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A B S T R A C T

Results of uranium carbide sintering using a spark plasma sintering facility are presented here. The
initial uranium carbide powder is produced from the thermal decomposition of a citric acid and uranium
nitrate mixture. The study shows that spark plasma sintering is a very efficient compaction tool for
uranium carbide material. Both onset of sintering and final density are strongly correlated to the UC synthesis
conditions.

1. Introduction

Uranium carbide (UC) or uranium-plutonium carbide are potential
fuels for fast reactors [1–3]. One of their main drawbacks is the difficult
preparation and sintering. Typically, carbide powder is obtained
through carbothermal reduction (CTR, reaction of metal oxides with
graphite or carbon black) at temperatures above 1400 °C for several
hours [3]. In Suzuki’s study [4] carbide pellets with densities over 90%
of theoretical density (TD) require 47 h of ball milling before compac-
tion (300 MPa) and sintering (1700 °C for 3 h in flowing Ar).
Furthermore, addition of Ni can increase the density up to 97%. In
another study U0.45Pu0.55C pellets were prepared from a ball-milled
powder (4 h), which was pre-compacted, granulated and compacted
(375 MPa). The sintering (1627 °C for 10 h) yielded pellets with 86%
of TD [5]. Recently, a study of U0.8Pu0.2C pellet fabrication was
published [6] including the effect of lubrication (zinc stearate, calcium
stearate, azodicarbonamide up to 3.0 wt%). Green pellets were ob-
tained at 500 MPa and sintered at 1750 °C for 5 h under Ar-H2.
Increasing the lubricant amount led to decrease sintered density
(acting as a pore former) from about 91% of TD for 0 wt% of lubricant
to 78% for 2 wt%.

Herein, we present the densification of UC powder using a spark
plasma sintering (SPS) device, which was implemented in a glovebox
operating under an Ar purified atmosphere [7]. It has been already
applied for the preparation of fine grained UO2 pellets [8], UO2/CsI
composite [9] or dense ThO2 pellets [10]. Recently, the SPS technique

was used to prepare dense uranium nitride pellets [11–13]. To our
knowledge, results obtained on uranium carbide sintered with SPS
have never been published. Nevertheless, Tougait et al. have presented
preliminary results on UC sintering using SPS facility at Actinide 2013
conference [14]. The technique was applied on UC produced with
conventional CTR at 1700 °C and shows a sintering onset in SPS
facility at the same temperature. In our study, uranium carbide
sintering using SPS at 1700 °C with a 10 min dwell time is presented.
The study focus especially on the effect of the initial UC synthesis
conditions on the sintering behavior.

2. Experimental part

2.1. Powder synthesis

It was shown in a preliminary study that combining:

• the use of a highly reactive precursor coming from thermal decom-
position of uranyl nitrate and citric acid and

• the use of a modified SPS facility to act as a furnace to perform CTR
under vacuum with a fast temperature ramp

is an efficient way to produce uranium carbide in very mild conditions
[15,16]. This procedure gave fine UC powder with few percent of UO2

as second phase. Powders obtained this way at 1200, 1400 and 1600 °C
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with a 10 min dwell time were selected for this sintering study. They
were used as received, neither milled nor sieved.

2.2. Spark plasma sintering

A small scale SPS facility (FCT Systeme GmbH) integrated in a
glovebox [7] was used for the compaction of the powders. Graphite dies
and punches (6 mm inner diameter) were used. About 0.3 g of starting
powder was loaded in the graphite die, prepressed at 0.5 kN and
sintered to a disk of about 1 mm in height. The SPS procedure
consisted of 50/5 ms current/pause intervals, 100 MPa applied pres-
sure, 200 °C/min heating-cooling rate and 1700 °C final temperature
with a 10 min dwell time, under vacuum.

2.3. Analytical techniques

The XRD powder patterns were collected on a Rigaku MiniFlex 600
diffractometer with a θ–2θ configuration using Cu Kα1-α2 radiation. The
patterns were treated using the JANA 2006 software [17]. Scanning
electron microscopy was performed on a Philips XL 40 using a tungsten
filament (200 V–30 keV). The density was obtained by mass/volume
ratio. The volume was measured using a X-ray Tomography (Nikon XT
H 225 Industrial CT scanning device, equipped with a 225 kV micro-
focus X-ray source with a 3 µm focal spot size).

3. Results and discussion

Important information about the initial, final composition and
sintering behavior of the powders is summarized in Table 1.
Sintering of the powders obtained at 1200, 1400 and 1600 °C starts
at 1175, 1410 and 1700 °C respectively (see Fig. 1). The onset of
sintering depends significantly on the powder preparation temperature,
which affects the initial grain size and degree of necking (Fig. 2). The
highest density (95% of TD) was achieved for the powder obtained at
1200 °C. Such density is obtainable by conventional means only after
hours of sintering or use of sintering additives.

Similarly as for uranium nitride [12], the SPS provides an efficient
compaction tool, when temperatures above 1600 °C and pressures
about 100 MPa are applied. The morphology of the initial powders and
fresh fracture surfaces of the sintered pellets by SEM are shown in
Fig. 2. The SEM pictures show that lowering initial CTR temperature
leads to a more finely divided material and then lower porosity after
sintering. The variation of internal porosity observed in the sintered
pellets as a function of the powder preparation temperature is in good
agreement with the density measurements. For pellets prepared from
UC powder obtained at 1200 °C the pore size is ~100 nm in diameter
and increases to ~1 µm for the powder synthesized at 1600 °C. These
observations confirm that the UC powders produced under mild
conditions have increased sinterability.

During the sintering phase, the composition calculated from
powder XRD changed slightly (Fig. 3). Initially, the amount of
secondary phases in UC is very low (up to 5 wt% UO2 and no UC2

phase). After sintering, at least 5 wt% of UC2 phase was observed
together with a small rise of the UO2 proportion. The appearance of
UC2 is not fully understood, but may be explained by the presence of
carbon from two possible sources: (i) the SPS compaction was done in a
graphite punch/die system, thus, it is a source of possible reactant; (ii)
the initial powder contained some unreacted amorphous carbon or
uranium oxy-carbide that was not revealed by powder XRD. The
increase of the UO2 amount could be explained by precipitation of
oxygen impurities or decomposition of oxy-carbide. Another possible
moment of oxidation of the material was during pulverization before
measurements, which was, however, done in a glovebox with an inert
atmosphere (O2≈0.6%, H2O≈7 ppm).

4. Conclusion

We present a SPS study of powders that were prepared from a
solution of uranyl nitrate and citric acid as a carbon source. Such
powders have increased sinterability compared to powders obtained
after carbothermal reduction in a conventional route. Indeed, a SPS
cycle of 1700 °C with a 10 min dwell time and 100 MPa of applied
pressure is sufficient to obtain pellets with 95% of theoretical density
using initial powder generated at 1200 °C. Therefore, this study
showed that spark plasma sintering is a very efficient compaction tool
applicable to uranium carbide powders, especially if this material is
produced under mild conditions.

Table 1
Parameters of the initial powder and pellets after sintering.

Initial UC powder Onset of sintering [°C] After sintering

Synthesis temperature [°C] Synthesis dwell time [min] UC [wt%] UO2 [wt%] Density [% of TD] UC [wt%] UO2 [wt%] UC2 [wt%]

1200 10 97 3 ~1175 95 85 7 8
1400 10 97 3 ~1410 88 90 5 5
1600 10 95 5 ~1700 68 83 4 13

Fig. 1. Spark plasma sintering plots for powders obtained at 1200, 1400 and 1600 °C.
The applied pressure is linearly increased to the nominal value (100 MPa) at room
temperature before heating, and is linearly decreased to 0 MPa during the cooling step
from 1700 °C to 600 °C. The increase of piston displacement during the heating step and
the dwell time are characteristic of the powder sintering. Other displacements are
consequences of temperature and/or applied pressure changes.
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