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Abstract. The regularized 13 moment equations (R13) are a macroscopic model for the description of rarefied gas flows in the

transition regime. The equations have been shown to give meaningful results for Knudsen numbers up to about 0.5. Here, their

range of applicability is extended by boundary conditions for evaporating and condensing interfaces, derived from the microscopic

interface conditions of kinetic theory. Simple 1-D problems are used to test the R13 equations with evaporation and condensation.

Introduction

The regularized 13 moment (R13) equations are a macroscopic model to describe rarefied gas flows for not too large

Knudsen numbers in good approximation to the Boltzmann equation [1, 2, 3, 4, 5]. Gas rarefaction leads to the occur-

rence of phenomena such as velocity slip and temperature jump at boundaries, Knudsen layers in front of boundaries,

transpiration flow, thermal stresses, or heat transfer without temperature gradients, all of which are reproduced by

solutions of the R13 equations, but cannot be accurately described by the Navier-Stokes-Fourier (NSF) equations of

classical hydrodynamics [3]. Proper modelling of boundary conditions is essential to obtain a meaningful description

of rarefied flows, and below we present and test conditions for liquid-vapor boundaries with condensation and evap-

oration. With this, the range of application of the R13 equations is extended in particular towards microdevices with

phase change.

The R13 equations are derived as approximations of the Boltzmann by means of the order of magnitude method

[6, 7], which combines elements of the Chapman-Enskog [8, 9, 10, 11, 12] and Grad [13] methods; the resulting

equations avoid the problems exhibited by the individual methods.

Just as the transport equations are derived from the Boltzmann equation, the corresponding macroscopic bound-

ary and interface conditions are derived from the microscopic boundary and interface conditions for the Boltzmann

equation [14]. For this we use an extended Maxwell boundary model [15] with an condensation/evaporation coefficient

and an accommodation coefficient [16]. The derivation follows the same line as that of the wall boundary conditions

for non-condensing interfaces. Naturally, for vanishing condensation coefficient, the boundary conditions for solid

walls are recovered.

We solve two simple one-dimensional evaporation problems to test the R13 equations with evaporation and

condensation. Solutions of R13 and NSF are compared with DSMC simulations, and it is shown that generally R13

gives good agreement to the kinetic solutions, both for overall parameters like the mass and heat flows, and for details

of the flows, such as temperature and stress profiles with Knudsen layers.

The R13 equations

The aim of kinetic theory is to find the velocity distribution function f (xi, t, ci) , where t denotes time t, xi is the

location in space and ci is the microscopic velocity. In a microscopic approach, the distribution function is the solution

of the Boltzmann equation [8, 9], while in a macroscopic approach one derives transport equations as a set of suitable
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moments of the Boltzmann equation, where the resulting moment equations are closed by means of an ansatz for the

distribution [13, 3]. The basic 13 variables are mass density ρ, macroscopic velocity vi, temperature T , anisotropic

stress tensor σi j (with σii = 0), and heat flux vector qi, which are moments of the distribution function, as

ρ = m

∫

f dc , ρvi = m

∫

ci f dc , ρu =
m

2

∫

C2 f dc , σi j = m

∫

C〈iC j〉 f dc , qi =
m

2

∫

C2Ci f dc (1)

Here, u = 3
2
RT = 3

2
θ is the specific internal energy, θ = RT is temperature in energy units with the specific gas

constant R, and Ci = ci − vi is the peculiar velocity. Indices in angular brackets denote the symmetric, trace-free part

of a tensor [3].

The corresponding moment equations are the conservation laws for mass, momentum and energy, which can be

written as ( D
Dt
= ∂
∂t
+ vk

∂
∂xk

is the material time derivative)

Dρ

Dt
+ ρ
∂vk

∂xk

= 0 , (2)

ρ
Dvi

Dt
+ ρ
∂θ

∂xi

+ θ
∂ρ

∂xi

+
∂σik

∂xk

= 0 , (3)

3

2
ρ

Dθ

Dt
+ ρθ
∂vk

∂xk

+
∂qk

∂xk

+ σkl

∂vk

∂xl

= 0 , (4)

and the balance equations for stress and heat flux

Dσi j

Dt
+ σi j

∂vk

∂xk

+ 2σk〈i
∂v j〉

∂xk

+
4

5

∂q〈i

∂x j〉
+
∂mi jk

∂xk

= −ρθ
[

σi j

µ
+ 2
∂v〈i

∂x j〉

]

, (5)

Dqi

Dt
+

5

2
σik

∂θ

∂xk

−σikθ
∂ ln ρ

∂xk

+θ
∂σik

∂xk

+
14

5
q〈i
∂vk〉

∂xk

+
4

3
qk

∂vk

∂xi

+
1

2

∂Rik

∂xk

+
1

6

∂∆

∂xi

+mikl

∂vk

∂xl

−σik

ρ

∂σkl

∂xl

= −5

2
ρθ

[

qi

κ
+
∂θ

∂xi

]

(6)

The collision terms of the above equations were determined for Maxwell molecules, µ is the shear viscosity, and

κ = 15
4
µ is the heat conductivity [3].

For small Knudsen numbers, the Chapman-Enskog method [8, 3] can be used to reduce the equations for stress

and heat flux to the Navier-Stokes and Fourier laws,

σi j = −2µ
∂v〈i

∂x j〉
, qi = −κ

∂θ

∂xi

. (7)

In addition to the 13 variables introduced above, the 13 moment equations (3,5,6) contain the additional moments

mi jk = m

∫

C〈iC jCk〉 f dc , ∆ = m

∫

C4 f dc−15ρθ2 , Ri j = m

∫

C2C〈iC j〉 f dc−7σi j (8)

In order to close the system of moment equations, constitutive equations for these variables must be provided. The

classical Grad closure [13, 3] simply leads to mi jk|G = ∆|G = Ri j|G = 0. The regularized 13 moment equations arise from

an alternative closure, which accounts for parts of, but not the complete, transport equations for
{

mi jk,∆,Ri j

}

[1, 6, 7,

17]. The regularized 13 moment equations arise as the appropriate set of equations at 3rd order in the Knudsen number

(super-Burnett order), and, for Maxwell molecules, consist of the equations (3,5,6) and the constitutive equations

(pressure obeys the ideal gas law, p = ρθ)

∆ = 5
σklσkl

ρ
+

56

5

qkqk

p
− 12µθ

∂

∂xk

(

qk

p

)

, (9)

Ri j =
20

7

σk〈iσ j〉k

ρ
+

64

25

q〈iq j〉

p
−

24

5
µθ
∂

∂x〈i

(

q j〉

p

)

, (10)

mi jk =
4

3

σ〈i jqk〉

p
− 2µθ

∂

∂x〈i

(

σ jk〉

p

)

. (11)
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Microscopic and macroscopic boundary conditions

At an evaporating liquid interface, some vapor particles that hit the interface condense, while those that do not con-

dense are reflected; moreover, some particles are injected into the vapor by evaporation from the liquid. We write the

distribution function directly in front of the interface as

fint =

{

f −, CI′
n ≤ 0

f +, CI
n > 0

, (12)

where f − is the distribution of incident particles (negative velocity CI′
n normal, and relative, to the interface), and f + is

the distribution of emitted particles (positive velocity CI
n normal to the interface). For finding boundary conditions for

moments we shall describe the gas by the distribution function associated with the R13 equations, f − = f|R13, which

is a Grad distribution for 26 moments, which are the 13 variables plus the 13 constitutive quantities (10) [3].

The distribution of particles leaving the interface is the sum of evaporation and reflection of non-condensing

particles back into the vapor. For the latter we follow the classical Maxwell model, which assumes that particles are

either specularly reflected, or thermalized and leave in a Maxwellian [15, 16]. The emitted distribution function thus

can be written as

f + = ϑ fM

(

psat (θL) , θL,C
I
)

+ (1 − ϑ) (1 − χ) f|R13

(

CI
i − 2CI

nni

)

+ (1 − ϑ) χ fM

(

p̄, θL,C
I
)

, (13)

where ϑ is the evaporation/condensation probability, and χ is the accommodation coefficient, defined as the probability

that a reflected particle is thermalized. The velocity CI
i

is the velocity of a vapor particle as seen from an observer

resting with the liquid-vapor interface; CI
n = CI

j
n j is the velocity normal to the interface; CI

i
− 2CI

nni is the specular

reflection velocity, the notation is such that f|R13

(

CI
i
− 2CI

nni

)

denotes the distribution of specularly reflected particles.

The pressure p̄ in the Maxwellian for thermalized particles is determined from the condition that non-condensing

particles must return to the vapor.

The liquid side of the interface is assumed to be in local equilibrium [18, 19], and thus evaporating particles leave

in a Maxwellian distribution fM

(

psat (θL) , θL,C
I
)

, where psat (θL) is the saturation pressure corresponding to liquid

temperature θL. For thermal equilibrium, the outgoing distribution reduces to f +|E = f|R13,E = fM (psat (θL) , θL,C).

Continuity conditions for fluxes of moments are used to find the boundary conditions for the moments [13, 14,

4, 5]. For an observer slipping with the gas along the liquid-vapor interface, who observes the particle velocity Ĉi, the

normal flux computed with the distribution function directly at the wall, i.e., the distribution fint of Eq. (12), must be

equal to the normal flux computed with the distribution function f|R13 of the gas just in front of the wall [3], which

leads to
∫

Ĉn>0

Ψ̂AĈn f + dc =

∫

Ĉn>0

Ψ̂AĈn f|R13 dc . (14)

Here, following Grad [13], we have to use continuity only of fluxes that are odd in Ĉn, which implies func-

tions Ψ̂A which are even in Ĉn. The 13 variables of the R13 equations are moments based on the weights φA =

m
{

1, ci, c
2, cic j, c

2ci

}

A
, and of corresponding the even tensor components are φA,even = m

{

1, ctα , c
2, c2

n, ctαctβ , c
2ctα

}

A
.

We do not discuss any details of the cumbersome derivation of the boundary conditions, but just give the final result,

which is obtained after linearization in the evaporation velocity.

As an approximation to the Boltzmann equation, the R13 equations are expected to approximate, but not fully

resolve, Knudsen layers [20]. To account for the related inaccuracies, in the interface conditions below we introduce

ad-hoc corrections coefficients ̟α [21], which are expected to be of order unity. This approach is similar to what is

usually done in jump and slip boundary conditions for hydrodynamics [9, 22].

The expression for evaporation flux results for Ψ̂A = 1 as

ρVn = ̟V

ϑ

2 − ϑ

√

2

π

(

psat (θL)
√
θL
− Π√
θ

)

, (15)

with the correction coefficient ̟V . Hence, the evaporation flux is determined through the difference between the

saturation pressure psat (θL) of the liquid at the interface and the effective pressure Π = ρθ+ 1
2
σnn − 1

120
∆

θ
− 1

28

Rnn

θ
. This

expression is a generalization of the classical Hertz-Kundsen-Schrage law [23, 24, 25, 26] to the R13 equations.
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The other conditions are generalizations of the established wall boundary conditions for the R13 equations [14,

5], to which they reduce for non-evaporating interfaces (ϑ = 0):

Generalized slip condition:

σtαn = −̟σ
ϑ + χ (1 − ϑ)

2 − ϑ − χ (1 − ϑ)

√

2

πθ

(

ΠVtα +
1

5
qtα +

1

2
mtαnn

)

− ρVnVtα , (16)

generalized temperature jump condition:

qn = −̟q

ϑ + χ (1 − ϑ)

2 − ϑ − χ (1 − ϑ)

√

2

πθ

(

2Π (θ − θL) − Π
2

V2
t +

1

2
θσnn +

∆

15
+

5

28
Rnn

)

+

[

1

2

(

V2
t − θL

)

− 5

2
(θ − θL)

]

ρVn ,

(17)

generalized interface conditions for higher moments:

mnnn = ̟mn

ϑ + χ (1 − ϑ)

2 − ϑ − χ (1 − ϑ)

√

2

πθ

[

2

5
Π (θ − θL) − 3

5
ΠV2

t −
7

5
θσnn +

∆

75
− 1

14
Rnn

]

− 2

5

[

θL +
3

2
V2

t

]

ρVn (18)

mtαtβn = −̟mt

ϑ + χ (1 − ϑ)

2 − ϑ − χ (1 − ϑ)

√

2

πθ

[

θσtαtβ − ΠVtαVtβ +
Rtαtβ

14
+

+

(

1

5
Π (θ − θL) +

1

5
ΠV2

t −
1

5
θσnn +

∆

150

)

δαβ

]

+ ρVn

[

VtαVtβ +
1

5

(

θL − V2
t

)

δαβ

]

(19)

Rtαn = ̟R

ϑ + χ (1 − ϑ)

2 − ϑ − χ (1 − ϑ)

√

2

πθ

[

ΠθVtα −
11

5
θqtα −

1

2
θmtαnn − ΠVtαVtβVtβ + 6ΠVtα (θ − θL)

]

+

+
[

7 (θ − θL) + θL − VtβVtβ

]

ρVtαVn (20)

The index n refers to the interface normal, and indices tα with α = 1, 2 indicate the two tangential directions.

Interface conditions for hydrodynamics

In the hydrodynamic limit, only first order contributions in the Knudsen number are retained in the equations. For one-

dimensional processes, with transport only normal to the interface, and for only small deviations from equilibrium,

the interface conditions are often written as [27, 16]















psat(θL)−p√
2πθL

p√
2πθL

θL−θ
θL















=

[

r̂11 r̂12

r̂21 r̂22

]















[

ρVn

]

|NSF
[qn]NSF

θL















with r̂αβ|corr =

[

1
ϑ
− 0.40044 0.126

0.126 0.291

]

αβ

, (21)

with a symmetric matrix r̂αβ of Onsager coefficients, or resistivities [28]. The above values for r̂αβ|corr are determined

from exact calculations based on kinetic theory yield explicit corrections to account for Knudsen layer effects [19, 27],

uncorrected values can be found in [16].

1-D heat and mass transfer problems

To put the R13 equations with evaporation/condensation to test, we now consider flows in simple one-dimensional

geometry, and steady state. We ignore all details of mass and heat transfer through the liquid, and consider the temper-

ature of the liquid at the interface as given. In particular, we consider systems where the normal of the interface points

into the x1 = x direction, and all flow properties are functions only of this coordinate. Moreover, we consider small

deviations from an equilibrium rest state where vapor and liquid are at temperature θ0, hence the reference pressure is

p0 = psat (θ0) = ρ0θ0. We use the rest state data and the length scale L to make the variables dimensionless. With all

flows only in x-direction, the variable space is reduced to

ρ̂ (x̂) =
ρ (Lx̂)

ρ0

, θ̂ (x̂) =
θ (Lx̂)

θ0
, v̂ (x̂) =

vx (Lx̂)
√
θ0

, σ̂ (x̂) =
σxx (Lx̂)

p0

, q̂ (x̂) =
qx (Lx̂)

p0

√
θ0
. (22)
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For convenience, the hats indicating dimensionless quantities will be omitted from now on.

The linearized dimensionless conservation laws (3) are easily integrated to give constant mass flow J0, constant

normal stress P0 and constant energy flux Q0.

ρv = J0 = const , p + σ = P0 = const ,
5

2
J0θ + q = Q0 = const. (23)

With this, the (linearized, dimensionless, one-dimensional) R13 constitutive equations for Maxwell molecules (10)

reduce to

∆ = −12Kn
∂q

∂x
= 30J0Kn

∂θ

∂x
≃ 0 , R = −

16

5
Kn
∂q

∂x
= 8J0Kn

∂q

∂x
≃ 0 , m = −

4

5
Kn
∂σ

∂x
. (24)

The linearized balance equations for xx-component of stress (5) and x-component of heat flux (6) reduce to

4

5
Kn
∂2σ

∂x2
=
σ

Kn
,
∂θ

∂x
= −

4Q̂0

15Kn
−

2

5

∂σ

∂x
. (25)

where Q̂0 = Q0 − 5
2

J0. These can be integrated easily to give

θ = K −
4Q̂0x

15Kn
−

2

5
σ , σ = A sinh















√

5

4

x

Kn















+ B cosh















√

5

4

x

Kn















(26)

where K, A, B are constants of integration. We note that σ is of Knudsen layer type, i.e., it decays exponentially

away from the wall on the scale of the mean free path. We also note that classical hydrodynamics gives σ = 0, and

θ = K − 4Q̂0 x

15Kn
, which is the case for A = B = 0.

For the full solution, we have to find the six constants of integration
{

J0, P0, Q̂0,K, A, B
}

, from the appropriate

boundary conditions for both sides. Equations (15 - 20) reduce in linearized and dimensionless form to (no tangential

components)

J0,n = ̟V

ϑ

2 − ϑ

√

2

π

(

psat (θL) − P0 −
1

2
(θL − θ) +

1

2
σ

)

, (27)

Q̂0,n = ̟q

ϑ + χ (1 − ϑ)

2 − ϑ − χ (1 − ϑ)

√

2

π

(

2 (θL − θ) −
1

2
σ

)

−
1

2
J0,n , (28)

4

5
Kn

[

∂σ

∂x

]

n

= ̟mn

ϑ + χ (1 − ϑ)

2 − ϑ − χ (1 − ϑ)

√

2

π

[

2

5
(θL − θ) +

7

5
σ

]

+
2

5
J0,n . (29)

Here it is assumed that all dimensionless pressures psat (θL) , P0, and all dimensionless temperatures θL, θ, are close to

unity. J0,n, Q̂0,n are the products of the flows J0, Q̂0 with the normal at the respective boundary. For NSF, we consider

the interface conditons (21).

Half space problem

In the classical problem of the steady evaporation from a planar infinite surface into a half-space [29, 30, 31], the evap-

orating liquid surface is kept at temperature θL with evaporation pressure psat(θL). It is assumed that far downstream

the flow is in a uniform equilibrium state characterized by pressure p∞ ≤ psat, temperature θ∞ and bulk velocity

v∞ > 0. Previous investigations [29] have shown that steady evaporation is possible only when the dowstream flow is

subsonic and that only one of the three downstream flow parameters can be freely assigned. Therefore, the required

solution is obtained by setting Q0 = σ∞ = 0 and hence the solution of the problem follows from (26) as:

θ (x) = θ∞ −
2

5
σ (x) , σ (x) = A exp















−
√

5

4

x

Kn















. (30)

With the evaporation speed v∞ prescribed, the downstream temperature θ∞ and the pressure p∞ are fully deter-

mined by the relationships:
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αp =
psat

(

θ0
L

)

− p∞

v∞/
√

2
, αθ =

θL − θ∞
v∞/
√

2
. (31)

The coefficients αp and αθ can be determined by solving the linearized Boltzmann equation. For the Maxwell

molecules potential considered here, an accurate approximate solution, for unit evaporation coefficient, has been

obtained by Ytrehus by a moment method. Therefore, we compare results from R13 with Maxwell molecules and

BGK model [32], Ytrehus’ solution (Y) [29], and NSF, and will use the comparison to fit the corrections coefficients

̟α. Since we only have two coefficients αp, αθ, we have some freedom of choice, and, to keep things simple, we

chose ̟mn = 1, and fit only ̟V , ̟q. The various methods yield for the coefficients

αp|R13 =

√
π

4

























1

2

1

̟q

+
4

̟V

+

2
5

(

1 + 1
4̟q

)

1 + 2
15

√
10π

























, αp|Y = αp|NSF = 2
√
πr̂11 =

2
√
π
+

9
√
π

16
= 2.1254

αθ|R13 =

√
π

4

























1

ωq

+

4
25

(

1 + 1
4

1
ωq

)

1 + 2
15

√
10π

























, αθ|Y =

√
π

4
= 0.44311 , αθ|NSF = 2

√
πr̂12 = 0.44723

For NSF the coefficients αp and αθ are, apart from the factor 2
√
π, just the dimensionless resistivities r̂11 and

r̂12 as defined in (21). In the R13 equations, we fit the free correction coefficients ̟V , ̟q, to the Ytrehus values for

Maxwell molecules, to find ̟V = 0.9822, ̟q = 1.126. As expected, the correction coefficients are of order unity.

Without the correction, i.e, for ̟V = ̟q = 1, the R13 equations yield αp = 2.1208, αθ = 0.49383, which is in good

agreement for the pressure coefficient, but gives a 10% deviation for the temperature coefficient.

Heat and mass transfer between two reservoirs

For a closer look at the Knudsen layer, we consider heat and mass transfer between two liquid reservoirs at (dimen-

sionless) locations x = ± 1
2
, where the quantities at the two interfaces are indicated with superscripts 0,1. The solution

requires interface conditions on both sides of the domain. Note that at x = 1
2

the interface normal points into the

negative direction, so that, i.e., J0,n

(

x − 1
2

)

= −Jn,0

(

x + 1
2

)

= J0 etc. We have three pairs of boundary conditions for

Vn, qn, mnnn, given by (28), which are best applied by taking their pairwise sums and differences, respectively. After

some calculation, the solution of the linear problem can be presented as

P0 =
psat

(

θ0
L

)

+ psat

(

θ1
L

)

2
, θ =

θ0
L
+ θ1

L

2
−

4Q̂0

15Kn
x −

2

5
A sinh















√

5

4

x

Kn















, σ = A sinh















√

5

4

x

Kn















. (32)

Two of the pairwise sums of the boundary conditions give 0 =
(

θ0
L
− θ0

)

+
(

θ1
L
− θ1

)

, which was used in the above.

The evaporation fluxes J0, the heat flux Q0 and the amplitude of the Knudsen layer A are obtained from a linear

system which results from subtracting the interface conditions at both sides:

J0 = ̟V

ϑ

2 − ϑ

√

2

π

1

2















psat

(

θ0L

)

− psat

(

θ1L

)

+
2Q0

15Kn
+
θ1

L
− θ0

L

2
− 3

5
A sinh















√

5

4

1

2Kn





























, (33)

Q̂0 = −̟q

ϑ + χ (1 − ϑ)

2 − ϑ − χ (1 − ϑ)

√

2

π















4Q0

15Kn
+ θ1L − θ

0
L +

3

10
A sinh















√

5

4

1

2Kn





























− J0

2
, (34)

A = −̟mn

ϑ+χ(1−ϑ)

2−ϑ−χ(1−ϑ)

2
√

5 cosh

[√

5
4

1
2Kn

]

√

2

π















4Q0

15Kn
+ θ1L − θ

0
L +

39

5
A sinh















√

5

4

1

2Kn





























+ 2J0 . (35)

Solving the system, and inserting the results into (32) yields detailed profiles of temperature and stress. The NSF

solution results by replacing (34)3 with A = 0. We compare R13 and NSF predictions to DSMC simulations (all with
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FIGURE 1. Normal (left) and inverted (right) temperature profile: Temperature and stress profiles for Kn=0.1. Comparison of

DSMC (green, dashed), R13 with corrected BC (red, continuous), R13 with uncorrected BC (blue, dashed), NSF with Knudsen

layers correction (black, continuous), NSF without correction (grey).

χ = 1) for cases with normal temperature profile, and inverted temperature profile. Dimensionless temperatures and

saturation pressure of the two liquids are prescribed as θ0,1
L
= 1 ± ∆θ, psat

(

θ
0,1
L

)

= 1 ± ∆p, with ∆p = 0.075, and

∆θ = 0.05 for the normal temperature profile, ∆θ = 0.1 for the inverted profile.

Figure 1 shows on the left temperature and stress profiles for the case of normal temperature profile, which has

the temperature gradient pointing from hot (left) to cold (right), comparing DSMC with R13 and NSF solutions for

Kn = 0.1. The figures indicates good agreement of R13 results with DSMC for temperature and stress profiles, with

somewhat better agreement for the boundary conditions with adjusted correction coefficients ̟α (red curve) over the

uncorrected coefficients (̟α = 1, blue). NSF with (black) and without (grey) Knudsen layer correction cannot match

the temperature curve, and give σ = 0, while R13 can match the stress quite well. The upper block in Table 1 gives

the corresponding values of mass and heat flux, and it becomes clear that all theories give the mass flux J0 in good

agreement to DSMC, while the heat flux Q̂0 exhibits considerable deviations.

The plots on the right of Figure 1, and the lower block of Table 1 show results for the inverted temperature profile,

which has the temperature gradient pointing from cold (right) to hot (left), again comparing DSMC with R13 and NSF

solutions for Kn = 0.1. In this case, the R13 equations with (red) and without (blue) correction overemphasize the

TABLE 1. Mass and heat flux, and relative error to DSMC in %, for vapor enclosed between two liquid surfaces at Kn = 0.1,

determined from DSMC, R13, and NSF.

DSMC R13, corr error R13 error NSF, corr error NSF error

normal J0 0.0294 0.0289 1.7 0.0287 0.7 0.0303 3.1 0.0310 5.4

Q̂0 0.0172 0.0215 25 0.0203 18 0.0196 14 0.0206 20

inverted J0 0.0503 0.0506 0.6 0.0510 1.4 0.0504 0.2 0.0540 7.4

Q̂0 -0.00274 -0.00307 12 -0.00395 44 -0.00288 5.1 -0.00353 29
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Knudsen layer for the temperature, while NSF with correction (black) gives an excellent match. While NSF gives

σ = 0, the R13 prediction for stress agress well with DSMC. All theories give the mass flux J0 in good agreement to

DSMC, while the heat flux Q̂0 exhibits considerable deviations. Interestingly, NSF with corrected boundary conditions

gives the best results, while NSF with uncorrected boundary conditions deviates most. This points to the importance

of adjusting the boundary conditions properly.

Conclusions

The evaluation of evaporation/condensation processes with the R13 and NSF equations based on non-equilibrium

boundary conditions shows that both can produce results in reasonable agreement with DSMC calculations. R13 can,

in principle, resolve more detail, including Knudsen layers for the temperature, and–in particular–for normal stress,

which is not accessible for NSF. It should be noted that the NSF boundary conditions used are carefully corrected

based on the 2nd law of thermodynamics and fitting to exact solutions, which give the Onsager coefficients in the

matrix r̂αβ. A similar fitting procedure will be required for the R13 equations, which here were corrected only in a

rather ad-hoc way, by means of the coefficents ̟α. A more careful study of the boundary conditions based on a full

2nd law analysis with proper Onsager coefficients [20] should lead to improved agreement between R13 and DSMC,

or other exact solutions of the Boltzmann equation.
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