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Abstract - Decision feedback equalization is a popu-
lar method for signal detection that allows a good trade
off between complexity and performance. The complex-
ity of the Decision Feedback Equalizer (DFE) is mainly
concentrated in the feedforward filter, which is often re-
alized in FIR form. When the number of taps of the
FIR filter needed to obtain nearly optimal performance
becomes large, one may take advantage of the efficiency
of the FFT/IFFT algorithm, realizing the feedforward
filter in the discrete frequency domain. In this paper
we consider the Minimum Mean Square Error (MMSE)
DFE with feedforward filter in the discrete frequency do-
main, assuming perfect knowledge of a static channel.
We move from the observation that the optimal MMSE-
DFE feedforward filter is IIR, and point out that the
classical scheme of unconstrained frequency domain fil-
tering with overlap/save digital signal processing may
induce substantial increase in the error rate when the
approximation of the linear convolution between the re-
ceived signal and the mentioned IIR to a circular convo-
lution is poor. Our main finding is that the error rate
can be significantly improved by deliberately augmenting
the power of the noise in the computation of the transfer
function of the frequency domain feedforward filter.
Keywords - Frequency domain equalization, equaliza-
tion, intersymbol interference.

I. Introduction

Decision feedback equalization is a simple and effec-
tive technique that is often adopted in detection of sig-
nals affected by noise and multipath. The Decision Feed-
back Equalizer (DFE) consists of a FeedForward Filter
(FFF), an instantaneous detector, and a FeedBack Fil-
ter (FBF) that operates cancellation of the InterSymbol
Interference (ISI) due to the past data by feeding back a
weighted combination of the past decisions taken by the
detector. The most popular DFE dates back to Mon-
sen [1]. In the DFE due to Monsen, which is known as
the Minimum Mean Square Error DFE (MMSE-DFE),
the FFF and the FBF optimize the mean square error
between the input to the detector and the transmitted
symbol.

The complexity of the MMSE-DFE is mainly concen-
trated in the FFF. Although the optimal FFF of the

MMSE-DFE is IIR, the designer often prefers to im-
plement it in the FIR form. In this case, often nearly
optimal performance is obtained only at the cost of a
large number of taps. Of course, the large number of
taps brings the cost of the large number of hot mul-
tiplications made by the FIR during the processing of
the received signal. Furthermore, the designer has to
face the problem of optimizing the FIR. Many methods
have been proposed in the past to efficiently compute the
weights of an optimized FIR, e.g. [2]. However, all these
methods have a complexity that goes with N2, where N
is the number of taps of the FIR. Therefore, when the
number of taps that are needed to obtain nearly optimal
performance becomes too large, the designer is led to
consider the implementation of the FFF in the discrete
frequency domain, taking two advantages. The first one
is the well-known efficiency of the FFT/IFFT algorithm
for N ≥ 32. The second one is the efficiency in the com-
putation of the transfer function of the filter that can be
achieved by exploiting the approach of Belfiore and Park
[3].

Together with the two mentioned advantages, the dis-
crete frequency domain FFF brings also one problem.
Basically, the problem with the discrete frequency do-
main approach is that the discrete frequency domain fil-
ter performs the circular convolution, while the channel
performs the linear convolution. In this regard, one can
take one out of these two approaches: either to force
the channel to perform circular convolution or to force
the receive filter to perform linear convolution. Recently
Falconer et al. [4] and Benvenuto and Tomasin [5] have
proposed to adopt frequency domain equalization in con-
junction with the cyclic extension technique, where the
first of the two mentioned approaches is exploited. In
the cyclic extension technique, at the transmit side the
data sequence is organized into blocks, and at the end
of each block a guard interval is placed where the initial
part of the data sequence of that block is attached. At
the receive side the cyclic extension is discarded before
the FFT. If the duration of the guard interval is greater
than or equal to the duration of the impulse response
of the channel, the channel operates on the data block
the circular convolution. As a consequence, the cascade
of channel and receive filter operates on the data block



the circular convolution, and the cyclic impulse response
resulting from the cascade of channel and receive filter
can be optimized (e.g., in the MMSE sense) for the given
number of FFT/IFFT points. The drawback of the cyclic
extension technique is that the channel is occupied for
part of the time by the cyclic extension. Transmission of
the cyclic extension can be avoided by resorting to digi-
tal signal processing techniques such as the overlap/save
technique [6], which is the first step towards forcing the
receive filter to approximate the linear convolution. Ac-
cording to the overlap/save technique, at the receive side
one takes successive blocks of N samples in time domain
such that the n-th block overlaps the (n − 1)-th block
in a prescribed number of samples, which should be not
lower than the duration of the impulse response of the
channel. In what follows we assume the overlap to be
N/2. The technique proceeds by performing frequency
domain filtering on N points, and by discarding N/2
samples after the IFFT. Pioneering work was made in
this direction by Ferrara [7] and by Mansour and Gray
[8] in the context of adaptive linear MMSE equalization.
Specifically, Ferrara observed that linear convolution is
obtained by the overlap/save technique only if the du-
ration of the impulse response of the receive filter is not
greater than N/2. To overcome this problem, Ferrara
proposed to force N/2 zeros in the tail of the impulse
response of the filter. However, in the frequency domain
approach what is optimized and used is the transfer func-
tion of the filter. Hence the zeros can be forced only at
the cost of FFT plus IFFT, the FFT to obtain the im-
pulse response from the transfer function, the IFFT to
come back to the frequency domain from the impulse re-
sponse. Mansour and Gray observed that the FFT and
the IFFT can be often skipped because good MSE can
be obtained also by the unconstrained frequency domain
equalizer, where no zeros are forced. Later, Feuer and
Cristi demonstrated in [9] that the unconstrained fre-
quency domain equalizer achieves the minimum average
MSE for the given number of points of the FFT/IFFT,
where the average is made on the block of N/2 samples
after the discard. However, Feuer and Cristi did not ex-
amine the performance of the equalizer in the context
of data transmission, therefore they did not consider the
impact of nonlinear convolution on the error rate.

The paper is organized as follows. In section II the
MMSE-DFE is described. In section III the analysis of
the error performance of the MMSE-DFE with uncon-
strained frequency domain FFF is given, and the use of
virtual noise is proposed. In section IV simulation results
that enlighten the merits of our proposal are presented.
In section V conclusions are drawn.

II. Unconstrained Frequency Domain
Feedforward Filter for the MMSE-DFE

Transmission of i.i.d. binary antipodal symbols taken
from {+1,−1} over a time-discrete baseband linear sys-

tem corrupted by zero-mean Additive White Gaussian
Noise (AWGN) is considered. Extension to nonbinary
symbols as well as to passband transmission is possible,
but it is not pursued here. The receiver that we consider
consists of the matched filter and of the MMSE-DFE.
In what follows, we adopt the z-transform to represent
sequences. For example, the z-transform of the trans-
mitted sequence {ak} is

a(z) =
∑

k

akz−k.

Let
r(z) = σ2 +

∑

k

z−k
∑

i

gigi+k

be the z-transform of the autocorrelation of the observed
signal, where σ2 is the power of the noise, and the se-
quence {gk} is the impulse response of the linear system.
The Signal-to-Noise Ratio (SNR) is

SNR =
r0 − σ2

σ2
.

Following the classical approach of Monsen [1], the FBF
of the MMSE-DFE is obtained from the spectral factor-
ization

αd(z)d(z−1) = r(z),

where α is a scalar, and the d(z) that is monic, causal,
and minimum phase is taken. The scalar α can be cal-
culated as

log(α) =
1
2π

∫ π

−π

log(r(ejω))dω (1)

(where the logarithms can have any common base). Note
that (1) does not require the knowledge of d(z). The
minimum phase property guarantees that the energy is
concentrated in the first taps of the impulse response,
which is a desirable property in a DFE scheme. The
MMSE-DFE FFF is

p(z) =
d(z)
r(z)

=
1

αd(z−1)
. (2)

Equation (2) shows that p(z) is IIR when r(z) is FIR.
Note that σ2 > 0 guarantees the existence of both d(z)
and p(z). Let y(z) be the z-transform of the sequence at
the output of the matched filter, and let

e(z) = y(z)p(z)− d(z)a(z)

be the z-transform of the error sequence. The error se-
quence can be seen as the sum of noise and ISI:

e(z) = n(z)p(z)− σ2a(z)p(z)

where n(z) is the noise sequence at the output of the
matched filter. After straightforward manipulation, for



the z-transform of the autocorrelation of the error se-
quence one finds

E{e(z)e(z−1)} =
σ2

α
. (3)

Equation (3) is a classical result in the literature of DFE.
It shows that the MMSE is σ2/α and that the error se-
quence is white.

Computation of the feedback filter can be performed
as follows. Let r(z) be invertible, and let

s(z) = r−1(z).

The coefficients of s(z) are the inverse Fourier transform
of the spectrum r−1(ejω):

sk =
1
2π

∫ π

−π

ejωk

r(ejω)
dω.

Let ri = 0 for |i| > ν, and let dν = (−d1,−d2, . . . ,−dν).
Also, let sν = (s1, s2, . . . , sν), and let Sν be the ν × ν
Toeplitz matrix constructed from s(z), so that the el-
ement si,j of Sν is s|i−j|. After Belfiore and Park [3],
we know that dν can be computed by solving the linear
system

dνSν = sν . (4)

Equation (4) is a linear system of ν equations known
as the Yule-Walker equations. Equation (4) can be effi-
ciently solved via the Levinson-Durbin algorithm, which
requires ν2 +O(ν) operations.

Efficient implementation of the MMSE-DFE can be
worked out by realizing the FFF in the discrete frequency
domain and the FBF in the time domain. Efficient com-
putation of the coefficients of the FFF and of the FBF
can be performed by translating the approach of Belfiore
and Park from the frequency domain to the discrete fre-
quency domain. Specifically, one can compute the sam-
ples of s(ejω) in the discrete frequency domain and take
the IFFT. The result is an approximation to the sequence
{sk}. The first ν +1 terms of the mentioned approxima-
tion are used in (4) to obtain an approximation to the
FBF, which, after FFT, can be used in (2) to obtain the
FFF in the discrete frequency domain. Note that one
obtains an approximation to the optimal FFF because,
since the optimal FFF is IIR, sampling in frequency do-
main causes aliasing in time domain.

Computation of the FFF and FBF in the discrete fre-
quency domain has been recently rediscovered and pro-
posed by Benvenuto and Tomasin in [5].

Finally, we mention that, to obtain the experimental
results to be presented in section IV, we have realized
the cascade of matched filter and FFF in the discrete
frequency domain. This is done by computing the FFF
in the discrete frequency domain as described above, and
by multiplying it by the FFT of the zero-padded impulse
response of the matched filter.

III. Error Performance of the MMSE-DFE
with Unconstrained Frequency Domain

FFF

The key observation in performance evaluation of the
MMSE-DFE with unconstrained frequency domain FFF
is that the channel operates linear convolution while the
receive FFF operates circular convolution. The result
is that the cascade of channel and FFF should be mod-
elled as a linear time-variant system. Assume FFT/IFFT
on N points and overlap/save with overlap over N/2
samples. Assume also that the impulse response of the
channel is FIR with ν + 1 samples, ν ≤ N/2, and that
the impulse response of the FFF is unconstrained, which
means that its duration is N . With these assumptions,
the linear time-variant system formed by the cascade of
channel and receive FFF is characterized by N/2 im-
pulse responses, the i-th of which is the impulse response
of the system when the impulse is applied at time i,
i = 0, 1, · · · , N/2−1. Note that while in the cyclic exten-
sion technique one has a time-variant linear system where
the impulse response at time i is obtained by cyclically
shifting of i samples the impulse response at time 0, here
the N/2 impulse responses do not have this regularity.

To describe the set of impulse responses we need to
introduce some notation. Let

[u(z)]ji =
j∑

k=i

ukz−k,

and let ¯N be the ”N-cyclic product” between z-
transforms:

u(z)¯N b(z) =
∑

k

z−kNu(z)b(z).

Let c(z) be the z-transform of the IFFT of the discrete
frequency domain filter that includes matched filter and
FFF filter, and let hi(z) be the z-transform of the im-
pulse response of the time-variant system from the data
source to the output of the FFF when the impulse is ap-
plied at time i. With the assumptions we have made,
the samples of hi(z) may occupy up to three FFT/IFFT
blocks. Assume 0 ≤ i ≤ N/2 − 1, that the first block
occupied by hi(z) starts at time −N/2 and terminates
at time N/2 − 1, and that, according to [6], the first
N/2 samples after the IFFT are discarded. With these
assumptions hi(z) is

z−ihi(z) = [[z−ig(z)]N/2−1
0 ¯N c(z)]N/2−1

0

+ [[z−ig(z)]N−1
0 ¯N c(z)]N−1

N/2

+ [[z−ig(z)]3N/2−1
N/2 ¯N c(z)]3N/2−1

N ,

hi(z) = hi+N/2(z).

The sequence at the output of the FFF is the sum of noise
and of the superimposition of the above family of impulse



responses, each member of the family being multiplied by
the proper binary symbol

x(z) = m(z) +
∑

i

aihi(z)z−i,

where m(z) is the noise sequence. The z-transform of
the error sequence turns out to be

e(z) = x(z)− d(z)a(z).

The error sequence can be seen as the sum of noise and
ISI, however, while the noise is stationary, the ISI is not.
More precisely, let hj,i be the amplitude of the j-th im-
pulse response at time i. The coefficient of the inter-
ference caused by the j-th symbol on the i-th symbol
is

vi,j = hj,i − di−j .

The set of coefficients of the ISI at time i is obtained by
fixing i and taking the set {vi,j}. The noise sequence
{mk} is a stationary sequence of zero mean Gaussian
random variables with variance

σ2
m = σ2[c(z)c(z−1)]0.

From the above theory one can derive a family of N/2
probability density functions of ISI plus noise, and use
them in the evaluation of the error performance. Un-
fortunately, error propagation, which may take place in
the DFE, complicates the analysis. To overcome this
difficulty we evaluate by analysis only the First Error
Event Rate (FEER), which is the error probability given
correct decisions in the memory of the FBF, and resort
to computer simulation to measure the Bit Error Rate
(BER). The FEER has been evaluated by applying the
method of Vanelli and Shehadeh [10] to each of the N/2
probability density functions, and then taking the aver-
age.

As it will be clear from the experimental results, the
time-variant nature of the system may lead to severe
performance degradation, because some of the N/2 time
instants are severely affected by the detrimental effects
of the circular convolution. To mitigate this effect, one
can deliberately augment the power of the noise in the
spectral factorization,

αd(z)d(z−1) = r(z) + λ, λ ≥ 0, (5)

and then use the d(z) and the p(z) that come from (5).
The effect of λ > 0 is that of diminishing the effective
duration of the IIR impulse response of the optimal FFF,
mitigating in this way the detrimental influence of both
time domain aliasing and circular convolution.

It is worth observing that the countermeasure that we
propose has found so far widespread application in mit-
igating various detrimental phenomena that may affect
the equalizer. More precisely, Gitlin et al. proposed in
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Fig. 1. Computed FEER for the optimal MMSE-DFE
and for N = 64 with λ = 0 and λ = 0.01. Simulated
BER for the optimal MMSE-DFE and for N = 64 with
λ = 0 and λ = 0.01.

[11] the use of virtual noise in the context of MMSE adap-
tive fractionally spaced linear equalization to improve the
stability of the hill-conditioned linear equalizer. Later,
Magarini et al. observed that the same countermeasure
can be adopted with the blind equalizer [12]. Berdnaz
and Cioffi [13] proposed the use of virtual noise to mit-
igate error propagation in the DFE, and Magarini and
Spalvieri [14] pointed out the benefits of virtual noise in
equalization based on an unperfect channel estimate.

IV. Experimental Results

To show the benefits of our proposal we adopt the time
discrete channel with ν = 6 studied in [15]. The impulse
response of this channel is g(z) = 0.176 + 0.316z−1 +
0.476z−2 + 0.532z−3 + 0.476z−4 + 0.316z−5 + 0.176z−6.
Note that the channel has three zeros on the unit circle.
The frequency domain filtering is performed on N = 64
points. Fig. 1 reports the computed FEER and the sim-
ulated BER versus SNR for λ = 0 and λ = 0.01. The
BER is measured by a random sequence of 107 binary
symbols. The simulated FEER is not shown in the fig-
ure since it is virtually equal to the computed one. The
performance of the optimal MMSE-DFE is reported as
reference. The introduction of virtual noise improves
both the BER and the FEER. While the benefits on the
BER are predicted in [13], our results demonstrate that
a judicious design of λ slightly improves also the FEER.
Note that the performance obtained by adding virtual
noise is better than the one of the optimal MMSE-DFE.
This result can be explained by considering that the min-
imization of the MSE does not guarantee the best error
performance. Moreover, Fig. 1 shows that the error per-
formance for λ = 0 deteriorates at high SNR, because
inversion of r(ejω) leads to an FFF having long effective
duration. Hence, the higher is the SNR, the stronger are
the detrimental effects of circular convolution. To bet-
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Fig. 2. Time-variant MSE in one period with SNR=
32.5 dB and N = 64.

ter illustrate this, in figure 2 is shown the MSE versus
time at SNR=32.5 dB. The minimum average MSE is
also reported in the figure. We observe that the MSE is
strongly time-variant and that its greatest value occurs
at time 31. From Fig. 2 it is apparent that error per-
formance will be dominated by error events that start at
time 31.

V. Conclusions

Although the FFF of the MMSE-DFE is IIR, its most
popular implementations are either in FIR form or in the
discrete frequency domain. Frequency domain should be
preferred when the duration of the FIR needed to obtain
nearly optimal performance becomes too long. We have
analyzed an attractive scheme of qualization where no
cyclic extension is adopted and where the transfer func-
tion of the FFF is efficiently computed, but the detrimen-
tal effects of time aliasing and circular convolution may
severely degrade the error performance of the scheme if
no countermeasures are taken. Our main finding is that
virtual noise is of great help in mitigating these detri-
mental effects.
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