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Abstract: Global warming requires a response characterized by forward-looking 

management of atmospheric carbon and respect for ethical principles. Both safety and 

fairness must be pursued, and there are severe trade-offs as these are intertwined by the 

limited headroom for additional atmospheric CO2 emissions. This paper provides a simple 

numerical mapping at the aggregated level of developed vs. developing countries in which 

safety and fairness are formulated in terms of cumulative emissions and cumulative per 

capita emissions respectively. It becomes evident that safety and fairness cannot be 

achieved simultaneously for strict definitions of both. The paper further posits potential 

global trading in future cumulative emissions budgets in a world where financial 

transactions compensate for physical emissions: the safe vs. fair tradeoff is less severe but 

remains formidable. Finally, we explore very large deployment of engineered carbon sinks 

and show that roughly 1,000 Gt CO2 of cumulative negative emissions over the century are 

required to have a significant effect, a remarkable scale of deployment. We also identify 

the unexplored issue of how such sinks might be treated in sub-global carbon accounting. 
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1. Introduction 

Climate change is recognized as one of the most challenging problems that the world faces today. 

At the same time, only limited progress has been achieved at the national and international level to 

address it. Nations have found it difficult to manage the atmosphere as a common property resource. 

They have been unable to distribute responsibilities among themselves for mitigation actions, and they 

have been reluctant to adopt unilateral policies, which they view as ineffective or even counterproductive. 

As a result, the stock of greenhouse gases in the atmosphere continues to rise. Since the Kyoto protocol 

of 1997, the atmospheric concentration of CO2 alone has increased by about 25 parts per million, to 

more than 390 ppm. The coming decades will test the world’s ability to decide how much needs to be 

done and who has to do what.  

We assume that avoiding dangerous climate change and addressing the issue of responsibility and 

equity in CO2 emissions are the two fundamental pillars on which comprehensive climate change 

legislation will be based [1]. Henceforth, we refer to these two as “safety” and “fairness”. The extent to 

which safety and fairness are mutually realizable and can be attained simultaneously will depend on 

future policies, institutions and technology, as well as the extent to which fossil fuels remain attractive. 

At the moment, this challenge appears immense [2].  

Equity and responsibility are repeatedly invoked to convey the obligations of the developed world 

in terms of mitigation action. Yet, researchers and policy makers discuss these objectives largely 

without reference to their interactions with the stringency of climate policy. This paper seeks to 

remedy this omission by demonstrating how fairness in its various guises is intertwined with safety. 

The strategy adopted is to use the same physical concept, “cumulative emissions,” to express both 

fairness and safety. Fairness is explored at the aggregated level of developed vs. developing countries. 

We focus on CO2 emissions and ignore emissions of other greenhouse gases and aerosols [3]. We 

consider both energy [4] and land-use change emissions [5]. 

Cumulative emissions of CO2 connect to safety through the concept of CO2 “headroom.” Headroom 

is defined as the difference between the maximum amount of CO2 in the atmosphere judged to be safe 

(the “safety cap”) and the amount already in the atmosphere. The safety cap can be linked to 

equilibrium temperature rise, and, consequently, expected damage. Headroom becomes smaller when 

climate stabilization targets become more stringent. The lower stabilization targets that have been 

emphasized in the past few years produce less headroom and thereby tighten the entanglement of 

safety and fairness.  

Cumulative emissions connect to fairness when the atmosphere is viewed as a common property 

resource shared by all humans: In this version of fairness, all individuals have an equal right to CO2 

emissions in the atmosphere. This definition derives from (1) the right to economic growth and a better 

standard of living, and (2) the strong observed correlation between economic growth and CO2 

emissions. The fairness principle provides equal cumulative emissions to all, starting at a particular 

date. It should be noted that there is still a wide range of emissions possible for the same level of 

economic well-being: In Japan and Western Europe, per capita emissions are half that of the US for a 

lifestyle that is quite similar. This version of fairness needs to be supplemented with a decision about 

which people, past and future, should be included. In this paper we show quantitatively the 

consequences of specific inclusion rules. The historical dimension of this principle of fairness 
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addresses the responsibility of future damage to some people due to the past emissions of others. 

However, it is simplistic for the redress of such damage to take the form of exactly equating future and 

past emissions. Significant advances have been made in increasing the efficiency of energy services 

and in making energy infrastructure less carbon intensive. Nonetheless, this paper investigates the 

challenges of simultaneously considering this narrow definition of fairness with various degrees of 

climate safety. 

2. Quantifying Safety Using Global Cumulative Emissions 

Our definition of climate safety is parametrized by a target expressed as a maximum rise in the 

earth’s average global surface temperature. Recent work suggests that a relatively well-defined 

probabilistic linear relationship connects cumulative emissions and the rise in this temperature. Each 

1,000 GtCO2 of cumulative emissions since pre-industrial times (here, year 1850) and extending 

indefinitely into the future produces, as the central value of the temperature distribution, roughly a half 

degree Celsius rise (more precisely, 0.48 °C). Moreover, the temperature rise associated with 1,000 GtCO2 

of emissions has a 90% probability of being in the interval between 0.27 °C and 0.68 °C [6,7]. In IPCC 

parlance, values falling in this 90% confidence interval are called “very likely”. This linear 

relationship allows us to use cumulative emissions as a quantitative metric for safety. Because the 

“very likely” range is quite wide, the desired level of risk aversion for a given temperature target (like 

“2 °C”) strongly affects the cumulative emission target [8].  

We consider four global cumulative emissions budgets: 1,000, 2,000, 3,000 and 4,000 GtCO2 of 

“future” cumulative emissions, where the year 2005 divides past from future. Table 1 reports the 

central value of the temperature distribution and the “very likely” range for these four emission 

budgets, obtained from the rules above and accounting for the 1,800 GtCO2 that was emitted in the 

atmosphere prior to 2005. The carbon budgets in Table 1 appear to be more permissive than budgets 

analyzed with integrated assessment models. Budgets meeting a 450 ppm-equivalent concentration 

target have traditionally been associated with the 2 °C objective. The IPCC Representative Concentration 

Pathway RCP 3-PD(2.6) generated by the IMAGE model [9], for example, foresees a future 

cumulative CO2 budget of about 1,500 GtCO2 [10]. Values of temperature increase in Table 1 range 

from 0.8 °C to 4.0 °C. The 1,000 GtCO2 is the only budget that achieves the 2 °C signpost with ‘very 

likely’ probability. The models involved in the EMF22 international scenarios have, on average, only 

1,100 GtCO2 of future cumulative emissions [11]. To compare integrated assessment models directly 

with the models whose outputs produced the simplified assumptions leading to Table 1, however, one 

must run the integrated assessment models beyond 2100, after which time cumulative emissions will 

continue to increase and surface temperature will continue to rise, As a result, a direct comparison is 

not possible. Moreover, all these models feature simplified carbon cycle modules, and each is simplified 

in its own way. 

The relation between cumulative carbon emission and climate change measured by temperature 

increase is shown graphically in Figure 1. The twelve entries in Table 1 are shown as dots 

superimposed on a color-coded scale for global mean temperature change.  
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Table 1. Cumulative CO2 emissions after 2005 and corresponding maximum-temperature 

increase above pre-industrial. The central value and top and bottom of the “very likely” 

range are shown, where “very likely” is the centered 90% interval of the distribution. 

Future 
cumulative 
emissions  

Temperature 
Increase 

(bottom 5%) 

Temperature 
Increase 

(central value) 

Temperature 
Increase 
(top 5%) 

Probability of not  
exceeding 2 °C 

GtCO2 °C °C °C % 

1,000 0.8 1.3 1.9 more than 95% 

2,000 1.0 1.8 2.5 just above 50% 

3,000 1.3 2.3 3.3 just below 50% 

4,000 1.6 2.8 4.0 somewhat above 5% 

Figure 1. The relationship between cumulative CO2 emissions and equilibrium temperature 

rise (color coded, values in Centigrade). The middle line (labeled 50%) is the central value 

corresponding to the mean of the probability distribution function (p.d.f.) of temperature 

rise and the two outer lines correspond to the very likely range (5%–95%). 

 

3. Quantifying Fairness Using Per Capita Cumulative Emissions 

To include “fairness” in this formalism, we now move to a regional analysis at the highly 

aggregated level of developed versus developing countries, or, in this instance, the two UNFCCC 

categories of Annex I and Non-Annex I countries in the United Nations Framework Convention on 

Climate Change [12]. A global future cumulative emissions budget is the fixed sum of Annex I and 

Non-Annex 1 future cumulative emissions (A and N, respectively). The sum is a simple straight line—
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the “safety line” in a chart like Figure 2, which plots the Annex I carbon budget on the horizontal axis 

and the Non Annex I budget on the vertical axis.  

Global Future Cumulative Emission Budget = A+ N  (1) 

The (0,0) point on the plot corresponds to 2005. When one moves along one of the four safety lines 

up and to the left of the diagram, global emissions remain equal to one of the four selected carbon 

budgets (1,000, 2,000, 3,000 or 4,000 GtCO2), but emissions from Annex I are replaced by emissions 

from Non-Annex I. The safety lines intersect the vertical and the horizontal axes at the values reported 

in the first column of Table 1. With this mapping the reader can consider safety and fairness 

simultaneously. Once the reader has expressed a preference for a given safety line, the remaining 

choice is how to distribute the global carbon budget between Annex I and Non-Annex I. 

Consider the simple case where the budget of future emissions is distributed according to 

population. We approximate the regional populations with values close to the United National 

population projections for 2050: 7.5 billion people in Non-Annex I and 1.5 Billion people for  

Annex I [13]. Thus, five-sixths of future emissions are assigned to Non-Annex 1; currently Annex I 

and Non-Annex I emissions are roughly equal. In Figure 2, emissions allocations for this case and our 

four specific targets appear as four black diamonds that fall on the line with a slope of 5, the 

population ratio. Note that we constrain cumulative emissions, not emissions at some future time: 

those who emit more now must eventually emit less to have cumulative emissions balance out. In our 

work, the end date for cumulative emissions is not specified. A large literature (“Contraction and 

Convergence”) explores convergence in per capita emissions and equality after a specific date [14].  

Figure 2. Safety lines for four global cumulative CO2 emissions targets after 2005 

(GtCO2). The lines are labeled by the targets—1,000 GtCO2, etc. The color coded 

temperature rise corresponding to low temperature sensitivity (5% of p.d.f.) is shown in 

panel (a), mid-range temperature sensitivity (50% of p.d.f.) is shown in panel (b) and the 

high temperature sensitivity (95% of p.d.f.) is shown in panel (c). The line labeled “2005,” 

beginning at the point (0,0), show Annex I and Non-Annex I shares proportional to 

population. Note that the scales are distorted such that a line at 45 degrees corresponds to a 

slope of 5. 

 
 

The principle of equal per capita emissions is widely invoked, which is why it is at the core of this 

paper. Applications of per capita rules to climate have been criticized on the grounds that they are not 
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linked to the damages of global warming, for which a better focus would be compensation, not 

emissions. Moreover, per capita rules embody naïve assumptions about the capacity and willingness of 

governments to allocate on a per capita basis, rather than to sustain privilege [15]. The distinction 

between fairness to individuals and to nations figures prominently in a previous paper written by the 

three of us and three co-authors [16] (See [17] for a similar approach that also takes into account 

historical emissions.). It provides a framework for calculating the distribution of global emissions 

across all the world’s individuals and identifying low and high emitters in both rich and poor states. 

Yet, the equity of rights applied at the national level remains a politically powerful ethical principle.  

4. Accounting for Historical Emissions  

Many commentators have supported the inclusion of historical emission rights in international 

climate agreements [18-23]. Similarly, several versions of burden-sharing have been recently proposed 

that involve scoring both past and future national CO2 emissions and that require equalized per capita 

emissions [24-30]. 

A generalization of the simple example above takes into account historical emissions for the same 

two groups of nations. We equalize cumulative per capita emissions inclusive of historical emissions 

beginning at some date. We consider three different start dates: 1850, 1950, and 1990. These choices 

account, respectively, for all historical emissions, for emissions only after the Second World War, and 

for emissions only after the reference year defined in the UN Framework Convention of 1992. We use 

the notation ECPC1850 to refer to an allocation of future emissions based on Equal Cumulative Per 

Capita emissions beginning in 1850, and similarly for other start times. The simple example shown in 

Figure 2 becomes an application of ECPC2005, which ignores historical emissions. 

The required emissions data are shown in Table 2. Between 1850 and 2005, Annex I countries 

emitted almost 1,000 GtCO2 to the atmosphere, roughly one-third more than Non-Annex I countries [31]. 

In the final 15 years of that interval, between 1990 and 2005, one fourth of all the global emissions 

between 1850 and 2005 occurred, and aggregate emissions in the two parts of the world were 

roughly equal. 

Table 2. Historical cumulative emissions of CO2 (through 2005) from the world, Annex I 

and Non-Annex I (GtCO2). 

Accounting Regimes World Annex I Non-Annex I 

1850–2005 1,780 990 690 
1950–2005 1,190 660 530 
1990–2005 450 220 230 

 

Figure 3 shows the fairness lines consistent with the ECPC principle. Figure 3 has the same 

coordinates as Figure 2, with future cumulative emissions from Non-Annex 1 and Annex-1 as its axes. 

To understand the lines plotted on Figure 3 algebraically, define NH and AH as the historical emissions 

between some start date (say, 1950) and 2005, for Non-Annex I and Annex-I, respectively. The ECPC 

principle becomes: 

N + NH = 5 (A + AH)  (2) 
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Figure 3. Fairness lines for cumulative CO2 emissions after 2005 (GtCO2), for Annex I and 

Non-Annex I, under four ECPC schemes. Blue diamonds identify the points corresponding 

to different starting dates (which label these lines). The 16 black diamonds correspond to 

intersections of four values of future CO2 emission budgets with the four fairness lines 

discussed in the text. For example, the black diamond corresponding to the intersection of 

the 1990 ECPC line and the 2000 safety line states that the ECPC scheme beginning 1990 

for a cumulative emissions target of 2,000 GtCO2 allots future cumulative emissions of  

187 GtCO2 to Annex I and 1,813 GtCO2 to Non-Annex I. The three red diamonds show the 

EIA’s Business as usual projections for cumulative emissions from Annex I and  

Non-Annex I. The color coded contour labeled 50% shows the mean temperature rise, the 

contours labeled 5% and 95% show the very likely temperature range for different 

cumulative emission targets. 

 
 

We saw in Figure 2 that the line we are now calling ECPC2005, on which the four diamonds fall, is 

a line through the point (0,0) with a slope of 5 (reflecting the population ratio). The corresponding line 

associated with one of the earlier start dates is obtained by shifting the starting point of the fairness line 

from (0,0) to the point in the lower-left quadrant whose coordinates are the negative values that, in 

magnitude, equal the pair of past emissions shown for the corresponding row in Table 2. For example, 

for 1950, the starting point is (–660 GtCO2, –530 GtCO2) [32].  

There are 16 intersections in Figure 3, each shown as a black diamond at an intersection of one of 

the four ECPC fairness lines with one of the four safety lines discussed in the previous section. (The 

right-most four points are the same as those highlighted in Figure 2.) Figure 3 also shows the 

uncertainty range in temperature rise—the color coded background under these points shows the 

average (labeled 50%) increase in temperature, while the color change in the two bars at the left show 

the temperatures that span the very likely (5%–95%) range.  



Sustainability 2012, 4                            

 

 

217

The 16 intersections span a large carbon space for trade-off between safety and fairness. Climate 

safety increases as one moves down-left, fairness increases as one moves up-left, and depth of reach of 

history increases as one moves left. The deeper into history one reaches in one’s definition of 

“historical” fairness, the more difficult it becomes to resolve the fairness-safety conundrum. For 

example, the left-most point (ECPC1850, 1,000 GtCO2) is the point where the strongest versions of 

both safety and fairness are achieved at once: it results in cumulative emissions allocations of  

–540 GtCO2 for Annex I (and 1,540 GtCO2 for Non-Annex I); imagining ways to address such large 

negative emissions is one of the objectives of this paper. 

It is instructive to add to Figure 3 a baseline trajectory for future emissions. The three points in red 

are the Energy Information Agency ‘International Energy Outlook 2010’ Business as Usual projections 

for cumulative emissions from Annex I and Non-Annex I regions for 2010, 2020 and 2030. If unabated 

until 2030, cumulative global emissions nearly cross the first safety line (1,000 GtCO2). Moreover, the 

trajectory moves rapidly to the right, making it difficult to comply with fairness: for example, by 2020 

Annex I countries exhaust their carbon budget in the case of a 2,000 GtCO2 target and an ECPC1990 

fairness principle.  

The historical dimension of the ECPC principle addresses responsibility for future damage to 

people in developing nations caused by the past emissions of people in industrialized countries, 

mediated by global warming. As discussed in the Introduction, exactly equating future and past 

emissions is simplistic. To be sure, as developing countries pass through the early energy-intensive 

stages of industrialization in the pursuit of economic growth and a modern lifestyle [33,34], they will 

need to emit substantial quantities of carbon dioxide. But these countries will confront options that 

were not available to industrialized countries as they went through the same transitions at an earlier 

time. Notably, increased energy efficiency has been a steady feature of the past and shows every sign 

of continuing for the foreseeable future, enabling modern lifestyles to be achieved with less energy 

expenditure. Moreover, the energy system for most of the past century has become steadily less 

carbon-intensive, and, to the extent that this trend continues (i.e., that fossil fuel technologies become 

less economically attractive than low-carbon technologies), fewer carbon emissions will accompany 

the same economic growth. A more formal analysis would take these trends into account.  

In Figure 3, several of the points of intersection to which we are calling attention involve negative 

emissions from Annex I. Negative emissions have two possible meanings. A later section of this paper 

explores a world where technologies that actually remove CO2 from the atmosphere, thereby tackling 

both safety and fairness, are widely deployed and “count” as negative emissions. But negative 

emissions can also be understood to be the result of trade in cumulative emissions, where, for example, 

money is paid by Annex I to Non-Annex I so that Annex I can emit more in the future and Non-Annex 

I can emit less. These trades produce movement down and to the right along a safety line. For example, 

the point at the intersection of ECPC1850 and 3,000 GtCO2, with roughly 200 GtCO2 of negative 

cumulative emissions from Annex I, could represent actual emissions at the intersection of the same 

safety curve with ECPC1990, but the purchase of about 550 GtCO2 by Annex I from Non-Annex I. 

A market in cumulative emissions could increase economic efficiency, to the extent that it takes 

advantage of low-cost abatement opportunities wherever they occur. In particular, it could also hasten 

the arrival of low-cost green technology options in the developing world, if it results in an 

augmentation of the capital investments already expected to occur mostly there.  
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However, it is not at all obvious that a market in cumulative emissions can become a vehicle for 

justice [35,36]. With today’s large disparities in wealth and quality of governance, such a market could 

lead to early transactions that might be regretted later. Clearly, new, very strong institutions would be 

required. The experience of CDM has already revealed major problems concerning credit verification 

and quality certification of the projects involved [37]. Moreover, there is the issue of scale. CDM, the 

largest existing offset market and likely to continue in some version for years to come, is far smaller in 

scale than the trading that is envisioned here. It is hard to conceive of an exchange of many hundreds 

of GtCO2, which—as seen in Figure 3—is needed to move from ECPC2005 to ECPC1850.  

5. Minimum Cumulative Emissions after 2005 

In Figures 2 and 3, the origin (where the two axes cross) represents zero future emissions after 2005 

for both Annex I and Non-Annex I. But emissions have already occurred since 2005, and further 

emissions are inevitable even if both Annex I and Non-Annex I climb down from their current 

emissions rapidly. It is useful to identify lines in the space of these figures that correspond to Minimal 

Cumulative Emissions (MCE) after 2005 for Annex I and Non-Annex I. The MCEs of Annex I and 

Non-Annex I are shown pictorially in Figure 4, panel (a), as a vertical and a horizontal line, 

respectively, drawn at locations that will be discussed below. The bands between the axes and these 

lines are forbidden outcomes, unless there is trading in cumulative emissions or (the subject of the next 

section and panels (b) and (c) of Figure 4) negative-emission technology arrives.  

Figure 4. In panel (a), minimum cumulative emissions after 2005 (MCE), shown as a pair 

of solid lines, are added to Figure 3; their positions are explained in the text. In panels (b) 

and (c), a total of 1,000 GtCO2 of negative emissions (see next section) are added to  

panel (a)—in two different ways: in panel (b), half are allocated to Annex 1 and half to  

Non-Annex 1, while all are allocated to Non-Annex 1 in panel (c). The shifted solid lines 

show the different allocations. The color coded background shows “average” equilibrium 

temperature rise (the 50% case). See Figure 3 for the corresponding color coded bands for 

the two bounds of “very likely” range.  

 
 

Many considerations should be accounted for in determining the positions of the MCE lines of 

Figure 4, panel (a). First, consider minimum global cumulative emissions. One must include the  

150 GtCO2 of global emissions from fossil fuels and deforestation over the past five years (for Annex I 

and Non-Annex I, approximately 75 GtCO2 each). Also, one must allow for societal inertia, which will 
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constrain emissions reduction over the next few decades. Even with great effort, the world cannot 

reduce its future emissions to zero instantly. Mitigation over the next few decades will be dominated 

by available technology options [2] and will be achieved in sectors of the economy that are known to 

resist change. The fossil fuel system now providing 85% of the world’s primary energy will not be 

replaced suddenly. For example, it has been estimated that roughly 500 GtCO2 will be emitted globally 

by the currently existing energy infrastructure over its lifetime [38].  

A rough estimate of minimal future global cumulative emissions from 2005 through 2100 is 

provided by considering twelve energy-economy-climate models that have been evaluated in an 

international model-comparison exercise, EMF22 [11]. For each model, a lower bound was produced 

for global cumulative emissions, consistent with achieving various climate stabilization targets under 

alternative policy architectures and assumptions about mitigation technologies and socio-economic 

pathways. The publicly available EMF22 data set provides information on emissions for all Kyoto 

gases, land-use emissions, and CO2 removal from the atmosphere as a result of (i) bioenergy with 

carbon capture and storage (BECS), and of (ii) afforestation—two of the so-called “negative emission” 

technologies (see next section). In order to compute emissions gross of CO2 removal, we estimate the 

effect of BECS using an average coefficient of 2.5 GtC/100 EJ [39] and also correct for afforestation. 

Averaging over the twelve models, minimum global cumulative emissions are 1,700 GtCO2  

(2,500 GtCO2-eq when counting also non-CO2 gases [40]). For simplicity we set minimum cumulative 

global emissions after 2005 at 2,000 GtCO2.  

As for the separate lower bounds for Annex 1 and Non-Annex 1, in Figure 4, panel (a), we assign 

500 to Annex I [41] and 1,500 to Non-Annex I [42]. This allocation is intended to take into account the 

difficulty Non-Annex I can expect to face in the short term, given the high value of fossil fuels for 

development at this time.  

Figure 4, panel (a), reveals that only two of the 16 safe-fair points are beyond the forbidden zone, 

and one more is on the boundary. Trading in cumulative emissions can move all the points on the 

safety lines for 4,000 and 3,000 GtCO2 into the allowed region and it can move all the points on the 

safety line at 2,000 GtCO2 approximately to the corner where the two MCE lines intersect. But even 

with unlimited trading the points on the 1,000 GtCO2 safety line cannot be brought into the feasibility 

space, meaning that the most stringent of our four stabilization targets remains out of reach. In short, 

resolving the safety-fairness conundrum is more difficult for more ambitious targets than for less 

ambitious ones. It is hardly surprising that the trend towards stricter targets has lead to more alarm 

about the potential to achieve fairness.  

6. Negative Emissions via Technology 

The pursuit of the twin goals of safety and fairness would benefit from new technologies that enable 

moving down and left in Figures 2, 3 and 4 in this paper. Such technologies include not only those that 

provide very low emissions but also those that remove CO2 from the atmosphere. Other words for CO2 

removal technologies are negative-emission technologies and engineered CO2 sinks. They require 

manipulation of the global carbon cycle—for example, the deliberate transfer of CO2 from the 

atmosphere to plants, soil, ocean, or deep underground in porous rock formations.  
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Among the proposed technological approaches are (1) biological sequestration of carbon in  

forests and soils, (2) CO2 capture while processing biomass for power and fuels, followed by CO2 

sequestration below ground, (3) biological CO2 removal from the atmosphere at the ocean surface 

(e.g., using plankton), and (4) direct air capture of CO2 using chemical absorbers. There is no 

assurance that technologies of this kind can be deployed in this century at the scale required, nor that 

the concomitant, nearly complete decarbonization of the economy can be achieved. Costs are key and 

hard to predict, since none of these technologies has been commercialized. There are also major 

uncertainties regarding the effectiveness, costs, and environmental impacts of CO2 removal 

technologies [43,44].  

The figures in this paper suggest that a useful scale for “globally significant” removal of CO2 from 

the atmosphere is the removal of 1,000 GtCO2. In Figure 4, panels (b) and (c), we consider two 

arbitrary assignments of 1,000 GtCO2 of negative emissions. In panel (b) the shares are equal: 500 

GtCO2 to Annex I and 500 GtCO2 to Non-Annex I. By contrast, in panel (c) all negative emissions are 

assigned to Annex 1. The 500:500 allowance exactly compensates Annex I for its minimum 

cumulative emissions, bringing the vertical MCE line back to the vertical axis and resulting in eight 

safe-fair pairs becoming “allowed”—all those with positive net cumulative emission allowances for 

Annex I. (Two 1,000 GtCO2 points are excluded—just barely.) The alternative allowance, which 

assigns industrialized countries the whole carbon dioxide removal program, produces twelve safe-fair 

pairs (there are four more allowed points in panel (c) than in panel (b)), largely because that allocation 

scheme assigns the effort to a smaller share of population.  

How to assign any specific negative emissions undertaking to any specific country, or even to 

Annex I vs. Non-Annex I, is not at all clear. Should the allocation depend on who pays or where the 

program is hosted, for example? At present, deforestation and afforestation are credited in carbon 

accounting to the country whose land is affected. However, another accounting scheme is under 

development, as financial transfers from industrialized countries to developing countries are 

considered that would fund carbon-motivated forest management in developing countries while 

crediting emissions reductions to industrialized countries. As for CO2 removal efforts that occur within 

the global commons rather than within national boundaries, such as CO2 transfer from the atmosphere 

to the ocean, it would seem that only an allocation based on who pays could make sense.  

The sequestration of 1,000 GtCO2 from the atmosphere would require huge investments and 

innovation. In many versions, associated land or ocean impacts would be central concerns. The  

1,000 GtCO2 absorption task, if assigned to the second half of this century, translates into a removal 

rate of 20 GtCO2 per year, which is two-thirds of the emissions rate today [45]. 

7. Conclusions 

In this paper we have provided a framework for thinking quantitatively about the trade-off between 

climate safety and fairness. Both matter, since goal setting and equity are intertwined in international 

climate change negotiations [46-48]. We associate levels of safety with cumulative global emissions. 

The starting point of our fairness principle is a view of the atmosphere as a common-property resource 

belonging equally to everyone in the world. The result is that an extra five tons of CO2 of emissions 

are allowed in Non-Annex I for each extra ton of CO2 emissions allowed in Annex I. This definition 
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can also be extended back into the past, thereby combining the concepts of a right to emit and 

historical responsibility. This is in line with some recent analyses and policy proposals, but it is hardly 

unique. Many alternative definitions of fairness can be devised, expressing many alternative 

formulations of global justice and its application to climate change [49].  

We have introduced a few simple concepts, along with rough estimates of their magnitudes, to 

promote quantitative discussion. Minimum Cumulative Emissions (MCE) capture the reality of long-

lived energy infrastructure, current emissions-reduction commitments, and the lead long times required 

to develop alternatives to replace the current fossil-energy infrastructure. We estimate global Minimum 

Cumulative Emissions (MCE) at 2,000 GtCO2 and find that these emissions (in the absence of the 

deployment of negative emissions technology) already limit the chance of avoiding a 2 °C temperature 

rise to just above 50% (see Table 1). When we further assign these 2,000 GtCO2 of global emissions so 

that 500 GtCO2 go to Annex I and 1,500 GtCO2 go to Non-Annex I, and restrict our attention to the 

2,000 GtCO2 safety line, none of our four fairness conditions is satisfied (see Figure 4). For this case 

even ECPC2005 (which ignores all emissions prior to 2005 and is the most limited of the four visions 

of fairness) is inconsistent with an MCE for Annex 1 of 500 GtCO2, since it allows Annex 1 only one-

sixth of future emissions, or 330 GtCO2 in this case. To realize even ECPC2005, 170 GtCO2 of Non-

Annex I cumulative emissions would need to be purchased by Annex I.  

Invoking the possibility of realizing 1,000 GtCO2 of negative emissions and changing no other 

assumptions, the chance of avoiding a 2 °C temperature rise exceeds 95%. A larger fraction of the 

targets are accessible and stricter ECPC rules are allowed under this technology scenario, though the 

exact consequences for fairness depend on how negative emissions are assigned. However, achieving 

1,000 GtCO2 of negative emissions via engineered sinks will require a combination of monumental 

investment and extraordinary innovation. At present there is no reason to expect cheap, 

environmentally attractive, and scalable versions of these technologies to make a timely entrance into 

the space of options. As a consequence, counting on these technologies to provide the path to the 

simultaneous realization of safety and fairness is unwise. 

Our mapping also considers future cumulative global emissions that exceed 2,000 GtCO2, 

specifically 3,000 and 4,000 GtCO2. Higher emissions, of course, push the world into less safe 

territory. Figure 4, panel (a), confirms that, when no historical emissions are counted (ECPC2005), the 

500–2,500 split of 3,000 GtCO2 of global emissions allocates to Annex 1 exactly its estimated minimal 

cumulative emissions. Stronger fairness conditions are only realizable with trading—as much as  

700 GtCO2 of exchange for “full” historical responsibility (ECPC1850).  

The recent trend towards stricter targets (more “safety”), associated with further developments in 

climate science and the rapid rise in global emissions in the recent past, has yet not taken cognizance 

of its impacts on various criteria of fairness. Our paper shows quantitatively, however, just how 

difficult meeting both objectives actually is, when a narrow definition of fairness in terms of equal per 

capita shares of global emissions is reconciled with stringent climate stabilization targets. Adding 

historical responsibility to the definition of fairness makes the reconciliation substantially more 

difficult. And all targets become harder to meet if emissions continue unabated for another 10 or  

20 years. The challenges for both developed and developing countries, in this calculus, are immense.  

We wish again to alert the reader to the shortcomings of a definition of fairness in terms of per 

capita access to the atmosphere for individual emissions. Associating equity with the right to emit CO2 
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inadequately captures the more critical right of everyone to seek and achieve a higher standard of 

living. Once climate change is seriously addressed, priority will be given to reducing the CO2 

emissions associated with any given level of human welfare. Throughout the future global economy, 

less energy will be required to achieve the same amenity (mobility or comfort, for example) and lower 

carbon emissions will accompany the same energy expenditures. Such trends will not eliminate the 

difficult trade-offs between safety and equity, but they will weaken them.  

The formalism presented here for dealing with historical emissions equates CO2 emissions 

entitlements at all times—a convenient first step whose principal virtue is simplicity. Especially 

important for the further development of our approach would be a more sophisticated accounting for 

the steady lowering through time of the CO2 emissions required for the satisfaction of human needs. 

We strongly encourage an exploration of alternative conceptualizations of the historical dimensions of 

equity that take the evolution of relevant features the global economy into account.  

To summarize, our investigation shows the interplay of safety and fairness under different 

assumptions about historical emissions, trading in cumulative emissions, residual emissions, and 

negative emissions. It is meant to provide an instructive tool to treat safety and fairness simultaneously 

when exploring the problem of international burden-sharing. The figures in our paper provide a reality 

check on the reader’s preferences regarding safety and fairness. Our intention is to encourage iteration 

over such preferences.  
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