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Abstract— In signal equalization, a technique that allows re-
duction of the number of states of the Viterbi detector is theDe-
layed Decision Feedback Sequence Detector (DDFSD). In order
to achieve good performance, it is crucial to operate an appropri-
ate prefiltering of the received sequence before the DDFSD. This
paper is devoted to performance evaluation of the DDFSD when
the prefilter of a minimum mean square error decision feedback
equalizer is adopted. The union upper bound is used to evaluate
the probability of first-event error, and truncation of the sum to
the error sequences that dominate the performance is discussed.

I. I NTRODUCTION

The Delayed Decision Feedback Sequence Detector
(DDFSD) is an equalization scheme based on the sampled
matched filter, a prefilter, and a Viterbi algorithm where the
channel memory is truncated. The performance loss due to
memory truncation is mitigated by a per-survivor processing
[1], where the past history of each survivor is used in a DFE
scheme. In the DDFSD originally proposed in [2], the noise
whitening prefilter was adopted (W-DDFSD). In [3] it is pro-
posed to adopt the feedforward prefilter of a Minimum Mean
Square Error (MMSE) Decision Feedback Equalizer (DFE),
while in [4] the cascade of the matched filter and of the MMSE
prefilter is realized as a fractionally spaced finite impulsere-
sponse filter. In [5] it was shown that, without complexity re-
duction in the Viterbi algorithm, the MMSE prefilter leads to
Maximum Likelihood Sequence Detection (MLSD) with min-
imum number of states, and that, when the DDFSD is con-
sidered, the MMSE-DDFSD allows to improve over the W-
DDFSD. In this paper, performance evaluation of the MMSE-
DDFSD is addressed.

II. SYSTEM MODEL

We consider the model of a binary uncoded data sequence
transmitted over a baseband linear channel corrupted by zero-
mean additive white Gaussian noise. The receiver consists of
the sampled matched filter, a prefilter, and a sequence detec-
tor. The block diagram of the system is reported in Fig. 1.
With reference to the figure, we assume in the following that~ak 2 f�1;+1g, and that the two-sided power spectral density
of the AWGN is�2. The impulse response of the system from
the source to the output of the sampled matched filter is repre-
sented by thez-transformr(z) = P�k=�� rkz�k, wherez�1
represents the unit delay.

Among sequence detectors, we are interested in the DDFSD
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Fig. 1. Channel and receiver block diagram.

of [2]. The DDFSD is a Viterbi algorithm with2� states,0 �� � �, where the metric of each survivor is calculated using a
DFE with��� taps. In the DDFSD originally proposed in [2],
the noise whitening prefilter was adopted. In considerationof
the success that the MMSE-DFE had since the classical paper
of Salz [6], we feel that it calls for the MMSE-DDFSD. The
MMSE-DDFSD is based on the spectral factorizationd(z)d(z�1) = r(z) + �2; (1)

where thatd(z) that is causal and minimum phase is taken.
The prefilter isp(z) = d(z)r(z) + �2 = d�1(z�1): (2)

Note that� > 0 guarantees the existence of bothd(z) andp(z) [7]. The metric of the transition that diverges at timek � 1 from state(ak��; : : : ; ak�1) and merges at timek in
state(ak��+1; : : : ; ak) isbk(ak��; : : : ; ak) = (xk � �Xj=0 djak�j� �Xj=�+1 dj âk�j(ak��; : : : ; ak�1))2 � �2a2k; (3)

wherexk is thek-th sample at the output of the prefilter, andâk�j(ak��; : : : ; ak�1) is the estimate of the(k � j)-th bit
present in the survivor that at timek � 1 merges in the state(ak��; : : : ; ak�1). Note that, for binary transmission, the term��2a2k is common to all the metrics and can be omitted. It is
shown in [7] that (1) and (2) minimize the MSE,

MSE= Efu2kg: (4)

In (4),Ef�g denotes the expected value, anduk = xk � �Xj=0 dj~ak�j ; (5)



is thek-th sample of the distortion sequence. We emphasize
that the two extreme cases of the MMSE-DDFSD are MLSD
with minimum number of states for� = � [5], and the MMSE-
DFE of [7] for � = 0. The W-DDFSD of [2] is obtained
putting�2 = 0 in (1), (2), and (3).

III. PERFORMANCEEVALUATION

Neglecting error propagation, Sheen and Stüber have de-
rived in [8] a close approximation to the Bit Error Rate (BER)
of the W-DDFSD. To our best knowledge, no upper bound on
the error performance of the DDFSD is published in the open
literature. In what follows, it is shown that the First-Event
Error Rate (FEER) of the DDFSD, can be upperbounded by
the union bound. Roughly speaking, the FEER measures the
probability of error burst. More precisely, the FEER is a con-
ditional probability. Without loosing generality, we assume
that the event ise0 6= 0, whereek = âk � ~ak;âk being thek-th decision of the sequence detector, and that
the condition is [e(z)℄�1�� = 0; (6)

where the notation[x(z)℄ji =Pjk=i xkz�k is used. Note that
condition (6) is different from the condition imposed in [8],
where[e(z)℄�1�� = 0 is considered. The union upper bound on
the FEER is [9]:

FEER� Xe(z)2E 2�weP (e): (7)

In (7),we is the Hamming weight ofe(z),we = [e(z)e(z�1)℄04 ;
andE is the set of error polynomials having the forme(z) = l�1Xk=0 ekz�k; l = 1; 2; � � � (8)

wheree0 6= 0, el�1 6= 0, and there are no more than� � 1
consecutive zeros between0 andl � 1. The probabilityP (e)
appearing in (7), which is hereafter called pairwise error prob-
ability, is the error probability in the binary test between[~a(z)℄l�10 and[~a(z) + e(z)℄l�10 . Note that the binary test may
take place only if the two events (6) and[e(z)℄l+��1l = 0 (9)

occur. Actually, in the DDFSD, the binary test between[~a(z)℄l�10 and[~a(z) + e(z)℄l�10 takes place when the two com-
petitors merge for the first time in the reduced trellis, thatis
when (9) is fulfilled. It is worth noting that in MLSD the
merging condition is[e(z)℄l+��1l = 0, which is exactly the
condition (6) for the first-event error at the next step. Con-
versely, for� < �, when the binary test between[~a(z)℄l�10

and[~a(z) + e(z)℄l�10 takes place, there is at least one nonzero
coefficient, namelyel�1 6= 0, and at most��� nonzero coef-
ficients in the polynomial[e(z)℄l+��1l+��� . Hence, when the deci-

sion is[â(z)℄l�10 = [~a(z) + e(z)℄l�10 , the condition (6) for the
first-event error is not satisfied at the next step after the binary
test.

When MLSD is considered, the BER is upperbounded by
attaching the Hamming weight of the error sequence to each
term in the sum [9]:

BER�Xe(z)2Ewe2�weP (e): (10)

Due to error propagation, (10) does not hold true when� < �.
To overcome this difficulty, an ideal DDFSD is considered in
[2, 8], where error propagation is neglected. More precisely,
when the DDFSD decides[â(z)℄l�10 = [~a(z)+ e(z)℄l�10 , some
demon cancels the errors[e(z)℄l�1l��+� from the memory of the

DFE associated to[â(z)℄l�10 . For this ideal DDFSD the error
burst terminates when the wrong decision is taken, andwe is
exactly the number of errors contained in the burst, hence the
upper bound (10) holds true. When the effect of the errors[e(z)℄l�1l��+� on the��� decisions at timel+�; � � � ; l+��1
is negligible, it is proposed in [8] to approximate the BER of
the true DDFSD as the RHS of (10).

A. Computation of the Pairwise Error Probability

The pairwise error probability is the probability of error in
the binary testl+��1Xk=0(xk � �Xj=0 dj~ak�j)2><l+��1Xk=0(xk � �Xj=0dj(~ak�j + ek�j))2;
where[e(z)℄l�10 belongs to the setE described in (8), and (6)
and (9) are assumed. From the geometrical perspective, the
decision boundary is the hyperplane between the two points
that represent[~a(z)℄l�10 and its competitor in the(l + �)-
dimensional decision space. The direction that joins the two
mentioned points is hereafter calledoutput error, and is repre-
sented by the polynomialeo(z) = [e(z)d(z)℄l+��10 : (11)

Note that, in contrast to MLSD, whereeo(z) =[e(z)d(z)℄l+��10 = e(z)d(z), in the DDFSD the decision is
premature because the last� � � samples of the output error
are truncated. Using thez-transform, the binary test takes the
form[u(z)u(z�1)℄0 >< [(u(z)�eo(z))(u(z�1)�eo(z�1))℄0; (12)

whereu(z) is thez-transform of the distortion sequence (5) in
the decision space:u(z) = [x(z)� ~a(z)d(z)℄l+��10 : (13)



The binary test (12) is rewritten as[eo(z�1)u(z)℄0Æe >< Æe2 ; (14)

where Æ2e = [eo(z)eo(z�1)℄0; (15)

is the squared Euclidean distance between the competitors.
Geometrically, the LHS of (14) is the projection of the dis-
tortion along the output error. The error occurs when such a
projection, which is hereafter called�e = [eo(z�1)u(z)℄0Æe ;
exceeds half the Euclidean distance between the competitors.
The pairwise error probability isP (e) = Z 1Æe=2 f�e(x)dx; (16)

wheref�e(x) is the probability density function of�e. The
calculation off�e(x) proceeds by considering the distortion
as the sum of ISI and noise. Specifically, the projection of the
noise along the output error is�e = [eo(z�1)n(z)p(z)℄0Æe ; (17)

wheren(z) is zero mean Gaussian noise with autocorrelation�2r(z). The probability density functionf�e(x) is Normal,
with mean m�e = 0; (18)

and variance�2�e = �2Æ2e [eo(z�1)p(z)r(z)p(z�1)eo(z)℄0: (19)

The projection of the ISI along the output error is e = 1Æe [eo(z�1)(~a(z)(r(z)p(z)� d(z)))℄0= ��2Æe [eo(z�1)p(z)~a(z)℄0 = [(z)~a(z)℄0; (20)

where(z) is the polynomial of the coefficients of the ISI. The
probability density functionf e(x) can be computed from the
coefficients of the ISI. In the section devoted to the experi-
mental results, we adopt the method proposed in [10]. Due to
space limitation, the derivation of the mean value and of the
variance of e are omitted. The results are1m e = 2�2weÆe ; (21)1Looking at (22), one might suspect that the term4�4we=Æ2e should be
emended as4�4w2e=Æ2e . This footnote is to confirm to the referees that (22)
reports the exact result.

�2 e = [(z)(z�1)℄0 � 4�4weÆ2e (22)

Since ISI and noise are independent random variables, the
probability density function of�e isf�e(x) = f e(x)
 f�e(x); (23)

where
 denotes the convolution. Taking into account that the
mean value of the Gaussian noise is zero, one hasm�e = m e = 2�2weÆe : (24)

Usingp(z)(r(z) + �2)p(z�1) = 1, for �2�e one gets�2�e = �2�e + �2 e = �2(1� 4�2weÆ2e ): (25)

B. Truncation of the Union Bound

In a brute force approach to performance evaluation, one
should compute (23) and (16) for all the error polynomials up
to a length such that convergence of the sum (7) is attained.
A more sensible approach is to select those error polynomials
that dominate the sum, and to compute

FEER�Xe(z)2EM 2�weP (e); (26)

whereEM is the subset ofE that contains theM polynomials
that dominate the sum. In principle, one should produce a list
by ordering in descending order the terms that appear in the
sum (7), and then should truncate the list to the first terms.
However, at moderate-to-high SNR the coefficient2�we is
dominated byP (e), and ISI is dominated by the Gaussian
noise [7], yielding the approximationP (e) � Q(pSDRe); (27)

where Q(x) = 1p2� Z 1x e�u22 du;
and SDRe is the Signal-to-Distortion Ratio relevant to the spe-
cific e(z). Using (24) and (25), for SDRe one gets

SDRe = (Æe � 2m�e)24�2�e = Æ2e � 4�2we4�2 : (28)

Hence one can produce a large list of error polynomials or-
dered by increasing SDRe, and then compute2�weP (e) for
each element of the list to produce a re-ordered list, which can
be used in (26). Equation (28) makes it possible to produce
the ordered list by exploiting the iterationik = ik�1 + ( �Xj=0 djek�j)2 � �2e2k; k = 0; 1; : : : ; l + �� 1;

(29)
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Fig. 2. Error trellis for� = 2, � = 1, two survivors per state.
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Fig. 3. Spectrum of the channel:[r(z)℄�0 = 0:9978 + 0:9185z�1 +0:7304z�2+0:4881z�3+0:2674z�4+0:1112z�5+0:031z�6.i�1 = 0, il+��1 = Æ2e � 4�2we, e�� = � � � = e�1 = el =� � � = el+��1 = 0. Several methods based on the iterative
computation of the metric have been proposed in the past to
produce the ordered list for MLSD. Discussing these meth-
ods is out of the scope of this paper. We pick the baseline
Viterbi algorithm with3� states described in [11], and use in a
straightforward manner the iteration (29) in the branch metric.
In the formulation of [11], the algorithm finds the error poly-
nomial at minimum SDR in MLSD, and can be applied only
to noncatastrophic channels. To determine the first2M error
polynomials, we take inspiration from the generalized Viterbi
algorithm of [12]. Note that, sincee(z) and�e(z) give the
same SDRe, allowingM survivors per state in the algorithm
of [12] is sufficient to find the first2M polynomials. Recall-
ing (9), when the DDFSD is considered one has to handle the
states of the type(el��+�; : : : ; el�1; � � zeros), el�1 6= 0,
as termination states. For, it is sufficient to cancel from the
complete trellis all the transitions that diverge from all the ter-
mination states. Of course, all the states that are reached only
from termination states will remain unvisited after an initial
transient of� + 1 steps, and, after the transient, these states
can be removed from the trellis. A pictorial description of this
trellis is reported in Fig. 2.

IV. EXPERIMENTAL RESULTS

To substantiate the results obtained in the previous section,
we adopt as a benchmark the time discrete white Gaussian
channel with� = 6 studied in [13]. The spectrumr(ej!)
is depicted in Fig. 3 versus angular frequency!. The feature
of this channel is that no channel having lower minimum dis-
tance with the same� exists. Fig. 4 reports the convergence
of the union bound on the FEER for the MMSE-DDFSD with
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Fig. 4. The straight line is the union bound truncated to the first2M error polynomials versusM , ordered by SDR. The computer
simulation gives FEER= 1:07 10�4. The star is the contribution
of theM -th pair of polynomialse(z), �e(z), to the sum. The
Viterbi algorithm terminates at the seventyfirst step.� = 4 at SNR= r0=�2 = 20dB. The 144 error polynomials at

lower SDR have been found by the algorithm described in the
previous section, and the contribution2�weP (e) of each paire(z);�e(z) in the sum is reported in the figure. The 18 error
polynomials at lower SDR are listed in Table I, whereP (e) is
computed as in [10]. Fig. 5 reports the FEER versus SNR for
MLSD and for the MMSE-DDFSD and the W-DDFSD with� = 0 and� = 4. In the simulations, the FEER is mea-
sured by collecting at least 100 events. In the computation
of the truncated upper bound, the list ordered by SDR is re-
ordered by2�weP (e), and the first 18 terms are used. From
Fig. 5, one realizes that truncation to the first 18 terms virtu-
ally gives the upper bound. Fig. 6 reports the BER versus SNR
with the same parameters as in Fig. 5. The straight line is the
RHS of (10) truncated to the first 18 terms after re-ordering
by we2�weP (e). The figure shows that the approximation
is more accurate for the DDFSD than for the DFE, while for
MLSD the first 18 terms virtually give the upper bound. This
is an expected result, since the impact of error propagationon
the BER diminishes passing from the pure DFE to MLSD.

V. CONCLUSIONS

The main result of the paper is the performance evaluation
of the MMSE-DDFSD. Equation (28) makes it feasible to pro-
duce a large list ordered by increasing SDR of the error poly-
nomials that dominate the FEER of the MMSE-DDFSD. The
FEER is then evaluated by truncating the union bound, where
truncation is such that only the terms that dominate the sum are
taken into account. Evaluation of the BER is complicated by
the error propagation induced by the per-survivor DFE. How-
ever, an approximation to the BER can be obtained if error
propagation is neglected. Such an approximation fairly fitsthe
simulation results only for moderate reduction of complexity.



TABLE I
FIRST 18 ERROR POLYNOMIALS FOR THEMMSE-DDFSDAND FOR THE W-DDFSDWITH � = 4 AT SNR= 20dB. ONLY THE 9

POLYNOMIALS BEGINNING WITH e0 = �2 ARE LISTED. IN THIS SPECIFIC EXAMPLE, IT HAPPENS THAT THE FIRST18 POLYNOMIALS

ARE THE SAME FOR THEW-DDFSDAND FOR THE MMSE-DDFSD.PMMSE (e) SDRe;MMSE [dB] SDRe;W [dB] Coefficients ofe(z)6:77 � 10�4 10.11 9.04 -2 2 2 -2 -2 22:30 � 10�4 10.89 10.00 -2 2 2 -2 -2 2 2 -21:49 � 10�4 11.16 10.35 -2 21:04 � 10�4 11.38 10.61 -2 2 0 0 0 -2 20:79 � 10�4 11.54 10.80 -2 2 2 -2 -2 2 2 -2 -2 20:72 � 10�4 11.59 10.86 -2 2 0 0 0 -2 2 0 0 0 -2 20:50 � 10�4 11.79 11.10 -2 2 0 0 0 -2 2 0 0 0 -2 2 0 0 0 -2 20:35 � 10�4 11.98 11.32 -2 2 0 0 0 -2 2 0 0 0 -2 2 0 0 0 -2 2 0 0 0 -2 20:34 � 10�4 12.00 11.34 -2 2 2 -2 -2 2 0 2 -2 -2 2 2 -2
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Fig. 5. FEER versus SNR. The straight line is the union bound
truncated to the first 18 terms.
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Fig. 6. BER versus SNR. The straight line is the approximation
truncated to the first 18 terms.
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