a truthful learning 
mechanism is designed with nearly optimal regret of order Õ (T

2
3 ). Similar structural properties for DSIC a posteriori w.r.t. 

the click realizations mechanisms are also studied in [21] and similar lower-bounds are derived for the SW regret. In [23]
the authors show that, by introducing a random component in the allocation function and resorting to DSIC a posteriori w.r.t. 
the click realizations and in expectation w.r.t. the realizations of the random component of the mechanism, the separation of 
exploration and exploitation phases can be avoided. In this case, the upper bound over the regret of the SW is Õ (T

1
2 ), thus 

matching the best distribution-free bound in standard bandit problems. However, the payments of this mechanism suffer of 
potentially high variance, which may be an undesirable property in practice. Although we expect that this mechanism could 
also achieve a revenue regret of the order of Õ (T

1
2 ), no formal proof is known.

In this paper, we focus on the study of the problem when K > 1, which is still mostly unexplored. In this case, a crucial 
role is played by the CTR model. While with only one slot, the advertisers’ CTRs coincide to their qualities qi , with multiple 
slots the CTRs may also depend on the slots and the allocation of the other ads. The only results on learning mechanisms 
for SSAs with K > 1 are described in [28,43], where the authors characterize DSIC a posteriori mechanisms and provide 
theoretical bounds over the SW regret. More precisely, the authors assume a simple CTR model in which the CTR itself 
depends on the ad ai and the slot sm . This model differs from the cascade model (see Section 2.1) where the CTR is a more 
complex function of the quality qi of an ad and the cumulative probability of observation 	m(θ), which in general depends 
on both the slot sm and the full allocation θ (i.e., the ads allocated before slot sm). It can be easily shown that the model 
studied in [28] does not include and, at the same time, is not included by the cascade model. However, the two models 
match when the CTRs are separable in two terms, in which the first is the agents’ quality and the second is a parameter in 
[0, 1] monotonically decreasing over the slots (i.e., only-position-dependent cascade model). Furthermore, while the cascade 
model is supported by an empirical activity which confirms its validity as a model of the user behavior [26,27], the model 
considered in [28] has not been empirically studied. In [28], the authors show that when the CTRs are unrestricted (e.g., 
they are not strictly monotonically decreasing in the slots), the regret over the SW is �(T ) and therefore at every step 
(of repetition of the auction) a non-zero regret is accumulated. In addition, the authors provide necessary and, in some 
situations, sufficient conditions to have DSIC a posteriori w.r.t. the click realizations. More precisely, the authors show that 
the allocation function of a mechanism that is DSIC a posteriori w.r.t. the click realizations must be monotonic a posteriori
w.r.t. the click realizations. We recall that, given vi and v ′

i with v ′
i > vi and called θ = f (vi, v−i) and θ ′ = f (v ′

i, v−i), f is 
monotonic in expectation w.r.t. the click realizations if and only if the CTR of ad ai in θ ′ is not strictly smaller than the 
CTR in θ . The definition of monotonicity a posteriori w.r.t. the click realizations is similar. Given vi and v ′

i with v ′
i > vi and 

called θ = f (vi, v−i) and θ ′ = f (v ′
i, v−i), f is monotonic a posteriori w.r.t. the click realizations if and only if the ad ai is 

clicked in θ ′ whenever it would be clicked in θ . However, the authors do not present in [28] any bound over the regret 
(except for reporting an experimental evidence that the regret is �(T

2
3 ) when the CTRs are separable). In [43], the authors 
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Table 2
Results available on the regret of learning mechanisms in SSA, with in bold the original results derived in this paper. ‘DSIC’ stands for ‘DSIC a posteriori’; 
‘DSICeC’ stands for ‘DSIC in expectation w.r.t. the click realizations and a posteriori w.r.t. realizations of the random component of the mechanism’; ‘DSICeM’ 
stands for ‘DSIC in expectation w.r.t. realizations of the random component of the mechanism and a posteriori w.r.t. the click realizations’.

Slots CTR model Unknown parameters Solution concept Regret over welfare (RSW
T ) Regret over revenue (RT )

1 – qi DSIC �̃(T 2/3) �̃(T 2/3)

DSICeC �̃(T 2/3) �̃(T 2/3)

DSICeM �̃(T 1/2) Õ (T 2/3)

> 1 (unconstrained) CTRi,m CTRi,m DISC �(T ) unknown

(unfactorized) cascade qi DISC �(T ) �(T )

DSICeM �(T ) �(T )

DSICeC �̃(T2/3) �̃(T2/3)

γi,s DISCeM �(T) �(T)

position-dep. cascade/separable CTRi,m qi DSIC �̃(T2/3) �̃(T2/3)

DSICeC �̃(T2/3) �̃(T2/3)

DSICeM ˜O(T2/3) ˜O(T2/3)

λm DSIC �(T) �(T)

DSICeC 0 0

DSICeM O(1) O(1)

qi , λm DSIC �(T) �(T)

DSICeM ˜O(T2/3) ˜O(T2/3)

ad-dependent cascade qi DSIC �(T ) �(T )

DSICeC �̃(T2/3) �̃(T2/3)

ci DSICeC �(T) �(T)

qi , ci DSICeC �(T) �(T)

preliminarily extend the analysis to the case of the cascade model, showing that, even with only ad-dependent externalities, 
any DSIC a posteriori w.r.t. the click realizations mechanism has a regret �(T ).

We summarize in Table 2 the known results in the literature and, in bold font, the original results provided in this 
paper. We first consider the cascade model with only position-dependent externalities analyzing the case where only the 
parameters {qi}i∈N are unknown to the auctioneer. We show that it is possible to obtain a DSIC a posteriori learning mech-

anism with a regret �̃(T
2
3 ) over the auctioneer’s revenue.10 Similarly, we show that in this setting, the regret over the SW

is �̃(T
2
3 ). In Section 4.2, we consider the opposite case where only the parameters {�m}m∈K are unknown. We focus on 

mechanisms that are DSIC in expectation w.r.t. the click realizations and a posteriori w.r.t. the random component of the 
mechanism in Section 4.2.1, and DSIC in expectation w.r.t. the realizations of the random component of the mechanism and 
a posteriori w.r.t. the click realizations in Section 4.2.2. In the first case we observe that we can obtain a mechanism with a 
regret (both over the auctioneer’s revenue and over the SW) of 0, but the obtained mechanism is WBB only in expectation 
w.r.t. the click realizations. In the second scenario, both the regrets are bounded by a constant and the mechanism is IR a 
posteriori and WBB in expectation w.r.t. the random component of the mechanism. In Section 4.2.3, we derive a negative 
result on the possibility of having no-regret DSIC a posteriori w.r.t. both sources of randomness mechanisms. Obviously, this 
negative result extends to all the generalizations of the cascade model with only position-dependent externalities. We con-
clude the analysis of the position-dependent model studying, in Section 4.3, the case where both {�m}m∈K and {qi}i∈N are 
unknown by the auctioneer, showing that it is possible to obtain DSIC in expectation w.r.t. the random component of the 
mechanism and a posteriori w.r.t. the click realizations mechanisms with bounds of Õ (T

2
3 ) for both kinds of regret.

In Section 5 we study the cascade model with both position- and ad-dependent externalities. We provide a DSIC in 
expectation w.r.t. the click realizations learning algorithm minimizing the regret over the auctioneer’s revenue when only 
the parameters {qi}i∈N are unknown.11 Then we provide a result over the SW regret, where the bound is still �̃(T

2
3 ). 

Finally, in Section 5.2, we consider other situations of lack of information obtaining negative results. More precisely, there 
is not any no-regret DSIC mechanism in expectation w.r.t. the click realizations and a posteriori w.r.t. realizations of the 
random component of the mechanism when parameters {ci}i∈N are unknown. This result applies to both kinds of regret 
and it extends to the more general cascade model.

10 A preliminary version of this result appears in [29].
11 A preliminary version of this result appears in [29]. In the current paper we provide a more accurate bound filling the gap between the dependence 

over N and K predicted by the theoretical bound and the results in the numerical simulation.
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4. Learning with position-dependent externalities

In this section we study multi-slot auctions with only position-dependent cascade model. The CTRs depend only on the 
quality of the ads and on the position of the slots in which the ads are allocated. Formally, the parameters γm,i coincide with 
the prominence parameter, i.e., γm,i = λm for every m ∈K and i ∈N . As a result, the cumulative probability of observation, 
defined in Eq. (1), reduces to

�m = 	m(θ) =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
1 if m = 1

m−1∏
l=1

λl if 2 ≤ m ≤ K

0 otherwise

, (7)

where we use �m instead of 	m(θ) for consistency with most of the literature on position-dependent externalities and to 
stress the difference w.r.t. the general case described in Section 3.1.

When all the parameters are known by the auctioneer, the efficient allocation θ∗ greatly simplifies. In fact, the expected 
value of an ad ai for an allocation θ in this case reduces to �π(i;θ)qi vi and, since the cumulative probabilities of observation 
are non-increasing over slots, the efficient allocation simply needs to allocate the slots in decreasing order of their reported 
values in expectation w.r.t. the qualities, i.e., qi v̂ i . More precisely, for any k ∈ K′ , let max

i∈N
(qi v̂ i; k) be the operator returning 

the k-th largest value in the set {q1 v̂1, . . . , qN v̂ N}, then θ∗ is such that, for every m ∈K′ , the ad displayed at slot sm is

α(m; θ∗) ∈ arg max
i∈N

(qi v̂ i;m). (8)

This condition also simplifies the definition of the efficient allocation θ∗
−i when ai is removed from N . In fact, for any 

i, j ∈ N , if π( j; θ∗) < π(i; θ∗) (i.e., ad a j is displayed before ai ) then π( j; θ∗
−i) = π( j; θ∗), while if π( j; θ∗) > π(i; θ∗)

then π( j; θ∗
−i) = π( j; θ∗) − 1 (i.e., ad a j is moved one slot upward), and w.l.o.g. we assume π(i; θ∗

−i) = N . In case of 
position-dependent externalities, the VCG payments p∗

i defined in Eq. (3) take the simplified formulation:

p∗
i (v̂) =

⎧⎪⎨⎪⎩
K+1∑

l=π(i;θ∗)+1

[
(�l−1 − �l)max

j∈N
(q j v̂ j; l)

]
if π(i; θ∗) ≤ K

0 otherwise

, (9)

which can be written as a per-slot payment as:

p∗
α(m;θ∗)(v̂) =

⎧⎨⎩
K+1∑

l=m+1

[
(�l−1 − �l)max

i∈N
(qi v̂ i; l)

]
if m ≤ K

0 otherwise

. (10)

In the following sections we study the problem of designing incentive compatible mechanisms under different conditions 
of lack of information over the parameters {qi}i∈N and {�m}m∈K . In particular, in Section 4.1, we assume that the actual 
values of {qi}i∈N are unknown by the auctioneer, while those of {�m}m∈K are known. In Section 4.2, we assume that the 
actual values of {�m}m∈K are unknown by the auctioneer, while those of {qi}i∈N are known. Finally, in Section 4.3, we 
assume that both {qi}i∈N and {�m}m∈K are unknown.

4.1. Unknown qualities {qi}i∈N

In this section we assume that the qualities of the ads {qi }i∈N are unknown, while {�m}m∈K are known. We initially 
focus on DSIC a posteriori mechanisms and subsequently we discuss about DSIC in expectation mechanisms.

As in [20,21], we formalize the problem as a MAB problem and we study the properties of a learning mechanism 
where the exploration and exploitation phases are separated, such that during the exploration phase, we estimate the 
values of {qi}i∈N and during the exploitation phase we use the estimated qualities {q̃i}i∈N to implement a DSIC a posteriori
mechanism. The pseudo code of the algorithm A-VCG1 (Adaptive VCG 1) is given in Fig. 1. The details of the algorithm 
follow.

Exploration phase During an exploration phase of length τ , the algorithm receives as input the parameters {�m}m∈K
and collects data to estimate the quality of each ad. Unlike the single-slot case, where we collect only one sample of 
no-click/click event per step, here we can exploit the fact that each ad ai has a non-zero CTR whenever it is allo-
cated to a slot sm with m ≤ K . As a result, at each step of the exploration phase, we collect K samples (no-click/click 
events), one from each slot. Let θt (for 1 ≤ t ≤ τ ) be a sequence of allocations independent from the advertisers’ bids. Let 
Bi = {t : π(i; θt) ≤ K , 1 ≤ t ≤ τ } be the set of all the steps when ai is allocated to a valid slot, so that |Bi | corresponds to 
the total number of (no-click/click) samples available for ad ai . We denote by clicki

π(i;θ )(t) ∈ {0, 1} the no-click/click event 

t
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Input: Length of exploration phase τ , confidence δ, position-dependent parameters {�m}m∈K

Exploration phase
for t = 1, . . . , τ do

Allocate ads according to (13)
Ask for no payment
Observe the clicks {clicki

π(i;θt )
(t)}N

i=1

Compute the estimated quality q̃i = 1
|Bi |

∑
t∈Bi

clicki
π(i;θt )(t)

�π(i;θt )

Compute q̃+
i = q̃i + η where η is given by (14)

Exploitation phase
for t = τ + 1, . . . , T do

Allocate ads according to f̃ defined in (16)
For each ad ai , ask for payment p̃c

i defined in (18)

Fig. 1. Pseudo-code for the A-VCG1 mechanism.

at step t for ad ai when displayed in slot sπ(i;θt ) . Depending on the slot in which the click event happens, the ad ai has 
different CTR, thus we need to weigh each click sample by the probability of observation �m related to the slot in which 
the ad is allocated. As a result, the estimated quality q̃i is computed as

q̃i = 1

|Bi|
∑
t∈Bi

clicki
π(i;θt )

(t)

�π(i;θt )

. (11)

Since q̃i is an unbiased estimate of qi (i.e., Eclick[q̃i] = qi , where Eclick is the expectation w.r.t. the click realizations), we can 
resort to the Hoeffding’s inequality [44] and a bound over the error of the estimated quality q̃i for each ad ai .

Proposition 1. For any ad ai , i ∈N

|qi − q̃i | ≤
√√√√(∑

t∈Bi

1

�2
π(i;θt )

)
1

2|Bi|2 log
2N

δ
, (12)

with probability 1 − δ (w.r.t. the click realizations).

During the exploration phase, at each step t ∈ {1, . . . , τ }, we adopt the following sequence of allocations

θt = {〈s1,a
(t mod N)+1〉, . . . , 〈sN ,a

(t+N−1 mod N)+1〉}, (13)

thus obtaining |Bi | = �Kτ/N
 for all the ads ai . Given that �Kτ/N
 ≥ τ K
2N , Eq. (12) becomes

|qi − q̃i | ≤
√√√√( K∑

m=1

1

�2
m

)
N

K 2τ
log

2N

δ
=: η, (14)

where η represents the accuracy of the estimator.12 The previous inequality is non-trivial only for a long enough exploration 
phase. In particular, to have a meaningful bound, i.e., |qi − q̃i | < 1, the length of the exploration phase has to be τ >(∑K

m=1
1

�2
m

)
N
K 2 log 2N

δ
. During this phase, in order to guarantee DSIC a posteriori, the advertisers cannot be charged with 

any payment, i.e., all the payments in steps 1 ≤ t ≤ τ are set to 0. In fact, as shown in [21], any bid-dependent payment 
could be easily manipulated by bidders, thus obtaining a non-truthful mechanism, whereas bid-independent payments could 
lead to a non-IR mechanism to which bidders may prefer not to participate.

Exploitation phase Once the exploration phase is terminated, an upper-confidence bound over each quality qi is computed 
as

q̃+
i = q̃i + η, (15)

and the exploitation phase is started and run for the remaining T − τ steps. We define the upper-confidence bound on the 
SW as

12 Notice that, from now on, we realistically assume that all the ads have at least two samples to initialize their estimates q̃+
i . This hypothesis allows us 

to remove the floor notation in the bounds and, in the case of A-VCG1, it leads to an exploration time τ ≥ 2N/K .
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S̃W(θ, v̂) =
N∑

i=1

�π(i;θ)q̃
+
i v̂ i,

and we define f̃ as the allocation function that displays ads in decreasing order of q̃+
i v̂ i . Thus f̃ returns the efficient 

allocation θ̃ on the basis of the estimated qualities as:

θ̃ = f̃ (v̂) ∈ arg max
θ∈�

{S̃W(θ, v̂)}. (16)

The allocation function f̃ is then run for all the steps of the exploitation phase. Notice that f̃ is an affine maximizer, since

f̃ (v̂) ∈ arg max
θ∈�

N∑
i=1

�π(i;θ)q̃
+
i v̂ i = arg max

θ∈�

N∑
i=1

q̃+
i

qi
�π(i;θ)qi v̂ i

= arg max
θ∈�

N∑
i=1

wi�π(i;θ)qi v̂ i,

where each weight wi = q̃+
i /qi is independent of the advertisers’ types vi . Hence, we can apply the WVCG payments (here 

denoted by p̃ because of the estimated parameters) satisfying the DSIC a posteriori property. In particular, for any ai , we 
define the payment

p̃i(v̂) =
⎧⎨⎩

1
wi

∑K+1
l=π(i;θ̃ )+1

(�l−1 − �l)max
j∈N

(q̃+
j v̂ j; l) if π(i; θ̃ ) ≤ K

0 otherwise

=
⎧⎨⎩

qi

q̃+
i

∑K+1
l=π(i;θ̃ )+1

(�l−1 − �l)max
j∈N

(q̃+
j v̂ j; l) if π(i; θ̃ ) ≤ K

0 otherwise
. (17)

Although these payments cannot be computed by the auctioneer, since the actual {qi }i∈N are unknown, we can resort to 
the pay-per-click payments

p̃c
i

(
v̂, clicki

π(i;θ̃ )

)
= p̃i(v̂)

�π(i;θ̃ )qi
clicki

π(i;θ̃ )

= 1

�π(i;θ̃ )q̃
+
i

⎛⎝ K+1∑
l=π(i;θ̃ )+1

(�l−1 − �l)max
j∈N

(q̃+
j v̂ j; l)

⎞⎠ clicki
π(i;θ̃ )

, (18)

which in expectation coincide with the payments p̃i(v̂) = E[p̃c
i (v̂, clicki

π(i;θ̃ )
)] and can be computed at run time. Unlike 

the payments p̃i(v̂), these payments can be computed simply relying on the estimates q̃+
i and on the knowledge of the 

probabilities of observation �m . The following properties hold for this mechanism.

Theorem 1. The A-VCG1 is:

• DSIC a posteriori,
• IR a posteriori,
• WBB a posteriori.

Proof. The allocation function is monotonic a posteriori w.r.t. the click realizations since, by the nature of the externality 
model, each click realization plan prescribing that an ad is clicked in a given slot prescribes also that the same ad would be 
clicked in all the slots above. Thus, DSIC a posteriori trivially follows from the fact that the mechanism is a WVCG mechanism 
and that the payments are pay-per-click. �

We now move to the analysis of the performance of A-VCG1 in terms of the regret the mechanism accumulates through 
T steps.

Theorem 2. Let us consider a sequential auction with N advertisers, K slots, and T steps with position-dependent cascade model with 
parameters {�m}K

m=1 and accuracy η as defined in Eq. (14). For any parameter τ ∈ {1, . . . , T } and δ ∈ (0,1), the A-VCG1 achieves 
auctioneer’s revenue expected regret:
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RT ≤ vmax

(
K∑

m=1

�m

)
[2(T − τ )η + τ + δT ] . (19)

By setting the parameters to

• δ = K − 1
3 T − 1

3 N
1
3

• τ = K − 1
3 T

2
3 N

1
3 �

− 2
3

min

[
log

(
K

1
3 T

1
3 N

2
3

)] 1
3

,

where �min = min
m∈K

�m > 0, then the regret is

RT ≤ 4vmax�
− 2

3
min K

2
3 T

2
3 N

1
3

[
log

(
K

1
3 T

1
3 N

2
3
)] 1

3
. (20)

We initially introduce some remarks about the above results, and subsequently discuss the proof of the theorem, which 
can be found in Appendix C.

Remark 1 (The bound). Up to numerical constants and logarithmic factors, the bound in Eq. (20) is RT = Õ (K
2
3 T

2
3 N

1
3 ). We 

first notice that A-VCG1 is a no-regret algorithm since its per-step regret (RT /T ) decreases to 0 as T − 1
3 , thus implying that 

it asymptotically achieves the same performance as the VCG. Furthermore, we notice that for K = 1 the bound reduces (up 
to constants) to the single-slot case analyzed in [20]. Unlike the standard bound for MAB algorithms, the regret scales as 
Õ (T

2
3 ) instead of Õ (T

1
2 ). As pointed out in [20] and [21] this is the unavoidable price the bandit algorithm has to pay to 

be DSIC a posteriori w.r.t. the realizations of the random component of a mechanism. Finally, the dependence of the regret 
on N is sub-linear (N

1
3 ) and therefore increasing the number of advertisers does not significantly worsen the regret. The 

dependency on the number of slots K is similar: according to the bound in Eq. (20) the regret has a sublinear dependency 
Õ (K

2
3 ), meaning that whenever one slot is added to the auction, the performance of the algorithm does not significantly 

worsen. By analyzing the difference between the payments of the VCG and A-VCG1, we notice that during the exploration 
phase the regret is O (τ K ) (e.g., if all the ads allocated into the K slots are clicked at each explorative step), while during 
the exploitation phase the error in estimating the qualities sum over all the K slots, thus suggesting a linear dependency 
on K for this phase as well. Nonetheless, as K increases, the number of samples available per-ad increases as τ K/N , thus 
improving the accuracy of the quality estimates by Õ (K − 1

2 ) (see Proposition 1). As a result, as K increases, the exploration 
phase can be shortened (the optimal τ actually decreases as K − 1

3 ), thus reducing the regret during the exploration, and still 
have accurate enough estimates to control the regret of the exploitation phase.

Remark 2 (Distribution-free bound). The bound derived in Theorem 2 is a distribution-free (or worst-case) bound, since it 
holds for any set of advertisers (i.e., for any {qi}i∈N and {vi}i∈N ). This generality comes at the price that, as illustrated in 
other remarks and in the numerical simulations (see Section 6), the bound could be inaccurate for some specific sets of 
advertisers. On the other hand, distribution-dependent bounds (see e.g., the bounds of UCB [42]), where q and v appear 
explicitly, would be more accurate in predicting the behavior of the algorithm. Nonetheless, they could not be used to 
optimize the parameters δ and τ , since they would then depend on unknown quantities.

Remark 3 (Parameters). The choice of parameters τ and δ reported in Theorem 2 is obtained by a rough minimization of 
the upper-bound in Eq. (19). Each parameter can be computed by knowing the characteristics of the auction (number of 
steps T , number of slots K , number of ads N , and �m). Moreover, since the values are obtained optimizing an upper-bound 
of the regret and not directly the true cumulative regret, these values can provide a good guess for the parametrization, 
but they might not be optimal. In practice, we expect that the regret could be optimized by searching the space of the 
parameters around the values suggested in Theorem 2.

Remark 4 (DSIC in expectation). In this paper, we do not solve two interesting problems when DSIC in expectation w.r.t. 
the realizations of the random component of the mechanism is adopted: (i) whether it is possible or not to avoid the 
separation of the exploration and exploitation phases and (ii) whether it is possible to obtain a regret of Õ (T

1
2 ) as in the 

case of K = 1 [23]. Any attempt we tried to extend the result presented in [23] to the multi-slot case led to a non-IC
mechanism. We briefly provide some examples of adaptation to our framework of the two MAB presented in [23]. None of 
these attempts provided a monotonic allocation function. We tried to extend the UCB1 in different ways, e.g., by introducing 
N · K estimators, one for each ad for each slot, or maintaining N estimators weighing in different ways clicks obtained in 
different slots. The second MAB algorithm, called NewCB, is based on the definition of a set of active ads, i.e., the ones that 
can be displayed in the unique slot. We considered some extensions for the multi-slot setting (e.g., a single set for all the 
slots and multiple sets, one for each slot) without identifying monotonic allocation algorithms.



N. Gatti et al. / Artificial Intelligence 227 (2015) 93–139 107
Input: Qualities parameters {qi}i∈N

for t = 1, . . . , T do
Allocate ads according to f ∗ as prescribed by (8)
if Ad ai is displayed then

Ask for payment pc
i defined in (23)

Fig. 2. Pseudo-code for the A-VCG2 mechanism.

Comments to the proof. The proof uses relatively standard arguments to bound the regret of the exploitation phase. 
As discussed in Remark 2, the bound is distribution-free and some steps in the proof are conservative upper-bounds on 
quantities that might be smaller for specific auctions. For instance, the inverse dependency on the smallest cumulative 
discount factor �min in the final bound could be a quite inaccurate upper-bound on the quantity 

∑K
m=1 1/�2

m . In fact, the 
parameter τ itself could be optimized as a direct function of 

∑K
m=1 1/�2

m , thus obtaining a more accurate tuning of the 
length of the exploration phase and a slightly tighter bound (in terms of constant terms). Furthermore, a crucial step in the 
proof is the inequality max

i∈N
(q̃+

i vi; h)/ max
i∈N

(q̃+
i vi; m) ≤ 1, which is likely to become less accurate as the difference between h

and m increases (see Eq. (C.4) in the proof). For instance, if the qualities qi are drawn from a uniform distribution in (0, 1), 
as the number of slots increases this quantity reduces as well (on average), thus making the upper-bound by 1 less and less 
accurate. The accuracy of the proof and the corresponding bound are further studied in the simulations in Section 6.

Besides a bound on the revenue regret, in a similar way we can bound the SW, as in [23]. In particular, we obtain that 
A-VCG1 is a no-regret algorithm and RSW

T = Õ (T
2
3 ).

Theorem 3. Let us consider a sequential auction with N advertisers, K slots, and T steps with position-dependent cascade model with 
parameters {�m}K

m=1 and accuracy η as defined in Eq. (14). For any parameter τ ∈ {1, . . . , T } and δ ∈ (0,1), the A-VCG1 achieves a 
SW regret:

RSW
T ≤ vmax K (2 (T − τ )η + τ + δT ) . (21)

By setting the parameters to

• δ =
(

1
�min

) 2
3

K − 1
3 T − 1

3 N
1
3

• τ =
(

1
�min

) 2
3

K − 1
3 T

2
3 N

1
3

(
log 2�

2
3
min K

1
3 T

1
3 N

2
3

) 1
3

,

where �min = min
m∈K

�m, �min > 0, then the regret is

RSW
T ≤ 4vmax

(
1

�min

) 2
3

K
2
3 T

2
3 N

1
3

(
log 2�

2
3
min K

1
3 T

1
3 N

2
3

) 1
3

. (22)

Notice that using τ and δ defined in Theorem 2, the bound for RSW
T is Õ (T

2
3 ), even if the parameters are not optimal 

for this second framework.

4.2. Unknown {�m}m∈K

We now focus on the situation when the auctioneer knows {qi}i∈N , while {�m}m∈K are unknown. By definition of 
cascade model, {�m}m∈K are strictly non-increasing in m. This dramatically simplifies the allocation problem since the 
optimal allocation can be found without knowing the actual values of {�m}m∈K . Indeed, the allocation θ∗ such that 
α(m; θ∗) ∈ arg max

i∈N
(qi v̂ i; m), ∀ m ∈K, is optimal for any possible {�m}m∈K . However, the lack of knowledge about {�m}m∈K

makes the design of a truthful mechanism non-trivial because the cumulative probabilities of observation appear in the 
calculation of the payments. In the following, we initially focus on DSIC in expectation mechanisms, providing two mecha-
nisms, the first DSIC in expectation w.r.t. the click realizations and the second DSIC in expectation w.r.t. the realizations of 
the random component of the mechanism, and finally we discuss about DSIC a posteriori mechanisms.

4.2.1. DSIC in expectation w.r.t. the click realizations mechanism
In this case, we do not need to estimate the parameters {�m}m∈K and therefore we do not resort to the MAB framework 

to solve any exploration-exploitation dilemma. The pseudocode of the algorithm A-VCG2 (Adaptive VCG2) is given in Fig. 2. 
On the basis of the above considerations, we can adopt the allocatively efficient allocation function f ∗ as prescribed by 
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Eq. (8) even if the mechanism does not know the actual values of the parameters {�m}m∈K . Nonetheless, the VCG pay-
ments defined in Eq. (9) cannot be computed, since {�m}m∈K are unknown. However, by resorting to execution-contingent 
payments (generalizing the pay-per-click approach), we can impose computable payments that, in expectation, are equal to 
Eq. (9).13 More precisely, the contingent payments are computed given the bids v̂ and all click events over the slots and 
take the form:

pc
i

(
v̂,
{

clickα(m;θ∗)
m

}K

m=1

)
=

∑
π(i;θ∗)≤m≤K

clickα(m;θ∗)
m ·

qα(m;θ∗
−i)

· v̂α(m;θ∗
−i)

qα(m;θ∗)
−

∑
π(i;θ∗)<m≤K

clickα(m;θ∗)
m · v̂α(m;θ∗) (23)

Notice that the payment pc
i depends not only on the click of ad ai , but also on the clicks of all the ads displayed below ai . 

In expectation, the two terms of pc
i are:

Eclick

⎡⎣ ∑
π(i;θ∗)≤m≤K

clickα(m;θ∗)
m ·

qα(m;θ∗
−i)

· v̂α(m;θ∗
−i)

qα(m;θ∗)

⎤⎦=
∑

π( j;θ∗)≥π(i;θ∗)
�π( j;θ∗−i)

q j v̂ j

Eclick

⎡⎣ ∑
π(i;θ∗)<m≤K

clickα(m;θ∗)
m · v̂α(m;θ∗)

⎤⎦=
∑

π( j;θ∗)>π(i;θ∗)
�π( j;θ∗)q j v̂ j

and therefore, in expectation, the payment equals those defined in Eq. (9). We discuss the properties of the mechanism in 
what follows.

Proposition 2. The A-VCG2 is IR a posteriori.

Proof. Rename the ads {a1, . . . , aN} such that q1 v1 ≥ q2 v2 ≥ . . . ≥ qN v N . We can write payments in Eq. (23) as:

pc
i

(
v,
{

click j
j

}K

j=1

)
=

K∑
j=i

click j
j

q j
q j+1 v j+1 −

K∑
j=i+1

click j
j v j

Thus, the utility for advertiser ai is:

ui = click j
j vi +

K∑
j=i+1

click j
j v j −

K∑
j=i

click j
j

q j
q j+1 v j+1

=
K∑

j=i

click j
j v j −

K∑
j=i

click j
j

q j
q j+1 v j+1

=
K∑

j=i

⎛⎝click j
j v j − click j

j

q j
q j+1 v j+1

⎞⎠
=

K∑
j=i

click j
j

q j
(q j v j − q j+1 v j+1).

Since 
click j

j
q j

≥ 0 by definition and q j v j − q j+1 v j+1 ≥ 0 because of the chosen ordering of the ads, then the utility is always 
positive and we can conclude that the mechanism is IR a posteriori. �
Theorem 4. The A-VCG2 is:

• DSIC in expectation w.r.t. the click realizations,
• IR a posteriori,
• WBB in expectation w.r.t. the click realizations,
• AE.

13 In pay-per-click payments, an advertiser pays only once its ad is clicked; in our execution-contingent payments, an advertiser pays also when the ads 
of other advertisers are clicked.
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Proof. It trivially follows from the fact that the allocation function is AE and the payments in expectation equal the VCG
ones and by Proposition 2. �
Proposition 3. The A-VCG2 is not DSIC a posteriori (w.r.t. the click realizations).

Proof. The proof is by counterexample. Consider an environment with 3 ads N = {1, 2, 3} and 2 slots K = {1, 2} s.t. q1 = 0.5, 
v1 = 4, q2 = 1, v2 = 1, q3 = 1, v3 = 0.5, which correspond to expected values of 2, 1, and 0.5.

The optimal allocation θ∗ consists in allocating a1 in s1 and a2 in s2. Consider a step t when both ad a1 and a2 are 
clicked, from Eq. (23) we have that the payment of a2 is:

pc
2

(
v,
{

clickα(m;θ∗)
m

}K

m=1

)
= 1

q2
q3 v3 = 0.5

If ad a2 reports a value v̂2 = 3, the optimal allocation is now a2 in s1 e a1 in s2. In the case both a1 and a2 are clicked, the 
payment of a2 is:

pc
2

(
v̂,
{

clickα(m;θ∗)
m

}K

j=1

)
= 1

q2
q1 v1 + 1

q1
q3 v3 − v1 = 2 + 1 − 4 = −1

Given that, in both cases, the utility is u2 = v2 − pc
2

(
v̂, {clickα(m;θ∗)

m }K
m=1

)
, reporting a non-truthful value is optimal. Thus, 

we can conclude that the mechanism is not DSIC a posteriori w.r.t. the click realizations. �.

Proposition 4. The A-VCG2 is not WBB a posteriori (w.r.t. the click realizations).

Proof. The proof is by counterexample. Consider an environment with 3 ads N = {1, 2, 3} and 2 slots K = {1, 2} s.t. q1 = 1, 
v1 = 2, q2 = 0.5, v2 = 1, q3 = 1, v3 = 0.1.

The optimal allocation θ∗ consists in allocating a1 in s1 e a2 in s2. Consider step t when both ad a1 and a2 are clicked, 
their payments are:

pc
1

(
v,
{

clickα(m;θ∗)
m

}K

m=1

)
= 1

q1
q2 v2 + 1

q2
q3 v3 − v2 = 0.5 + 2 · 0.1 − 1 = 0.2 − 0.5 < 0

pc
2 = 1

q2
q3 v3 = 0.2

Thus, 
∑3

i=1 pc
i

(
v, {clickα(m;θ∗)

m }K
m=1

)
= 0.4 −0.5 < 0, and we can conclude that the mechanism is not WBB a posteriori. �

Now we state the following theorem, whose proof is straightforward.

Theorem 5. Let us consider a sequential auction with N advertisers, K slots, and T steps, with position-dependent cascade model with 
parameters {�m}K

m=1 . The A-VCG2 achieves an auctioneer’s revenue expected regret RT = 0.

An important property of this mechanism is that the expected payments are exactly the VCG payments for the optimal 
allocation when all the parameters are known. Moreover, the absence of an exploration phase allows us to obtain a per-step 
expected regret of zero and, thus, the cumulative regret over the T steps of auction is R T = 0. Similar considerations can be 
applied to the study of the regret over the SW, obtaining the following.

Corollary 1. Let us consider a sequential auction with N advertisers, K slots, and T steps, with position-dependent cascade model with 
parameters {�m}K

m=1 . The A-VCG2 achieves an SW regret RSW
T = 0.

4.2.2. DSIC in expectation w.r.t. the realizations of the random component mechanisms
As for the previous mechanism, also in this case we only need an exploitation phase. Unlike A-VCG2, in this case we 

need to follow a similar approach as in [23] and introduce a random component, which leads to the mechanism, called 
A-VCG2′ reported in Fig. 3.

Since f ∗ is monotonic (see Appendix B) and the problem is with single parameter and linear utilities, payments that 
guarantee DSIC in expectation w.r.t. the click realizations can be written as Myerson payments:

p∗
i (v̂) = �π(i; f ∗(v̂))qi v̂ i −

v̂ i∫
�π(i; f ∗(v̂−i ,u))qidu, (24)
0
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Input: Qualities parameters {qi}i∈N

for t = 1, . . . , T do
Allocate ads according to f ∗′ as prescribed by Algorithm 1
For each ad ai , ask for payment pB,∗,c

i defined in (25)

Fig. 3. Pseudo-code for the A-VCG2′ mechanism.

for all ai , i ∈N do
(xi , yi) = cSRP(v̂ i)

x = (x1, . . . , xN )

θ = f ∗(x)

Fig. 4. Definition of f ∗′(v̂).

which coincide with the VCG payments defined in Eq. (3) (hence the use of the same notation p∗
i ). This is justified by 

the fact that when a mechanism is AE, IR in expectation w.r.t. the click realizations and WBB in expectation w.r.t. the 
click realizations the only payments that lead to a DSIC in expectation w.r.t. the click realizations mechanism are the VCG
payments with Clacke’s pivot [45], and thus Eq. (24) coincides with Eq. (3). However, these payments are not directly 
computable, since the parameters {�m}m∈K in the integral are unknown and, as in the case discussed in Section 4.2.1, 
we cannot replace them by empirical estimates. Nonetheless, we could obtain these payments in expectation by using 
execution-contingent payments associated with non-optimal allocations where the report v̂ i is randomly modified in an 
interval between 0 and the actual value. This can be obtained by resorting to the approach proposed in [23], which takes 
as input a generic allocation function f and introduces a randomized component to it, thus producing a new (random) 
allocation function that we denote by f ′ . At the cost of reducing the efficiency of the mechanism, this technique allows 
the computation of the allocation and the payments at the same time, even when payments described in [35] cannot be 
directly computed.

In A-VCG2′ , we apply this approach to f ∗ , thus obtaining a new allocation function f ∗′ . With f ∗′ , the advertisers’ 
reported values {v̂ i}i∈N are modified, each with a (small) probability μ ∈ (0, 1). The (potentially) modified values are then 
used to compute the allocation (using f ∗) and the payments. More precisely, with a probability of (1 − μ)N , f ∗′ returns 
the same allocation as f ∗ , while it defines a different allocation with probability of 1 − (1 − μ)N . The reported values {

v̂ i
}

i∈N are modified through the canonical Self-Resampling Procedure (cSRP) described in [23] that generates two samples: 
xi(v̂ i, ωi) and yi(v̂ i, ωi), where ωi is the random seed. We sketch the result of cSRP where the function ‘rec’ is defined 
in [23]:

(xi, yi) = cSRP(v̂ i) =
{

(v̂ i, v̂ i) w.p. 1 − μ

(v̂ ′′
i , v̂ ′

i) otherwise
,

where v̂ ′
i ∼ U([0, ̂vi]) and v̂ ′′

i = rec(v̂ ′
i). The algorithm in Fig. 4 shows how f ∗′ works when the original allocation function 

is f ∗ . The reported values {v̂ i}i∈N are perturbed through the cSRP (Step 2) and then the allocation is chosen by applying 
the original allocation function f ∗ to the new values x (Step 4). Finally, the payments are computed as

pB,∗,c
i

(
x, clicki

π(i; f ∗(x))

)
=
{

pB,∗
i (x,y;v̂)

�π(i; f ∗(x))qi
if clicki

π(i; f ∗(x)) = 1

0 otherwise

=

⎧⎪⎨⎪⎩ v̂ i −
{

1
μ v̂ i if yi < v̂ i

0 otherwise,
if clicki

π(i; f ∗(x)) = 1

0 otherwise

(25)

where

pB,∗
i (x,y; v̂) = �π(i; f ∗(x))qi v̂ i −

{
1
μ�π(i; f ∗(x))qi v̂ i if yi < v̂ i

0 otherwise
, (26)

with y = (y1, . . . , yN). If we take the expectation of the payments in Eq. (25) w.r.t. the randomization of the mechanism, 
then we obtain exactly the same form of payments as in Eq. (24) but instantiated for the randomized allocation function 
f ∗′ (for the explicit equation refer to Eq. (E.1) in Appendix E). Furthermore, the resulting mechanism is shown to be DSIC in 
expectation w.r.t. the realizations of the random component of the mechanism and a posteriori w.r.t. the click realizations. 
As a result we obtained the following properties.
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Theorem 6. The A-VCG2′ is:

• DSIC in expectation w.r.t. the realizations of the random component of the mechanism and a posteriori w.r.t. the click realizations,
• IR a posteriori,
• WBB in expectation w.r.t. the realizations of the random component of the mechanism and a posteriori w.r.t. the click realizations.

We also obtain the following regret guarantees.

Theorem 7. Let us consider an auction with N advertisers, K slots, and T steps, with position-dependent cascade model with parame-
ters {�m}K

m=1 . The A-VCG2′ achieves an auctioneer’s revenue expected regret RT ≤ 2K 2μvmaxT .

If we tune the randomization parameter as μ = 1
K 2 T

, then we obtain RT = O (1). Notice that μ cannot be just set to 
zero, since it would lead to a division by zero in Eq. (25). Furthermore, as illustrated in Section 6, an undesirable effect of 
a small μ is the corresponding increase in the variance in the payments. Thus a proper trade-off should be found when 
tuning μ in practice. We provide a similar result for the regret over the SW.

Theorem 8. Let us consider a sequential auction with N advertisers, K slots, and T steps, with position-dependent cascade model with 
parameters {�m}K

m=1 . The A-VCG2′ achieves a SW regret RSW
T ≤ K 2μvmaxT .

4.2.3. Discussion about DSIC a posteriori mechanisms
One may wonder whether there exists a no-regret DSIC a posteriori mechanism, even at the cost of a worse regret. 

Resorting to the same arguments used in [28], we show that the answer to such question is negative.

Theorem 9. Let us consider a sequential auction with N advertisers, K slots, and T steps, with position-dependent cascade model with 
parameters {�m}K

m=1 whose value are unknown. Any online learning mechanism that is DSIC a posteriori achieves an auctioneer’s 
revenue expected regret RT of �(T ).

Proof (sketch). Basically, the A-VCG2 mechanism is DSIC in expectation w.r.t. the click realizations because it adopts 
execution-contingent payments in which the payment of advertiser ai depends also on the clicks over ads other than ai , 
while A-VCG2′ is DSIC in expectation w.r.t. the realization of the random component of the mechanism because it adopts 
implicit payments. In order to have DSIC a posteriori, we need payments pi that are deterministic w.r.t. the click realizations 
over other ads other than ai (i.e., pay-per-click payments are needed) and deterministic w.r.t. any realization of the random 
component of the mechanism.

We notice that even if {�m}m∈K have been estimated (e.g., in an exploitation phase), we cannot have payments leading 
to DSIC a posteriori. Indeed, with estimates {�̃m}m∈K , the allocation function maximizing S̃W (computed with �̃m) is not an 
affine maximizer and therefore the adoption of WVCG mechanism would not guarantee DSIC, not even in expectation. As 
a result, only mechanisms with payments defined in Eq. (24) can be used. However, these payments, if computed exactly 
(and not estimated in expectation), as required to have DSIC a posteriori, require the knowledge about the actual �m related 
to each slot sm in which an ad can be allocated for each report v̂ ≤ v .

To prove the theorem, we provide a characterization of DSIC a posteriori mechanisms. More precisely, we need a mono-
tonic allocation function and the payments defined in Eq. (24). As mentioned above, these payments require the knowledge 
about the actual �m related to the slot sm in which an ad can be allocated for any report v̂ ≤ v . Thus we have two 
possibilities:

• In the first case, the ads are partitioned and each partition is associated with a single slot and the ad with the largest 
expected valuation is chosen at each slot independently. In other words, an ad can be allocated only in one given 
specific slot and its report determines only whether it is displayed or not (and not where). This case is equivalent 
to multiple separate-single slot auctions and therefore each auction is DSIC a posteriori as shown in [20]. However, as 
shown in [28], this mechanism would have a regret �(T ).

• In the second case, the ads are partitioned and each partition is associated with multiple slots and for each partition 
an auction is carried out to determine the allocation over each slot. In other words, an ad can be allocated in one of 
a given set of slots (associated with its partition) on the basis of its report. In this case, to compute the payments, it 
would be necessary to know the exact CTR of the ad for each possible slot, but this is possible only in expectation 
either by using the above execution-contingent mechanism, as we do in Section 4.2.1, or by using a random component 
in the mechanism, as we do in Section 4.2.2. However, in both these case we would not obtain DSIC a posteriori.

Thus, in order to have DSIC a posteriori, we need to adopt the class of mechanisms described in the first case, obtaining 
RT = �(T ). �
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Input: Length of exploration phase τ , confidence δ

Exploration phase
for t = 1, . . . , τ do

Allocate ads according to (13)
Ask for no payment
Observe the clicks {clicki

1(t)}N
i=1

Compute the estimated quality q̃i = 1
|Bi |

∑
t∈Bi

clicki
1(t)

Compute q̃+
i = q̃i + η where η is given by (27)

Exploitation phase
for t = τ + 1, . . . , T do

Allocate ads according to f̃ ′ as prescribed by Algorithm 1 adopting f̃ instead of f ∗
For each ad ai , ask for payment p̃B,c

i defined in (28)

Fig. 5. Pseudo-code for the A-VCG3 mechanism.

4.3. Unknown {�m}m∈K and {qi}i∈N

In this section we study the situation in which both {qi}i∈N and {�m}m∈K are unknown. From the results derived in 
the previous section, we know that adopting DSIC a posteriori leads to RT = �(T ). Thus, we will only focus on DSIC in 
expectation.

First of all, we remark that the mechanisms presented in Section 4.1 and 4.2 cannot be adopted here and a new mecha-
nism is needed. By combining A-VCG1 and A-VCG2′ , we obtain the algorithm A-VCG3 (Adaptive VCG3) illustrated in Fig. 5. 
As in the case when only the qualities {qi}i∈N are unknown, we formalize the problem as a MAB where the exploration 
and exploitation phases are separate and where, during the exploration phase, we estimate the values of {qi}i∈N .

Exploration phase During the first τ steps, estimates of {qi}i∈N are computed. We use the same exploration policy of 
Section 4.1, but the estimates are computed just using samples from the first slot, since �m with m > 1 are unknown.14

Define Bi = {t : π(i; θt) = 1, 1 ≤ t ≤ τ } the set of steps where ai is displayed in the first slot, the number of samples collected 
for ai is |Bi | = � τ

N 
 ≥ τ
2N .15 The estimated value of qi is:

q̃i = 1

|Bi|
∑
t∈Bi

clicki
1(t).

such that q̃i is an unbiased estimate of qi (i.e., Eclick[q̃i] = qi ). By applying the Hoeffding’s inequality we obtain an upper 
bound over the error of the estimated quality q̃i for each ad ai .

Proposition 5. For any ad {ai}i∈N

|qi − q̃i | ≤
√

1

2|Bi| log
2N

δ
≤
√

N

τ
log

2N

δ
=: η, (27)

with probability 1 − δ (w.r.t. the click realizations).

In this case, in order to have a meaningful bound, i.e., |qi − q̃i | < 1, the length of the exploration phase has to be 
τ > N log 2N

δ
. After the exploration phase, an upper-confidence bound over each quality is computed as q̃+

i = q̃i + η.

Exploitation phase We first focus on the allocation function. During the exploitation phase we want to use an allocation 
θ̃ = f̃ (v̂) maximizing the estimated SW with estimated {q̃+

i }i∈N and the parameters {�m}m∈K . Since the actual parameters 
{�m}m∈K are monotonically non-increasing, θ̃ is defined as an allocation {〈sm, aα(m;θ̃ )〉}m∈K′ , where

α(m; θ̃ ) ∈ arg max
i∈N

(q̃+
i v̂ i;m) = arg max

i∈N
(q̃+

i �m v̂i;m).

14 In the following, we report some considerations about the case in which also the samples from the slots below the first are considered. Let us observe 
that, even if we use only the samples from the first slot, the algorithms [20,21] that apply to the single-slot case cannot be adopted here unless to accept 
a regret �(T ). This is essentially due to the fact that algorithms [20,21] have deterministic payments, but, as we show in Section 4.2.3, we cannot have 
no-regret mechanisms when payments are deterministic.
15 Following the same reasoning of Section 4.1, we consider an exploration time of τ > 2N , which guarantees to have at least two samples to estimate 

each q̃+
i .
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We now focus on payments. Allocation function f̃ is an affine maximizer (due to weights depending on q̃i as in Sec-
tion 4.1), but WVCG payments cannot be computed given that parameters {�m}m∈K are unknown. Neither the adoption of 
execution-contingent payments, like in Eq. (23), is allowed, given that qi is unknown and only estimates q̃i are available. 
Thus, we resort to implicit payments as in Section 4.2.2. More precisely, we use the same exploitation phase adopted in 
Section 4.2.2, except that we use f̃ in place of f ∗ . In this case, we have that the per-click payments are:

p̃B,c
i

(
x, clicki

π(i; f̃ (x))

)
=
{

p̃B
i (x,y;v̂)

�
π(i; f̃ (x))

qi
if clicki

π(i; f̃ (x))
= 1

0 otherwise

=

=

⎧⎪⎨⎪⎩ v̂ i −
{

1
μ v̂ i if yi < v̂ i

0 otherwise
if clicki

π(i; f̃ (x))
= 1

0 otherwise

(28)

where

p̃B
i (x,y; v̂) = �π(i; f̃ (x))

qi v̂ i −
{

1
μ�π(i; f̃ (x))

qi v̂ i if yi < v̂ i

0 otherwise
. (29)

We can state the following.

Theorem 10. The A-VCG3 is:

• DSIC in expectation w.r.t. the realizations of the random component of the mechanism and a posteriori w.r.t. the click realizations,
• IR a posteriori,
• WBB in expectation w.r.t. the realizations of the random component of the mechanism and a posteriori w.r.t. the click realizations.

Proof. The proof of DSIC in expectation and WBB in expectation easily follows from the definition of the adopted mecha-
nism as discussed in [23]. The proof of IR a posteriori is similar to the proof of Proposition 2. The fact that the properties 
hold a posteriori w.r.t. the click realizations follows from [23]. �

Now we want to analyze the performance of the mechanism in terms of the regret accumulated through T steps. Notice 
that in this case we have to focus on two different potential sources of regret: the adoption of a sub-optimal (randomized) 
allocation function and the estimation of the unknown parameters.

Theorem 11. Let us consider a sequential auction with N advertisers, K slots, and T steps, with position-dependent cascade model with 
parameters {�m}K

m=1 , accuracy η as defined in Eq. (27) and parameter μ ∈ (0,1]. For any parameter τ ∈ {1, . . . , T } and δ ∈ (0,1), 
the A-VCG3 achieves an auctioneer’s revenue expected regret:

RT ≤ vmax K [(T − τ ) (2η + 2μN) + τ + δT ] .

By setting the parameters to

• μ = T − 1
3 N− 2

3 ,

• δ = T − 1
3 N

1
3 ,

• τ = T
2
3 N

1
3

(
log 2N

δ

) 1
3

,

then the regret is

RT ≤ 6vmax K T
2
3 N

1
3

(
log 2T

1
3 N

2
3

) 1
3
. (30)

Remark 1 (The bound). Up to numerical constants and logarithmic factors, the previous bound on R T = Õ (T
2
3 K N

1
3 ). We 

first notice that also in this case we match the lowest possible regret w.r.t. T when exploration and exploitation phases are 
separate. As a result, the proposed mechanism is a no-regret algorithm and it asymptotically approaches the performance 
of the VCG (when all the parameter are known). Compared to the results in Section 4.1, the dependency of the regret on K

increased by a factor K
1
3 and it is now linear. This is a direct consequence of the exploration phase. In fact, here we cannot 
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take advantage of the samples collected over all the slots, and the qualities are estimated only using samples observed in 
the first slot. On the other hand, the dependency on N is the same as in Section 4.1.

Remark 2 (Non-separate phases and Õ(T
1
2 )). The questions whether it is possible to avoid separating exploration and ex-

ploitation and preserve DSIC in expectation (in some form) and whether it is possible to obtain a regret of Õ (T
1
2 ) are 

open.

Remark 3 (Using samples from multiple slots). An important issue is whether it is possible to exploit samples from the slots 
below the first one to improve the accuracy of the estimates and reduce the length of the exploration phase. The critical 
issue here is that the samples from slots below the first are drawn from a Bernoulli distribution with parameter obtained by 
the product of �m and qi , and it is not trivial to find a method to use these samples to improve the estimates. However, we 
notice that the exploitation of these additional samples would correspond to a reduction of the regret bound of at most K

1
3 , 

given that the dependency from K cannot be better than in the case discussed in Section 4.1 (i.e., O (K
2
3 )).

We can also prove an upper-bound for the regret for the SW of A-VCG3.

Theorem 12. Let us consider an auction with N advertisers, K slots, and T steps, with position-dependent cascade model with pa-
rameters {�m}K

m=1 , accuracy η as defined in Eq. (27) and parameter μ ∈ (0,1]. For any parameter τ ∈ {1, . . . , T } and δ ∈ (0,1), the 
A-VCG3 achieves a SW regret:

RSW
T ≤ vmax K [(T − τ )(2η + Nμ) + τ + δT ] .

By setting the parameters to

• μ = K −1T − 1
3 N

1
3 ,

• δ = T − 1
3 N

1
3 ,

• τ = T
2
3 N

1
3

(
log 2N

δ

) 1
3

,

then the regret is

RSW
T ≤ 5vmax K T

2
3 N

1
3

(
log 2T

1
3 N

2
3

) 1
3
.

Also in this case we obtain a regret on the SW RSW
T = Õ (T

2
3 ).

5. Learning with position- and ad-dependent externalities

In this section we deal with the general model in Eq. (1), where both position- and ad-dependent externalities are 
present and we provide several partial results. In Section 5.1, we analyze the problem of designing a DSIC a posteriori
mechanism when only the qualities of the ads are unknown, while in Section 5.2 we highlight some problems that rise 
when also continuation probabilities are uncertain.

5.1. Unknown qualities {qi}i∈N

We first focus on the problem where the only unknown parameters are the qualities {qi}i∈N of the ads and the exter-
nality model includes position- and ad-dependent externalities. We focus on DSIC in expectation w.r.t. the click realizations, 
since there is not any no-regret mechanism that is DSIC a posteriori w.r.t. the click realizations [43], and we study MAB al-
gorithms that separate the exploration and exploitation phases. The structure of the mechanism we propose, called A-VCG4, 
is similar to the A-VCG1 and is reported in Fig. 6.

Exploration phase At each step of the exploration phase of length τ , we collect K samples of no-click/click events. Given a 
generic exploration policy {θt}τt=1, the estimated quality q̃i is computed as:

q̃i = 1

|Bi|
∑
t∈Bi

clicki
π(i;θt )

(t)

	π(i;θt )(θt)
,

where Bi = {t : π(i; θt) ≤ K , 1 ≤ t ≤ τ }. Since the explorative allocations θt impact on the cumulative probabilities of obser-
vation 	m(θt), we use a variation of Proposition 1 in which Eq. (12) is replaced by:
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Input: Length of exploration phase τ , confidence δ, position-dependent parameters 
{	m}m∈K

Exploration phase
for t = 1, . . . , τ do

Allocate ads according to (13)
Ask for no payment
Observe the clicks {clicki

π(i;θt )
(t)}N

i=1

Compute the estimated quality q̃i = 1
|Bi |

∑
t∈Bi

clicki
π(i;θt )(t)

	π(i;θt )(θt )

Compute q̃+
i = q̃i + η where η is given by (31)

Exploitation phase
for t = τ + 1, . . . , T do

Allocate ads according to f̃
if Ad ai is clicked then

Ask for payment p̃c
i defined in (32)

Fig. 6. Pseudo-code for the A-VCG4 mechanism.

|qi − q̃i | ≤
√√√√(∑

t∈Bi

1

	π(i;θt )(θt)2

)
1

2|Bi|2 log
2N

δ
.

For each exploration policy such that |Bi | = � Kτ
N 
 ≥ Kτ

2N for any i ∈N (e.g., the policy defined in Eq. (13)), we redefine η as

|qi − q̃i | ≤ 1

	min

√
N

Kτ
log

2N

δ
=: η, (31)

where 	min = min
θ∈�,m∈K

{	m(θ)}. In this case, in order to have a meaningful bound, i.e., |qi − q̃i | < 1, the length of the ex-

ploration phase has to be τ > 1
	2

min

N
K log 2N

δ
. We define the upper-confidence bound q̃+

i = q̃i + η. During the exploration 

phase, in order to preserve the DSIC a posteriori property, the allocations {θt}τt=1 do not depend on the reported values of 
the advertisers and no payments are imposed to the advertisers.

Exploitation phase We define an upper bound on the SW as

S̃W(θ, v̂) =
N∑

i=1

	π(i;θ)(θ)q̃+
i v̂ i =

K∑
m=1

	m(θ)q̃+
α(m;θ)

v̂α(m;θ).

We denote by θ̃ the allocation maximizing S̃W( f (v̂), ̂v) and by f̃ the allocation function returning θ̃ :

θ̃ = f̃ (v̂) ∈ arg max
θ∈�

S̃W(θ, v̂).

Once the exploration phase is over, the ads are allocated on the basis of f̃ . Since f̃ is an affine maximizer, the mecha-
nism can impose WVCG payments to the advertisers satisfying the DSIC a posteriori property. In a pay-per-click fashion the 
advertiser ai is charged

p̃c
i

(
v̂, clicki

π(i;θ̃ )

)
= S̃W(θ̃−i) − S̃W−i(θ̃)

	π(i;θ̃ )(θ̃ )q̃+
i

clicki
π(i;θ̃ )

, (32)

which corresponds, in expectation, to the WVCG payment p̃i(v̂) = E 
[

p̃c
i (v̂, clicki

π(i;θ̃ )
)
]

. As a result, we have:

Theorem 13. The A-VCG4 is:

• DSIC in expectation w.r.t. the click realizations,
• IR a posteriori,
• WBB a posteriori.

We are interested in bounding the regret of the auctioneer’s revenue due to A-VCG4 compared to the auctioneer’s 
revenue of the VCG mechanism when all the parameters are known.
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Theorem 14. Let us consider a sequential auction with N advertisers, K slots, and T steps with position/ad-dependent externalities 
and cumulative discount factors {	m(θ)}K

m=1 and accuracy η defined as in Eq. (31). For any parameter τ ∈ {1, . . . , T } and δ ∈ (0,1), 
the A-VCG4 achieves an auctioneer’s revenue expected regret:

RT ≤ vmax K

[
10K

qmin
(T − τ )η + τ + δT

]
, (33)

where qmin = mini∈N qi . By setting the parameters to

• δ =
(

5
	min

) 2
3

K
1
3 T − 1

3 N
1
3 ,

• τ =
(

5
	min

) 2
3

K
1
3 T

2
3 N

1
3

(
log 2N

δ

) 1
3

,

then the regret is

RT ≤ 4 · 5
2
3

	
2
3
minqmin

vmax K
4
3 T

2
3 N

1
3

⎛⎝log
2	

2
3
min K − 1

3 T
1
3 N

2
3

5
2
3

⎞⎠
1
3

. (34)

Remark 1 (Differences w.r.t. position-dependent externalities). Up to constants and logarithmic factors, the previous distribution-

free bound on RT is Õ (T
2
3 N

1
3 K

4
3 ).16 We first notice that moving from position- to position/ad-dependent externalities does 

not change the dependency of the regret on the number of steps T and the number of ads N . Moreover, the per-step regret 
still decreases to 0 as T increases. The main difference w.r.t. the bound in Theorem 2 is in the dependency on K and on 
the smallest quality qmin. We believe that the augmented dependence in K is mostly due to an intrinsic difficulty of the 
position/ad-dependent externalities. As a result, the bound displays a super-linear dependency on the number of slots. The 
other main difference is that now the regret has an inverse dependency on the smallest quality qmin. Inspecting the proof, 
this dependency is due to the fact that the error of a quality estimate for an ad ai might be amplified by the inverse of 
the quality itself. As discussed in Remark 2 of Theorem 2, this dependency may also follow from the fact that we have a 
distribution-free bound. Further discussion on the tightness of this bound is postponed to Section 6.

Remark 2 (Optimization of the parameter τ ). Although the actual qualities {qi}i∈N are unknown, whenever a lower-bound 
on qmin is available, the parameter τ could be better tuned by multiplying it by (qmin)− 2

3 , thus reducing the regret from 
Õ ((qmin)−1) to Õ ((qmin)− 2

3 ).

Remark 3 (Externalities-dependent bound). We notice that the previous bound does not reduce to the bound in Eq. (20) in 
which only position-dependent externalities are present. Indeed, the dependency on K is different in the two bounds: from 
K

2
3 in Eq. (20) to K

4
3 in Eq. (34). This means that the bound in Eq. (34) over-estimates the dependency on K whenever 

the auction has only position-dependent externalities. It is an interesting open question whether it is possible to derive an 
auction-dependent bound where the specific values of the cumulative probabilities of observation γm,i explicitly appear in 
the bound and which reduces to Eq. (20) for position-dependent externalities.

Comments to the proof. While the proof of Theorem 2 could exploit the specific definition of the payments for position-
dependent slots and it is a fairly simple extension of [20], in this case the proof is more complicated because of the 
dependency of the cumulative probabilities of observation on the actual allocations and decomposes the regret of the 
exploitation phase in components due to the different allocations ( f̃ instead of f ∗) and the different qualities as well 
(q̃+

i instead of qi ).
Using the mechanism described before, it is possible to derive an upper-bound over the cumulative regret over the SW

of the allocation (as in [23]). We obtain the same dependence over T , as for the regret on the revenue.

Theorem 15. Let us consider a sequential auction with N advertisers, K slots, and T steps. The auction has position/ad-dependent 
externalities and cumulative discount factors {	m(θ)}K

m=1 and accuracy η defined as in Eq. (31). For any parameter τ ∈ {1, . . . , T } and 
δ ∈ (0,1), the A-VCG4 achieves a SW regret:

RSW
T ≤ vmax K [2(T − τ )η + τ + δT ] . (35)

By setting the parameters to

16 We notice that in [29] we provided a bound O (T
2
3 N K

2
3 ) that did not match with the numerical simulations and we conjectured a bound of 

O (T
2
3 N

1
3 K

4
3 ). Here we show the conjecture is actually correct.
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• δ =
(

1
	min

) 2
3

K − 1
3 T − 1

3 N
1
3 ,

• τ =
(

1
	min

) 2
3

K − 1
3 T

2
3 N

1
3

(
log 2N

δ

) 1
3

,

then the regret is

RSW
T ≤ 4vmax

(
1

	min

) 2
3

K
2
3 T

2
3 N

1
3

(
log 2	

− 2
3

min K
1
3 T

1
3 N

2
3

) 1
3

. (36)

Thus RSW
T = Õ (T

2
3 ). In particular notice that A-VCG4 is a zero-regret algorithm. We notice that unlike the bound on the 

revenue regret, in this case RSW
T does not display any dependency on qmin, which suggests that the problem of minimizing 

the SW regret may be easier. Roughly speaking, this is due to the fact that the accuracy of the estimated qualities is only 
used to determine the allocation f̃ but they do not determine the performance of f̃ itself, which is measured according 
to its actual SW. On the other hand, in the computation of the revenue regret, the qualities q̃+

i are used to determine the 
payments and this may lead to an additional error, which is reflected in the presence of qmin in the bound.

5.2. Further extensions

In this section we provide a negative, in terms of regret, result under DSIC in expectation w.r.t. the click realizations and 
a posteriori w.r.t. the realization of the random component of the mechanism when the parameter γm,i depends only on 
the ad ai (we denote it by ci = γm,i for any m ∈ K as in [24]) and this parameter is the only uncertain parameter (i.e., the 
qualities are known).

We focus on the exploitation phase, supposing the exploration phase has produced the estimates {c̃+
i }i∈N for the con-

tinuation probabilities {ci}i∈N . The allocation function f presented in [24] is able to compute the optimal allocation when 
{ci}i∈N values are known, but it is not an affine maximizer when applied to the estimated values {c̃+

i }i∈N . In fact, in that 
case the allocation becomes

f̃ (v̂) ∈ arg max
θ∈�

K∑
m=1

qα(m;θ) v̂α(m;θ)

m−1∏
h=1

c̃+
α(h;θ)

. (37)

In this case, it is not possible to isolate a weight depending only on a single ad and thus f̃ (v̂) is not affine. Furthermore, 
we can also show that such allocation function is not monotonic.

Proposition 6. The allocation function f̃ in Eq. (37) is not monotonic.

Proof. The proof is by counterexample. Consider an environment with 3 ads and 2 slots such that

ad vi c̃+
i ci

a1 0.85 1 0.89
a2 1 0.9 0.9
a3 1.4 0 0

and qi = 1 ∀i ∈N . The optimal allocation θ̃ computed by f̃ when agents declare their true values v is: ad a2 is allocated in 
the first slot and a3 in the second one. We have CTRa3 (θ̃ ) = 0.9.

If advertiser a3 reports a larger value, e.g., v̂3 = 1.6, in the resulting allocation f̃ (v̂3, v−3), ad a1 is displayed into the first 
slot and a3 into the second one. In this case CTRa3 (θ̂ ) = 0.89 < CTRa3 (θ̃ ), thus the allocation function f̃ is not monotonic. �

On the basis of this result, we can state the following theorem.

Theorem 16. Let us consider a sequential auction with N advertisers, K slots, and T steps, with ad-dependent cascade model with 
parameters {ci}N

i=1 whose value are unknown. Any online learning mechanism that is DSIC in expectation w.r.t. the click realizations 
and a posteriori w.r.t. the realization of the random component of the mechanism achieves a SW regret RSW

T = �(T ).

Proof. Let, with abuse of notation, f (v̂|c) be the allocation function maximizing the SW given parameters c. As shown 
above, f (v̂|c̃) cannot be used in the exploitation phase, because the resulting mechanism would not be DSIC in expectation 
w.r.t. the click realizations. However, it can be easily observed that a necessary condition to have a no-regret algorithm is 
that the allocation function used in the exploitation phase, say g(v̂|c̃), is such that g(v̂|c) = f (v̂|c) for every v̂ and c (that 
is, they always return the same allocation). Indeed, if there exists at least a v̂ such that g(v̂|c) 
= f (v̂|c), then, as T → +∞, 
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f (v̂|c) 
= g(v̂|c̃), given that c̃ → c. Thus, since the difference between the values of the allocations is generically strictly 
positive, the algorithm would suffer from a strictly positive regret when T → +∞ and therefore it would not be a no-regret 
mechanism. However, any such a g would not be monotonic and therefore it cannot be adopted in a DSIC in expectation 
w.r.t. the click realizations mechanism. As a result, any online learning mechanism that is DSIC in expectation w.r.t. the click 
realizations is not a no-regret mechanism.

To complete the proof, we need to provide a mechanism with regret �(T ). Such a mechanism can be easily obtained by 
partitioning ads in groups such that in each group the ads compete only for a single slot. Therefore, each ad can appear in 
only one slot. �

The above result shows that no approach similar to the one described in [23] can be adopted even for obtaining DSIC
in expectation w.r.t. realizations of the random component of the mechanism. Indeed, the approach described in [23] re-
quires in input a monotonic allocation function. This would suggest a negative result in terms of regret also with DSIC in 
expectation w.r.t. realizations of the random component of the mechanism.

Finally, we provide a result on the regret over the auctioneer’s revenue. The proof is straightforward given that the 
WVCG cannot be adopted due to the above result and therefore the regret over the payments cannot go to zero as T goes 
to infinite.

Theorem 17. Let us consider a sequential auction with N advertisers, K slots, and T steps, with ad-dependent cascade model with 
parameters {ci}N

i=1 whose value are unknown. Any online learning mechanism that is DSIC in expectation w.r.t. the click realizations and
a posteriori w.r.t. realization of the random component of the mechanism achieves an auctioneer’s revenue expected regret R T = �(T ).

6. Numerical simulations

In this section we report numerical simulations to validate the theoretical bounds over the regret of the auctioneer’s 
revenue proved in the previous sections.17 In particular, the theoretical bounds reveal the dependency of (expected) regret 
on characteristic parameters of the auction (i.e., T , N , K , and qmin, and μ if the mechanism is randomized). Nonetheless, 
the upper bounds may be inaccurate in overestimating the actual performance of the proposed algorithms. In fact, while 
we prove that the regret can never be larger than the upper bound, some steps in the proofs may be loose, thus leading to 
bounds which do not accurately predict the behavior of the algorithms in practice. In the following we investigate by means 
of numerical simulations whether the dependency, in terms of asymptotic order, of the bounds on each single parameter of 
the auction is accurate except for a numerical constant factor. In all the following experiments, we generate the parameters 
related to the ads in the same way. The qualities {qi}i∈N are drawn from a uniform distribution in [0.01, 0.1], while the 
values {vi}i∈N are randomly drawn from a uniform distribution on [0, 1] (vmax = 1). On the other hand, the cumulative 
probabilities of observation {�m}m∈K are different case by case.

Since the main objective is to evaluate the asymptotic accuracy of the bounds, we report the relative regret

R RT = RT

B(T , K , N,qmin)
,

where B(T , K , N, qmin) is the value of the bound for the specific setting (i.e., Eq. (20) and Eq. (30) for position-dependent, 
and Eq. (34) for position/ad-dependent externalities).

We analyze the asymptotic accuracy of the bounds w.r.t. each specific parameter, changing only its value and keeping the 
values of all the others fixed. Since B is proved to be an upper-bound on the actual regret R T , we expect the relative regret 
R RT to be always smaller than 1 (R RT = 1 corresponds to the case in which the experimental regret perfectly matches 
our upper bound). In particular, we say that our upper-bound accurately predicts the actual asymptotic dependency of the 
regret w.r.t. a specific parameter if the experimental dependence of R R T w.r.t. the parameter is a constant as the parameter 
changes. Notice that we do not expect the constant to be close to 1, given that we focus on the asymptotic dependence w.r.t. 
the parameters and in the steps of the proofs we often use worst-case distribution-free bounds. All the results presented in 
the following sections are obtained by setting τ and δ as suggested by our bounds and, where it is not differently specified, 
by averaging over 100 independent runs.

6.1. Position-dependent externalities

6.1.1. Unknown {qi}i∈N
First of all we analyze the asymptotic accuracy of the bound provided in Section 4.1, where the model presents only 

position-dependent externalities and the qualities of the ads are unknown. We design the simulations such that λm = λ for 
every m ∈K with �1 = 1 and �K = 0.8 (i.e., λ = K−1

√
0.8). Thus, �min = 0.8 in all the experiments.

In Fig. 7 we analyze the asymptotic accuracy of the bound w.r.t. the parameters T and N . All the three curves in the left 
plot are completely flat (except for noise due to the randomness of the simulations) showing that the value of the relative 

17 Since the bounds over the regret of the SW present a structure similar to those over the auctioneer’s revenue, their empirical analysis is omitted.
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Fig. 7. Position-dependent externalities with unknown {qi}i∈N . Dependency of the relative regret on T (left) and N (right).

Fig. 8. Position-dependent externalities with unknown {qi}i∈N . Dependency of the relative regret on K for two experimental settings (distinguished by the 
probability distribution according to q are drawn).

regret R RT for different values of K and N does not change as T increases. This suggests that the bound in Theorem 2
effectively predicts the dependency of the regret RT w.r.t. the number of steps T of the auction as Õ (T 2/3). The right plot 
represents the dependency of the relative regret R RT on the number of ads N . In this case we notice that it is relatively 
accurate as N increases, but there is a transitory effect for smaller values of N where the regret grows faster than predicted 
by the bound (although B(T , K , N, qmin, �min) is still an upper-bound to RT ). Finally, the left plot of Fig. 8 suggests that 
the asymptotic dependency on K in the bound of Theorem 2 is over-estimated, since the relative regret R RT decreases as 
K increases. As discussed in the comment to the proof in Section 4, this might be explained by the over-estimation of the 
term maxi(q̃

+
i v̂ i ;l)

maxi(q̃
+
i v̂ i ;k)

in the proof. In fact, this term is likely to decrease as K increases. In order to validate this intuition, we 
have identified some experimental settings for which the bound seems to accurately predict the asymptotic dependency on 
K : q1 = 0.1, q2 = 0.095, and qi = 0.09 for every i, 2 < i ≤ K . As a result, the ratio between the qualities {qi}i∈N is fixed 
(on average) and does not change with K . The right plot of Fig. 8 shows that, with these values of {qi}i∈N , the ratio R RT

is constant for different values of N , implying that in this case the bound accurately predicts the asymptotic behavior of 
RT . In fact, as commented in the remarks to Theorem 2, we derive distribution-independent bounds where the qualities 
{qi}i∈N do not appear in the bound. As a result, RT should be intended as a worst case w.r.t. all the possible configurations 
of qualities and externalities.

6.1.2. Unknown {�m}m∈K
We now investigate the asymptotic accuracy of the bound derived for algorithm A-VCG2′ presented in Section 4.2.2. We 

used several probability distributions to generate the values of {λm}m∈K . We observed that, when they are drawn uniformly 
from the interval [0.98, 1.00], the numerical simulations confirm our bound (as we show below), whereas the bound seems 
to overestimate the dependencies on K and μ when the support of the probability distribution is wider (e.g., [ξ, 1.00] with 
ξ � 0.98); we do not report any plot for this second case.

The left plot of Fig. 9 shows the dependence of the ratio R RT w.r.t. T when μ = 0.01. Despite the noise, the ratio seems 
not to be affected by the variation of T , confirming our bound. In the right plot of Fig. 9, we observe that when T = 105

and μ = 0.01 the behavior of the ratio as K changes is essentially the same for different values of N . Furthermore, we 
observe that the bound is accurate except that it seems to overestimate the dependence when K assumes small values (as 
it happens in practice). In the left plot of Fig. 10, the ratio R RT seems to be constant as μ varies when T = 105.



120 N. Gatti et al. / Artificial Intelligence 227 (2015) 93–139
Fig. 9. Position-dependent externalities with unknown {�m}m∈K . Dependency of the relative regret on T (left) and K (right).

Fig. 10. Position-dependent externalities with unknown {�m}m∈K . Dependency of the relative regret on μ (left). Variance of the revenue of the auctioneer 
(right).

We conclude our analysis studying the variance of the payments as μ varies. The bound over R T , provided in Sec-
tion 4.2.2, suggests to choose a μ → 0 in order to reduce the regret. Nonetheless, the regret bounds are obtained in 
expectation w.r.t. all the sources of randomization and do not consider how single realizations of the learning mecha-
nism may deviate w.r.t. the expected regret. Thus in the right plot of Fig. 10 we investigate the variance of the payments. 
The variance is excessively high for small values of μ, making the adoption of these value inappropriate. Thus, the choice 
of μ should consider both these two dimensions of the problem: the regret and the variance of the payments.

6.1.3. Unknown {�m}m∈K and {qi}i∈N
In this section we analyze the bound provided in Section 4.3 for position-dependent auctions where both the promi-

nences and the qualities are unknown. For these simulations we generate {λm}m∈K samples from a uniform distribution 
over [0.5, 1] and we set τ , δ and μ to the values derived for the bound. In particular, in order to balance the increase of 
variance of the payments when μ decreases, the number of steps is not constant, but it changes as a function of μ as 1000

μ . 
This means that, in expectation, the bid of a generic ad ai is modified 1000 times over the number of the steps.

In the plots of Fig. 11, we show that the bound in Eq. (30) accurately predicts the asymptotic dependence of the regret 
w.r.t. the parameters T and N . Indeed, except for the noise due to the high variance of the payments based on the cSRP, the 
two plots show that fixing the other parameters, the ratio R RT is constant as both T increases and N increases.

The plot in Fig. 12 represents the dependency of the relative regret w.r.t. the parameter K . We can deduce that the 
bound RT over-estimates the dependency on K for small values of the parameters, while, with larger values, the bound 
accurately predicts the behavior, the curves being flat.

6.2. Position/ad-dependent externalities

In this section we analyze the bound provided in Section 5.1 for auctions with position-dependent and ad-dependent 
externalities where only the qualities are unknown.

In the bound provided in Theorem 14 the regret RT presents a linear dependency on N and an inverse dependency 
on the smallest quality qmin. In the left plot of Fig. 13 we report R RT as T increases. As it can be observed, the bound 
accurately predicts the behavior of the regret w.r.t. T as in the case of position-dependent externalities. In the right plot of 
Fig. 13 we report R RT as we change qmin. According to the bound in Eq. (34) the regret should decrease as qmin increases 
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Fig. 11. Position-dependent externalities with unknown {qi}i∈N and {�m}m∈K . Dependency of the relative regret on T (left) and N (right).

Fig. 12. Position-dependent externalities with unknown {qi}i∈N and {�m}m∈K . Dependency of the relative regret on K .

Fig. 13. Dependency on T (left) and qmin (right) in auctions with position/ad-dependent externalities.

(i.e., RT = Õ (q−1
min)) but it is clear from the plot that RT has a much smaller dependency on qmin, if any.18 Finally, we study 

the dependency on N (Fig. 14). In this case R RT slightly increases and then it tends to flat as N increases. This result 
suggests that the, theoretically derived, N

1
3 asymptotic dependency of RT w.r.t. the number of ads might be correct. We do 

not report results on K since the complexity of finding the optimal allocation f ∗ becomes intractable for values of K larger 
than 8, as shown in [41], making the empirical evaluation of the bound unfeasible.

7. Conclusions and future work

In this paper, we studied the problem of learning the CTRs of ads in sponsored search auctions with truthful mecha-
nisms. This problem is highly challenging since it requires the combination of online learning tools (i.e., regret minimization 

18 From this experiment is not clear whether R RT = Õ (q−1
min), thus implying that RT does not depend on qmin at all, or R RT is sublinear in qmin, which 

would correspond to a dependency RT = Õ (q−z
min) with 0 < z < 1.
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Fig. 14. Dependency of the relative regret R RT on N .

algorithms) and economic tools (i.e., truthful mechanisms). While almost all the literature focused on single-slot scenarios, 
here we focused on multi-slot scenarios. With multiple slots it is necessary to adopt a user model to characterize how the 
CTR of an ad varies as the allocation of displayed ads varies. Here, we adopted the cascade model, that is the most common 
model used in the literature. In the paper, we studied a number of scenarios, each with a specific information setting of un-
known parameters. For each scenario, we designed a truthful learning mechanism, studied its economic properties, derived 
an upper bound over the regret, and, for some mechanisms, also a lower bound. We considered both the regret over the 
auctioneer’s revenue and the SW.

We showed that for the cascade model with only position-dependent externalities it is possible to design a truthful 
no-regret learning mechanism for the general case in which all the parameters are unknown. Our mechanism presents a 
regret Õ (T

2
3 ) and it is DSIC in expectation w.r.t. the realization of the random component of the mechanism. However, 

it remains open whether or not it is possible to obtain a regret Õ (T
1
2 ). For specific cases, in which some parameters 

are known to the auctioneer, we obtained better results in terms of either incentive compatibility, obtaining dominant 
strategy truthfulness, or regret, obtaining a regret of zero. We showed that for the cascade model with the position- and 
ad-dependent externalities it is possible to design a DSIC a posteriori mechanism with a regret Õ (T

2
3 ) when only the quality 

is unknown. Instead, even when the cascade model is only with ad-dependent externalities and no parameter is known, it 
is not possible to obtain a no-regret DSIC a posteriori mechanism. The proof of this result would seem to suggest that the 
same result holds also when a random mechanism is adopted and the truthfulness is in expectation w.r.t. its realizations. 
However, we did not produce any proof for that, leaving it for future works. Finally, we empirically evaluated the bounds 
we provided, showing that the dependency of the regret on the parameters is mostly correct in a worst-case scenario.

Two main questions deserve future investigation. The first question concerns the study of a lower bound for the case 
in which there are only position-dependent externalities and truthfulness is in expectation in expectation w.r.t. only the 
realizations of the random component of the mechanism or also w.r.t. the click realizations. Furthermore, it is open whether 
the separation of exploration and exploitation phases is necessary and, in the negative case, whether it is possible to obtain 
a regret Õ (T

1
2 ). The second question concerns a similar study related to the case with only ad-dependent externalities.

Appendix A. Vickrey–Clarke–Groves mechanism

Consider a generic direct-revelation mechanism M = (N , V, �, f , {pi}i∈N ) as defined in Section 3.2. Differently from the 
SSA case, in general the type of an agent, denoted by vi for consistency with the rest of the paper, is a vector of parameters. 
We define a function vali : � ×V → R

+ , which returns the value obtained by agent ai when its type is vi and the allocation 
chosen by the mechanism is θ .

The VCG mechanism is obtained coupling the two following functions:

• the allocation function f which returns the allocation maximizing the social welfare, i.e.,

f (v̂) = arg max
θ∈�

SW(θ, v̂) = arg max
θ∈�

∑
i∈N

vali(θ, v̂ i);

• the payment rule pi , which defines the payment required from agent ai , i.e.,

pi(v̂) = SW( f (v̂−i), v̂−i) − SW−i( f (v̂), v̂)

=
∑

j∈N , j 
=i

val j( f (v̂−i), v̂ j) −
∑

j∈N , j 
=i

val j( f (v̂), v̂ j),

where we denote by f (v̂−i) the allocation returned by f when agent i does not participate to the auction.
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In this quasi-linear environment, when there are no interdependencies among the types of the agents and the no-single-
agent effect [3] holds, the VCG mechanism is AE, DSIC a posteriori, IR a posteriori, and WBB a posteriori.

Appendix B. Monotonicity and Myerson’s payments

Consider a generic direct-revelation mechanism M = (N , V, �, f , {pi}i∈N ) as defined in Section 3.2. A single-parameter 
linear environment is such that

• the type of each agent ai is a scalar vi (single-parameter assumption),
• the utility function of agent ai is ui(v̂) = zi

(
f
(
v̂
))

vi − pi(v̂) where zi : � → R is a function of the allocation (linear 
assumption).

An allocation function f is monotonic in a single-parameter linear environment if for any v̂−i

zi
(

f
(
v̂−i, v ′′

i

))≥ zi
(

f
(
v̂−i, v ′

i

)) ∀i ∈ N
for any v ′′

i ≥ v ′
i . Essentially, zi is monotonically increasing in vi once v̂−i has been fixed. In such environments, it is always 

possible to design a DSIC mechanism imposing the following payments [35]:

pi(v̂) = hi(v̂−i) + zi
(

f
(
v̂
))

v̂ i −
v̂ i∫

0

zi
(

f
(
v̂−i, u

))
du (B.1)

where hi : VN−1 → R is a generic function not depending on the type of agent ai .

Appendix C. Proof of revenue regret in Theorem 2

We start by reporting the proof of Proposition 1.

Proof of Proposition 1. The derivation is a simple application of the Hoeffding’s bound. We first notice that each of the 
terms in the empirical average q̃i (Eq. (11)) is bounded in [0; 1/�π(i;θt )]. Thus we obtain

P
(|qi − q̃i| ≥ ε

)≤ 2 exp

(
− 2|Bi|2ε2∑

t∈Bi

( 1
�π(i;θt )

− 0
)2

)
= δ

N
.

By reordering the terms in the previous expression we have

η =

√√√√√
⎛⎝∑

t∈Bi

1

�2
π(i;θt )

⎞⎠ 1

2|Bi|2 log
2N

δ
,

which guarantees that all the empirical estimates q̃i are within η of qi for all the ads with probability, at least, 1 − δ. �
Before stating the main result of this section, we need the following lemma.

Lemma 1. For any slot sm with m ∈K, with probability 1 − δ,

max
i∈N

(qi v̂ i;m)

max
i∈N

(q̃+
i v̂ i;m)

≤ 1, (C.1)

where the operator max(·; ·) is defined as in Section 4.

Proof. The proof is a straightforward application of Proposition 1. We consider the optimal allocation θ∗ defined in Eq. (2)
and the optimal allocation θ̃ when estimates q̃+ are adopted defined in Eq. (16). We denote h = α(m; θ∗) ∈ arg max

i∈N
(qi v̂ i; m), 

i.e., the index of the ad allocated in a generic slot in position m. There are two possible scenarios:

• If π(h; θ̃ ) < m (the ad is displayed into a higher slot in the approximated allocation θ̃ ), then ∃ j ∈ N s.t. π( j; θ∗) <
m ∧ π( j; θ̃ ) ≥ m. Thus

max
i∈N

(q̃+
i v̂ i;m) ≥ q̃+

j v̂ j ≥ q j v̂ j ≥ qh v̂h = max
i∈N

(qi v̂ i;m)

where the second inequality holds with probability 1 − δ;
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• If π(h; θ̃ ) ≥ m (the ad is displayed into a lower or equal slot in the approximated allocation θ̃ ), then

max
i∈N

(q̃+
i v̂ i;m) ≥ q̃+

h v̂h ≥ qh vh = max
i∈N

(qi v̂ i;m)

where the second inequality holds with probability 1 − δ.

In both cases, the statement follows. �
Proof of Theorem 2.
Step 1: expected payments. The proof follows steps similar to those in the proofs in [20]. We first recall that since the 
mechanism is DSIC in expectation w.r.t. the clicks, then we can directly focus on the regret when the actual values v are 
bid. For any ad ai such that π(i; θ∗) ≤ K , the expected payments of the VCG mechanism in this case reduce to Eq. (9):

p∗
i (v) =

K+1∑
l=π(i;θ∗)+1

[
(�l−1 − �l)max

j∈N
(q j v j; l)

]
,

while, given the definition of A-VCG1 reported in Section 4.1, the expected payments for at t-th iteration of the auction are

p̃i,t(v) =
{

0 if t ≤ τ (exploration)

p̃i(v) if t > τ (exploitation)
(C.2)

where the payment for any ad ai such that π(i; θ̃ ) ≤ K is defined in Eq. (17) as:

p̃i(v) = qi

q̃+
i

K+1∑
l=π(i;θ̃ )+1

(�l−1 − �l)max
j∈N

(q̃+
j v j; l).

Step 2: per-step exploration regret. Since for any 1 ≤ t ≤ τ , A-VCG1 sets all the payments to 0, the per-step regret is

rt =
K∑

m=1

(
p∗
α(m;θ∗) (v) − 0

)
=

K∑
m=1

K∑
l=m

�l max
i∈N

(qi vi; l + 1) ≤ vmax

K∑
m=1

�m, (C.3)

where �l = �l − �l+1. The exploration regret is obtained by summing up r over τ steps.
Step 3: per-step exploitation regret. Now we focus on the expected (w.r.t. click realizations) per-step regret during the 
exploitation phase. According to the definition of payments, at each step t ∈ {τ + 1, . . . , T } of the exploitation phase we 
bound the per-step regret r as

rt =
K∑

m=1

(
p∗
α(m;θ∗) (v) − p̃α(m;θ̃ ) (v)

)

=
K∑

m=1

K∑
l=m

�l

⎛⎝max
i∈N

(qi vi; l + 1) −
max
i∈N

(q̃+
i vi; l + 1)

q̃+
α(m;θ̃ )

qα(m;θ̃ )

⎞⎠
=

K∑
m=1

K∑
l=m

�l

max
i∈N

(q̃+
i vi; l + 1)

q̃+
α(m;θ̃ )

⎛⎝ max
i∈N

(qi vi; l + 1)

max
i∈N

(q̃+
i vi; l + 1)

q̃+
α(m;θ̃ )

− qα(m;θ̃ )

⎞⎠
=

K∑
m=1

K∑
l=m

�l

max
i∈N

(q̃+
i vi; l + 1)

max
i∈N

(q̃+
i vi;m)

vα(m;θ̃ )

⎛⎝ max
i∈N

(qi vi; l + 1)

max
i∈N

(q̃+
i vi; l + 1)

q̃+
α(m;θ̃ )

− qα(m;θ̃ )

⎞⎠ .

By definition of the max operator, since l + 1 > m, it follows that

max
i∈N

(q̃+
i vi; l + 1)

max
i∈N

(q̃+
i vi;m)

≤ 1. (C.4)

Finally, from Lemma 1 and vα(m;θ̃ ) ≤ vmax, it follows that

rt ≤
K∑ K∑

vmax�l

(
q̃+
α(m;θ̃ )

− qα(m;θ̃ )

)
≤ vmax

K∑[(
q̃+
α(m;θ̃ )

− qα(m;θ̃ )

) K∑
�l

]
, (C.5)
m=1 l=m m=1 l=m
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with probability at least 1 − δ. Notice that, by definition of �l , 
∑K

l=m �l = �m − �K+1 = �m . Furthermore, from the defini-
tion of q̃+

i and using Eq. (14) we have that for any ad ai :

q̃+
i − qi = q̃i − qi + η ≤ 2η,

with probability at least 1 − δ. Thus, the difference between the payments becomes

rt ≤ 2vmax

(
K∑

m=1

�m

)
η = 2vmax

(
K∑

m=1

�m

)√√√√( K∑
m=1

1

�2
m

)
N

K 2τ
log

N

δ
(C.6)

with probability 1 − δ.19

Step 4: cumulative regret. We first consider the (low-probability) event in which the bound on q̃+
i derived in Proposition 1. 

In this case, we cannot guarantee anything about the behavior of the mechanism, since the payments are very inaccurate 
estimates of the CTRs, and thus the largest possible regret is suffered. In particular, we consider the worst case loss of vmax

for each slot for each step, leading to a total regret of vmax

(∑K
m=1 �m

)
T with probability δ. By summing up the regrets 

reported in Eq. (C.3) during the exploration phase and Eq. (C.6) during the exploitation phase and by considering that these 
bounds hold with probability at least 1 − δ (upper-bounded by 1 in the following), we obtain an expected regret

RT ≤ vmax

(
K∑

m=1

�m

)(
2(T − τ )

√√√√( K∑
m=1

1

�2
m

)
N

K 2τ
log

N

δ︸ ︷︷ ︸
Rei

+ τ︸︷︷︸
Rer

+ δT︸︷︷︸
Rδ

)
,

where Rei is the upper bound on the regret suffered during the exploitation phase (which holds with probability at least 
1 − δ), Rer is the upper bound on the regret suffered during the exploitation phase (which holds with probability at least 
1 − δ) and Rδ is the upper bound on the regret when the bounds do not hold (with probability at most δ). This bound can 
be further simplified, given that 

∑K
m=1 �m ≤ K , as

RT ≤ vmax K

(
2(T − τ )

√√√√( K∑
m=1

1

�2
m

)
N

K 2τ
log

N

δ
+ τ + δT

)
. (C.7)

Step 5: parameters optimization. Beside describing the performance of A-VCG1, the previous bound also provides guidance 
for the optimization of the parameters τ and δ. We first simplify the bound in Eq. (C.7) as

RT ≤ vmax K

⎛⎝2T

√√√√( K∑
m=1

1

�2
m

)
N

K 2τ
log

N

δ
+ τ + δT

⎞⎠
≤ vmax K

(
2T

�min

√
N

Kτ
log

N

δ
+ τ + δT

)
, (C.8)

where we used 
K∑

m=1
1/�2

m ≤ K/�2
min, with �min = minm∈K �m . In order to find the optimal value of τ , we take the deriva-

tive of the previous bound w.r.t. τ , set it to zero and obtain

vmax K

(
−τ− 3

2
T

�min

√
N

K
log

N

δ
+ 1

)
= 0,

which leads to

τ = K − 1
3 T

2
3 N

1
3 �

− 2
3

min

(
log

N

δ

) 1
3

.

Substituting this value of τ into Eq. (C.8) leads to the optimized bound

RT ≤ vmax K

[
3K − 1

3 T
2
3 N

1
3 �

− 2
3

min

(
log

N

δ

) 1
3 + δT

]
.

19 Notice that in the logarithmic term the factor of 2 we have in Proposition 1 disappears since in this proof we only need the one-sided version of the 
bound.



126 N. Gatti et al. / Artificial Intelligence 227 (2015) 93–139
We are now left with the choice of the confidence parameter δ ∈ (0, 1), which can be easily set to optimize the asymptotic 
rate (i.e., ignoring constants and logarithmic factors) as

δ = K − 1
3 T − 1

3 N
1
3

We thus obtain the final bound

RT ≤ 4vmax�
− 2

3
min K

2
3 T

2
3 N

1
3

(
log K

1
3 T

1
3 N

2
3

) 1
3
.

We have to impose the constraints that T > N
K (given by δ < 1) and that T > τ , i.e., T > N

K�2
min

log N
δ

. The two constraints 
imply:

T >
N

K�2
min

max

{
log

N

δ
,1

}
. �

Appendix D. Proof of revenue regret in Theorem 7

Unlike the setting considered in Theorem 2, here the regret is only due to the use of a randomized mechanism, since no 
parameter estimation is actually needed.

Proof of Theorem 7.
Step 1: payments and additional notation. We recall that according to [35] and [45] the expected VCG payments can be 
written, as in Eq. (24), in the form

p∗
i (v̂) = �π(i; f ∗(v̂))qi v̂ i −

v̂ i∫
0

�π(i; f ∗(v̂−i ,u))qidu,

while the A-VCG2′ mechanism prescribes contingent payments as in Eq. (25), which lead to expected payments

p∗′
i (v̂) = Ex

[
�π(i; f ∗(x))|v̂

]
qi v̂ i −

v̂ i∫
0

Ex
[
�π(i; f ∗(x))|v̂−i, u

]
qidu. (D.1)

Given the randomness of the allocation function of A-VCG2′ , we need to introduce the following additional notation:

• s ∈ {0, 1}N is a vector where each element si denotes whether the i-th bid has been preserved or it has been modified 
by the cSRP, i.e., if xi = v̂ i then si = 1, otherwise if xi < v̂ i then si = 0. Notice that s does not provide information about 
the actual modified values x;

• Ex|s[�π(i; f (x))|v̂] is the expected value of prominence associated with the slots allocated to ad ai , conditioned on the 
declared bids v̂ being perturbed as in s.

Moreover, let S = {s|π(i; f ∗(v̂)) ≤ K + 1 ⇒ si = 1 ∀i ∈ N } be all the realizations where the cSRP does not modify the bids 
of the first K + 1 ads, i.e., the K ads displayed applying f ∗ to the true bids v̂ and the first non-allocated ad.
Step 2: cumulative regret. We proceed by studying the per-ad regret ri(v) = p∗

i (v) − p∗′
i (v), where the advertisers bid their 

true values v since the mechanism is DSIC. Given the previous definitions, we rewrite the expected payments p∗′
i (v) as

p∗′
i (v) =

(
P[s ∈ S]�π(i; f ∗(v)) + P[s /∈ S]Ex|s/∈S [�π(i; f ∗(x))|v]

)
qi vi +

−
vi∫

0

(
P[s ∈ S]�π(i; f ∗(v−i ,u)) + P[s /∈ S]Ex|s
=1[�π(i; f ∗(x))|v−i, u]

)
qidu

= P[s ∈ S]
(

�π(i; f ∗(v))qi vi −
vi∫

0

�π(i; f ∗(v−i ,u))qidu

)
+

+ P[s /∈ S]
(
Ex|s/∈S [�π(i; f ∗(x))|v]qi vi −

vi∫
Ex|s/∈S [�π(i; f ∗(x))|v−i, u]qidu

)

0
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= P[s ∈ S]p∗
i (v) +

+ P[s /∈ S]
(
Ex|s/∈S [�π(i; f ∗(x))|v]qi vi −

vi∫
0

Ex|s/∈S [�π(i; f ∗(x))|v−i, u]qidu

)
,

where in the last expression we used the expression of the VCG payments in Eq. (24) according to [35] and [45]. The per-ad 
regret is

ri(v) = p∗
i (v) − p∗′

i (v)

= p∗
i (v) − P[s ∈ S]p∗

i (v) +

− P[s /∈ S]
(
Ex|s/∈S [�π(i; f ∗(x))|v]qi vi −

vi∫
0

Ex|s/∈S [�π(i; f ∗(x))|v−i, u]qidu

)
= P[s /∈ S]p∗

i (v) +

− P[s /∈ S]
(
Ex|s/∈S [�π(i; f ∗(x))|v]qi vi −

vi∫
0

Ex|s/∈S [�π(i; f ∗(x))|v−i, u]qidu

)
︸ ︷︷ ︸

rB
i,1

.

Since we have that u ≤ vi in the integral and since the allocation function defined in [23] is monotonic, we have that

Ex|s/∈S [�π(i; f ∗(x))|v−i, u] ≤ Ex|s/∈S [�π(i; f ∗(x))|v],
which implies that rB

i,1 is non-negative. Thus the regret rB
i can be bounded as

rB
i (v) = P[s /∈ S]p∗

i (v)−P[s /∈ S]rB
i,1︸ ︷︷ ︸

≤0

≤ P[s /∈ S]p∗
i (v) ≤ P

[∃ j : s j = 0 ∧ π( j; f ∗(v)) ≤ K + 1
]
vmax

≤
∑

j∈N :π( j; f ∗(v))≤K+1

P[s j = 0]vmax

= (K + 1)μvmax ≤ 2Kμvmax. (D.2)

We can now compute the bound on the global regret RT . Since this mechanism does not require any estimation phase, the 
regret is simply

RT ≤ 2K 2μvmaxT .

Step 3: parameters optimization. In this case, the bound would suggest to choose a μ → 0, but it is necessary to consider 
that with μ → 0 the variance of the payment goes to infinity. �
Appendix E. Proof of revenue regret in Theorem 11

The proof of Theorem 11 needs to combine the result of Theorem 7 and the regret due to the estimation of the param-
eters similarly to what is done in Theorem 2.

Proof of Theorem 11.
Step 1: payments and the regret. Similar to the proof of Theorem 7, we use the form of the VCG payments as in Eq. (24):

p∗
i (v) = �π(i; f ∗(v))qi vi −

vi∫
0

�π(i; f ∗(v−i ,u))qidu,

while A-VCG3 uses the contingent payments in Eq. (28), which in expectation become

p̃′
i(v) = Ex

[
�π(i; f̃ (x))

|v]qi vi −
vi∫
Ex
[
�π(i; f̃ (x))

|v−i, u
]
qidu. (E.1)
0
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We also need to introduce the expected payments

p̃i(v) = �π(i; f̃ (v))
qi vi −

vi∫
0

�π(i; f̃ (v−i ,u))
qidu,

which correspond to the VCG payments except for the use of allocation function f̃ in place of f ∗ .
Initially, we compute an upper bound over the per-ad regret ri = p∗

i − p′
i for each step of the exploitation phase and 

we later use this result to compute the upper bound for the regret R T over T steps. We divide the per-ad regret in two 
different components:

ri(v) = p∗
i (v) − p̃′

i(v)

= p∗
i (v) − p∗′

i (v)︸ ︷︷ ︸
cSRP regret

+ p∗′
i (v) − p̃′

i(v)︸ ︷︷ ︸
learning regret

= rB
i (v) + rL

i (v), (E.2)

where

• rB
i (v) is the regret due to the use of the approach proposed in [23] instead of the VCG payments, when all the param-

eters are known;
• rL

i (v) is the regret due to the uncertainty on the parameters when the payments defined in [23] are considered.

For the definitions of s and Ex|s[�π(i; f (x))|v] refer to the proof of Theorem 7.
Step 2: the per-ad per-step cSRP regret. We can reuse the result obtained in the proof of Theorem 7. In particular, we can 
use the bound in Eq. D.2, i.e. rB

i (v) ≤ (K + 1)μvmax. Given that we have assumed N > K , in the remaining parts of this 
proof we will use the following upper bound: rB

i (v) ≤ (K + 1)μvmax ≤ Nμvmax.
Step 3: the per-ad per-step learning regret. Similar to the previous step, we write the learning expected payments based on 
the cSRP in Eq. (E.1) as

p̃′
i(v) = P[s = 1]p̃i(v) +

+ P[s 
= 1]
(
Ex|s
=1[�π(i; f̃ (x))

|v]qi vi −
vi∫

0

Ex|s
=1[�π(i; f̃ (x))
|v−i, u]qidu

)
.

Then the per-ad regret is

rL
i (v) = p∗′

i (v) − p̃′
i(v)

= P[s = 1] (p∗
i (v) − p̃i (v)

)+

+ P[s 
= 1]
(
Ex|s
=1[�π(i; f ∗(x))|v]qi vi −

vi∫
0

Ex|s
=1[�π(i; f ∗(x))|v−i, u]qidu

︸ ︷︷ ︸
≤vmax

+

−Ex|s
=1[�π(i; f̃ (x))
|v]qi vi +

vi∫
0

Ex|s
=1[�π(i; f̃ (x))
|v−i, u]qidu

︸ ︷︷ ︸
=−rB

i,1≤0

)

≤ p∗
i (v) − p̃i(v) + P

[∃ j : s j = 0
]
vmax

≤ p∗
i (v) − p̃i(v) +

∑
j∈N

P
[
s j = 0

]
vmax = p∗

i (v) − p̃i(v) + Nμvmax.

We now simply notice that payments p̃i are WVCG payments corresponding to the estimated allocation function f̃ and can 
be written as

p̃i(v) = qi

q̃+
i

[
S̃W

(
f̃−i (v) ,v

)− S̃W−i
(

f̃ (v) ,v
)]

,

which allows us to use the results stated in proof of Theorem 2 and from Eq. (C.5) we can conclude that∑
∗

(
p∗

i (v) − p̃i (v)
)≤ 2vmaxη

(
K∑

m=1

�m

)
≤ 2K vmaxη.
i:π(i; f (v)≤K )
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Step 4: cumulative regret. We now bring together the two per-step regrets and we have that at each step of the exploitation 
phase we have the regret r =∑N

i=1 ri . We first notice that the expected per-step regret ri for each ad ai is defined as the 
difference between the VCG payments p∗

i (v) and the (expected) payments p′
i(v) computed by the randomized mechanism 

when the estimates q̃+ are used. We notice that p∗
i (v) can be strictly positive only for the K displayed ads, while p′

i(v) ≥
0 ∀i ∈N , due to the mechanism randomization. Thus, p∗

i (v) − p′
i(v) > 0 only for at most K ads. Thus we obtain the per-step 

regret

r ≤
∑

i:π(i; f ∗(v))≤K

ri(v) =
∑

i:π(i; f ∗(v))≤K

(
rB

i (v) + rL
i (v)

)
≤ K Nμvmax +

∑
i:π(i; f ∗(v))≤K

(
p∗

i (v) − p̃i (v) + Nμvmax
)

≤ K Nμvmax + 2K vmaxη + K Nμvmax = 2K vmaxη + 2K Nμvmax.

Finally, the global regret becomes

RT ≤ vmax K

[
(T − τ )

(
2

√
N

τ
log

2N

δ
+ 2μN

)
+ τ + δT

]
.

Step 5: parameters optimization. We first simplify further the previous bound as

RT ≤ vmax K

[
T

(
2

√
N

τ
log

2N

δ
+ 2μN

)
+ τ + δT

]
. (E.3)

We first optimize the value of τ , take the derivative of the previous bound w.r.t. τ and set it to zero and obtain

vmax K

(
−τ− 3

2 T

√
N log

2N

δ
+ 1

)
= 0,

which leads to

τ = T
2
3 N

1
3

(
log

2N

δ

) 1
3

.

Once replaced into Eq. (E.3) we obtain

RT ≤ vmax K

[
3T

2
3 N

1
3

(
log

2N

δ

) 1
3 + 2TμN + δT

]
.

The optimization of the asymptotic order of the bound can then be obtained by setting μ and δ so as to equalize the orders 
of the second and third term in the bound. In particular, by setting

μ = T − 1
3 N− 2

3 and δ = T − 1
3 N

1
3 ,

we obtain the final bound

RT ≤ 6vmax K T
2
3 N

1
3

(
log 2N

2
3 T

1
3

) 1
3
.

Notice that, since δ < 1, this implies that T > N , and, since μ < 1, it must be the case T > N−2 > 1 that always holds. 
Moreover T > τ , thus T > N log 2N

δ
. �

Appendix F. Proof of revenue regret in Theorem 14

Before deriving the proof of Theorem 14, we prove two lemmas that we use in what follows.

Lemma 2. Let G be an arbitrary space of allocation functions, then for any g ∈ G , when |qi − q̃+
i | ≤ η with probability 1 − δ, then for 

any v̂ we have

−2K vmaxη ≤ SW(g(v̂), v̂) − S̃W(g(v̂), v̂)
qi

q̃+
i

≤ 2K vmax

qmin
η,

with probability 1 − δ.
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Proof. By using the definition of SW and S̃W we have the following sequence of inequalities

S̃W(g(v̂), v̂)
qi

q̃+
i

− SW(g(v̂), v̂)

=
∑

j:π( j;g(v̂))≤K

	π( j;g(v̂))(g(v̂))v̂ j

(
q̃+

j

qi

q̃+
i

− q j

)

≤ vmax

∑
j:π( j;g(v̂))≤K

(
q̃+

j

qi

q̃+
i

− q j

)

≤ vmax

∑
j:π( j;g(v̂))≤K

(q̃+
j − q j) ≤ 2K vmaxη.

The second statement follows from

SW(g(v̂), v̂) − S̃W(g(v̂), v̂)
qi

q̃+
i

≤
∑

j:π( j;g(v̂))≤K

	π( j;g(v̂)) v̂ j

(
q j − q̃+

j

qi

q̃+
i

)

≤ vmax

∑
j:π( j;g(v̂))≤K

(
q j − q j

qi

q̃+
i

+ q j
qi

q̃+
i

− q̃+
j

qi

q̃+
i

)

= vmax

∑
j:π( j;g(v̂))≤K

[
q j

(
q̃+

i − qi

q̃+
i

)
+ (q j − q̃+

j )︸ ︷︷ ︸
≤0

qi

q̃+
i

]

≤ vmax

qmin

∑
j:π( j;g(v̂))≤K

(
q̃i − qi + η

)≤ 2K vmax

qmin
η. �

Lemma 3. Let G be an arbitrary space of allocation functions, then for any g ∈ G , when |qi − q̃+
i | ≤ η with probability 1 − δ, we have

0 ≤ (
S̃W(g(v̂), v̂) − SW(g(v̂), v̂)

)≤ 2K vmaxη,

with probability 1 − δ.

Proof. The first inequality follows from

SW(g(v̂), v̂) − S̃W(g(v̂), v̂)

=
∑

j:π( j;g(v̂))≤K

	π( j;g(v̂))(g(v̂))v̂ j

(
q j − q̃+

j

)
≤ vmax

∑
j:π( j;g(v̂))≤K

(q j − q̃+
j ) ≤ 0,

while the second inequality follows from

S̃W(g(v̂), v̂) − SW(g(v̂), v̂)

=
∑

j:π( j;g(v̂))≤K

	π( j;g(v̂))(g(v̂))v̂ j

(
q̃+

j − q j

)
≤ vmax

∑
j:π( j;g(v̂))≤K

(
q̃+

j − q j
)

= vmax

∑
j:π( j;g(v̂))≤K

(
q̃ j + η − q j

)≤ 2K vmaxη. �

We are now ready to proceed with the proof of Theorem 14.
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Proof of Theorem 14.
Step 1: per-ad per-step regret. We first compute the per-step per-ad regret ri = p∗

i (v) − p̃i(v) at each step of the exploitation 
phase for each ad ai . According to the definition of payments we have

ri = SW( f ∗
−i(v),v) − S̃W( f̃−i(v),v)

qi

q̃+
i︸ ︷︷ ︸

r1
i

+ S̃W−i( f̃ (v),v)
qi

q̃+
i

− SW−i( f ∗(v),v)︸ ︷︷ ︸
r2

i

.

We bound the first term through Lemma 2 and the following inequalities

r1
i = SW( f ∗

−i(v),v) − S̃W( f ∗
−i(v),v)

qi

q̃+
i

+ S̃W( f ∗
−i(v),v)

qi

q̃+
i

− S̃W( f̃−i(v),v)
qi

q̃+
i

≤ max
f ∈F−i

(
SW( f (v),v) − S̃W( f (v),v)

qi

q̃+
i

)
+
(

S̃W( f ∗
−i(v),v) − max

f ∈F−i

S̃W( f̃ (v),v)

)
︸ ︷︷ ︸

≤0

qi

q̃+
i

≤ 2K vmax

qmin
η,

with probability 1 − δ. We rewrite r2
i as

r2
i =

(
S̃W( f̃ (v),v) − 	π(i; f̃ (v))

( f̃ (v))q̃+
i vi

) qi

q̃+
i

− SW( f ∗(v),v) + 	π(i; f ∗(v))( f ∗(v))qi vi

= S̃W( f̃ (v),v)
qi

q̃+
i

− SW( f ∗(v),v)︸ ︷︷ ︸
r3

i

+
(
	π(i; f ∗(v))

(
f ∗(v)

)− 	π(i; f̃ (v))
( f̂ (v))

)
qi vi .

We now focus on the term r3
i and use Lemma 2 to bound it as

r3
i = S̃W( f̃ (v),v)

qi

q̃+
i

− SW( f̃ (v),v) + SW( f̃ (v),v) − max
f ∈F

SW( f (v),v)︸ ︷︷ ︸
≤0

≤ max
f ∈F

(
S̃W( f (v),v)

qi

q̃+
i

− SW( f (v),v)

)
≤ 2K vmaxη.

Step 2: exploitation and cumulative regret. We define I = {i ∈N | π(i; f̃ (v)) ≤ K ∨ π(i; f̃ (v)) ≤ K }, |I| ≤ 2K . It is clear that 
only the ads ai s.t. i ∈ I have a regret ri 
= 0. The other ads, i /∈ I , have both p∗

i (v) = 0 and p̃i(v) = 0. Thus, we can bound 
the regret r, at each exploitative step, in the following way

r =
∑
i∈I

(r1
i + r2

i )

≤
∑
i∈I

(2K vmax

qmin
η + 2K vmaxη

)
+
∑
i∈I

(
	π(i; f ∗(v))( f ∗(v)) − 	π(i; f̃ (v))

( f̃ (v))
)

qi vi

=
∑
i∈I

(2K vmax

qmin
η + 2K vmaxη

)
+

N∑
i=1

(
	π(i; f ∗(v))( f ∗(v)) − 	π(i; f̃ (v))

( f̃ (v))
)

qi vi

≤ 8K 2 vmax

qmin
η + SW( f ∗(v),v) − SW( f̃ (v),v)

= 8K 2 vmax

qmin
η + SW( f ∗(v),v) − S̃W( f ∗(v),v) +

+ S̃W( f ∗(v),v) − max
f ∈F

S̃W( f )︸ ︷︷ ︸
≤0

+S̃W( f̃ (v),v) − SW( f̃ (v),v)

≤ 8K 2 vmax

qmin
η + SW( f ∗(v),v) − S̃W( f ∗(v),v)︸ ︷︷ ︸

1

+ S̃W( f̃ (v),v) − SW( f̃ (v),v)︸ ︷︷ ︸
2

.

r r
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The remaining terms r1 and r2 can be easily bounded using Lemma 3 as

r1 ≤ 0 and r2 ≤ 2K vmaxη.

Summing up all the terms we finally obtain

r ≤ 10K 2 vmax

qmin
η

with probability 1 − δ. Now, considering the per-step regret of the exploration and exploitation phases, we obtain the final 
bound on the cumulative regret RT as follows

RT ≤ vmax K

[
10K

	minqmin
(T − τ )

√
N

Kτ
log

2N

δ
+ τ + δT

]
.

Step 3: parameter optimization. Let c := 5
	minqmin

, then we first simplify the previous bound as

RT ≤ vmax K

[
2cT

√
N K

τ
log

2N

δ
+ τ + δT

]
.

Taking the derivative w.r.t. τ leads to

vmax K

(
−τ− 3

2 cT

√
N K log

2N

δ
+ 1

)
= 0,

which leads to

τ = c
2
3 K

1
3 T

2
3 N

1
3

(
log

2N

δ

) 1
3

.

Once replaced in the bound, we obtain

RT ≤ vmax K

[
3c

2
3 K

1
3 T

2
3 N

1
3

(
log

2N

δ

) 1
3 + δT

]
.

Finally, we choose δ to optimize the asymptotic order by setting

δ = c
2
3 K

1
3 T − 1

3 N
1
3 ,

which leads to the final bound

RT ≤ 4vmaxc
2
3 K

4
3 T

2
3 N

1
3

(
log

2N
2
3 T

1
3

K
1
3 c

2
3

) 1
3

.

Notice that this bound imposes constraints on the value of T , indeed, T > τ , thus T > c
2
3 K

1
3 T

2
3 N

1
3

(
log 2N

δ

) 1
3

and δ < 1, 

thus T > c2 K N , leading to:

T > c2 K N max

{
log

2N

δ
,1

}
.

The problem associated with the previous bound is that τ and δ depends on qmin, which is an unknown quantity. Thus 
actually choosing this value to optimize the bound may be unfeasible. An alternative choice of τ and δ is obtained by 
optimizing the bound removing the dependency on qmin. Let d := 5

	min
, then we choose

τ = d
2
3 K

1
3 T

2
3 N

1
3

(
log

2N

δ

) 1
3

,

and

δ = K
1
3 N

1
3 d

2
3 T − 1

3 .

This leads to the final bound
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RT ≤ 4vmax K
4
3 T

2
3 N

1
3

d
2
3

qmin

(
log

2N
2
3 T

1
3

K
1
3 d

2
3

) 1
3

Given that δ < 1, this implies that T > K Nd2, and T > τ implies T > d2 K N log 2N
δ

. Together they impose

T > d2 K N max

{
log

2N

δ
,1

}
. �

Appendix G. Deviation regret

The definition of regret in Eq. (5) measures the cumulative difference between the revenue of the VCG compared to the 
one obtained by A-VCG1 over T steps. Upper-bounds over this quantity guarantees that the loss in terms of revenue does 
not increase linearly with T . As illustrated in the previous sections, the key passage in the proofs is the upper-bounding of 
the regret at each step of the exploitation phase (i.e., r =∑N

i=1(p∗
i (v) − p̃i(v))). Nonetheless, we notice that this quantity 

could be negative as well. In this section we introduce a different notion of regret (R̃ T ) that we study only for A-VCG1, 
leaving for the future a more comprehensive analysis of the other algorithms. Let us consider the following simple example. 
Let N = 3, K = 1, vi = 1 for all the ads, and q1 = 0.1, q2 = 0.2, and q3 = 0.3. Let assume that after the exploration phase 
we have q̃+

1 = 0.1, q̃+
2 = 0.29, q̃+

3 = 0.3. The standard VCG mechanism allocates ad a3 and asks for a payment p∗
3(v) = 0.2. 

During the exploitation phase A-VCG1 also allocates a3 but asks for an (expected) payment p̃3(v) = (q̃+
2 /q̃+

3 )q3 = 0.29. Thus, 
the regret in each exploitation step is r = p∗

3(v) − p̃3(v) = −0.09. Although this result might seem surprising, it is due to 
the fact that while both A-VCG1 and VCG are truthful, in general A-VCG1 is not AE. We recall that a mechanism is AE if 
for any set of advertisers it always maximizes the social welfare. In the example, if for instance the true quality of ad a3
is q3 = 0.28, then the allocation induced by q̃+s is not efficient anymore. For this reason, we characterized the behavior of 
A-VCG1 compared to the VCG considering the deviation between their payments, defined as

R̃ T (A) =
T∑

t=1

∣∣∣ N∑
i=1

(p∗
i,t − p̃i,t)

∣∣∣. (G.1)

where we consider the definition of p̃i in Eq. (C.2). We leave to further investigation the study of this regret for the other 
considered mechanisms.

Theorem 18. Let us consider a sequential auction with N advertisers, K slots, and T steps with position-dependent cascade model with 
parameters {�m}K

m=1 and accuracy η as defined in Eq. (14). For any parameter τ ∈ {1, . . . , T } and δ ∈ (0,1), the A-VCG1 achieves an 
auctioneer’s revenue expected regret:

R̃ T ≤ K vmax

(
2

qmin
(T − τ )η + τ + δT

)
(G.2)

where qmin = mini∈N qi . By setting the parameters to

• δ = N
1
3 K − 1

3 T − 1
3 ,

• τ = K − 1
3 N

1
3 T

2
3

�
2
3

min

(
log N

δ

) 1
3 ,

the regret is

R̃ T ≤ 4
K − 1

3 N
1
3 T

2
3

qmin�
2
3
min

(
log N

2
3 K

1
3 T

1
3

) 1
3
. (G.3)

Proof. We initially provide a bound over the per-step regret during the exploitation phase. We consider the two sides of 
the bound separately. We have that for the first side of the bound we can use the result provided in Step 3 in the proof of 
Theorem 2, i.e.,

r1 =
K∑

m=1

(p∗
α(m;θ∗)(v) − p̃α(m;θ̃ )(v))

≤ 2K vmaxη,

with probability 1 − δ. Now we bound the other side.
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r2 =
K∑

m=1

(
p̃α(m;θ̃ )(v) − p∗

α(m;θ∗)(v)
)

=
K∑

m=1

K∑
l=m

�l

⎛⎝max
i∈N

(q̃+
i vi; l + 1)

q̃+
α(m;θ̃ )

qα(m;θ̃ ) − max
i∈N

(qi vi; l + 1)

⎞⎠
≤ max

i∈N
(qi vi; l + 1)

K∑
m=1

K∑
l=m

�l

⎛⎝max
i∈N

(q̃+
i vi; l + 1)

max
i∈N

(qi vi; l + 1)
− 1

⎞⎠ .

In order to proceed we need to bound the ratio in the inner term. We first recall that for any ad ai , we have that 
q̃+

i vi = (
q̃i + η

)
vi ≤ (qi + 2η) vi . Let i′ ∈ arg max

j∈N
(q j v j; l + 1) be the ad displayed in sl+1 when the true qualities are known. 

We distinguish two cases:

• The ad ai′ shifts from slot l + 1 to a higher precedence slot when allocated according to f̃ , i.e., π(i′; f̃ (v)) ≤ l + 1. In 
this case we have

max
i∈N

(q̃+
i vi; l + 1)

max
i∈N

(qi vi; l + 1)
≤ q̃+

i′ vi′

qi′ vi′
≤ 1 + 2η

qmin
.

• The ad ai′ shifts from slot l + 1 to a lower precedence slot when allocated according to f̃ , i.e., π(i′; f̃ (v)) > l + 1. In this 
case, there must exist an ad j that in the exact allocation is allocated after i′ but it is promoted to a higher precedence 
slot according to f̃ . This corresponds to a j ∈ N such that π( j; f ∗(v)) ≥ l + 1 but π( j; f̃ (v)) < l + 1. As a result we 
have

max
i∈N

(q̃+
i vi; l + 1)

max
i∈N

(qi vi; l + 1)
≤ q̃+

j v j

qi′ vi′
≤ q j v j + 2ηv j

qi′ vi′
≤ q j v j + 2η

q j
qmin

v j

qi′ vi′

≤ qi′ vi′ + 2η
qi′

qmin
vi′

qi′ vi′
≤ 1 + 2η

qmin
.

Using these results we obtain

r2 ≤ vmax

K∑
m=1

K∑
l=m

�l

(
1 + 1

qmin
2η − 1

)

≤ vmax
1

qmin
2η

K∑
m=1

K∑
l=m

�l︸ ︷︷ ︸
=�m

≤ vmax
1

qmin
2ηK .

with probability 1 − δ. As a result we have∣∣∣∣∣
K∑

m=1

(p∗
α(m;θ∗)(v) − p̃α(m;θ̃ )(v))

∣∣∣∣∣≤ 2vmax K
η

qmin
,

with probability 1 − δ. The final bound on the expected regret is thus

R̃ T ≤ K vmax

[
2

qmin
(T − τ )η + τ + δT

]
. (G.4)

We first simplify the previous bound as

R̃ T ≤ K vmax

⎛⎝ 2T

qmin

√√√√( K∑
m=1

1

�2
m

)
N

K 2τ
log

N

δ
+ τ + δT

⎞⎠
≤ K vmax

(
2T

qmin�min

√
N

Kτ
log

N

δ
+ τ + δT

)
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and choosing the parameters

τ = K − 1
3 N

1
3 T

2
3

�
2
3
min

(
log

N

δ

) 1
3

,

δ = N
1
3 K − 1

3 T − 1
3 ,

the final bound is

R̃ T ≤ 4
K − 1

3 N
1
3 T

2
3

qmin�
2
3
min

(
log N

2
3 K

1
3 T

1
3

) 1
3
.

The fact δ < 1 implies that T > N
K , and T > τ implies T > K −1 N

�2
min

log N
δ

. Together they constrain

T >
N

K�2
min

max

{
log

N

δ
,1

}
. �

Remark (The bound). We notice that the bound is very similar to the bound for the regret R T but now an inverse de-
pendency on qmin appears. This suggests that bounding the deviation between the two mechanisms is more difficult than 
bounding the revenue loss and that, as the qualities become smaller, the A-VCG1 could be less and less efficient and, thus, 
have a larger and larger revenue. This result has two important implications. (i) If SW maximization is an important re-
quirement in the design of the learning mechanism, we should analyze the loss of A-VCG1 in terms of social welfare and 
provide (probabilistic) guarantees about the number of steps the learning mechanism need in order to be AE (see [17] for 
a similar analysis). (ii) If social welfare is not a priority, this result implies that a learning mechanism could be preferable 
w.r.t. the standard VCG mechanism. We believe that further theoretical analysis and experimental validation are needed to 
understand better both aspects.

Appendix H. Proofs of social-welfare regret in Theorems 3 and 15

Before stating the main result of this section, we need the following technical lemma.

Lemma 4. Let us consider an auction with N advertisers, K slots, and T steps, and a mechanism that separates the exploration (τ steps) 
and the exploitation phases (T − τ steps). Consider an arbitrary space of allocation functions G , g̃ ∈ arg maxg′∈G S̃W

(
g′(v̂), v̂

)
and 

|qi − q̃+
i | ≤ η with probability 1 − δ. For any g ∈ G , an upper bound of SW regret RSW

T of the mechanism adopting g̃ instead of g
is:

RSW
T ≤ vmax K [2(T − τ )η + τ + δT ] .

Proof. We now prove the bound on the social welfare, starting from the cumulative per-step regret during the exploitation 
phase.

r = SW(g(v̂), v̂) − SW(g̃(v̂), v̂)

= SW(g(v̂), v̂) − S̃W(g(v̂), v̂) +
+ S̃W(g(v̂), v̂) − max

g′∈G
S̃W(g′(v̂), v̂)︸ ︷︷ ︸

≤0

+S̃W(g̃(v̂), v̂) − SW(g̃(v̂), v̂)

≤ SW(g(v̂), v̂) − S̃W(g(v̂), v̂)︸ ︷︷ ︸
r1

+ S̃W(g̃(v̂), v̂) − SW(g̃(v̂), v̂)︸ ︷︷ ︸
r2

.

The two remaining terms r1 and r2 can be easily bounded by using Lemma 3

r ≤ r1 + r2 ≤ 0 + 2K vmaxη = 2K vmaxη

with probability 1 − δ.
Thus, we can conclude that:

RSW ≤ vmax K [2(T − τ )η + τ + δT ] . �
T
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Proof of Theorem 3.
Step 1: cumulative regret. We apply Lemma 4 to the position-dependent cascade model with {qi}i∈N unknowns, obtaining

RSW
T ≤ vmax K [2(T − τ )η + τ + δT ]

≤ vmax K

[
2

�min
(T − τ )

√
N

Kτ
log

2N

δ
+ τ + δT

]
.

Step 2: parameter optimization. First we notice that adopting the value of the parameters identified in Theorem 2 we 
obtain an upper bound Õ (T

2
3 ) for the global regret RSW

T .
In order to find values that better optimize the bound over RSW

T , let e := 1
�min

, then we first simplify the previous bound 
as

RSW
T ≤ vmax K

[
2e

√
N

Kτ
log

2N

δ
+ τ + δT

]
.

Taking the derivative of the previous bound w.r.t. τ leads to

vmax K

(
−τ− 3

2 eT

√
N

K
log

2N

δ
+ 1

)
= 0,

which leads to

τ = e
2
3 T

2
3 N

1
3 K − 1

3

(
log

2N

δ

) 1
3

.

Once replaced in the bound, we obtain

RSW
T ≤ vmax K

[
3e

2
3 T

2
3 N

1
3 K − 1

3

(
log

2N

δ

) 1
3 + δT

]
.

Finally, we choose δ to optimize the asymptotic order by setting

δ = e
2
3 K − 1

3 T − 1
3 N

1
3

The final bound is

RSW
T ≤ 4vmaxe

2
3 K

2
3 T

2
3 N

1
3

(
log 2e− 2

3 N
2
3 K

1
3 T

1
3

) 1
3
.

Given that δ < 1 this implies that T > e2 K −1N . This constrain is satisfied imposing T > τ , i.e.,

T > e2 K −1N log
2N

δ
. �

Proof of Theorem 15.
Step 1: cumulative regret. We apply Lemma 4 to the model with position- and ad-dependent externalities with {qi}i∈N
unknowns, obtaining

RSW
T ≤ vmax K [2(T − τ )η + τ + δT ]

≤ vmax K

[
2

	min
(T − τ )

√
N

Kτ
log

2N

δ
+ τ + δT

]
.

Step 2: parameter optimization. First we notice that adopting the value of the parameters identified in Theorem 14 we 
obtain an upper bound Õ (T

2
3 ) for the global regret RSW

T .
In order to find values that better optimize the bound over RSW

T , it is possible to use the procedure followed in the proof 
of Theorem 3 with e := 1

	min
:

RSW
T ≤ 4vmaxe

2
3 K

2
3 N

1
3 T

2
3

(
log 2e− 2

3 N
2
3 K

1
3 T

1
3

) 1
3
. �
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Appendix I. Proof of social-welfare regret in Theorem 8

Proof of Theorem 8. The bound over the SW regret RSW
T can be easily derived considering that each bid is modified by the 

cSRP with a probability of μ. Thus we can define S ′ = {s′|s′ ∈ {0, 1}N , π(i; f ∗(v̂)) ≤ K ⇒ s′
i = 1}, i.e., the set of the random 

realizations where the cSRP does not modify the bids of the ads displayed when the allocation function f ∗ is applied to the 
true bids v̂. Thus we have:

RSW
T ≤ T

⎛⎜⎝P
[
s ∈ S ′] · 0 + P

[
s /∈ S ′]︸ ︷︷ ︸
≤Kμ

K vmax

⎞⎟⎠≤ K 2μvmaxT . �

Appendix J. Proof of social-welfare regret Theorem 12

Proof of Theorem 12.
Step 1: per-step regret. We start computing the per-step regret over the SW during the exploitation phase.

First of all we introduce the following definition: S ′ = {s′|s′ ∈ {0, 1}N , π(i; f ∗(v̂)) ≤ K ⇒ s′
i = 1}, i.e., the set of the random 

realization where the cSRP does not modify the bids of the ads displayed when the allocation function is f ∗ is applied to 
the true bids v̂.

We now provide the bound over the regret.

r = SW( f ∗(v̂), v̂) −Ex

[
SW( f̃ (x), v̂)|v̂

]
= P[s ∈ S ′]︸ ︷︷ ︸

≤1

(
SW( f ∗(v̂), v̂) −Ex|s∈S ′

[
SW( f̃ (x), v̂)|v̂

])
+

+ P[s /∈ S ′]︸ ︷︷ ︸
≤Kμ

(
SW( f ∗(v̂), v̂) −Ex|s/∈S ′

[
SW( f̃ (x),v)|v̂

])
≤ SW( f ∗(v̂), v̂) −Ex|s∈S ′

[
SW( f̃ (x), v̂)|v̂

]
+

+ Kμ

⎛⎜⎜⎝SW( f ∗(v̂), v̂) −Ex|s/∈S ′
[

SW( f̃ (x),v)|v̂
]

︸ ︷︷ ︸
≥0

⎞⎟⎟⎠
︸ ︷︷ ︸

≤K vmax

≤ SW( f ∗(v̂), v̂) −Ex|s∈S ′
[
S̃W( f ∗(x), v̂)|v̂]︸ ︷︷ ︸

r1≤0

+

+Ex|s∈S ′
[
S̃W( f ∗(x), v̂)|v̂]−Ex|s∈S ′

[
S̃W( f̃ (x), v̂)|v̂

]
︸ ︷︷ ︸

r2≤0

+

+Ex|s∈S ′
[

S̃W( f̃ (x), v̂)|v̂
]
−Ex|s∈S ′

[
SW( f̃ (x), v̂)|v̂

]
+ vmaxμK 2

≤ max
f ∈F

(
Ex|s∈S ′

[
S̃W( f (x), v̂) − SW( f (x), v̂)|v̂])+ vmaxμK 2

≤ max
f ∈F

⎛⎝ ∑
j:π( j; f (x))≤K

�π( j; f (x))v j(q̃ j − q j)

⎞⎠+ vmaxμK 2

≤ vmax max
f ∈F

⎛⎝ ∑
j:π( j; f (x))≤K

(q̃ j − q j)

⎞⎠+ vmaxμK 2

≤ 2vmax Kη + vmaxμK 2 = vmax K (2η + Kμ) .

We provide a brief intuition of bounds r1 and r2. The bound r1 can be explained noticing that when the bids of the ads 
displayed in f ∗(v̂) are not modified we have that α(m; f ∗(v̂)) = α(m; f ∗(x)) where m ≤ K and x s.t. s ∈ S ′ . The bound for 
r2 can be understood noticing that when the bids of the ads s.t. π( j; f ∗(x)) ≤ K are not modified and xi ≤ v̂ i ∀i ∈ N , we 
obtain S̃W( f ∗(x), ̂v) = S̃W( f ∗(x), x) ≤ maxθ∈� S̃W(θ, x) = S̃W( f̃ (x), x) ≤ S̃W( f̃ (x), ̂v).
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Step 2: cumulative regret. We can now compute the upper bound for the global regret

RSW
T ≤ vmax K [(T − τ )(2η + Kμ) + τ + δT ]

≤ vmax K

[
(T − τ )

(
2

√
N

τ
log

2N

δ
+ Kμ

)
+ τ + δT

]
.

Step 3: parameter optimization. We first simplify the previous bound as

RSW
T ≤ vmax K

[
2T

√
N

τ
log

2N

δ
+ KμT + τ + δT

]
.

Taking the derivative of the previous bound w.r.t. τ leads to

vmax K

(
−τ− 3

2 T

√
N log

2N

δ
+ 1

)
= 0,

which leads to

τ = T
2
3 N

1
3

(
log

2N

δ

) 1
3

.

Once replaced τ in the bound, we obtain

RSW
T ≤ 3vmax K T

2
3 N

1
3

(
log

2N

δ

) 1
3 + μK 2 vmaxT + δvmax K T .

Finally, we choose δ and μ to optimize the asymptotic order by setting

δ = T − 1
3 N

1
3 ,

μ = K −1T − 1
3 N

1
3 .

The final bound is

RSW
T ≤ 5 · vmax K T

2
3 N

1
3

(
log 2T

1
3 N

2
3

) 1
3
.

Given that δ < 1 this implies that T > N and, given that μ < 1 we have that T > N
K 3 . Both the constraints are satisfied 

imposing T > τ , i.e.,

T > N log
2N

δ
. �
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