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Abstract. We study a class of backward stochastic differential equations (BSDEs) driven by
a random measure or, equivalently, by a marked point process. Under appropriate assumptions
we prove well-posedness and continuous dependence of the solution on the data. We next address
optimal control problems for point processes of general non-Markovian type and show that BSDEs
can be used to prove existence of an optimal control and to represent the value function. Finally we
introduce a Hamilton—Jacobi-Bellman equation, also stochastic and of backward type, for this class
of control problems: when the state space is finite or countable we show that it admits a unique
solution which identifies the (random) value function and can be represented by means of the BSDEs
introduced above.
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1. Introduction. The purpose of this paper is to study a class of backward
stochastic differential equations (BSDEs) and apply these results to solve optimal
control problems for marked point processes. Under appropriate assumptions, an
associated Hamilton—Jacobi-Bellman (HJB) equation of stochastic type is also intro-
duced and solved in this non-Markovian framework.

General nonlinear BSDEs driven by the Wiener process were first solved in [23].
Since then, many generalizations have been considered where the Wiener process
was replaced by more general processes. Among the earliest results we mention in
particular [16], [17], by which some of our results are inspired, and we refer, e.g., to
[8] and [11] for recent result and for indications on the existing bibliography.

We address a class of BSDEs driven by a random measure, naturally associated
with a marked point process. There exists a large literature on this class of processes,
and in particular on the corresponding optimal control problems: we only mention
the classical treatise [7] and the recent book [6] as general references. In spite of that
literature, there are relatively few results about their connections with BSDEs. In the
general formulation of a BSDE driven by a random measure, one of the unknonwn
processes (the one associated with the martingale part, or Z-process) is in fact a ran-
dom field. This kind of equation has been introduced in [27] and was later considered
in [3], [26] in the Markovian case, where the associated (nonlocal) partial differential
equation and related nonlinear expectations were studied.

In these papers the BSDE contains a diffusive part and a jump part, but the
latter is only considered in the case of a Poisson random measure. In order to give a
probabilistic representation of solutions to quasi-variational inequalities in the theory
of stochastic impulse control, in [21] a more difficult problem also involving constraints
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on the jump part is formulated and solved, but still in the Poisson case and in a
Markovian framework.

To our knowledge, the only general result of BSDEs driven by a random measure
beyond the Poisson case is the paper [29] (but see also [11] for a different formulation).
In that paper, under conditions of Lipschitz type on the coefficients and assuming the
validity of appropriate martingale representation theorems, a general BSDE driven by
a diffusive and a jump part is considered and well-posedness results and a comparison
theorem are proved. However, it seems that in that paper the formulation of the
BSDE was not chosen in view of applications to optimal control problems. Indeed,
in contrast to [27] or [3], the generator of the BSDE depends on the Z-process in
a specific way (namely, as an integral of a Nemytskii operator) that is generally not
valid for the Hamiltonian function of optimal control problems (compare, for instance,
formula (1.3) below) and therefore prevents direct applications to these problems.

In our paper we consider a BSDE driven by a random measure, without diffusion
part, on a finite time interval, of the following form:

T T
(L1) m+[ﬁ@a@«%@ﬁ4+l,unzxmm& te0,T],

where the generator f and the final condition & are given.

Here the basic probabilistic datum is a marked point process (T, &, ), where (T,)
is an increasing sequence of random times and (&,) a sequence of random variables
in the state (or mark) space K. The corresponding random counting measure is
p(dtdy) = >, 61, .¢,), where § denotes the Dirac measure. We denote (A;) the
compensator of the counting process (p([0,¢] x K)) and by ¢:(dy) dA; the (random)
compensator of p. Finally, the compensated measure ¢(dt dy) = p(dt dy) — ¢:(dy) dA;
occurs in (1.1). The unknown process is a pair (Y3, Z¢(+)), where Y is a real progressive
process and {Zi(y), t € [0,T], y € K} is a predictable random field.

The random measure p is fairly general, the only restriction being nonexplosion
(i.e., T,, — 00) and the requirement that (A;) has continuous trajectories. We allow
the space K to be of general type, for instance, a Lusin space. Therefore our results
can also be directly applied to marked point processes with discrete state space. We
mention at this point that the specific case of finite or countable Markov chains has
been studied in [9], [10]; see also [11] for generalizations.

The basic hypothesis on the generator f is a Lipschitz condition requiring that
for some constants L > 0, L' > 0,

1/2
IMwn%D—ﬁWMJTM<L%—M+L<vakw@WQWAw>

for all (w,t), for r,7’ € R, and z, 2’ in appropriate function spaces (depending on
(w,t)); see below for precise statements. We note that the generator of the BSDE
can depend on the unknown Z-process in a general functional way: this is required
in the applications to optimal control problems that follow, and it is shown that our
assumptions can be effectively verified in a number of cases. In order to solve the
equation, beside measurability assumptions, we require the summability condition

T
E/ P £,(0,0)2dA; + E [AT |2 < oo
0

to hold for some 3 > L2 + 2L’. Note that in the Poisson case mentioned above we
have a deterministic compensator ¢;(dy) dA; = 7(dy) dt for some fixed measure 7 on
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K and the summability condition reduces to a simpler form, not involving exponen-
tials of stochastic processes. We prove existence, uniqueness, a priori estimates, and
continuous dependence upon the data for the solution to the BSDE.

The results described so far are presented in section 3, after an introductory
section devoted to notation and preliminaries.

In section 4 we formulate a class of optimal control problems for marked point
processes, following a classical approach exposed, for instance, in [7]. For every fixed
(t,x) € [0,T] x K, the cost to be minimized and the corresponding value function are

T
Jt(ﬂ}, U()) = ]Eft / lS(X;f)IJ’LS) dAS + g(X’_)lf“)r) ’ U(ta 33) = ess inf Jt(xvu('))v
t

u(-)€A

where E/* denotes the conditional expectation with respect to a new probability P,
depending on a control process (u;) and defined by means of an absolutely continuous
change of measure: the choice of the control process modifies the compensator of
the random measure under P,,, making it equal to r4(y, ut)d:(dy) dA; for some given
function r. To this control problem we associate the BSDE

(12)
T T
ybe +/ /K Z1*(y) g(dr dy) = g(X7") +/ fr, X0, Z07()) dA,, s € [t,T.

where (X5*) is a family of marked point processes, each starting from x at time ¢,
and the generator contains the Hamiltonian function

(13) f(wv t,x, Z()) = HelfU {lt(wa z, u) + / Z(y) (rt(wv Y, u) - 1) ¢t(w7 dy)} .
u K

Assuming that the infimum is in fact a minimum, admitting a suitable selector,

together with a summability condition of the form

Eexp (BAr) + Ellg(X7")?e™ 7] < o0

for a sufficiently large value of 3, we prove that the optimal control problem has a
solution and that the value function and the optimal control can be represented by
means of the solution to the BSDE.

We note that optimal control of point processes is a classical topic in stochastic
analysis, and the first main contributions date back several decades: we refer the
reader, for instance, to the corresponding chapters of the treatises [7] and [18]. The
Markovian case has been further investigated in depth, even for more general classes
of processes; see, e.g., [15]. The results we present in this paper are an attempt toward
an alternative systematic approach, based on BSDEs. We hope this may lead to useful
results in the future, for instance, in connection with computational issues and a better
understanding of the non-Markovian situation. Although this approach is analogous
to the diffusive case, it seems that it is pursued here for the first time in the case of
marked point processes. In particular it differs from the control-theoretic applications
addressed in [27], devoted to a version of the stochastic maximum principle. We
also include in this section a simple example where it is possible to find an explicit
solution of the BSDE (1.2) and to obtain a closed form solution of an optimal control
problem.
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Finally, in section 5, we introduce the following HJB equation associated to the
optimal control problem described above:

v(t, ) / / (s,z,y) q(ds dy)

(14) o+ [ / (5.9) — vls.2) + V(s.9.9) — V(s,2.9)) 6u(dy) dA,
—|—/t f(s,a:,v(s, ) —v(s,x) + Vs, ,)) dA,, te€0,T], z € K,

where f is the Hamiltonian function defined in (1.3). The solution is a pair of random
fields {v(t,z),V(t,z,y) : t € [0,T], z,y € K}, and in this non-Markovian framework
the HJB equation is stochastic and of backward type, driven by the same random
measure as before. Thus, the previous results are applied to prove its well-posedness.
For technical reasons, however, we limit ourselves to the case where the state space
K is at most countable: although this is a considerable restriction with respect to
the previous results, it allows us to treat important classes of control problems, for
instance, those related to queuing systems. Under appropriate assumptions, similar
to those outlined above, we prove that the HJB equation is well-posed and that v(t, x)
coincide with the (stochastic) value function of the optimal control problem and it
can be represented by means of the associated BSDE.

A backward stochastic HIB equation was first introduced in [24] in the diffusive
case, where the corresponding theory is still not complete due to greater technical
difficulties. It is an interesting fact that the parallel case of jump processes can be
treated using BSDEs and fairly complete results can be given, at least under the
restriction mentioned above; this is perhaps due to the different nature of the control
problem. (Here the laws of the controlled processes are obtained via an absolutely
continuous change of measure, in contrast to [24].) We borrow some ideas from [24],
in particular the use of a formula of It6—Kunita type proved below, that suggested
the unusual form of (1.4). We are not aware of any previous result on backward HJB
equations in a nondiffusive context.

The results of this paper admit several variants and generalizations: some of
them are not included here for reasons of brevity and some are in preparation. For
instance, the BSDE approach to optimal control of Markov jump processes deserves
a specific treatment; moreover, BSDEs driven by random measures can be studied
without Lipschitz assumptions on the generator, along the lines of the many results
available in the diffusive case, or extensions to the case of vector-valued process Y or
of random time interval can be considered.

2. Notation, preliminaries, and basic assumptions. In this section we re-
call basic notions on marked point processes, random measures, and corresponding
stochastic integrals, that will be used in the rest of the paper. We also formulate
several assumptions that will remain in force throughout.

1. Marked point processes. Let (Q, F,P) be a complete probability space
and (K, K) a measurable space. Assume we have a sequence (Tp,,&,)n>1 of random
variables, T,, taking values in [0,00] and &, in K. We set Typ = 0 and we assume,
P-a.s.,

T, <oo=T, <Tht1, n > 0.

We call (7,,) a point process and (7y,&,) a marked point process. K is called the
mark space, or state space.
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In this paper we will always assume that (73,) is nonexplosive, i.e., T, — oo P-a.s.
For every B € K we define the counting processes

Ni(B) = 1n,<leen,  t>0,

n>1

and we set Ny = N¢(K). We define the filtration generated by the counting processes
by first introducing the o-algebras

FY =0(Ns(B) : s€[0,t], B€K), t >0,
and setting
Ft:U(FtoaN)v tZOa

where A denotes the family of P-null sets in F. It turns out that (Ft)t>o is right-
continuous and therefore satisfies the usual conditions. In the following all measurabil-
ity concepts for stochastic processes (e.g., adaptedness, predictability) will refer to the
filtration (F;)¢>0. The predictable o-algebra (respectively, the progressive o-algebra)
on Q x [0,00) will be denoted by P (respectively, by Prog). The same symbols will
also denote the restriction to € x [0, 7] for some T > 0.

It is known that there exists an increasing, right-continuous predictable process
A satisfying Ap = 0 and

]E/ thNt:E/ Hy dA;
0 0

for every nonnegative predictable process H. The above stochastic integrals are de-
fined for P-almost every w as ordinary (Stieltjes) integrals. A is called the compen-
sator, or the dual predictable projection, of N. In the following we will always make
the basic assumption that P-a.s.

(2.1) A has continuous trajectories

which are in particular finite-valued.
We finally fix £ € K (deterministic) and we define

(2.2) X, = an Lz, 1.0,  t>0.
n>0
We do not assume that P(§, # &,+1) = 1. Therefore in general trajectories of

(Th,€n)n>0 cannot be reconstructed from trajectories of (X;):>o and the filtration
(Ft)t>0 is not the natural completed filtration of (X¢)¢>o.

2.2. Random measures and their compensators. For w € Q we define a
measure on ((0,00) x K, B((0,00)) ® K) setting

Pw,C) = i, @)enwpec:  C €B((0,00) @K,

n>1

where B(A) denotes the Borel o-algebra of any topological space A. p is called a
random measure since w +— p(w,C) is F-measurable for fixed C. We also use the
notation p(w, dt dy) or p(dtdy). Notice that p((0,¢] x B) = Ny(B) for t > 0,B € K.

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/10/16 to 131.175.161.12. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

BSDEs AND CONTROL OF MARKED POINT PROCESSES 3597

Under mild assumptions on K it can be proved that there exists a function
¢¢(w, B) such that
1. for every w € Q, t € [0,00), the mapping B — ¢:(w, B) is a probability
measure on (K, K);
2. for every B € K, the process (w,t) — ¢+(w, B) is predictable;
3. for every nonnegative Hy(w,y), P ® K-measurable, we have

// Hi(y) pldt dy) = ]E/OOZHt(y) r(dy) dA,.

For instance, this holds if (K, K) is a Lusin space with its Borel o-algebra (see [20,
section 2]), but since the Lusin property will not play any further role below, in the
following we will simply assume the existence of ¢;(dy) satisfying 1, 2, and 3 above.

The random measure ¢ (w, dy) dA;(w) will be denoted p(w, dt dy), or simply p(dt dy),
and will be called the compensator, or the dual predictable projection, of p.

2.3. Stochastic integrals. Fix T > 0, and let H¢(w,y) be a P ® K-measurable
real function satisfying

T
// |He(y)| ¢¢(dy) dAr < oo, P-a.s.
0JK

Then the stochastic integral

//H q(dsdy) : //H p(ds dy) — //H ) s(dy) dA,, te[0,T],

can be defined as the difference of ordinary integrals with respect to p and p. Here
and in the following the symbol f: is to be understood as an integral over the interval
(a,b]. We shorten this identity by writing ¢(dt dy) = p(dt dy) — p(dt dy) = p(dt dy) —
¢¢(dy) dA;. Note that

/ / H(y)pldsdy) = Y Hr, ()

n>1,Tp<t

is always well defined since we are assuming that 7,, — oo P-a.s.
For r > 1 we define £™%(p) as the space of P ® K-measurable real functions
Hi(w,y) such that

// [Hi(y)I" pldtdy) = E/OT/KIHt(y)V ¢ (dy) dA; < oo.

(The equality of the integrals follows from the definition of ¢¢(dy).) Given an element
H of £L19(p), the stochastic integral (2.3) turns out to be a finite variation martingale.
The key result used in the construction of a solution to the BSDE (3.1) is the
integral representation theorem of marked point process martingales (see, e.g., [14],
[15]), which is a counterpart of the well-known representation result for Brownian
martingales (see, e.g., [25, Chapter V.3] or [18, Theorem 12.33]). Recall that (F;) is
the filtration generated by the jump process, augmented in the usual way.
THEOREM 2.1. Let M be a cadlag (Fi)-martingale on [0,T). Then we have

M, = M0+// H,(y)qlds dy),  t€[0,T],

for some process H € L19(p).
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2.4. A family of marked point processes. In the following, in order to use
dynamic programming arguments, it will be useful to introduce a family of processes
instead of the single process X, each starting at a different time from different points.

Let (T}, &) be the marked point process introduced in section 2.1. We fix ¢t > 0
and we introduce counting processes relative to the time interval [¢, 00) setting

Ny(A) = Z Licr,<sle,eaq, s€t,o0), A€ K,

n>1

and N! = NI(K). Then N{(A) = pi((t,s] x A) for s > t, A € K, where the random
measure p' is the restriction of p to (¢,00) x K. With these definitions it is easily
verified that the compensator of pt (respectively, N*t) is the restriction of ¢(dy) dAs
(respectively, A) to [t,00) x K (respectively, [t,c0)).

Now we fix t > 0 and x € K. Noting that V; is the number of jump times T}, in
the interval [0,¢], so that T, <t < T'n,+1, we define

Xﬁ@ =z 1[t7TNt+1)(S) + Z &n 1[Tan+1)(S), s € [t, OO)
n>Ni+1

In particular, recalling the definition of the process X, previously defined by formula
(2.2) and starting at point & € K, we observe that X = X%,
For arbitrary ¢,z we also have X5® = X, for s > Ty,+1 and, finally, for 0 < u <

u,x

t < s and z € K the identity X;’X’f S = X% is easy to verify.

3. The backward equation. From now on, we fix a deterministic terminal
time T' > 0.

For given w €  and t € [0, 7], we denote L (K, K, ¢¢(w,dy)) the usual space of
K-measurable maps z : K — R such that [, |2(y)|"¢:(w,dy) < oo. (Below we will
only use r = 0 or 1.)

Next we introduce several classes of stochastic processes, depending on a param-
eter 8 > 0.

. E%fo , (€2 x [0, T7) denotes the set of real progressive processes Y such that

T
Y2 ::E/ PV 2dA, < oo.
0

e L£2P(p) denotes the set of mappings Z : Q x [0, T] x K — R which are P ® K-
measurable and such that

T
122 =E / /K A1) Z,()|Pn (dy)dA; < oc.

We say that YV,Y' € E%EOQ(Q x [0,T]) (respectively, Z, Z' € L*P(p)) are equiv-
alent if they coincide almost everywhere with respect to the measure dA;(w)P(dw)
(respectively, the measure ¢;(w,dy)dA;(w)P(dw)) and this happens if and only if

Y — Y|z = 0 (respectively, || Z — Z'||s = 0). We denote L% (Q x [0,T]) (respec-

Prog
tively, L?#(p)) the corresponding set of equivalence classes, endowed with the norm
| - |g (respectively, || - |Ig)- L?gfog(Q x [0,T]) and L?#(p) are Hilbert spaces, iso-

morphic to L2#(Q x [0, T], Prog, e#4:) dA;(w) P(dw)), and L*5(Q x [0,T] x K,P ®
IC, eB44@) ¢y (w, dy) dAs (w) P(dw)), respectively.
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Prog

with the norm ||(Y, Z)||ﬁ = |Y|B + ||Z||B
In the following we will consider the backward stochastic differential equation:
P-a.s.,

(3.1)

Y+ // a(ds dy) g+/ f(Ye Z,()dA,, te[0,T),

3599

(2 x [0,T7]) x L*(p), endowed

where the generator f and the final condition £ are given and we look for unknown
processes (Y, Z) € K°.
Let us consider the following assumptions on the data f and &.
Hypothesis 3.1.

1. The final condition ¢ : Q — R is Fr-measurable and E e#A7 |£]2 < oo.

2. Foreveryw € Q,t € [0,T],r € R, amapping fi(w,r, ) : L2(K, K, ¢t (w, dy))—

R is given, satisfying the following assumptions:
(i) for every Z € £28(p) the mapping

(3.2) (w,t,r) = fe(w,r, Ze(w,-))
is Prog ® B(R)-measurable;

(ii) there exists L > 0, L' > 0 such that for everyw € Q, ¢ € [0,T], 7,7’ € R,

2,2 € L2K, K, ¢(w, dy)) we have
(3.3) |fe(w,r,2() = felw, 7", 2'())]

<Llr—r|+1L (/K 12(y) — 2" (y) P 1 (w, dy)) . ;

(iii) we have

T
(3.4) E / BA£,(0,0)2dA; < oo
0

Remark 3.2.
1. The slightly involved measurability condition on the generator seems un-
avoidable, since the mapping f¢(w,r,-) has a domain which depends on (w, t).
However, in the following section, we will see how it can be effectively verified

in connection with optimal control problems.

Note that if Z € £28(p), then Z;(w,-) belongs to L2(K, K, ¢¢(w, dy)) except
possibly on a predictable set of points (w,t) of measure zero with respect to
dA;(w)P(dw), so that the requirement on the measurability of the map (3.2)

is meaningful.
2. We note the inclusion

(3.5) L8 (p) c LY (p) VB >0.
Indeed if Z € £2P(p), then the inequality

/OT/KIZt( )| di(dy) dA;, < (// o) u(dy) P tdAt>1/2
» ( /0 ﬁAtdAt> 172

and the fact that fOT e BAtdA;, = B71(1 — e PA7) < B! imply that Z €

LM(p).
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It follows from (3.5) that the martingale M; = fot Jx Zs(y) q(ds dy) is well
defined for Z € £2#(p) and has cadlag trajectories P-a.s. It is easily checked
that M only depends on the equivalence class of Z as defined above.

LEMMA 3.3. Suppose that f :  x [0,T] — R is progressive, £ : Q& — R is
Fr-measurable, and

T
EePAr|¢)? +E/ P4 £5|2dAs < o0
0

for some 8 > 0. Then there exists a unique pair (Y,Z) in K® which solves to the
BSDE

(3.6) Y+ /t T/K Za(y) alds dy) = € + /t " foaa..

Moreover the following identity holds:

T T
EeBAt|Yt|2+BIE/ e'BAS|Ys|2dAS+E// B4 2, () 2bs (dy)d A,
(37) t T t JK
=EePAT|¢)? + 2]E/ Ay, fdA,,  te0,T),
t

and there exist two constants ¢1(8) = 4(1 + %) and c2(B) = %(1 + %) such that

T
(3.8) E / ef4s
0

T
< e (BEPATIER + ea(8) / 4| £, 2 dA,.

T
Y,dA, + E / / 91| Z(y)|? 6. (dy)dA,
0JK

Proof. Uniqueness follows immediately using the linearity of (3.6) and taking the
conditional expectation given F;.

Assuming that (Y, Z) € K is a solution, we now prove the identity (3.7). From
the It6 formula applied to e?4¢|Y;|? it follows that

d(ePA|Y;|?) = BeP At |V, Pd Ay + 2P Y,_dY; + P4 AY 2.
So integrating on [t,T] and recalling that A is continuous,

T T
(3.9) Py :—/ ﬁeﬂAs|Ys|2dAs—2/ eﬂAsYs_/KZs(y)q(dsdy)
t t

T
= Y AP 2 [ Y A,
t

t<s<T

The integral process fg ePAsy, fK Zs(y)q(ds dy) is a martingale, because the inte-
grand process e#4:Y,_ Z,(y) is in £1(p); in fact, from the Young inequality we get

T
BAs
E / /K PNV, || Za()|bs (dy)d A,

1 (7 17
< —E/ e |Y, PdAs + —E// P44 Z, ()25 (dy)dA, < +oo.
2 0 2 0JK
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// ) Pp(ds dy)
gy

where the stochastic integral with respect to ¢ is a martingale. Taking the expectation
n (3.9) we obtain (3.7).
We now pass to the proof of existence of the required solution. We start from the

inequality
T 1/2 T 1/2
fs|dAs < (/ e_BASdAS> </ P A |2dAS> .
t t

Moreover we have

>

0<s<t

)¢5 (dy)dA

T T s
/ | fs| dAs =/ e zAend
t t

Since BftT e PAsdA, = e BA _ ¢=PAT < ¢=BAL we arrive at

T 2 _ga, T
(3.10) ( /t |fs|dAs> <t 3 /t P 4| £, dAs.

This implies in particular that fOT |fs|dAs is square summable. The solution (Y, Z)

is defined by considering a cadlag version of the martingale M; = E7¢[¢ + fOT fsdAs].
By the martingale representation Theorem 2.1, there exists a process Z € L10(p)
such that

My = Mo+// q(dyds), te0,T].

Define the process Y by

t
Yt:Mt—/fsdAs, te0,7).
0

Noting that Y7 = £, we easily deduce that (3.6) is satisfied.
It remains to show that (Y, Z) € KA. Taking the conditional expectation, it

follows from (3.6) that Y; = E7*[¢ + ftT fs dAs] so that, using (3.10), we obtain

2

T
S < 2B + 2084 BT [,
t

1 T
(3.11) < 2ETt [ePATIE? 4 E/o 4| fo? dAs

Denoting by m; the right-hand side of (3.11), we see that m is a martingale by the
assumptions of the lemma. In particular, for every stopping time S with values in
[0,T], we have

(3.12) Ee?45|Ys|> <Emg = Emy < oo
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by the optional stopping theorem. Next we define the increasing sequence of stopping
times

t t
Sn:inf{te [0,7] : / eBA3|YS|2dAS+// P4\ Z(y) P s (dy)d A >n}
0 0JK

with the convention inf() = T. Computing the Ito differential d(e®4¢|Y;|?) on the
interval [0, S,,] and proceeding as before we deduce

ma/s 41|V, 2dA, +E// 80| Z,(y) s (dy)dA

gEeﬁAsn|Y5n|2+2E/ ePAY, fo dA,.

Using the inequalities 2Y fs < (3/2)|Ys|> + (2/8)|fs)? and (3.12) (with S = S,,) we
find the estimates

Sn 4 8 T
IE/ P4 |Y,2dA, < —EePAT|¢)? + —E/ eP4s | f)? dAs,
; 5 2R
Sn 8 T
E / / N2, 5)Pould)dA, < B 4 TB / 4| £, 2 dA,,
0 K 0

from which we deduce

Sn Sn
E/ eﬂASIKIQdAS+E/ / 412, (y)*¢s (dy)dA
0 0 JK

(3.13) T
< 1 (BEPSATIER + ea() / 4| £, 12 dA,,
0

where ¢1(8) = 4(1+ 5) and 2(8) = (1 + 3).
Setting S = lim,, S,, we deduce

/0 5A|Y|dA+//

which implies S = T, P-a.s., by the definition of S,,. Letting n — oo in (3.13) we
conclude that (3.8) holds, so that (Y, Z) € KP. O

THEOREM 3.4. Suppose that Hypothesis 3.1 holds with 8 > L? + 2L'.

Then there exists a unique pair (Y, Z) in K? which solves the BSDE (3.1).

Proof. We use a fixed point theorem for the mapping I' : K# — K# defined setting
(Y, Z)=T(U,V) if (Y, Z) is the pair satisfying

Y)I¢s(dy)dAs < oo,  P-as,

(3.14) Y+ // o(ds dy) = £+/ Fo(U V) dA,.

Let wus remark that from the assumptions on f it follows that
IEfOT ePAs| f5(Us, Vs)|?dAg < oo, so by Lemma 3.3 there exists a unique (Y, Z) € K?
satisfying (3.14) and I is a well-defined map.
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Let (U, V'), i = 1,2, be elements of K and let (Y?, Z") = T(U*,V*). Denote

Y=Y'-Y2,Z=2'"-22U=U'-U2,V=V-V2 f, = f, (UL V)~ f,(U2,V2).
Lemma 3.3 apphes to Y, Z fand (3.7) ylelds noting that Yr =0,

Eef4[V,|? + BE / BNV 2dA, + E / / P Z ()2 (dy)d A
t t K
:ZE/ PAY fidA,,  telo,T).
t

From the Lipschitz conditions of f and elementary inequalities it follows that

ﬁE/O // 4)P s (dy)dA

1/2 T
< 2LIE/ ePA Y | (/ V() ¢S(dy)) dAS+2L’E/ PNV | |U,| dA,
t

T
< aIE// PV ()25 (dy) dAS+—E/ ePA Y |2 dA,
0JK o 0

T _ LI T _
+7L’IE/ eBA3|YS|2dAS+—E/ P4 U1 dA,
0 7 Jo
for every a > 0, v > 0. This can be written
L N\ 572 72 iz . L
(=% =v2') 1T + 1205 < 73 + 210
By the assumption on § it is possible to find « € (0,1) such that
L?> 2L
8> o + 7

If L' = 0 we see that I' is an a-contraction on K? endowed with the equivalent norm
(Y, Z) = (B = (L*/a) Y5 + |1 Z||3- Tf L' > 0 we choose v = 1/+/a and obtain
L/
Va
so that T' is an a-contraction on K? endowed with the equivalent norm (Y, Z)
(L'/Va) Y5 + || Z]|3- In all cases there exists a unique fixed point which is the
required unique solution to the BSDE (3.1). O
We next prove some estimates on the solutions of the BSDE, which show in
particular the continuous dependence upon the data. Let us consider two solutions
(Y1, ZY), (Y%, Z?) € K” to the BSDE (3.1) associated with the drivers f! and f?
and final data &' and £2, respectively, which are assumed to satisfy Hypothesis 3.1.
Denote ¥ = Y1 V2, 7 = 21 — 72, € — €1 — €2, T, = (Y2, Z2()) — F2 (Y2, Z2()).
PROPOSITION 3.5. Let (Y,Z) be the processes defined above. Then, for B >
2L’ 4+ L2, the a priori estimates hold:

— — — — L —
T+ IZ13 < allVI3 + 2'Valos o (5= [0 + 1713)

4 T _

2 < ]E BAT 2 E/ BAs 2 s
| |,8—6 2L/ € |§| (ﬁ—2L/—L2)2 0 € s )
7 %S < _2L/ Lz) EGBATE'Z

1 8L2 T -
2 E BAsIF 12dA,.
T = L2< +B—2L’—L2> /0 el
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Proof. From the It6 formula applied to e#4¢|Y|? it follows that
d(ePA Y %) = BePA Y |2d A, + 2¢P4Y _dY; + P4 |AY 2.

So integrating on [t, T] and recalling that A is continuous,
(3.15) MY = —/ BeP A Y |PdA,s — 2/ AT
t t

‘/;(Z@)qwsdy)— Y SMIAY P+ e

t<s<T

”/ LT (UYL, ZA0)) — FYE, Z3())dA..
t

The integral process fg ePAY fK Zs(y)q(ds dy) is a martingale, because the inte-
grand process e#4:Y ,_ Z (y) is in £L%(p); in fact, from the Young inequality we get

B [ [ T Zlouanan
<2E/0 B |dA+;IE/T/K

Moreover we have
=/ / ) p(ds dy)

> e
[ [

0<s<t
where the stochastic integral with respect to ¢ is a martingale.
Hence taking the expectation in (3.15), by the Lipschitz property of the driver f*
and using the notation ||z(-)[|2 = [, |z(y)[>¢s(dy) we get

an - [ o

L9 / ST (FUYL, ZY) - fA(Y2, 22))dA,

t
T o T
o [ s iana ] o
t t JK

T
+2E/ Y1 Y Z0) = P2 2D+ [F)dA
t

Zs(y)Pds(dy)dAs < +oc.

y)[* s (dy)dA

B’ (T2 = - / BePA|T 0)Pa(dy)dA, + BT [E?

Zs(y))?ds(dy)dAs + Ee’47[E]?

T T
= ‘E/ BeP MY [PdA, — E / P44\ Z,||2dA, + BePA7 [
t t

T T
+ 2L/E/ e / e
t t

T
4 oE / P T |[F.dA,.
t
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We note that the quantity Q(y,2) = —Bly|* — ||2[1Z + 2L'|y* + 2LIy]|| 25 + 2[f.]ly]
which occurs in the integrand terms in the right-hand side of the above inequality can
be written as

Q. 2) = —Blyl® + 2Lyl + L2yl + 27, lly| - (=]« = Lly])*
= —Bo(lyl = B IFD? = (lzlls — Llyl)® + BL [ F.I%,

where Bp, := 8 — 2L’ — L? is assumed to be strictly positive. Hence

T T
BT+ B8 [ PN(T| - 5, (T4 +E [ PN(ZL - LTI Pda,
t t

AT ¢ r A |7 |2
< Ee” T|§|2+IE/ ef sﬁLdAs,
L

t

from which we deduce
T . 2 _ 4 T _
IE/ ePA: Y ?dA, < —EeﬂAT|§|2+—21E/ ePAs|f PdA,
0 5L BL 0
and
T — 412 —
E/ ePA|[Z,||2dA, < <2+ —) EePAT €
0 BL

2 T
T <2+ £> E/ A f |2dA,. O
BL ﬁL 0

From the a priori estimates one can deduce the continuous dependence of the
solution upon the data.

PROPOSITION 3.6. Suppose that Hypothesis 3.1 holds with 8 > L? 4+ 2L' and let
(Y, Z) be the unique solution in KP to the BSDE (3.1). Then

T T
IE/ eBAS|YS|2dAS+E/ e'BAS/ |Zs(y)|? ds (dy)d A,
0 0 K

T
< CL(BESATIE2 + Ca(B) / ¢H4|£,(0,0)2d A,

where C1(8) = (2 + %)7 Ca(B) = ﬁ—lef—L2 (2+ 5—82LI2/+—4L2)'
Proof. The thesis follows from Proposition 3.5 setting f' = f, ¢! = ¢, f2 =0,
and &2 = 0. a

4. Optimal control. Throughout this section we assume that a marked point
process is given, satisfying the assumptions of section 2. In particular we suppose
that T,, — oo P-a.s. and that (2.1) holds.

The data specifying the optimal control problem are an action (or decision) space
U, a running cost function [, a terminal cost function g, and another function r
specifying the effect of the control process. They are assumed to satisfy the following
conditions.
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Hypothesis 4.1.
1. (U,U) is a measurable space.
2. The functions r,1 : Q@ x [0,T] x K x U — R are P ® K ® U-measurable and
there exist constants C,. > 1, C; > 0 such that, P-a.s.,

(4.1) 0 <ri(y,u) <Cpr, |lt(z,u)] <C, tel0,T],z € K,u€U.

3. The function g : Q@ x K — R is Fr ® K-measurable.

We define as an admissible control process, or simply a control, any predictable
process (u¢)iecjo,r] With values in U. The set of admissible control processes is
denoted A.

To every control u(-) € A we associate a probability measure P,, on (2, F) by a
change of measure of Girsanov type, as we now describe. We define

Lt:exp(/ot/K (1—rs<y,us>>¢s<dy>dAs) I rour),  teT)

n>1:T,<t

with the convention that the last product equals 1 if there are no indices n > 1 satisfy-
ing T}, <t. (Similar conventions will be adopted later without further mention.) It is
a well-known result that L is a nonnegative supermartingale (see [20, Proposition 4.3]
or [5]) solution to the equation

L;=1 +AALS_ (rs(y,us) — 1) q(ds dy), te[0,T].

We stress that since the function r is nonnegative, the process L is also nonnegative
on a set of positive probability.
The following result collects some properties of the process L that we need later.
LEMMA 4.2. Lety > 1 and

(4.2) f=

If Eexp(BAT) < oo, then we have supcig ) EL] < 00 and ELy = 1.

Proof. We follow [7, Chapter VIII, Theorem T11] with some modifications. To
shorten notation we define ps(y) = rs(y, us) and we denote Ly = E(p)¢. For v > 1 we
define

2 2

as(y) =7 'L —=ps()),  bs(y) =7 —ps(y) =7+ ps(y)?
so that v(1 — ps(y)) = as(y) + bs(y). Then
L] = exp ( /0 /K (as(y) + ba(y)) ds(dy) dA )thm e,

and by Holder’s inequality

EL] < [exp(//was qssdydA)Hansn }

T,<t

oo ([ o smn)}
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Noting that vas(y) = 1 — ps(y)?", the term in square brackets equals £(p7"); and we
have IEE(p72)t < 1 by the supermartingale property. Since bs(y) <v—~~1+ 7*10772
we arrive at

-1

))} " = Bexp (AP} < 0.

Let S, = inf{t € [0,T] : Li— + Ay > n} with the convention inf ) = T', and let
P () = 1p0,5,1(8)ps(y) + Ls, 7)(s), L = E(p(M). Then L™ satisfies

2

o
(4.3) EL7 < {E exp (AT <7 +1+ PYO: 7

t
i =1+ [ [ 060w - D adsdy), e o1
0JK

By the choice of p(™ we have Lg") = Lns,, and by the choice of 5, it is easily
proved that EfOT Jx L |l (y) — 1| ¢s(dy) dA, < oo, so that L(™ is a martingale

o |

and ELE") =EL;as, = 1. The first part of the proof applies to L™ and the inequal-
ity (4.3) yields in particular sup,, I['E(L,En))"Y = sup,, E(L¢rs,, )Y < 00. So (Linsg, )n is
uniformly integrable and letting n — oo we conclude that EL; = 1. O

Under the assumptions of the lemma, the process L is a martingale and we can
define a probability P, setting P, (dw) = L1 (w)P(dw). Tt can then be proved (see [20]
Theorem 4.5) that the compensator p* of p under P, is related to the compensator p
of p under P by the formula

pU(dtdy) = r¢(y, ue) p(dt dy) = r¢(y, ur) ¢ (dy) dAs.

In particular the compensator of N under P, is

(4.4) Mzéxpm%mmwwy

We finally define the cost associated to every u(-) € A as

T
J(u(-)) = E, l/o L( Xy, ue) dAe + g(X7) |

where E, denotes the expectation under P,. Later we will assume that
(4.5) E[lg(X7)[?e?47] < o0

for some B8 > 0 that will be fixed in such a way that the cost is finite for every
admissible control. The control problem consists in minimizing J(u(-)) over A.

We point out that the function r can take the value zero and this implies that
the process L is not necessarily strictly positive. Hence the measures P, induced by
the control are not equivalent to the original probability P but are only absolutely
continuous with respect to P. This fact occurs in Example 4.13 below for the changes
of measure where r = 0.

Remark 4.3. We recall (see, e.g., [7, Appendix A2, Theorem T34]) that a process
u is (F)-predictable if and only if it admits the representation

(46) u(w, t) = Z u(n) (wv t) 1Tn(w)<t§Tn+1(w)7

n>0
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where for each n > 0 the mapping (w,t) — u(™ (w,t) is Fr, ® B(]0,00))-measurable.
Since we have Fr, = o(T;,&,0 < i < n) (see, e.g., [7, Appendix A2, Theorem
T30]) the fact that a control is predictable can be roughly interpreted by saying
that the controller, at each time T, based on observation of the random variables
T;,&,0 < i < n, chooses his present and future control actions and updates his
decisions only at time T),41.

Remark 4.4. We notice that the laws of the random coefficients r, [, g under P and
under P, are not the same in general, so that the formulation of the optimal control
problem should be carefully examined when facing a specific application or modeling
situation. This difficulty clearly disappears when r,[, g are deterministic.

We next proceed to the solution of the optimal control problem formulated above.
A basic role is played by the BSDE

4.7 Y+ // q(dsdy) = g(Xr) /stS,Z())dAS, t€0,T],

with terminal condition g(Xr) and generator defined by means of the Hamiltonian
function f. The Hamiltonian function is defined for every w € Q,t € [0,T],z € K,
and z € LY(K, K, ¢1(w, dy)) by the formula

48 feta() = inf {ben+ [ ) om0 -1 o).

We note, at the outset, that the function f does not satisfy the requirement for
the strict comparison principle (see [26]), since we allow r to take the value zero. We
will not make direct use of comparison results in what follows.

We will assume that the infimum in (4.8) is in fact achieved, possibily at many
points. Moreover we need to verify that the generator of the BSDE satisfies the
conditions required in the previous section, in particular the measurability properties
which are not obvious from formula (4.8) that involves taking an infimum of a family
of functions. It turns out that an appropriate assumption is the following one, since
we will see below (compare Proposition 4.8) that it can be verified under quite general
conditions. Here and in the following we set Xo_ = Xj.

Hypothesis 4.5. For every Z € L£10(p) there exists a function u? : QO x [0,7] — U,
measurable with respect to P and U, such that

(49) f(wa t ;ft_(UJ), Zt(wa )) - lt(lit ( ) (UJ t))
+ Zy(w T (W w,t)) —1 Qb w,d
A t( ay)( t( Y, U ( ) )) ) t( ; y)

for almost all (w,t) with respect to the measure dA;(w)P(dw).

Note that if Z € £1%(p), then Z;(w,-) belongs to L1(K, K, ¢+(w, dy)) except pos-
sibly on a predictable set of points (w, t) of measure zero with respect to dA;(w)P(dw),
so that equality (4.9) is meaningful. Also note that each u? is an admissible control.

We can now verify that all the assumptions of Hypothesis 3.1 hold true for the
generator of the BSDE (4.7), which is given by the formula

fir(w, z(+)) = fw, t, Xe(w), z(+)), weN, tel0,T], z € LXK, K, p:(w,dy)).

Indeed, if Z € L£2P(p), then Z € LO(p) by (3.5), and (4.9) shows that the
process (w,t) — f(w,t, Xi_(w), Ze(w,-)) is progressive; since A is assumed to
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have continuous trajectories and X has piecewise constant paths, the progressive set
{(w,t) : Xi—(w) # X¢(w)} has measure zero with respect to dA;(w)P(dw); it follows
that the process

(wv t) = f(wv 2 Xt(w)v Zt(wa )) = ft(UJ, Zt(wv ))

is progressive, after modification on a set of measure zero, as required in (3.2). Next,
using the boundedness assumptions (4.1), it is easy to check that (3.3) is verified with
L'=0 and

L =esssup (sup{|ri(y,u) — 1| : t € [0,T], y € K, u € U}).

Using (4.1) again we also have
(4.10)

T T
E / P4 (¢, X1,0)PdA = E / e?4] inf 1(X, u)*dA, < CF f7 E T,
0 0 “

so that (3.4) holds as well, provided the right-hand side of (4.10) is finite. Assuming
finally that (4.5) holds, by Theorem 3.4 the BSDE has a unique solution (Y, Z) € K#
if B> L2

The corresponding admissible control u#, whose existence is required in Hypoth-
esis 4.5, will be denoted u*.

We are now ready to state the main result of this section. Recall that C,. > 1 was
introduced in (4.1).

THEOREM 4.6. Assume that Hypotheses 4.1 and 4.5 are satisfied and that

(4.11) Eexp ((3+ C;)Ar) < oc.
Suppose also that there exists B such that
(4.12) B>sup|r—1°, Eexp(BAr) < oo, E[g(X7)|?e’47] < .

Let (Y,Z) € K? denote the solution to the BSDE (4.7) and u* = u? the corre-
sponding admissible control. Then u*(-) is optimal and Yy is the optimal cost, i.e.,

Yo = J(u () = infyyen J(u(-).
Remark 4.7. Note that if g is bounded, then (4.12) follows from (4.11) with
B =3+ C% since |ry(y,u) — 1> < (C, +1)2 < 3+ CL
Proof. Fix u(-) € A. Assumption (4.11) allows us to apply Lemma 4.2 with v = 2
and yields EL2. < oo. It follows that g(Xr) is integrable under P,,. Indeed by (4.5)
E,|9(X7)| = E|[Lrg(X7)| < (ELF)"?(Bg(X7)*)"/? < 0.

We next show that under P, we have Z € £10(p), i.e., E, fOT S5 1Z:(y)| p*(dt dy) <
0. First note that, by Holder’s inequality,

T T Ny
/O/K|Zt<y>|¢t(dy>dz4t=/0/Ke FAe B 7,(0) n(dy) dA,
T
<</ e_ﬁAtdAt> <// ﬁAt|Zt | o (dy) dAt)
0

:<1 _MT)m(// " Zy(y |¢t(dy)dAt>l/2'
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Therefore, using (4.1),

// 1 Z:(y)| p*(dt dy) = // 1Ze(y)| re(y, ue) gu(dy) dA,

=E [LT// |Ze(y)| re(y, ut) e (dy) dAy

< (£L3)12 < { // P4 Zy(y |¢t<dy>dAt}

and the right-hand side of the last inequality is finite, since (Y, Z) € K”. We have
now proved that Z € £1%(p) under P,.
In particular it follows that

/ / Zy(y) pldt dy) = / / Z(y) p*(dt dy)

—E, / /K Zu(y) oy, we) du(dy) dA,.

Setting ¢ = 0 and taking the expectation E, in the BSDE (4.7), recalling that
q(dt dy) = p(dt dy) — p(dt dy) = p(dt dy) — ¢+(dy) dA; and that Y} is deterministic, we
obtain

/2

T T
Yy +E, / /K Z(y) (re(y, ur) — 1) do(dy) dAr = By g(X7) + E, / F(t, X0, Z4()) dA,.

We finally obtain
T
Yo = J(u()+E, / [f(t,xt,zt«)) (X ) — /K Z4(y) (2, ue) — 1>¢t<dy>} dA,

T
— J(u() +E, / [f(t,Xt—,Zt(-))—lt(Xt—,ut)— /K zt<y><rt<y,ut>—1)¢t<dy>}d/xt,

where the last equality follows from the continuity of A. This identity is sometimes
called the fundamental relation. By the definition of the Hamiltonian f, the term in
square brackets is less than or equal to 0, and it equals 0 if u(-) = u*(-). O

Hypothesis 4.5 can be verified in specific situations when it is possible to compute
explicitly the functions u?. General conditions for its validity can also be formulated
using appropriate selection theorems, as in the following proposition.

ProposiTIiON 4.8. In addition to the assumptions in Hypothesis 4.1, suppose
that U is a compact metric space with its Borel o-algebra U and that the functions
re(w,x, ), li(w,z,) : U = R are continuous for every w € Q, t € [0,T], x € K. Then
Hypothesis 4.5 is verified.

Proof. Let us consider the measure pu(dwdt) = dA;(w)P(dw) on the predictable
o-algebra P. Let P denote its u-completion and consider the complete measure space
(2 x [0,T),P, ). Fix Z € L£19(p), note that the set AZ = {(w,t) : Zi(w,") ¢
LYK, K, ¢i(w,dy)) has p-measure zero, and define a map FZ? : Q x [0,T] x U — R
setting

FZ(w,1,u) = li(w, Xi—(w),u) + /KZt(w,y) (rt(w,y,u) - 1)¢t(w,dy) if (w,t)¢A?,
0 if (w,t)eAZ.
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Then FZ(-,-,u) is P-measurable for every v € U, and it is easily verified that
FZ(w,t,-) is continuous for every (w,t) €  x [0,T]. By a classical selection theorem
(see [1, Theorems 8.1.3 and 8.2.11]) there exists a function u? : Q x [0,T] — U, mea-
surable with respect to P and U, such that FZ(w,t,u? (w,t)) = mingey FZ(w,t, u) for
every (w,t) € Q x [0,T7], so that (4.9) holds true for every (w,t). After modification
on a set of p-measure zero, the function u? can be made measurable with respect
to P and U, and (4.9) still holds, as it is understood as an equality for p-almost
all (w,t). O

We note that the assumption in the previous proposition is required to hold
for every w € Q. A more general statement can be obtained after an appropriate
modification of the set of measure zero.

In several contexts, for instance, in order to apply dynamic programming ar-
guments, it is useful to introduce a family of control problems parametrized by
(t,x) € [0,T]x K. Recall the definition of the processes (X%*) e[, 7] in subsection 2.4.

For fixed (t,z) the cost corresponding to u € A is defined as the random variable

T
Ji(,u()) = B2 / L(X5 ug) dA, + g(X5%) |
t

where Ef t denotes the conditional expectation under P, given F;. We also introduce
the (random) value function

v(t,x) = ess inf Ji(z, u(+)), te[0,T], z € K.

u()EA

For every (t,x) € [0,T] x K we consider the BSDE
(4.13)

T T
yie 4 / /K 257 (y) q(dr dy) = g(X2%) + / Fr X5 25 () dA,, s [T,

We need the following extended variant of Hypothesis 4.5, where we set Xf’_r =z
Hypothesis 4.9. For every (t,z) € [0,T] x K and every Z € L19(p) there exists
a function u%*4® : Q x [t,T] — U, measurable with respect to P and U, such that

f(w, S, X;f(w)v ZS(wv )) = lt(XS* (W)ﬂﬂz’t@ (Wﬂ 5))

+ /K Zs(w,y) (rs(w,y,ﬂz,m(w, 5)) — 1) s (w, dy)

for almost all (w, s) € Q x [t,T] with respect to the measure dA,(w)P(dw).

Remark 4.10. We note that Hypothesis 4.9 holds, for instance, if U is a compact
metric space and the functions r(w, z, ), li(w,z,-) : U — R are continuous for every
wete0,T],ze K.

In this situation Theorem 3.4 can still be applied to find a unique solution
(YE®, Z5%) seppr)- Let us now extend the process Z»% setting Z* = 0 for s € [0,1).
The corresponding admissible control u%**, whose existence is required in Hypothesis
4.9, will be denoted u**. (We set u***(w, s) equal to an arbitrary constant element
of U for s € [0,t).)

THEOREM 4.11. Assume that Hypotheses 4.1 and 4.9 are satisfied and that

(4.14) Eexp ((3+ C;)Ar) < oco.
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Suppose also that there exists 5 such that

(4.15)
B>sup|r—1|%, Eexp(BAr) < oo, E[g(Xs")?ePA7] < o0, tel0,T], z € K.

(In particular, (4.15) follows from (4.14) with B = 3 + Ct if g is bounded.) For
any (t,x) € [0,T] x K let (Y"*, Z"") denote the solution of the BSDE (4.13) and
u*t® = u4b® the corresponding admissible control.

Then w*(-) is optimal and Y;"" is the optimal cost, i.e., Y}'" = Ji(z,u*(-) =
v(t, z) P-a.s.

The proof of Theorem 4.11 is entirely analogous to the proof of Theorem 4.6,
the only difference being that in the BSDE one takes the conditional expectation EZ
instead of the expectation E,,.

Remark 4.12.

1. Let u € A. Then, under P, the compensator of the process N is A* defined in
(4.4). It might therefore be more natural to define as the cost corresponding
to u € A the functional

T
E, [ /O (X0, ) dAY + g(XT)]

T
= Eu |:/0 lt(Xt, Ut) /K ’f’t(y, Ut) (bt(dy) dAt + g(XT) s

instead of J(u(-)). This cost functional has the same form as J(u(-)), with
the function [ replaced by I (z,u) = ly(x,u) [, re(y,u) ¢¢(dy). Since 1° is
P ® K ® U-measurable and bounded, the statements of Theorems 4.6 and
4.11 remain true without any change.

2. Suppose that the cost functional has the form

J'u()=Eu| > o(Tw Xr,,ur,)
n>1:Tp<T

for some given function ¢ : Q x [0, 7] x K x U — R which is assumed to be
bounded and P ® K ® U-measurable. It is well known (see, e.g., [7, Chapter
VII, Section 1, Remark (8)]) that we can reduce this control problem to the
previous one noting that

T
! ) = Cc Ut
JHu() = E, / /K (t,y, ur) pldt dy)

T
:Eu/o /Kc(t,y,ut)rt(y,ut)¢t(dy)dz4t.

Thus, J*(u(-)) has the same form as J(u(-)) with ¢ = 0 and the function
I replaced by I} (z,u) := [, c(t,y,u) re(y,u) ¢¢(dy). Since I' is P @ K ® U-
measurable and bounded, Theorems 4.6 and 4.11 can still be applied.
Similar considerations obviously hold for cost functionals of the form
J(u()) + J* (u(-)).
We end this section with an example where the BSDE (4.7) can be explicitly solved
and a closed form solution of an optimal control problem can be found. In spite of its
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simplicity we do not know any other method that may lead to this conclusion. More
complicated situations could be handled by numerical approximation of the BSDE,
but this is beyond the scope of this paper.

Ezample 4.13. Consider a given time interval [0, 7] and a state space consisting
of three states: K = {a,b,c}. We introduce (T),&,)n>0 setting (To,%) = (0,a),
(T, &) = (+00,a) if n > 2, and on (T1,&1) we make the following assumptions: T
and & are independent; & takes the values b, ¢ with P(§ = b) = P(§ = ¢) = %;
T, takes values in (0, c0] and its law is denoted F'(dt); and by abuse of notation we
denote F the distribution function of T} and we assume further that F(T') < 1.

This describes a system that starts at time zero in state a and jumps into state
b or ¢ with equal probability at the random time 7; (independently of T7). After
that there are no other jumps. The requirement F(T) < 1 means that with positive
probability there are no jumps in the interval [0, T]. Finally, the values of &, (n > 2)
are irrelevant.

By Proposition (3.1) in [20] it is possible to describe compensator p(dt,dy) =
o¢(dy)dA; of p as follows:

F(dt) 1
(4.16) dA; = ml{tgﬁl}, ¢r(a) =0, ¢¢(b) = dr(c) = >
We note that Ap < %, so that A7 is bounded.

We take U = [0,2] and define the function r which specifies the effects of the
control process as

(4.17) re(w,byu) =u, ri(w,c,u)=2—u, u € U.

This means that we control the system acting on the transition probabilities: starting
from state a the controlled system can reach state b with probability § or state ¢ with
probability 1 — 4. We define the final cost setting g(a) = g(b) = 0, g(c) = 1, and
the running cost as l¢(w,z,u) = %*, where o > 0 is a fixed parameter. Thus, larger
values of u (possibly depending on time) reduce the expectation of the final cost but
increase the expectation of the running cost. The optimal trade-off will also depend
on «.

Our aim is to represent the optimal cost by the solution Yy of the BSDE

T
(4.18) Y+ / /K Z.(y)(p(ds, dy) — 6 (dy)dA,) = g(Xr)
T
(4.19) [t |5 [ 26000 - Do) aa.,

which can be written

T
Yt+/t /KZs(y)p(ds,dy)
T F(dt

= g(X7) +/t ot [O‘—;‘ + Zs(b)% + Zy(c) (1 - g)} 1_7}1()&1{@1}

and further simplifies to

F(dt)

TNATy
Yi+ 21 (&) Lp<n<ry = Lni<ry Lg=c) +/ [Zs(c) N (o + Zs(b))] TF0)
t
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This equation admits the following explicit solution (Y3, Z¢)e(o,77:
T F(ds)

Vi=(01Na) (1—6 I =i ))1{t<T1}+1{T1§t}1{§1ZC}a

T _F(ds)

Zi(a) =0, Zi(b)=(1A0) (6_ I - 1) Lu<ry,  Zi(e) = (1 + Z(b) 1<y

The optimal cost is then given by Yy = (1Aa)(1—e” Jo %) The optimal control
is obtained during the computation of the Hamiltonian function: it is the constant
control u =0 if @« > 1, u = 2 if @ < 1 (both are optimal if & = 1). Note that the
optimal control depends on the parameter « in a way consistent with the description
above.

Also note that the law of the optimal controlled process is not equivalent to the
law of the uncontrolled system.

5. The stochastic HJB equation. Throughout this section we still assume
that a marked point process is given, satisfying the assumptions of section 2. In
particular we suppose that T,, — oo P-a.s. and that (2.1) holds.

We address the same optimal control problem as in the previous section. The
associated stochastic HIB equation is a BSDE for unknown random fields on [0, 7] x
K, having the Hamiltonian function defined in (4.8) as a nonlinear term. Before
introducing the HJB equation we need a preliminary result which may be of interest
on its own and will be used to clarify the connections with the optimal control problem
and the BSDEs introduced in the previous section, as well as in the proof of the main
result, Theorem 5.4.

5.1. A lemma of It6 type. The It6 formula for processes defined by stochastic
integrals with respect to random measures is certainly known (see, e.g., [19]): it
gives a canonical decomposition of v(t, X;) for deterministic functions v(¢, ) smooth
enough. We need an extension to the case when v(¢, x) is stochastic and itself defined
by integrals with respect to random measures. (Compare, e.g., with Proposition 2.3
in [2].) The following result is therefore the analogue to the so-called It6—Kunita
formula (also attributed to Bismut and Wentzell; see, e.g., [4], [28], [22]).

LEMMA 5.1. Assume that v, f : Q@ x [0,T] x K = R are Prog ® K-measurable,
V:Qx[0,T]x KxK—=RisP®K®®K-measurable, and, P-a.s.,

T T
(5.1) /0 |f(t,x)| dA; —l—/o /K [V (t,z,y)| o (dy) dA; < oo, re K.

Suppose that, P-a.s.,
(5.2)

v(t,x) —v(0,2) = /t f(s,z)dAs + /t/ V(s,z,y) q(ds dy), tel0,7], z € K.
0 0/K
Then, P-a.s.,
(6.3) w(t, X)) —v(0,Xo)

/ f(s,Xs)dA —|—// (s—,y) —v(s—, Xs—)—I—V(S,y,y))p(dey)
_/O/KV(SaXs,y)%(dy)dAs, te[0,7), z € K.
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If, in addition,

T
/ / |U(t7 y) =+ V(tv Y, y)| d)t(dy) dAt < 00, ]P)-CL.S.,
0JK

then, P-a.s.,

(5.4) v(t, X;) — v(0, Xo)
/ f(s, X,)dA +// (s—,y) —v(s—, X37)+V(s,y,y)) q(ds dy)
[ (060D = 006, X0) 4 Vi) = Vi X)) () a4

for everyt € [0,T], z € K.
Remark 5.2.
1. It follows from (5.2) that P-a.s. the trajectories v(-,z) are cadlag for every
2 € K. Therefore the process (v(t—, z)) is well defined and P® K-measurable.
2. We note that

T
| vl aa a
T NT
= Z/ / [V (t,&n—1,Y)| ¢1(dy) dAs < 00, P-as.

n>1 T AT

This follows from assumption (5.1) and the fact that the sum is finite P-a.s.
due to the assumption that 7,, — co. Similarly,

T T
/|f(t,Xt)|dAt+/ lo(t, X,)|dA, < 00, P-as.,
0 0

so that all the integrals above are well defined; compare the discussion in
subsection 2.3.
Proof. Noting that there are N; jump times T;, in the time interval [0, t] we have

Ny
o(t, X0)=v(0, Xo) = Y (v(Tu=, X, )=0(Tn1=, Xz, _,) ) +0(t, X)) =o(Th, = X,

n=1
where we use the convention v(0—,z) = v(0,z). Since X; = Xr,, we have

U(tht) - U(OvXO) =1 + IIa

where
Ny
1= (o(Tu= X1,) = 0(Tu=, Xr,.,))
n=1
Ny
11 =% (o(Tu= X,_,) = v(Tuoa=, X1, ) ) + 0(t Xn,) = 0(Tn, = Xy, ).
n=1
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Letting H denote the P ® K-measurable process

Hs(y) = U(S_?y) - U(S_va—)a

with the convention Xy_ = X, we have
1= Y (o= Xr,) = o(Tu—, Xr, )
n>1:T, <t

- /n’Z;nSt Hr, (Xr,) = /0 /K H(y) p(ds dy).

Forn =1,..., Ny, recalling that ¢(dt dy) = p(dt dy)—¢.(dy) dA; and the definition
of p,
(T, ) (Th-1—,x
Ty

—T)—v )
Ty
YV (Tpry 2 En) — /T /K V(s,,y) ds(dy) dA, + / f(s.z) dA,.

Tnfl

Setting x = Xp,_, = &,—_1, noting that X, = Xp,_, for s € (T,,_1,T,), and recalling
that A is assumed to be continuous,

v(Ty—, X1, _,) — U(Tnfl_aXTn,f) .
V(T Ene, Enr) /T /K V(s, Xo,y) 6s(dy) dA, + / f(s, X,) dA,.

Trn_1

Similarly,
U(ta XTNt) - U(TNt_7 XTNt)
t t
V(T s n,) — / / V(s, Xory) da(dy) dAs + [ f(s, X.) dA,.
Tn, JK

TNt
It follows that

t t
= 3 VTt~ [ [ Vi Xopa o+ [ 16.x)aa,

n>1:T, <t
t + .
- /0 /KV@vyay)p(dsdy)— /O /K Vi(s, Xs,y) és(dy) dAs + /0 f(s, X,) dA,

and (5.3) is proved. Using again the equality ¢(dt dy) = p(dt dy) — ¢:+(dy) dA; and the
additional assumption, (5.4) follows as well. d
Remark 5.3. In differential form, under the assumptions of the lemma, if

dv(t,x) = f(t,x) dAs + /K V(t,z,y) q(dt dy),

then

do(t, X¢) = f(t, X¢) dAy +/

(0(t=) = v(t=, Xo) + V(t,,9) ) aldt dy)
K

[ (0009) = o0 X0+ Vit9) = V(8 X2 01(dy)
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5.2. The equation. In the rest of this section we will suppose that U,l,7, g
are given satisfying Hypotheses 4.1 and 4.5 as before. For technical reasons we will
also assume that the space K is finite or countable (and K is the collection of all its
subsets). We next present the HJB equation by first introducing the space of processes
where we seek its solution.

A pair (v,V) is said to belong to the space Hg, where § € R, if

1. v:Qx[0,T] x K — Ris Prog ® K-measurable, V : @ x [0,T] x K x K - R
is P ® K ® K-measurable;
2. the following is finite:

T T
o, V)|II3 = SEE]E/ v(t,a;)zeﬂAtdAt+E/ o(t, Xo)2eP A dA,

0 0
T
wswE [ Vit o) e
0JK

zeEK

T
5 [ [ Jolt) + Vg )Pty aa
0JK

The space Hg, endowed with the norm [||-]||, is a Banach space, provided we identify
pairs of processes whose difference has norm zero.

Let f be the Hamiltonian function defined in (4.8). A pair (v, V) € Hpg is called
a solution to the stochastic HIJB equation if, for all z € K,

(5.5) w(t,z)+ /tT/K V(s,z,y)q(dsdy)
=g(z)+ /T/ (U(S, y) —v(s,z) +V(s,y,y) — V(s,z, y)) os(dy) dAsg
; t JK
+ /t f(s, x,v(s,") —v(s,z) + V(s,-, )) dA,,

where the equality is understood up to sets of measure zero in (2 x [0, 7], Prog) with
respect to the measure dA;(w)P(dw). Note that (5.5) implies that, for all x € K,

v(t,z) = v(0, ) + /ot/K V(s,z,y)q(dsdy)
] (o) 6.0 Vi) - Vi) (s,
0JK

— / f(s, x,v(s, ) —v(s,x) + V(s,-, )) dAs, dA(w)P(dw) a.s.,
0

which shows, since K is assumed to be at most countable, that a solution (v, V') € Hg

has a representative such that, P-a.s., the trajectories ¢ — v(w,t,x) are cadlag for

every z and, P-a.s., (5.5) holds simultaneously for every ¢ € [0,T] and every x € K.
We will also use the differential notation:

—dv(t,z) = — /K V(t,z,y) q(dt dy)
+ /K (vlt.9) — olt.2) + V(t..) — V(t.2.)) 6(dy) dA,
+f (Lot ) = vt ) + V(L)) dAs,
(T, x) = g(x), tel0,T],z € K.
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The basic result, which we assume for the moment and we will prove later, is the
following. Let By > 1 satisfy

2(2L2+3)+8(2L2+3)< 1)<1

Bo— 1 6 \Uth

THEOREM 5.4. Let K be finite or countable and let Hypotheses 4.1 and 4.9 be
verified. Suppose that there exists 5 such that

(5.6) B > Po, sup E [g(a:)zeﬂAT} < 0.
reK

Then the HJB equation has a unique solution (v, V') in Hg.

Remark 5.5. Equation (5.5) is a generalization of the classical HIB equation
associated to an optimal control problem for a Markov chain where v is a deter-
ministic function and V' = 0. A more detailed study of the Markov case and the
BSDE approach to optimal control problems for Markov jump processes can be found
in [13].

5.3. Application to control problems and BSDEs. For every (¢, ) € [0,T]x
K we consider again the optimal control problem described just before Theorem 4.11
and the BSDE (4.13) for the unknown processes (Y)*, ZL%) sep, 1)

Let (v, V) € Hg be the solution to the HJB equation constructed in Theorem 5.4.

Then we obtain the following result.

THEOREM 5.6. We make the same assumptions as in Theorem 5.4, assuming in

addition that B also satisfies (4.15). Then for every (t,x) € [0,T] x K we have
(5.7) YIT = (s, X07), Z0(y) = v(s—y) —v(s— X2T) + V(s,9,9)-

In particular, v(t,z) = Y,"" P-a.s.

If (4.14) also holds, then v(t,x) coincides with the value function of the optimal
control problem, i.c., v(t,x) = ess inf,(yea Je(z,u(-)) P-a.s.

Equalities (5.7) should be understood up to sets of measure zero in 2 x [¢, T, the
measure being dA,(w)P(dw) for the first equality and ¢s(w,dy)dAs(w)P(dw) for the
second equality.

In the paper [12] a related representation of Y and Z in terms of the same function
v is obtained in the context of Markov chain BSDEs.

Proof. We use a straightforward extension of the It6 Lemma 5.1 to compute
the stochastic differential dv(s, X%®) on the interval [¢,T] instead of [0,7]. Using the
Lipschitz character of f it is not difficult to check that all the assumptions of the
lemma are verified. For instance, we check that for every x € K

T T
T ¢ :t < T 2 ¢ A ¢
E/O/KW(t, )| di(dy) dA, < (E/O/Kw, WP deldy) dA)

T 3
X (E/ e_ﬁAtdAt>
0

is finite, since (v,V) € Hg and fOT e PAdA;, = B7H(1 — e PAT) < B~ so that
V satisfies the required condition (5.1). The other verifications are similar and are
therefore omitted.

2
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The It6 lemma then yields
T
o5, X+ [ [ (vlr=9) = ol X0 4 V) aldrdy)
s JK
T
= g(X%") +/ Fr(XE (=) —v(r—, XE5) + V(r,-,)) dA,, s €[t,T).
Comparing with (4.13) and setting
Y/st)w = U(Sv Xz)w)v Z?w(y) = U(S_v y) - U(S_a X;f) + V(Sv Y, y)v

we conclude that the pairs (Y%, Z5%) and (Y}*, Zb%) are solutions to the same
BSDE, and the latter also belongs to K? as it follows easily from the fact that (v, V)
belongs to Hg. By uniqueness for the solution to the BSDE, (5.7) holds.

All the other statements follow from Theorem 4.11. O

5.4. Proof of Theorem 5.4. It is convenient to first state the following simple
preliminary result.
LEMMA 5.7. Suppose

—dv(t,x) = —/ V(t,z,y)q(dt dy) +/ Ul(t,z,y)oe(dy)dA+u(t, x)dAr, v(T,z) = g(x).
K K
Then, setting cg = % for B > 1, we have, for every x € K,
T T
E/ v(s,a:)zeBAsdAs—l—E// V(s,z,y)%0s(dy) eP A= dA,
0 0 JK
T
<E [g(x)2eBAT] + CgIE/ u(s, x)? P dA,
0
T
e [ Um0 oulay) .
0JK

Proof. Using the identity (3.7) of Lemma 3.3 we have

T T
E [v(t,x)QeﬁAt} —|—BIE/ v(s,z)%ePA=dA, —I—IE// V (s, 2, y)%ps(dy) ePA=dA,
t . t JK
—E [g(z)%e?47] + ZIE/ v(s, ) U Ul(t,z,y) ¢s(dy) +u(s,x)} ePAsdA,.
t K
Setting t = 0 and using the elementary inequality
2u(s.) | [ Ut 0u(a) + a0
K
< (B=1v(s,x)" +cp [ / U(t,2,y)? ¢s(dy) +uls, x)z}
K

the conclusion follows immediately. O

Copyright © by STAM. Unauthorized reproduction of this article is prohibited.



Downloaded 11/10/16 to 131.175.161.12. Redistribution subject to SIAM license or copyright; see http://www.siam.org/journals/ojsa.php

3620 FULVIA CONFORTOLA AND MARCO FUHRMAN
Proof of Theorem 5.4. We define a map I' : Hg — Hpg setting (v, V) = I'(u,U),
for (u,U) € Hg, if (v, V) is the solution of
~dolt.) = [ V(o) a(drdy)
K

[ (utte9) = ut2) + U = Vit9)) () iy
+f(t,x,u(t, ) = ult, ) + Ut -, -)) dA,,
(T, z) =g(x), tel0,T], z € K.

Note the two occurrences of V' in the right-hand side. For fixed z € K, the exis-
tence of processes v(-,x), V(- z,-) solving this equation follows from an application of
Theorem 3.4. Since K is assumed to be at most countable, the corresponding integral
equation holds simultaneously for every ¢ € [0,7] and z € K, with the exception of
a P-null set. The rest of the proof consists in showing that (v,V) € Hg and that I"
is a contraction for sufficiently large 5. We limit ourselves to proving the contrac-
tion property, since the fact that (v,V) € Hg can be verified by similar and simpler
arguments.

~ Let (u',U") € Hp for i = 1,2 and let (v, V') = T'(u’,U"). Define v = v* — o',
V=V Vi a=ul—ul,U=U2 UL,
Tt ) = f(ta, (k) = w(ta) + U0 )) = f (B () = ul (t2) + U (-, 0)).

Then

(5.8)

—dv(t,z) = — [ V(t,z,y)q(dtdy)

I,
+ [ (att) = 0.2) + Ut g) = V6. )l + Ft.2)dA,
(T, z) = 0, te0,7T], z € K.

From Lemma 5.7 it follows that, for every x € K, 8 > 1,
T T,
E/ ﬁ(s,x)2e'8A5dAs+E// V (s, z,y)%0s(dy) ePAdA,
0

—5—1 / f(s,z)? ePAdA,

+ —E/ / (s,2) + U(s,9,9) — V(s,;zc,yﬂ2 bs(dy) ePA=dA,.

By the Lipschitz condition on f we have

(5.9) fls,2)? < L2 /K [a(s,5) — (s, 2) + U(s,9,)]” 6s(dy),
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and it follows that, for every x € K, § > 1,
T T,

IE/ o(s,z)%ePA=dA, —I—IE// V (s, 2, y)%ps(dy) ePA=dA,
0

2(2L% +3
< % GE/ a(s, z)? A5 dA +IE// (s, y)+U(s,y,9)] ¢s(dy)eBAsdAs>

+—IE// (s,2,9)% ¢s(dy) P4 dA,.

Setting ¢ := 2249 for 5> 7 it follows that

(5.10)
T T B B
sup ]E/ 3(s, 2)2ePA5 d A, + sup E// V (s, 2,924 (dy) ¥ dA, < b [||(@ 0)|12-
reK 0 reK 0JK
We now set

Yy =0(s,Xs),  Zs(y) = 0(s—,y) — 0(s—, Xs=) + V(s5,9,9).
Recalling (5.8) and applying the It6 formula of Lemma 5.1 we obtain
a¥i= [ Ziw)a(drdy) - F(t, X)) dA
K
+ [ (2w~ alt) + a(t. X0) ~ Ult.y.9)) dn(dy) ds,
K

and Y7 = 0. Note that the term V (¢, X;,y) has disappeared. Using the estimate (3.8)
in Lemma 3.3 on the BSDE we have

IE/ V2P A, +]E// yePAadA,
0
< % <1—|— —) E/ f(s,XS)2 ePAsd A,

< ) // ) — (s, y) + (s, Xa) — Uls,y,9)]” ¢a(dy) e”4+dA,.

Using again inequality (5.9) we obtain

/YMAdAHE// YePAsdA,

<M(1+1)E/ (s, X)% e dA,

B B
+ 6(2L;+3 ( ) // (5,9) + U 5,5, )]” 6u(dy) PA=dA,
o8 (v3)s [ poroisieran
Setting 0(2) : 16(%;“’)(1 + l) it follows that
(5.11) IE/O Y2ePAdA, +IE// )26 (dy) e?4dA, < & 1||(a, U)]]|3.
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Recalling the definition of Y, Z and using the fact that A is assumed to be continuous
we have

T — 2
(5:12) E/o /K [B(s,9) + V(s,9,9)] 6 (dy) 4= dA,
T
—F Z, V.17 . (dy) €24 d A,
/O/K[ () + Vo) 6s(dy) e
T T
<oE / V2 dA, + 2R / /K Zu(9)?ba(dy) €#4dA, < || D)3,

where the last inequality is due to (5.11). Recalling that Y, = 9(s, X), it follows
from (5.10), (5.11), (5.12) that |||(5, V)[[[3 < cg[l|(a, U)]||3, where c5 = | + ¢ is
< 1 by the assumptions. This proves the required contraction property and finishes
the proof. 0
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