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Abstract
In computer-assisted knee surgery, the accuracy of the localization of the femur centre of rotation relative to the hip-
bone (hip joint centre) is affected by the unavoidable and untracked pelvic movements because only the femoral pose is
acquired during passive pivoting manoeuvres. We present a dual unscented Kalman filter algorithm that allows the esti-
mation of the hip joint centre also using as input the position of a pelvic reference point that can be acquired with a skin
marker placed on the hip, without increasing the invasiveness of the surgical procedure. A comparative assessment of
the algorithm was carried out using data provided by in vitro experiments mimicking in vivo surgical conditions. Soft tis-
sue artefacts were simulated and superimposed onto the position of a pelvic landmark. Femoral pivoting made of a
sequence of star-like quasi-planar movements followed by a circumduction was performed. The dual unscented Kalman
filter method proved to be less sensitive to pelvic displacements, which were shown to be larger during the manoeuvres
in which the femur was more adducted. Comparable accuracy between all the analysed methods resulted for hip joint
centre displacements smaller than 1 mm (error: 2.2 6 [0.2; 0.3] mm, median 6 [inter-quartile range 25%; inter-quartile
range 75%]) and between 1 and 6 mm (error: 4.8 6 [0.5; 0.8] mm) during planar movements. When the hip joint centre
displacement exceeded 6 mm, the dual unscented Kalman filter proved to be more accurate than the other methods by
30% during multi-planar movements (error: 5.2 6 [1.2; 1] mm).
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Introduction

The hip joint centre (HJC) localization has great impor-
tance for lower limb movement analysis,1,2 for hip tis-
sue’s contact evaluation with three-dimensional (3D)
computer-based simulations3 and for the correct align-
ment of prosthetic components in orthopaedic sur-
gery.4–6 To this end, since the hip joint behaves as a
ball-and-socket joint,7 functional methods identify the
HJC as the unique centre of rotation of the femur rela-
tive to the hip-bone during ad hoc pivoting move-
ments.8–10 Although the functional HJC localization
method entails tracking the movement of both the bone
segments involved (i.e. the femur and the pelvis), in
some computer-assisted orthopaedic surgery (CAOS)
applications, for example, during total knee replace-
ment, the pelvic pose is not tracked11 and the HJC is
estimated by tracking only the movement of the femur.

The HJC is the centre of rotation of this bone relative
to a fixed frame, therefore under the hypothesis of an
absence of pelvic motion.

One of the frequently adopted HJC estimation meth-
odologies for clinical use in CAOS12,13 is the minimal
amplitude point (MAP) method.14 The performance of
this method was assessed in several studies, but none of
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them investigated the relation between the HJC locali-
zation accuracy and the passive pelvic displacement in a
realistic experimental set-up. Stindel13 simulated the
pelvic motion by adding a random error (maximum
amplitude of 16mm) to a reference stationary HJC
position. The error in the HJC position localization was
proportional to the pelvic displacement and the femoral
axis estimation deviated by a maximum of 1�. Lustig et
al.15 simulated pelvic movements of different ampli-
tudes using a physical model that mimicked the femur
and the hip joint. When the pelvic movement ampli-
tudes were around 15mm, the HJC localization error
was approximately 12mm. In Picard et al.,12 an in vitro
set-up with whole-body cadavers was used to mimic the
operating room conditions during total knee replace-
ment surgery. A maximal femoral axis deviation equal
to 1.3�, corresponding to a HJC localization error of
approximately 8mm, was found. However, the ampli-
tude of the pelvis displacement was not reported.

Other algorithms were comparatively assessed using
a cadaveric set-up,16–18 but the influence of the pelvic
motion on the HJC localization accuracy was not
investigated. In Lopomo et al.,17 hemi-corpses con-
strained to the working table by means of a wooden
support were used. The root mean square residual dis-
placement of the origin of the pelvic marker-cluster,
mounted on the homolateral iliac crest, was 3.5mm. A
coordinate transformation method, the so-called pivot-
ing method,19 was shown to be more accurate than the
least-squares sphere fitting method20 (HJC localization
errors equal to 2.76 2.9 and 25.26 18.9mm (mean6

standard deviation (SD))). Mihalko et al.18 reported
HJC localization errors up to 33mm using the sphere
fitting method, when the passive manoeuvres were exe-
cuted on whole-body cadavers partially constrained to
the working table with a belt positioned around the
lower torso. The description of the employed algorithm
and of the amplitude of the actual pelvic motion
recorded during the pivoting manoeuvre was not
provided.

Recently, De Momi et al.21 proposed the application
of a skin marker on the pelvis of the subject in order to
use the partial information on the hip-bone displacements
during the pivoting manoeuvres, without increasing surgi-
cal intervention invasiveness. This functional HJC locali-
zation method used the unscented Kalman filter (UKF)
based on the joint-estimation filtering approach.22 The
evaluation, performed on a hip phantom with pin cluster
markers, proved that for pelvic displacements between 8
and 13mm, the UKF algorithm was able to increase the
accuracy of the HJC localization (the median HJC locali-
zation error was about 12mm) by up to 50% with respect
to coordinate transformation methods.16,19 However, the
UKF method requires a time-consuming fine tuning of
the Kalman filter parameters.

The aim of this study is to comparatively assess the
performance of state-of-the-art HJC localization meth-
ods with respect to the passive pelvic displacement,
using whole-body cadavers in an experimental set-up

reproducing the operating room conditions during sur-
gical interventions. Moreover, a new method is pro-
posed for estimating the HJC location using a dual
unscented Kalman filter (dUKF) algorithm, whose
inputs are the reconstructed femoral pose and the posi-
tion of a skin marker located on the pelvis. In order to
overcome the above-mentioned tuning issue of the UKF
joint filtering approach and enhance the estimation of
the HJC position, the dUKF method implements the
dual filtering technique,23 which distinguishes between
the state and parameter vector estimations in a pair of
distinct sequential filters, combined with a global opti-
mization process to adapt the Kalman gains of the para-
meter filter. Since a skin marker placed on the pelvis is
not included in the current surgical scenario, the posi-
tion of a pelvic anatomical point, identified once with a
calibration procedure, was used as the observed pelvic
point with simulated soft tissue artefacts (STAs). The
dUKF method was compared to the MAP algorithm,14

which is one of the most frequently adopted methods
for HJC estimation in clinical use for CAOS proce-
dures,12,13 and to the pivoting coordinate transforma-
tion algorithm.19 Both methods use only the femoral
poses as input. Additionally, the performance of the
UKF algorithm,21 which uses both the femoral poses
and the positions of the pelvic point, was assessed. The
HJC position was further estimated as the centre of the
best fitting sphere described by the trajectory of the pel-
vic point in the femoral technical frame. The robustness
of the performance of these methods with respect to the
pelvic displacement was also investigated.

Methods

The hip kinematic model

The hip was modelled as a spherical joint linking two
rigid segments: femur and hip-bone.21 As shown in
Figure 1, the description of the kinematic chain requires
the definition of the following:

� The laboratory technical frame (TFL);
� The femur technical frame (TFF), with the origin

centred in an arbitrary distal point of the femur;
� The hip technical frame (TFH), with the origin

centred in the centre of the acetabulum and the
axes oriented as the TFF;

� An arbitrary point (A) fixed with the pelvis.

The following kinematic relationships are defined:

� The transformation from the TFL to the TFH

(HTL), represented by the translation vector HcL
and by the rotation vector, using a unit quaternion-
based rotation representation HqL;

� The translation vector from the TFH to the pelvic
point A (AcH), represented in spherical coordinates;

� The translation vector from the TFF to the origin of
the TFH (HcF).
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dUKF

The dUKF algorithm for HJC localization requires the
femoral poses and the positions of the pelvic point dur-
ing pivoting movements. The algorithm is based on the
dual filtering approach23 that intertwines a pair of dis-
tinct sequential filters for state and parameter estima-
tion, that is, the state vector is estimated using the
current parameter values and the parameters are esti-
mated using the current state values. The time-invariant
variables of the hip kinematic model, that is, the HJC
position in the TFF (HcF) and the distance between the
HJC and the point A of the pelvis (norm of the vector
AcH), are embedded in the parameter vector, while the
state of the hip system is described using a first-order
discrete model. Both the state and the parameter esti-
mation steps are computed using a Kalman filter based

on the unscented transform.24 The simulated annealing
method25 is used to adapt the Kalman gain during the
parameter filtering process. Moreover, a global optimi-
zation process allows exploration of the parameter
space and enhancement of the HJC estimation. The
dUKF algorithm is initialized using the HJC position
in the TFF estimated with the method proposed in
Siston and Delp.19 Details about the implemented
dUKF method are described in Appendix 1.

Algorithm validation

Experimental protocol. In this study, four fresh intact
adult cadavers, with no evidence of damage to the hip
joints, were used.26 The cadavers lied supine on an
operating table without any fixating support. For each
cadaver, one transosseous steel pin (6mm in diameter)
was fixed distal to the right femur and one into the left
hip-bone (Figure 2(a)). Each pin was equipped with a
four-marker cluster. The minimum distance between
two markers of the same cluster was 70mm. Prior to
inserting the pins into the bones, cruciform incisions
were made through the skin and soft tissue to reduce
forces applied to the pins. A 9-camera VICON MX
close-range stereophotogrammetric system (VICON,
Oxford, UK) was used to acquire (at 120 frame/s) the
instantaneous position of the markers. As reported in
Cereatti et al.,26 the accuracy of the VICON system in
estimating the centre of rotation of a mechanical link-
age that mimicked the geometry of the pelvis and femur
ensemble was 0.7mm (SD=0.2mm). The following
anatomical landmarks were calibrated with an optical
pointer: right and left anterior superior iliac spines
(ASISs) and posterior superior iliac spines (PSISs) and
lateral and medial epicondyles. Three trials were per-
formed for each cadaver while an operator manually
moved the right femur with respect to the hip-bone.

Figure 2. (a) Schematic for the experimental set-up: a pin marker-cluster was drilled into the femur and hip-bone of the cadaver.
The pelvic anatomical frame (AFP) together with the pelvic point (A) and the projection of the mean point between the lateral
epicondyle (LE) and the medial epicondyle (ME) on the frontal plane are indicated. (b) Trajectory of the lateral epicondyle during the
hip joint movement projected onto the pelvic transverse plane quasi-orthogonal to the operating table. The starting position is
indicated by 0, the direction of progression is shown by the arrows (1–9) during the execution of phases ROT1,2,3,4 and C.

Figure 1. The hip kinematic model.
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A StarArc movement8 was performed for each trial. It
consisted of the following phases (Figure 2(b)): a
flexion–extension in the sagittal plane (ROT1), a com-
position of flexion–extension and adduction–abduction
in three planes externally rotated about the cranio-
caudal axis by about 20�, 40�, and 60� (ROT2,3,4),
respectively, followed by a half circumduction, C.

Model of the pelvic STA. Since a skin marker on the pelvis
was not available during the experiments, the position
of the calibrated left ASIS, which was contralateral with
respect to the moving femur, was taken as the arbitrary
observed pelvic point (point A of the hip kinematic
model in Figure 1), where the STAs27 are expected to
be minimal. The STA on the observed point A was
simulated as a joint kinematic–driven noise, following a
similar approach to that proposed and validated in a
previous study for markers placed on the thigh.28 The
simulated noise was added to the position of the con-
tralateral ASIS (AcP) in the pelvic anatomical system of
reference (see section ‘Data analysis’), which is given as
follows

A~cP(t)=
AcP +

a

2
� S � v with Sij

�� ��\ 1 ð1Þ

where v= ½a,b, g� is the vector of the hip joint angles
(see section ‘Data analysis’), a is a positive scalar value
defining the maximum amplitude of the simulated
noise, and S is the full matrix of the normalized correla-
tion coefficients. Subsequently, the noisy trajectory A~cP
is expressed in the TFL to be used as the observations
of the pelvic point A for the HJC estimation. The maxi-
mum amplitude of the simulated STA was set equal to
5mm, as discussed in section ‘Discussion’, while the ele-
ments of the correlation matrix Sij were sampled from a
uniform distribution in the range between 21 and 1, for
each trial and each cadaver.

Data analysis. The femur (TFF) and pelvic technical
frame (TFP) poses relative to the global system of refer-
ence were estimated using a single value decomposition
technique.29 The pelvic anatomical system of reference
(AFP) was determined according to the definitions pro-
posed in Cappozzo et al.30 and was registered relative
to the TFP (Figure 2(a)).

An estimate of the hip joint angles was obtained
from the projections of the vector identified by the
mean point between the positions of the lateral and the
medial epicondyles and the HJC onto the relevant
plane of the AFP (a flexion–extension in the sagittal
plane, b adduction–abduction in the frontal plane, and
g internal–external rotation in the transverse plane).

In each movement phase (ROT1,2,3,4 and C), the
maximum hip angular displacement (range of motion
(ROM)) was computed. For each cadaver, the refer-
ence HJC position in the TFF (HcF) was estimated
using the functional pivoting method19 and the dataset
of the pelvic and femoral poses obtained from the

corresponding pin-marker-based TFs. In order to
quantify the pelvic motion occurring during the passive
manoeuvres, the displacement d was computed as the
norm of the ellipsoidal axes estimated on the trajectory
of the reference HJC in the TFL through the principal
component analysis technique.31 All recorded StarArc
trials were split into ROT1,2,3,4 and C movement
phases, and for each of them, the displacement d was
computed. For all phases, the median HJC displace-
ment (dm) and the first and third inter-quartile ranges
(IQRs; from 50% to 25% and 75%, respectively), over
all specimens and trials, were computed. A comparative
analysis of the pelvic displacement occurring during the
different movement phases was carried out using the
Kruskal–Wallis test with Bonferroni–Holm correction
(p \ 0.05). Then, each movement phase dataset was
clustered into three datasets according to the amplitude
of the HJC displacement d: small (\ 1mm), medium
(between 1 and 6mm) and large (. 6mm).

For each cadaver and for each trial, the HJC loca-
tion in the TFF was estimated using the dataset associ-
ated with each of the movement phases (ROT1,2,3,4 and
C) and with the whole StarArcmovement, using the fol-
lowing methods:

1. MAP: the minimal amplitude point method,14

using the instantaneous TFF poses;
2. PIV: the pivoting method,19 using the instanta-

neous TFF poses;
3. UKF: the unscented Kalman filter method,21 using

the instantaneous TFF poses and the positions of
the simulated pelvic point A expressed in the TFL;

4. dUKF: the dual unscented Kalman filter method,
using the instantaneous TFF poses and the posi-
tions of the simulated pelvic point A expressed in
the TFL.

Moreover, for each cadaver and each trial, another
HJC estimation method was applied to the dataset
associated with the whole StarArc movement:

5. PSF: the closed-form sphere fitting method,20

using the instantaneous positions of the simulated
pelvic point A expressed in the TFF.

The accuracy of the methods 1–5 was assessed by
computing the Euclidean distance between the esti-
mated (HĉF) and the reference (HcF) HJC position in
the TFF. In this way, the errors due to the manually
performed anatomical calibration procedure do not
affect the computation of the accuracy index. For each
method, the median errors and the first and third IQRs
(25% and 75%, respectively), over specimens and trials,
were computed. A comparative analysis of the perfor-
mance of the dUKF, PSF, PIV, MAP and UKF algo-
rithms was carried out using the Friedman paired test
with Bonferroni–Holm correction (p \ 0.05).

To assess whether the HJC localization accuracy cor-
related with the pelvic displacement, the Pearson
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correlation analysis (p \ 0.05) between the HJC locali-
zation errors and the HJC displacement d was carried
out on the single motion phases. The relationship
between d and the maximum hip angular displacement
ROM was also investigated.

Results

The maximum hip angular displacements for each
phase of the StarArc manoeuvre and the corresponding
HJC displacements are reported in Table 1. The com-
parative analysis performed on HJC displacements in
each hip motion phase is shown in Figure 3. On aver-
age, the largest pelvic displacements occurred during
ROT4 (median displacement equal to 9.3mm) and C
(median displacement equal to 7.3mm). The HJC loca-
lization errors for the different motion phases of the
StarArc movement, averaged over specimens and trials,
are reported in Figure 4 for all the tested methods.

The dUKF method exhibited the smallest median
HJC localization error both in the whole StarArc
motion and in the motion phases ROT4 and C, during

which the median HJC displacement d is . 6mm, while
it showed a comparable localization accuracy in the
other cases. When the whole StarArc motion was used
to determine the HJC (Figure 4), the dUKF method
(5.26 [1.2; 1]mm, median6 [IQR 25%; IQR 75%])
was shown to be more accurate than the MAP method
(9.56 [0.7; 0.7]mm). The accuracy of the dUKF
method was about 30% higher than the accuracy of
PSF method (9.26 [3.2; 6.2]mm), PIV (7.96 [2.5;
0.4]mm) and UKF (8.76 [2.8; 2.3]mm) methods,
although no significant differences were computed.

When data relative to the circumduction movement
were used (C), the median HJC localization errors of all
the analysed methods were below 10mm. Besides the
fact that the median HJC localization errors between
all methods differed by \ 4mm, the accuracy of the
dUKF method (6.96 [0.9; 1.6]mm) was significantly
greater than the accuracies of the MAP and the UKF
methods. A 40% reduction of the median HJC localiza-
tion error of the dUKF method with respect to the
other methods was computed during the ROT4 planar
motion, although the only statistically significant differ-
ence resulted with respect to the MAP method.

In Figure 5, HJC localization errors relative to the
three pelvic displacement datasets (small, medium and
large) are shown for all methods. In case of small pelvic
displacement (\ 1mm), the performance of all the
methods was in line with the measurement accuracy of
the system (median HJC localization errors \ 3.5mm).
For the medium pelvic displacement dataset (between 1
and 6mm), the accuracy of dUKF (4.56 [1.2; 2.3]mm)
was significantly greater than that of the MAP method
(6.26 [2.0; 1.3]mm). For large pelvic displacement
dataset (. 6mm), the HJC localization errors of the
dUKF method were found to be significantly reduced
with respect to all the other methods analysed.

No significant differences were found between the
HJC localization errors of the other methods (MAP,
PIV, PSF and UKF) when considering both the HJC
displacement (Figure 5) and the dataset divided by
motion phases (Figure 4), except for the accuracy of
the MAP method, that was shown to be significantly
smaller than the accuracy of the PIV method during
ROT1.

The correlation analysis results are reported in
Table 2. No significant correlation values were found
between d and ROM (correlation coefficient equal to
20.2). The accuracy of all HJC estimation methods
was found to be positively correlated with the HJC dis-
placement (correlation coefficient up to 0.8); however,
the correlation coefficient for the dUKF was lowest
(equal to 0.5).

Discussion

The alignment of the knee prosthesis during arthro-
plasty procedures is considered successful when the
femoral axis results in 63� varus-valgus after the

Figure 3. Evaluation of the displacement (d) in the laboratory
frame of the reference HJC as occurring during the different
phases of the passive StarArc pivoting motion (ROT1,2,3,4 and C).
Vertical bars represent median values and quartiles (25% and
75%) for each HJC displacement population. Horizontal lines
represent statistically significant differences as determined in
intra-group comparisons (Kruskal–Wallis test, p \ 0.05) with
Bonferroni–Holm correction.
HJC: hip joint centre.

Table 1. The median values of the maximum hip angular
displacement (ROM) and the HJC displacement (d) computed in
each phase and on the whole StarArc movement, averaged over
the trials of all cadavers.

Median ROM (�) d (mm)

Min Max Median

ROT1 48.8 0.2 8.3 1.6
ROT2 46.9 0.1 5.6 1.5
ROT3 42.2 0.7 11.2 3.6
ROT4 36.7 0.1 14.7 9.3
C 48.2 1.1 13.8 7.3
StarArc 49.2 0.9 9.2 6.8

ROM: range of motion.
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Figure 4. Evaluation of the HJC localization error using the four algorithms (PIV, MAP, UKF, and dUKF) and the datasets
corresponding to the different phases of the passive StarArc pivoting motion (ROT1,2,3,4 and C) and using the five algorithms (PSF, PIV,
MAP, UKF and dUKF) and the datasets corresponding to the whole StarArc motion, for all trials of the four cadavers. Vertical bars
represent median values and quartiles (25% and 75%) of each HJC localization error population. Horizontal lines represent
statistically significant differences as determined in intra-group comparisons (Friedman paired test, p \ 0.05) with Bonferroni–Holm
correction. The median HJC displacement (dm) computed for each phase is also reported.
HJC: hip joint centre; PSF: sphere fitting; MAP: minimal amplitude point; PIV: pivoting; UKF: unscented Kalman filter; dUKF: dual unscented Kalman filter.

Figure 5. Evaluation of the HJC localization error using the four algorithms (PIV, MAP, UKF and dUKF) in the small ( \ 1 mm),
medium (1–6 mm), and large ( . 6 mm) HJC displacement groups, averaged over the trials of all cadavers. Vertical bars represent
median values and quartiles (25% and 75%) of each HJC localization error population. Horizontal lines represent statistically
significant differences as determined in intra-group comparisons (Friedman paired test, p \ 0.05) with Bonferroni–Holm correction.
HJC: hip joint centre; MAP: minimal amplitude point; PIV: pivoting; UKF: unscented Kalman filter; dUKF: dual unscented Kalman filter.
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intervention.4,6 The inaccuracy with which the HJC is
determined is one of the factors that negatively impacts
on the latter requirement,32 and it is, therefore, impor-
tant to reduce it to a minimum.33 This study aimed at
providing a contribution to this goal.

It has been shown that the current HJC estimation
methods are highly influenced by the pelvic motion that
might occur during the passive femoral movements.16

In this study, we present a dUKF method for the HJC
localization which partially compensates for the pelvic
motion during hip pivoting movements. The method
requires the knowledge of the femoral pose and of the
position of a pelvic point. The HJC position in the
laboratory space can be tracked under the hypothesis of
motion regularity according to the Bayesian approach.
Unlike the previously proposed UKF method,21 the
dual estimation approach provides the estimation of the
system state and of the parameter vectors in two paral-
lel and intertwined filtering processes, allowing the
adaptation of the parameter filter gains through a simu-
lated annealing algorithm. The computational time (in
the range of 15# and 45# for a signal 1000 frames in
length, using MatLab R2009b for computation, on a
dual core central processing unit (CPU) at 3GHz), due
to the Kalman joint estimation and simulated anneal-
ing, limits the immediate clinical applicability of the
approach. It has to be noted that the global optimal
solution was found in the first 10 iterations for all the
tests performed. Moreover, the implementation of the
proposed algorithm was not optimized and it can be
reduced by at least 10%.

The applicability of placing a skin marker on the
patient’s hip during the surgical procedure was already
presented and discussed in De Momi et al.21 The use of
a tracked stick pointing to the pelvic landmark would
overcome not only the sterility problem but even the
visibility issue derived from the use of optical tracking
system in the odds ratio. Moreover, knee CAOS proce-
dures are usually performed with the patient lying on
the bed, so that the ASISs can be easily pointed.

The performance of the proposed dual UKF method
was assessed using an in vitro set-up with fresh cadavers
that reproduced a realistic surgical scenario. The

analysis conducted showed that, during the hip pivot-
ing movements required for the HJC determination,
the pelvic displacement ranged between 0.1 and 15mm.
These values were comparable with those observed in
the in vitro analyses performed in Lustig et al.15 and De
Momi et al.21 The largest pelvic displacements were
observed during the manoeuvres that involved the larg-
est hip abduction (ROT4, C). This observation is
explained by the compensatory pelvic motion (lateral
pelvic tilt) which occurs in case of hip abduction34 and
indicates a generic, though important, good-practice
rule.

For all methods analysed, the HJC determination
errors increased with the amplitude of the HJC displa-
cement; however, the error sensitivity to pelvic motion
varied among methods. The dUKF method was shown
to be the least sensitive to pelvic movement, as con-
firmed by the Pearson correlation analysis. dUKF also
showed the smallest HJC median errors for the StarArc
(5.2mm, that is median femoral deviation of 0.8�
assuming 350mm femoral length) compared to the
other methods, with an error reduction of about 30%.
The performance of all the other methods (MAP, PIV,
PSF and UKF) was found to be comparable, thus all
equally affected by the unknown passive pelvic motion.
Although the slight improvement obtained with the
dUKF method in terms of median femoral deviation
(about 0.3�) with respect to the clinical requirements,
dUKF methods potentially allow limitating the median
femoral deviation (\ 1�) in the case of larger pelvic
displacements. As summarized in Table 3, the errors
computed in this study for the PIV and MAP methods
in correspondence to the StarArc movement are in
agreement with the results reported for comparable
ranges of pelvic motions in previous studies.15,21 The
localization errors of the PIV methods are increased by
3 times (median value equal to 7.9mm) with respect to
the case in which no pelvic motion occurs (mean/med-
ian value below 3mm),16,17,19 thus confirming that this
source of error highly affects the estimation of the HJC
as previously stated.21 As regarding the MAP method,
the HJC localization errors resulted in this work (med-
ian error equal to 9.5mm) were slightly larger than
those reported in Picard et al.12 (maximum error equal
to 8mm, assuming 350mm femoral length), probably
due to different executions of the femoral manoeuvres
performed on the subjects during which the pelvic
motion was not measured.

In the case of HJC localization computed using the
quasi-planar movements (ROT1,2,3,4), it should be
noted that these movements are better suited for the
determination of an axis of rotation rather than a centre
of rotation and therefore should not be employed sepa-
rately for the functional determination of the HJC.19,20

These movements were included in the analysis to
obtain pooled datasets characterized by different pelvic
displacement amplitudes (small, medium and large),
which allowed investigation of the methods’ robustness.
A detailed definition of the best hip pivoting movement,

Table 2. Pearson correlation analysis between the HJC
displacement d and, first, the HJC localization errors of the four
methods and, second, the maximum hip angular displacement
ROM.

d (mm)

HJC localization errors (mm) MAP 0.8*
PIV 0.7*
UKF 0.7*
dUKF 0.5*

ROM (�) 20.2*

HJC: hip joint centre; MAP: minimal amplitude point; PIV: pivoting; UKF:

unscented Kalman filter; dUKF: dual unscented Kalman filter; ROM:

range of motion.

*Statistically significant difference (p \ 0.05).
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both in terms of type and amplitude, for the functional
HJC determination in CAOS set-up is beyond the scope
of this study and warrants further research.

A limitation of this study is that no real pelvic skin
marker was available in the experimental set-up, so the
observations of the pelvic point A were indirectly
obtained through the simulation of STAs in the area of
a calibrated anatomical landmark. It is well known that
STA is both task and subject dependent.35 Although
body mass index (BMI) and skinfold thickness were
shown to be important factors to describe the relation
between internal and external pelvic landmarks,36 their
correlation effects37 are usually neglected when model-
ling the skin marker displacements during body seg-
ments’ movements. Joint kinematics28 or rigid-body
motion38 driven models were proposed to estimate the
STA on thigh skin markers, but to the best of the
authors’ knowledge, no studies have been performed on
pelvic skin markers.39 In this work, a joint kinematic–
driven model with randomly sampled correlation coeffi-
cients is used to simulate the STA of a skin marker
placed on the contralateral ASIS, supposed to be mini-
mal as it is far away from the moving joint. In this loca-
tion, the skin marker displacements quantified in vivo
with static standing poses were reported as negligible
(\ 1mm) during hip flexion (until 90�)40 for 20 healthy
subjects with BMI fluctuating in the normal range
(22.86 2.7 kg/m2). In order to simulate a worst-case
scenario as expected for subjects with higher BMI, the
maximum amplitude of the simulated STA on the
observed point A was increased by 500% (set to 5mm)
with respect to the one quantified by Hara et al.40

Thanks to the a priori statistical model of the mea-
surement noise in the HJC estimation process,23 HJC
estimation methods based on a Kalman filter are sup-
posed to compensate any possible STA better than the
PSF method, although a model of the STA was not
explicitly added to the state filter model. It has to be
noted that the high HJC localization errors found for
the UKF method can be explained by the inability of
the filter to distinguish between the actual pelvic motion
and the marker displacement due to the simulated
STAs. On the contrary, the global optimization process
allows the dUKF method to partially compensate for
STA on the pelvic marker position and provide a better
HJC estimate. The dUKF method was shown to be
robust to a simulated additive noise correlated to the
hip joint angles with 5mm amplitude.

Conclusion

An innovative HJC estimation method, based on a
dUKF algorithm specifically designed for CAOS appli-
cations, is proposed to reduce the estimation errors due
to the unavoidable and untracked pelvic motions that
occur during passive femoral manoeuvres. These
motions were quantified in the range between 0.1 and
15mm using an in vitro set-up that reproduced aT
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realistic surgical scenario, thus showing that pelvic
motions actually occur especially during the largest hip
abductions. The dUKF proved to be the least sensitive
method to pelvic movements, increasing HJC localiza-
tion accuracy by 30% for HJC displacements . 6mm
during multi-planar motions, and to be robust to simu-
lated pelvic STAs. Further tests to quantify and possi-
bly model the STAs of skin markers placed on the hip
segment during femoral pivoting motions need to be
addressed in the future. Moreover, the method will be
further developed in order to improve its applicability
in a surgical context, such as optimizing the algorithm’s
implementation thus reducing its computational time.
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Appendix 1

State space model

A discrete-time state-space model is used

xk+1 = f xk, vkð Þ ð2Þ

yk = h xk, p, ekð Þ ð3Þ

where xk is the state vector, yk is the observations vec-
tor, vk and ek are the process and measurement noise,
respectively, and p is the parameter vector. f and h are
the non-linear state transition and measurement func-
tions, respectively.

The state vector x includes the time-variant variables
of the hip kinematic model with their first-order
dynamics

x= HqL
HvL

HcL
H _cL q _q h _h

� �
ð4Þ

where HcL and HqL are the translational and rotational
(quaternion-based convention) components of the TFH

frame expressed in the TFL, respectively;
HvL is the vec-

tor of the angular velocities of the TFH in the TFL,
41,42

and (q,h) are the angular components of the spherical
coordinates that describe the position of point A in the
TFH (AcH) with their relative derivatives ( _q, _h).

The process noise vk is assumed to be drawn from a
multivariate normal distribution N(0,Q) with covar-
iance Q. In the numerical differentiation approach, the
state transition function for a state variable xv 2 x can
be specified as a first-order Taylor series expansion

xv(k+1)
_xv(k+1)

� �
=

1 dt
0 1

� �
� xv(k)

_xv(k)

� �
+

0
v(k)

� �
ð5Þ

where dt is the sampling time interval. According to
Fioretti and Jetto,43 the covariance matrix Qv of each
state variable is

Qv =

dt3

3

dt2

2
dt2

2
dt

2
664

3
775 � s2

Q, v ð6Þ

where s2
Q, v is an a priori set according to the frequency

content of the signal and the sampling frequency. The
values (s2

Q, qa,b, g
s2
Q,v s2

Q,HcL
s2
Q,q,h ), which define

the covariance of the state process noise, are reported
in Table 4.

The observation vector y is

y= FcL
FqL

AcL
� �

ð7Þ

where FcL is the position of the TFF origin in the
laboratory frame, FqL is the quaternion describing the
orientation of the TFF in the laboratory technical
frame, and AcL is the three-dimensional position of the
pelvic point A in the TFL.

The measurement noise ek is supposed to be isotro-
pic and is described by the covariance matrix R. The
values (s2

R, qa,b, g
s2
R, FcL

s2
R, AcL

), which define the
covariance of the measurement noise, were set in rela-
tion to the target registration errors computed on the
femoral technical frame and on the calibrated contral-
ateral ASIS (see Table 4).

The vector p includes the time-invariant parameters
of the hip kinematic model, that is, the HJC position in
the TFF and the distance r between the HJC and the
pelvic point A
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p= HcF r
� �

ð8Þ

and it is defined as a stationary process driven by pro-
cess noise nk, as follows

pk+1 = pk + nk ð9Þ

The parameter process noise nk is a zero-mean
Gaussian distribution N(0,S), where S is the covar-
iance matrix. The values s2

S =(s2
S,HcF

s2
S, r ), which

define the covariance of the process noise for each
parameter, are reported in Table 4.

Two UKFs23,24 are used to compute the update of
the state vector x̂k and of the state covariance Pk in the

state estimation step and the update of the parameter
vector p̂k and of the parameter covariance Sk in the
parameter estimation step, as shown in Figure 6.

The simulated annealing method25 is used to adapt
the parameter covariance matrix S during the dual fil-
tering process, as shown in Figure 6. Each value of the
parameter covariance s2

S is updated at each time frame
k=1, ..., N, as

sS(k)= max l � sS(k), dð Þ ð10Þ

where l and d are annealing parameters (values in
Table 5).

Figure 6. Schematic of the dUKF: the dual filtering approach with simulated annealing.
UKF: unscented Kalman filter.

Table 4. Values of the covariance matrices of the dual unscented Kalman filter algorithm.

Process noise covariance (Q) Measurement noise covariance (R) Parameter noise covariance (S) Initial state covariance (P0)

s2
Q, qa, b, g

* 1028 rad2 s2
R, qa, b, g

* 2.5 3 1027 rad2 s2
S, HcF

2 3 1021 mm2 s2
P0, qa, b, g

* 1028 rad2

s2
Q, v 10210 mm2/s2 s2

R, FcL
1022 mm2 s2

S, r 2 3 1021 mm2 s2
P0, v 10210 mm2/s2

s2
Q, HcL

1021 mm2 s2
R, AcL

1021 mm2 s2
P0, HcL

1 mm2

s2
Q, q, h 1024 rad2 s2

P0, q, h 1024 rad2

*The noise vector of rotational variables expressed in quaternion convention is modelled with a three-component vector representing noise about

x, y, and z rotation axes.41,42

Table 5. Values of the parameters of the simulated annealing and optimization process.

Simulated annealing S0 Optimization process

l 0.998 s2
S0, HcF

30 mm2 H 40

d 1027 s2
S0, r 30 mm2 Omin 1 mm
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Enhanced dUKF

In order to globally search the optimal solution in the
parameter space, the dual UKF is iteratively computed,
as shown in Figure 7. At the end of the dual estimation
process, the estimated observation vector ŷ

i
is com-

puted evaluating the measurement function (3) on the
last estimate of the parameter vector

ŷ
i
= h x̂

i
, p̂

i
N, e

� �
ð11Þ

where i= 1, ., H is the iteration number of the opti-
mization process. The objective function (O) to be
minimized is the sum of the root mean square errors
between the actual observations y and the estimated
observation ŷ

i

minp O
i =min

p
RMSEi

T +RMSEi
M

	 

ð12Þ

RMSEi
T =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
k=1

Fĉ
i
L, k � FcL, k

��� ���2
N

vuuut
ð13Þ

RMSEi
M =

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiPN
k=1

Aĉ
i
L, k � AcL, k

��� ���2
N

vuuut
ð14Þ

If p̂
i
N corresponds to the current minimum of the cost

function ( �O), the next dual filtering iteration would be
initialized using the current adaptive parameter noise
covariance Si

N. Otherwise, a new parameter vector pi+1
0

is generated as

pi+1
0 =N(�p,S0) ð15Þ

where �p is the parameter solution corresponding to the
current minimum of the objective function and S0 is
the initial parameter covariance matrix, whose
(s2

S0,HcF
s2
S0, r ) values are reported in Table 5. The

optimization process stops when the objective function
is evaluated below a threshold (Omin) or when the maxi-
mum number of iterations H is reached (see Table 5).

The dUKF algorithm was initialized using the
position of the HJC in the TFF (HcF, 0) estimated
using Siston and Delp.19 The initial state vector x0 and
parameter r0 are derived from the observations
relative to the first-time frame, while the first
derivatives of the state vector were set equal to 0.21

Values of the initial state covariance matrix
P0(s2

P0, qa,b,g
s2
P0,v

s2
P0,HcL

s2
P0,q,h ) are reported in

Table 4.

Figure 7. Schematic of the enhanced dUKF: the global optimization problem in the parameter space.
UKF: unscented Kalman filter.
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