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1. Introduction

A fundamental first step in the modeling and analysis of climate policy
choices is the construction of a baseline scenario. This scenario reflects a
projection, not a prediction or forecast, of a plausible evolution of energy
and emissions in the absence of new greenhouse gas policies. Such a pro-
jection, in particular in terms of the scale of the energy system but also its
technology mix, is essential as a basis for modeling scenarios in which
policies are introduced. That is, the policy scenario outcomes can only
be interpreted as conditional upon the corresponding baseline scenario.
Because the energy-economy models used for an integrated assessment
of climate policy are designed to measure the impacts of new policies,
rather than model economic growth itself, the assumptions driving base-
line projections are for the most part entirely exogenous. Naturally there
is uncertainty about future development and CO, emissions pathways,
and models must make assumptions about growth, technology, and pref-
erences that are both internally consistent and related in some way to his-
torical trends. It is therefore essential to examine these assumptions and
identify and analyze differences across models.

This paper provides an evaluation of baseline scenarios used by the
energy modeling community for the Asian region. In terms of population
size and economic growth, Asia is leading the world. China has already
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become the single largest emitter of CO- in the world, and other develop-
ing countries, especially in South and Southeast Asia, are poised to enter
stages of economic transition typically associated with a marked increase
in energy consumption and associated emissions of greenhouse gases.
Asia represents currently a third of global emissions and is projected by
most models to reach half of the global total by mid-century. Results of
coordinated modeling studies of climate policy scenarios have shown
that the extent to which developing countries, especially rapidly emerg-
ing Asian countries, are involved in reducing CO, emissions can signifi-
cantly affect the feasibility and costs of achieving climate stabilization
(see for example the EMF22 exercise, Clarke et al., 2009). Understand-
ing the drivers of baseline growth for a major subset of the developing
world is an important extension to this finding. The baseline pathway
for emissions essentially scales the required abatement to meet a partic-
ular physical target, and thus is a major determinant of policy cost and
feasibility.

Given the high level of inertia of the energy sector, on both the supply
and demand sides, projecting the ‘natural’ evolution of the energy sys-
tem, especially in fast growing economies such as China and India, is a
major research task. Uncertainty is amplified for Asia for several reasons.
First, these countries are characterized by very dynamic economies with
high rates of growth. Second, the energy sector is also in a rather dynam-
ic phase characterized by volatile energy prices, political instabilities in
key exporting regions, and changes in technology and its applicability.
Finally, policies for either national security, economic development or
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the protection of the environment are already being implemented in de-
veloping countries at a rather fast pace. The relative strength of these ef-
fects has been changing over time, and is the basis of the wide and
changing range of projections, including those of international agencies
such as the Energy Information Administration (EIA) and International
Energy Agency (IEA).

The aim of this paper is to characterize baseline energy and emis-
sions projections in the Asian region by comparing key aspects of
these scenarios across a broad set of models. We use the results of the
Asia Modeling Exercise (AME), a model comparison exercise with a
focus on Asia (Calvin et al., 2012-this issue). Our methodology be-
gins with a simple decomposition to identify key explanatory indica-
tors, namely per capita income and energy intensity, and presents
model results for these indicators in various forms, both in comparison
with each other and with historical observations. Several insights
emerge regarding the range of projections embodied in the study
group and the implied extent to which future development in Asia
will follow historical patterns. Finally, we examine projected changes
in the technology mix in the energy system. We note that our method-
ology does not include statistical analysis, and we refrain from drawing
any probabilistic inferences from the range of model output. Overall, we
intend to illustrate what is, and what is not, of first-order importance in
explaining the variation in baseline emissions projections and to evaluate
projected changes in a historical context.

2. Overview of baseline results

We first present the main results of the AME baseline scenarios and
provide a brief description of the range of participating model types.
The AME data set comprised output from roughly 20 models with differ-
ent structure, regional coverage, and focus of modeler interest and ex-
pertise. Many of the participating models are global in scope with
regional disaggregation, but there are also models focused more narrow-
ly on specific Asian countries. Models in the AME ensemble vary with re-
spect to the representation of the economic activities, ranging from
sectorally detailed computable general equilibrium models to aggregat-
ed growth models; technology detail on energy supply and end use,
ranging from large-scale energy system models to compact representa-
tions of the energy sector; the degree of foresight and anticipation of fu-
ture shocks, ranging from fully dynamic to myopic or simulation-based;
and regional and time coverage. Thus, the data set provides us with a di-
verse group of approaches that well represents the state of the art of the
modeling community.

All modeling teams were asked to simulate at least one baseline sce-
nario. Importantly, no harmonization was stipulated for the scope of this
comparison; that is, modelers were free to choose the key assumptions,
thus consistency of views across models was not imposed. Since many
of these assumptions, such as growth of population and the economy,
as well as supply costs of energy carriers, have considerable bearing on
the final output in terms of energy use and emissions, the AME data
base provides ranges of projections that are not only model specific,
but that also reflect the views of modelers on these exogenous drivers.
Furthermore, no harmonization was required on the energy and climate
policies to be included in the reference scenarios, such as energy technol-
ogy standards, or market-based or regulatory mechanisms designed to
reduce greenhouse gases. However, this information was collected in a
companion questionnaire, which indicated that as a general rule the
global integrated assessment models did not include specific policies in
developing Asia, but that regional ones did on a more extensive scale.
For example, in the case of China one regional model included current
policies on energy efficiency improvement, development of new and re-
newable energy, and adjustment of economic structure which have
major effects on the model output, effectively complicating the compar-
ison with ‘no policy’ baselines.

A comprehensive report of baseline scenario outcomes through 2050
for economic output (gross domestic product, GDP), total primary

energy' (TPE), and energy-related CO, emissions in major Asian coun-
tries is provided in a tabular format in Appendix 2. These outcomes are
provided for reference; the illustrations and analysis in the body of the
paper seek to elucidate the drivers for emissions projections in particular.
In the paper we focus on insights specific to China and India, because of
their global and regional importances and their wide representation as
individual regions in participating models, although in some cases we
are able to include results for other Asian countries. Additionally, al-
though most integrated assessment models necessarily make projec-
tions into the distant future to capture long-term climate dynamics, we
focus in this paper on the relatively near-term 2020 to 2030 horizon be-
cause of its greater relevance to policy discussions and more direct com-
parability with historical trends. As we shall see, this is sufficiently far in
the future to introduce a significant range of uncertainty.

Fig. 1 shows the projections of fossil fuel and industrial CO, emissions
through 2030 for China and India.? The first observation is that the range
of projections across the models is undeniably large. By 2020, for both
countries, projections differ by up to a factor of two, and by 2030 by up
to a factor of three. Also observed is a surprisingly large discrepancy across
models for the base year 2005 and the recent projection year 2010. This
discrepancy, most likely caused by non-standardized data sources and
conversion methodologies, is discussed in detail by Chaturvedi et al.
(2012-this issue). For the current analysis, it is important to control
for the different numerical starting points across models, so the com-
parisons that follow are based on indexed growth relative to 2005. Al-
though the discrepancy appears large when comparing actual model
results in Fig. 1, also shown by the shaded area is the range of indexed
model projections with 2005 emissions normalized to the observed to-
tals as reported by Oak Ridge National Laboratory (ORNL) in Boden et al.
(2011). When the emissions paths are compared in indexed units, the
range across models is reduced by only 10%, suggesting that base year
differences explain little of the variation in rates of future growth.

3. Driver decomposition
In order to assess the key indicators underlying emissions growth, we

decompose emissions using the well known Kaya identity (an extension
of the IPAT model of Ehrlich and Holdren, 1972):

GDP  Energy Emissions
person GDP  Energy

Emissions = Population

This identity allows for an intuitive identification of the main high-
level drivers of emission to four components related to population,
per capita income or affluence, energy intensity of economic activity,
and carbon intensity of energy. Because we apply the identity at the
level of individual countries without further disaggregation (e.g. into
sectors or household classes), no approximate attribution across addi-
tive sub-components of the ratios is necessary; the decomposition is
straightforward and exact. Among these four components, it is known
that affluence and energy intensity of GDP (the second and third terms)
explain most of the variation in emissions levels. This is confirmed for
the AME ensemble, as shown in Fig. 2 for the short term outlook in
China. Here we show histograms for annual average rates of growth in
each indicator for China between 2005 and 2020. Note that for this

! Note that primary energy is defined as direct equivalent, meaning that the contri-
bution attributed to electric generation from nuclear and non-biomass renewable cor-
responds to the energy content of electric output, as opposed to primary equivalent, in
which attribution to these technologies assumes a loss factor similar to fossil genera-
tion. While the primary equivalent method can distort physical units of energy supply,
the direct equivalent method can give the misleading impression of declining or decel-
erating total primary energy when these technologies assume increasing shares of gen-
eration over time. However, this rarely occurs in the case of baseline scenarios.

2 In general, individual models are not identified in the analysis in this paper. Further
details on participating models can be found in Calvin et al. (2012-this issue).
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Fig. 1. Baseline fossil fuel and industrial CO, emissions for China and India. The shaded range reflects growth paths normalized to the observed 2005 value as reported by ORNL

(black dot).

analysis we use primary energy net of traditional biomass as the energy
metric in the third and fourth terms.

In this snapshot, population growth is essentially identical across
models, despite the lack of harmonization, suggesting that most models
rely on the same exogenous population projections, presumably those
provided by the United Nations. There is also a rather good agreement
on the carbon intensity of energy, a proxy for the composition of the
energy mix, which is not surprising in a no-policy baseline scenario
since it has historically changed very slowly. On the other hand, signif-
icant variations across models and much higher magnitudes of change
are reported for both per capita income and energy intensity of GDP.
Since the two have opposing signs, their relative strength will ultimate-
ly play the biggest role for determining CO, emissions. We take a closer
look at these two variables next.

4. Historical comparison

In the short term, the models in the AME data set project very rapid
growth in per capita income for China between 2005 and 2020, with a
median of 7% annual growth and a range from 5.1% to 9.2%. While there
are opinions as to the likelihood of outcomes in this range, one reasonable
objective measure of validity is a comparison with historical data for sim-
ilar countries at a similar stage of development. The countries against
which we may compare China most naturally are its wealthier Asian
neighbors, with some similarities in social and economic structures,
portrayed over the epoch beginning when their respective real incomes
matched China's income in 2005. To ensure a meaningful comparison
across time and across countries, we use “real” incomes that have been
normalized both for inflation and for the purchasing power of local cur-
rencies (see Appendix 1 for details).?

Fig. 3 shows the results of the historical comparison, with real in-
comes indexed to China's 2005 level in purchasing power equivalence
as reported in the Penn World Table by Heston et al. (2011), roughly
$4400.* China's entire recent history is plotted, while for the other
four countries we plot history for the 15-year period beginning the
year real national income matched China's 2005 income. The range
shown for China between 2005 and 2020 reflects the maximum and
minimum average growth rates for these four historical comparison
periods. The figure suggests that income growth in the model

3 A similar exercise is described for the MERGE model in Blanford et al. (2009).
4 A discussion of all data sources used, including a consideration of alternatives, is
provided in Appendix 1.

projections for China is largely consistent with the mostly successful
growth experience in other Asian countries. The projected range ac-
tually exceeds historical experience, but recent data suggests this
shift may be appropriate as China is currently growing faster than
any of its Asian predecessors. Moreover, the low end of the range of
model projections implies a dramatic slowdown in the coming de-
cade—e.g. growth on the order of 3% per year between 2010 and
2020 after nearly 10% from 2000 to 2010—an event that currently ap-
pears unlikely. Ultimately, the range across models for economic growth
potential in the short term remains extremely wide, with a projected
GDP in 2020 from twice to almost four times bigger than in 2005 given
the very high growth rates of the Chinese economy.

A similar exercise can be done for energy intensity, again using the
purchasing power equivalence for converting GDP, as shown in Fig. 4.°
In this case, China's neighbors all had lower energy intensity than China
did in 2005 at the beginning of their respective income-calibrated epochs,
but none realized any appreciable decline over the subsequent 15 years.
However, the model projections for energy intensity in China are not con-
sistent with this experience: all models foresee a decrease in energy
intensity of at least 1% per year, some as high as nearly 6% per year,
with a median of 2.7%. Not only is the center of this range reflective of a
rapid decline in energy use relative to economic activity, its breadth is
substantial, implying again a factor of two in the overall scale of the ener-
gy system.

The projected trends of decline are indeed reminiscent of China's
own history in recent decades. Beginning around 1980, China started
from a very high level of energy intensity and was able to make substan-
tial progress by transforming the planned economy through market re-
form, with the associated efficiency gains. Since 2000, this decreasing
trend was dramatically reversed, mostly due to the build-up of large
stocks of energy intensive capital in energy intensive industries such
as cement and aluminum (although there is some question regarding
the accuracy of reported energy statistics at the turn of the century).
China's government set an aggressive goal of 20% decline in energy in-
tensity between 2005 and 2010, although recent data suggests this has
not been met, as shown in Fig. 4. With growing domestic consumption
potentially able to compensate for energy-intensive investments in the
next several years, a declining trend could be regained, but the extent
to which this is possible remains an open question.° The energy

5 Data sources for historical energy intensity are IEA (2007) and BP (2011).

6 Calibrated models tend to implicitly incorporate this effect, postulating a cross-
country convergence to the same levels of intensity for the same levels of income in
the short term.
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Fig. 2. Distribution across models in the AME baseline ensemble of average annual rates of change in China between 2005 and 2020 for each of the Kaya components.
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intensity trend highlighted by the AME models is nonetheless in line
with the recently announced policy target for energy efficiency set
forth in the latest five-year plan by China's government, which aims at
a reduction of energy intensity of 16% relative to 2010 by 2015.

5. Cross-indicator comparison

In order to further understand the relationship between economic
growth and primary energy consumption growth, we present average
annual rates of change in per capita income growth and energy inten-
sity decline on a two-dimensional scatter plot. In addition to illustrat-
ing the ranges simultaneously and in relation to each other, this
presentation can include diagonal isoquants for the rate of change
in per capita energy consumption, the product of the two plotted var-
iables. Because it encompasses both of the key drivers of emissions,
per capita energy consumption (labeled PCE on the charts) is a useful
metric for characterizing the overall emissions intensity of economic
development. Fig. 5 shows the model output in this space for China and
India over the period 2005 to 2020, as well as historical Asian data cor-
responding to the income-calibrated periods of comparison discussed
above and depicted in Figs. 3 and 4. Also shown are projections for the
2020 time horizon (relative to 2005) from the EIA's International Ener-
gy Outlook (EIA, 2011) as an additional point of reference.

The observations highlighted above from the historical comparison
with China are also evident in this figure: (i) the horizontal range of
per capita income growth projections for China in the model ensemble
is contained, with the exception of three high models, within the range
spanned by the four historical examples, and (ii) the vertical range of en-
ergy intensity projections is well below that spanned by the historical
sample. There are also several new insights. We can observe that the
range provided by the models is very broad, with no apparent clustering
around particular target scenarios, and in most cases projections depart
significantly from recent history. Nearly all models suggest slower
income growth than in the previous 15-year period, and a smaller major-
ity project slower energy intensity decline. A slight correlation appears
between the two dimensions, suggesting that the models with faster in-
come growth assumptions also assume faster decline in energy intensity.
The models cover a broad range of growth in per capita energy consump-
tion, ranging from just over 1% to 6%. Moving along the isoquant in the
median range of 3.5% to 4%, it is interesting to note that several models
exhibit roughly equivalent per capita energy consumption growth with
very different underlying circumstances. Some have relatively slow eco-
nomic growth but also slow changes in energy intensity, while others
have more rapid economic growth offset by more rapid intensity decline.
While such scenarios will have similar emissions paths, they actually
represent two quite distinct development paths for China.

Shifting our attention to India, we find that the AME ensemble pro-
jects income growth at a somewhat slower rate than for China, though
still within the historical range of its Asian neighbors (although the his-
torical data corresponds to a growth epoch during which incomes were
higher than India's current income). Energy intensity decline rates are
large and comparable to those projected for China, again much lower
than those experienced by neighbors, which is notable given that India's
energy intensity level is currently much lower than China's. Interesting-
ly, the historical values for India in the recent past (1990 to 2005) are at
the opposite extreme of the projection ranges compared to China. For
India, most models project an acceleration in economic growth and en-
ergy intensity decline (with one exception in which energy intensity in-
creases, similar to the historical pattern observed above), whereas for
China economic growth and energy intensity (with a few exceptions)
are decelerating. For both countries, per capita energy use is growing
on the whole much more slowly than has been observed previously in
Asia, and is growing more slowly in India than in China due to slower in-
come growth. In one outlier projection, per capita energy use in India ac-
tually declines in the short term, a result that seems highly unlikely in a

rapidly developing country, particularly given that we are measuring
primary energy net of traditional biomass.

Model projections from 2005 to 2020 for three other Asian coun-
tries are presented in this format in Fig. 6, with the ranges for China
and India represented roughly by shaded regions. While most models
report Japan as a separate region, specific treatment of other Asian
countries is less frequent. Projections for Japan are clearly much less
dynamic than those for countries in earlier stages of development.
Growth rates are in the range of 1% to 2%, and more than half show a de-
clining per capita energy use.” While some models reporting data for
Korea assume growth similar to that in Japan, the others envision a
growth path for Korea more similar to a developing country in terms of
rates of change. Indonesia, although represented in only a few models,
is projected to follow growth patterns similar to, but generally slower
than, those for India. Thailand, Malaysia, and Nepal are also projected
in certain models but are not plotted here.

We look next at the relationship between per capita energy use and
per capita income in Asian countries (Fig. 7). We now use absolute,
rather than indexed, levels for the two indicators, although model pro-
jections are again normalized for base year consistency (that is,
reported growth rates are applied to observed 2005 levels). Additional-
ly, we show model projections for the reported ten-year time periods
beyond 2020 to explore longer-term characteristics of the AME baseline
scenarios (the 2020 projections corresponding to the previous charts
are darker in color, while subsequent decades are lighter). We limit the
per capita income scale to $50,000 (2005 USD), so the chart excludes
model projections in years for which income has grown beyond this
level. However, nearly every model with a time horizon to 2100 projects
that both China and India will reach this threshold before then, so the
chart shows the full range of the projected per capita energy use for this
income range.®

This view affords a synopsis of the development patterns implied
by model projections in relation to observed history. For the range
of per capita incomes between $5000 and $15,000 (2005 USD), the
history exhibits very consistent growth in per capita energy use,
while different trends emerge for higher levels of income. Currently,
China's per capita energy consumption is higher than in other coun-
tries at the same level of income (equivalent to the observed higher
level of energy intensity shown in Fig. 4). Most models project that
in the coming decades China will first align with the historical rela-
tionship, then fall below even the lowest energy-consuming nation
in the sample to date, Japan. Still, a small number of models at the
high end of the range depict a growth pattern in China that follows
the historical relationship between income and per capita energy
use. The solid red line shows a polynomial fit to the model projections
for China, suggesting on average a lower slope on the relationship be-
tween income and per capita energy use than in observed Asian experi-
ence. However, the higher end of the range is roughly consistent with
the experience of China's neighbors, and with its own recent history.

India's current per capita energy use is much lower than China's, but
possibly more in line with the historical relationship, although again the
historical data does not extend to India's lower income band. Like China,
it is projected by the AME models to add per capita energy use more
slowly on average as incomes rise than has been observed in other
Asian countries. But since India's starting point is also lower, the emerg-
ing picture (with a few exceptions) describes a country with vastly
lower per capita energy consumption than its neighbors across all in-
come levels. The solid blue line shows a polynomial fit to the model pro-
jections for India, and following this path per capita energy use in India
will not reach the current level in China until India reaches income levels
similar to those in the OECD today. This result is striking and may raise

7 Projections for other developed countries such as the US and EU would fall in a
similar region on the graph to Japan.

8 It is necessary to include projections to ensure that the truncated income range is
not populated disproportionately by fast-growing models.
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questions about whether the projected rapid decline in energy intensity
in the coming decades for India is indeed reasonable as it pursues its
ambitious development goals.

An important caveat here is that income is hardly the only driver of
per capita energy use, and the analysis has not controlled for other factors
such as fuel prices, technology, and consumer preferences. Energy prices
are probably on the whole higher now than during the sample period for
the historical data, but subsidies also play an important role in China,
India, and other developing Asian countries. Energy end-use technologies
are undoubtedly becoming more efficient over time, but technical change
also creates new demands for energy and expanded access to energy
services. Unfortunately, the information in the AME data set on projected
energy prices and costs and performance of technology was too sparse to
conduct a formal investigation of these effects. Nonetheless, it is useful to
explore the implications in aggregate of the role models project for ener-
gy in the development process.

6. Income convergence

Because of the central role played by income projections in the
baseline scenario, and their importance for policy analysis, modelers
may employ structural rules of varying levels of sophistication to moti-
vate their assumptions. As we have illustrated, it is possible to use his-
torical observations for both the country or region in question and
other comparable regions to calibrate or evaluate near- and to a certain
extent medium-term projections. In the longer run, these methods are
not applicable, so growth rate projections may be based on top-down
assumptions about total factor productivity growth, often combined ei-
ther explicitly or implicitly with assumptions about the extent of income
convergence across countries. In theory, increased connectedness and
mobility of labor should reduce differences in income across countries,
although there is inconclusive empirical evidence as to whether this
has occurred in the past and whether it may be expected in the future.
Nonetheless, complete or partial convergence over time is a useful con-
cept for framing long-term growth projections.’ However, as we argue
above, comparing incomes across countries for the purposes of assessing
or positing convergence is most meaningful when done on a real pur-
chasing power basis.

Using the indexed model projections for per capita income scaled
by base year real income in China, for example, we can evaluate the
ratio between this implied future real income and the projected in-
come for the US. The results are shown in Fig. 8 for all models through
2100. The wide range of projected relative incomes is due to a varia-
tion in both China's income and the US's income, but since the latter is
universally assumed to grow more slowly, there is a movement toward
convergence in all models. Still, there is very little agreement, with the
ratio ranging from 30% to 80% in 2050. Five models even exceed the
“convergence threshold” before the end of the century, that is, their pro-
jections imply that China will become wealthier than the US on a per
capita basis.

7. Carbon Intensity and technology mix

We now turn to the last component of the Kaya identity, carbon
intensity of energy. As we have noted, there is a general agreement
that average emissions per unit of primary energy will change a little
along the baseline. In China, the rates of change in carbon intensity
projected by most models from 2005 to 2020 are between — 0.5% and
0.5%, with a few outliers projecting a faster decline. A variety of national
policy measures designed to promote low-carbon technologies have
been proposed in China, which are intended to be excluded from the

9 Note that we do not intend to suggest that scenarios in which incomes converge
are normatively preferable to those in which they don't. Rather we show descriptively
the extent to which model projections in the AME baseline ensemble for China do or do
not approach convergence.

baseline scenario, although it is unclear whether this is strictly true for
all models in the AME data set. For models in which no new policies
are included in the baseline, the prevailing economics favoring fossil
fuel technologies, in particular coal-fired electric generation, remain in
place. Although the carbon intensity of energy is unlikely to decline sig-
nificantly in the absence of policy, the projected declines in energy in-
tensity of GDP imply corresponding declines in the carbon intensity of
GDP. In light of China's pledge under the Copenhagen Accord to reduce
carbon intensity of its GDP in the range of 40-45% by 2020 relative to
2005, it is interesting to ask whether this target is met in the AME base-
line ensemble.

Fig. 9 shows a plot analogous to the previous charts with carbon
intensity of energy on the horizontal axis instead of income. As be-
fore, diagonal isoquants may be drawn representing the rate of
change in the product of carbon intensity of energy and energy inten-
sity of GDP, namely carbon intensity of GDP. China's target reduction
under the Copenhagen Accord amounts to a roughly 3.5% to 4% annu-
al rate of decline in the carbon intensity of GDP for the 15-year period,
depicted on the chart. The figure shows that the AME baseline ensem-
ble is roughly split in half by the Copenhagen target, with an approx-
imately equal number of models suggesting that such a goal would
and would not be met in the baseline.'® The question of whether the
proposed policy would be binding or not is thus left unanswered by
the ensemble of AME projections, although it is instructive to notice
that the main source of disagreement across models is once again the
projected changes in energy intensity of GDP, rather than those of car-
bon intensity of energy. In fact, nearly all the models that show the tar-
get being met actually have increased carbon intensity of energy, which
is sufficiently offset by energy intensity decline.

Although per capita income and energy intensity projections vary
substantially, resulting in very different scales for total energy demand,
the modest projected changes in carbon intensity depicted in the previ-
ous chart for China suggest that the mix of fuels and technologies within
the energy system is relatively stable. Fig. 10 shows the major compo-
nents of projected electric generation for China through 2030. With a
few exceptions, only relatively minor changes are observed in the mix:
coal continues to dominate with a very large fraction (roughly 80%) of
power generation; hydroelectric share declines slowly, presumably as
a result of the exhaustion of good sites; and nuclear expands slowly,
not exceeding 10% by 2030. A small number of models foresee rapid
growth for either natural gas or renewables, particularly wind. Very sim-
ilar results are seen in India and other regions with respect to the elec-
tricity mix. Finally, we note that there is also a general agreement that
the share of electricity in primary energy will increase in the coming
decades for both India and China, with electricity production growing
faster than total primary energy by one percentage point or more. This
trend is consistent with increasing electrification in the historical record
for both industrialized and developing countries.

8. Conclusions

This paper has provided a multi-model assessment of the major
drivers of CO, emissions in Asia, with a specific focus on the large and
fast-growing economies of China and India. Both energy use and emis-
sions projections in the AME data set span a formidably large range,
with scale varying by a factor of two or more even by 2020. Using the
standard Kaya decomposition, we show that assumptions about changes
in income and energy intensity are by far the most important determi-
nants of the variation in energy consumption and emissions. Our histor-
ical comparison exercises have demonstrated that projected income

10 Note that the EIA projection indicates that the target will be met, although it may
be that the target itself was taken into consideration by the agency's projection. Also
note that China did achieve a commensurate reduction in carbon intensity of GDP over
the preceding 15 years, though as we have noted, this included a period of rapid ener-
gy intensity decline during the 1990s which may be difficult to reproduce.
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growth is roughly consistent with recent Asian history, while projected
declines in energy intensity are more aggressive than has been previous-
ly observed. For India in particular, these projections imply per capita
energy use far below the historical norm throughout the development
process. Lastly, the AME baseline ensemble exhibits a strong agreement
that carbon intensity of energy, and the technology mix in general, is not
projected to change significantly over the coming decades in the ab-
sence of new policies.

Both per capita income and energy intensity are tremendously dy-
namic in Asian countries at the current stages of development, and
thus are particularly difficult to project. In this paper we have reported
and compared model output for these indicators, but further work
could be done to better understand the basis for projections made by in-
dividual modelers. For the models in this data set, per capita income is
almost certainly an exogenous assumption, in the form of productivity
improvements. On the other hand, energy intensity is partly driven by
assumptions about autonomous energy efficiency change, but also by
the response to relative price changes, as governed by the choice of var-
ious elasticity parameters, as well as the availability of alternative

technological options. Thus, model harmonization is possible for in-
comes, but much more difficult for energy intensity.

Modeling energy intensity change is a research challenge. Energy
demand is currently represented in most models at an aggregated
scale, which can omit important substitution possibilities (as well as
associated costs and barriers). For example, correctly representing fuel
switching for household energy end-uses requires a micro-based under-
standing of the hurdle of changing behavior or replacing energy-using
capital. Understanding the drivers for energy intensity change is also rel-
evant for policy. Many countries are considering or actively implementing
policies aimed at increasing energy efficiency as a way to hedge against
volatile energy prices and profit from supposedly low-cost emissions
mitigation opportunities. This paper has shown that integrated assess-
ment models differ widely in their views of future Asian development
of energy intensity, but all agree that it will decline more quickly than
has been observed in history. An in-depth and formal analysis of what
specifically underlies these decline projections was beyond the scope
of this paper, and there remain gaps in the current reporting capability
for coordinated model studies with respect to key explanatory data.
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A dedicated assessment of the modeling of energy intensity change
might be a fruitful future avenue of research. In addition to better
explaining the results of this study, such an assessment could facilitate
an important advancement in the representation of energy systems in
energy-economy models.

Three final concluding remarks are worthwhile. First, this analysis
points to the general value of historical comparisons. Such compari-
sons can clearly identify similarities with or deviations from historical
trends and development patterns and provide a richer context for dis-
cussions of the feasibility, even likelihood, of alternative futures. Second,
the ranges reported here should not be regarded as a characterization of
baseline uncertainty. The baseline projections in the AME ensemble
represent a subset of baseline uncertainty, rather than a full characteri-
zation, which would entail a more coordinated consideration of input
uncertainty, as well as differences in the model structure. Lastly, as
noted in the Introduction section, interpreting climate policy scenarios
is predicated upon an understanding of baselines. The models with
lower projected CO, emissions have lower climate policy costs and
greater capacity for tighter targets. Across models with similar Asian
population growth, we found that lower CO, emissions baselines are
signified primarily by rapid declines in regional energy intensity com-
bined with lower income growth. Understanding and evaluating these
baseline features are therefore critical to the integrated assessment of
climate stabilization scenarios.
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