
Sensitivity of the Mean-Square DDFSD to a Noisy Estimate of the Noise Variance

M. Magarini, A. Spalvieri and G. Tartara
Dipartimento di Elettronica e Informazione, Politecnico di Milano,

Piazza Leonardo da Vinci, 32, I-20133 Milano (Italy).

Abstract— In signal equalization, a suboptimal technique for
reducing the number of states of the Viterbi detector is the de-
layed decision feedback sequence detector (DDFSD). In order to
achieve good performance a mean-square (MS) prefilter is em-
ployed before the DDFSD. This paper is devoted to investigate the
sensitivity of the MS-DDFSD to a noisy estimate of the variance
of the noise. Analytical performance evaluation is addressed. A
truncated version of the union bound is used to approximate the
bit error rate. The analysis includes a method for determining
the terms that dominate the bound.

I. INTRODUCTION

In digital mobile radio channels, time-varying multipath
propagation can cause severe performance degradation. For
high-speed data transmission, the effect of multipath is that
of introducing intersymbol interference (ISI). Equalization of
the received signal is necessary to mitigate the effects of ISI
and noise. For channels with large delay spread, the optimum
equalization algorithm, that is, the maximum likelihood se-
quence detector (MLSD) [1], is often too complex. For prac-
tical implementation, a suboptimum that allows a favorable
trade off between complexity and performance is the delayed
decision feedback sequence detector (DDFSD) [2].

In order to achieve good performance, an appropriate design
of the prefilter and of the impulse response used for metric cal-
culation in the DDFSD is essential. In [2] the noise whiten-
ing prefilter of [1] was considered before the DDFSD (W-
DDFSD). In [3] has been shown that performance, especially
for highly frequency selective channels, can be improved by
adopting the mean-square prefilter (MS-DDFSD). In [4] the
prefilter is obtained as an approximation to the closed form
solution of the MMSE-DFE feedforward filter. In this approx-
imation, the true variance of the noise is replaced by a free
parameter. The choice of this parameter is up to the designer,
whose aim is to approximate an all-pass filter. Actually, the
use of a different value of the noise variance could also be
a consequence of estimation errors. For example, in TDMA
mobile communications a training sequence is inserted in each
burst in order to have a promptly adaptation of equalizer’s co-
efficients. An adaptive channel estimator can be constructed
using either detected data or the training sequence. By us-
ing the estimated channel, one can get an estimate of the vari-

ance of the additive noise. Then, the prefilter’s coefficients are
calculated by substituting the estimated channel in the closed
form solution.

In this paper the sensitivity of the performance of the MS-
DDFSD to a noisy estimate of the noise variance is considered.
For mathematical tractability we consider only the effect of
errors in the noise variance estimate, and assume that the im-
pulse response of the channel is perfectly known. The paper
is organized as follows. In section II the system model is de-
scribed and the closed form of the prefilter is given. In section
III performance evaluation is carried out. In section IV, the
accuracy of the approximation is demonstrated by comparing
it to simulation results. In section V conclusions are drawn.

II. SYSTEM MODEL

We consider the model of a binary uncoded data sequence
transmitted over a baseband linear channel corrupted by addi-
tive white Gaussian noise. The receiver consists of the sam-
pled matched filter, the prefilter, and the DDFSD. The block
diagram of the system is depicted in Fig. 1. Let �� � � be
the time spanning of the impulse response of the system from
the source to the output of the sampled matched filter, that
is the sampled autocorrelation of the impulse response ����
represented in Fig. 1, and let ���� �

��
���� ���

�� be its �-
transform (��� represents the unit delay).

The receiver is based on what is called in [5] the key equa-
tion

���������� � ���� � ���� (1)

where that ���� causal and minimum phase is taken. In order
to take into account errors in the estimate of the noise variance,
��� has been used in (1), instead of the true variance � �. The
signal to noise ratio is SNR� ��	��.

In the DDFSD with �� states, 
 � �, the branch met-
ric is calculated using a DFE with � � 
 taps [2]. Specifi-
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Fig. 1. Channel and receiver block diagram.
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where �� is the �-th sample at the output of the prefilter and
����������� 
 
 
 � ����� is the estimate of the bit transmitted at
time � � �, which is present in the survivor that at time � � �
merges in the state ������ 
 
 
 � ����� .

According to [3], the prefilter is
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 (2)

Note that, in practical systems, �� � �, hence ���� is always
invertible. Therefore the existence of ���� is guaranteed. It is
worth noting that, for 
 � � the receiver is the MLSD (see the
appendix of [3] for the proof), while for �� � � �� (2) gives the
mean-square prefilter of [3]. In this latter case, for 
 � � one
writes the equations of the MMSE-DFE [1] as
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where the notation 	����
� � �� is adopted. The distortion
sequence at the output of the prefilter is

�� � �� �

��
���

������� � (3)

where ��� � ������� is the �-th element of the transmitted
sequence.

III. PERFORMANCE EVALUATION

Performance evaluation is carried out by adapting the analy-
sis developed in [6, 7] to the case where ��� is used in the spec-
tral factorization (1). Let ����� and ����� be respectively the
�-transform of the transmitted and of the detected sequence.
The input error event is defined as

���� � 	������ �����
	��� � � � �� �� � � �

where �� �� �, �	�� �� �, and there are no more than

 � � consecutive zeros between � and � � � (the notation
	����
���� �

����
��� ���

�� is adopted). Moreover, we assume

	������ �����
���� � �� (4)

that is, error propagation is neglected. The bit error rate (BER)
is approximated as [6]
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where �
 � 	����������
�	� is the Hamming weight of ����,
�� is the set of the� input error polynomials that dominate
the union bound, and � ������ 	
 ����� � ����� is the pairwise
error probability in the binary test between ����� and ����� �
����. Note that the binary test may take place only if the two
events (4) and

	������ �����
	����	 � � (6)

occur. Condition (6) corresponds to the first merging in the
trellis of the DDFSD between the competing sequences. In
what follows the computation of � ������ 	
 ����� � ����� and
the search of the� error events that form the set �� will be
discussed.

As far as the computation of the pairwise error probability
is concerned, it should be noted that both ISI and noise affect
the distortion sequence [5]. From a geometrical perspective,
the decision boundary is a hyperplane between the two points
that represent ����� and its competitor. The direction that joins
the two mentioned points is hereafter called output error, and
is represented by the polynomial

�
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Note that, in contrast to MLSD, here the time spanning of the
output error is reduced from � � � to � � 
. The squared Eu-
clidean distance between the competitors in the decision space
is

Æ�
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��
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��

which also represents the energy of the output error. Let
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be the �-transform of the distortion sequence (3). The error
occurs when the projection of the distortion along the output
error, defined as
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exceeds half the Euclidean distance between the competing
sequences. The pairwise error probability � ������ 	
 ����� �
����� is
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where ������ is the probability density function of �
. In order
to compute ������, we will take into account that the distortion
is the sum of ISI and noise. The projection of the noise along
the output error is
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where ���� is zero mean Gaussian noise with autocorrelation
������. The probability density function ������ is Normal,
with mean

 �� � ��

and variance
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The projection of the ISI along the output error is
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where "��� is the polynomial of the coefficients of the ISI. The
probability density function ������ can be computed from the
coefficients of the ISI. Since ISI and noise are independent
random variables, the probability density function of � 
 is

������ � ������� �������

where� denotes the convolution. In the section devoted to the
experimental results, we adopt the method proposed in [8] to
compute ������.

In order to evaluate the performance, we should determine
the � error events to be considered in (5). To an efficient
selection, a sensible figure of merit is the signal to distortion
ratio relevant to ���� [7], which is defined as
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�Æ
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�
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 (7)

In (7), the mean and the variance of the distortion are used.
Since the distortion is the sum of ISI and noise, we have to
compute the mean and the variance of the ISI. Following the
procedure developed in appendix of [7], one finds
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Taking into account that the mean value of the Gaussian noise
is zero, for �� one gets
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Using ��������� � ���������� � �, for ���� one gets
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At intermediate-to-high SNR, the sum (5) will be dominated
by the terms corresponding to the error events at lower SDR 
.
Hence, one can produce a large list of error polynomials or-
dered by increasing SDR
, and then compute ����� ������ 	

����������� for each element of the list to produce a re-ordered
list, which can be used in (5). The problem in calculating (7)
is that in general the denominator depends on the particular
error event. Hence, algorithms which look for the error events
at minimum distance cannot be used. By applying the method
described in [7], we can look for the list of error polynomials
at minimum distance only for ��� � � and ��� � ��. For other
values of ��� a new list of error polynomials is created by merg-
ing the two above lists. By using (7), the error polynomials of
the new list are ordered by increasing SDR
. We adopt this
procedure in order to determine the first� error polynomials
that contribute to the sum (5) for a generic �� �. This procedure
has been derived after observing that the � dominant error
polynomials for ��� � � (��� � ��) could be extracted from
the list of the error polynomials found for �� � � �� (��� � �).
Of course, the list from which error polynomials are extracted
must be larger than� . We consider a list of 
� error poly-
nomials both for the W-DDFSD and the MS-DDFSD.

IV. EXPERIMENTAL RESULTS

Computer simulations were carried out to evaluate the ac-
curacy of the approximation (5). In the simulations we fo-
cused on the channel with � � � studied in [9], whose im-
pulse response at the output of the matched filter is ���� �
�
�
���
���������
���������
������	��
�
������
�
������
 � �
������� � �
������� � �
�
����
 �
�
������� � �
�������� � �
�������� � �
�
�����. This
channel is characterized by three deep notches in its spectrum.
Fig. 2 shows the BER versus � � ���	��, for 
 � � and
�� � ���� (SNR=�� dB). In the simulations, the BER is mea-
sured by a random sequence of ��� data. From the figure one
observes that the measured BER is a smooth function of �.



TABLE I
FIRST 18 ERROR POLYNOMIALS ORDERED BY SDR FOR THE MS-DDFSD AND FOR THE W-DDFSD WITH � � � AT SNR� ���� .

ONLY THE 9 POLYNOMIALS BEGINNING WITH �� � �� ARE LISTED.

SDR
���	��
 SDR
�� [dB] Coefficients of ����

10.11 9.04 -2 2 2 -2 -2 2
10.89 10.00 -2 2 2 -2 -2 2 2 -2
11.16 10.35 -2 2
11.38 10.61 -2 2 0 0 0 -2 2
11.54 10.80 -2 2 2 -2 -2 2 2 -2 -2 2
11.59 10.86 -2 2 0 0 0 -2 2 0 0 0 -2 2
11.79 11.10 -2 2 0 0 0 -2 2 0 0 0 -2 2 0 0 0 -2 2
11.98 11.32 -2 2 0 0 0 -2 2 0 0 0 -2 2 0 0 0 -2 2 0 0 0 -2 2
12.00 11.34 -2 2 2 -2 -2 2 0 2 -2 -2 2 2 -2
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Fig. 2. Simulated and estimated BER versus �, for �� � ��
�� and

� � �.

As expected the minimum occurs for � � �. In the figure is
also reported the estimated bit error probability. The figure
shows that the approximation is fairly accurate. The slightly
worse performance of the simulations is due to the error prop-
agation that takes place in the DDFSD. To fit the simulations
results, we find that �� error polynomials contribute to the sum
(5). Since ���� and ����� produce the same SDR
, in table I
are listed the coefficients of the � error polynomials at lower
SDR
 that begin with �� � ��, for ��� � � and ��� � ��.
As we can observe from the table, in this specific example, it
happens that the first �� error polynomials are the same for the
W-DDFSD and for the MS-DDFSD. Fig. 3 shows the BER of
the DFE (
 � �) versus �, for �� � 

� � ���	 (SNR� ��
dB). In the figure the simulation results with and without er-
ror propagation are reported. In the simulations, the BER is
measured by a random sequence of ��� data. From the figure
we observe that the experimental results, in absence of error
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Fig. 3. Simulated and estimated BER versus �, for �� � ��� � ����

and � � �.

propagation, fit very closely the approximation. When error
propagation is considered, the approximation (5) turns out to
be poor. An analytical estimate of the performance that con-
siders error propagation can be found in [10] and references
therein. We also note that the minimum of the BER does not
occur for � � � but for � � �. This behavior is not common
to all the channels that we have considered. For less frequency
selective channels the minimum occurs for � � �. Hence, for
high complexity reduction and for severely frequency selective
channels, the use of a larger value for the noise variance in (1)
allows to improve performance. For the DFE the idea of using
� � � in (1) has been proposed in [11] in the context of the
magnetic recording channel. However, in [11] the prefilter is
different from that proposed here. Finally, by comparing Fig.
2 and Fig. 3 we observe that, near the minimum, the curve rel-
ative to the pure DFE is more flat than the curve obtained with

 � �. Hence, we conclude that, for large complexity reduc-



tion, the performance is less sensitive to errors in the estimate
of the noise variance.

V. CONCLUSIONS

For severely frequency selective channels, the MS-DDFSD
provides a favorable trade off between performance and com-
plexity. In this receiver, the mean-square prefilter that precedes
the DDFSD and the impulse response to which the DDFSD
is matched are calculated from a spectral factorization, where
the autocorrelation of the impulse response of the channel and
the noise variance are assumed to be known. Since both the
channel and the noise variance should be estimated from the
received signal, the performance of the receiver will be influ-
enced by the quality of these estimates. In this paper an ap-
proximation to the bit error probability of the MS-DDFSD for
a noisy estimate of the noise variance has been derived. From
the experimental results the conclusions that we can draw are
the following. For moderate complexity reduction, the mini-
mum of the BER is obtained when ��� � ��. For large com-
plexity reduction, the minimum of the BER is obtained when
��� 
 ��.
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[6] W. Sheen and G. D. Stüber, “Error probability for reduced-state
sequence estimation,” IEEE J. Select. Areas Commun., vol. 10,
pp. 571-578, Apr. 1992.

[7] M. Magarini, A. Spalvieri, and G. Tartara, “Performance evalu-
ation of the mean-squared prefiltered delayed decsion feedback
sequence detector ,” in Proc. IEEE Personal, Indoor and Mobile
Radio Communications, 2001, San Diego, CA, in press.

[8] J. C. Vanelli and N. M. Shehadeh, “Computation of bit error
probability using the trapezoidal integration rule,” IEEE Trans.
Commun., vol. 22, pp. 331-334, Mar. 1974.

[9] R. R. Anderson and G. J. Foschini, “The minimum distance for

MLSE digital data systems of limited complexity,” IEEE Trans.
Inform. Theory, vol. 21, pp. 544-551, Sept. 1975.

[10] T. J. Willink, P. H. Wittke and L. L. Campbell, “Evaluation
of the effects of intersymbol interference in decision-feedback
equalizers,” IEEE Trans. Commun., vol. 48, pp. 629 -636, Apr.
2000.

[11] P. S. Bednarz and J. M. Cioffi, “Decision feedback equaliza-
tion for channels with error correcting capabilities,” in Proc.
IEEE International Conference on Communications, Montreal,
Canada, 1997, pp. 1607-1612.


