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ABSTRACT

The Generalized Delayed Decision Feedback Se-

quence Detector (GDDFSD) is a scheme for detect-

ing uncoded data corrupted by ISI and noise. The

GDDFSD is a variant of the DDFSD, the variant

being that in the GDDFSD multiple survivors are

allowed for each state. In the paper, it is proposed

to adopt as a front-end the mean-square whitened

matched filter in place of the classical whitened

matched filter. Simulation results show that our pro-

posed design gives substantial benefits when a severe

frequency selective channel is considered.

I. INTRODUCTION

The concern of the present paper is a suboptimal

technique for signal equalization. The receiver that

guarantees minimum Bit Error Rate (BER) is the

maximum a posteriori probability receiver. How-

ever, one often renounces to this receiver, because

it is too complex. A simpler receiver is obtained

if the probability of sequence error is considered.

This approach leads to Maximum Likelihood Se-

quence Detection (MLSD) [1]. Unfortunately, even

MLSD is often too complex. Actually, the MLSD

receiver is realized by a Viterbi algorithm with a

number of states that is exponential in the channel

memory. Hence, when dealing with channels with

long memory, one is forced to consider suboptimal

receivers. A popular technique for complexity re-

duction is the Delayed Decision Feedback Sequence

Detection (DDFSD) proposed in [2]. The DDFSD

is based on a Viterbi algorithm where the channel

memory is truncated. The performance loss due to

memory truncation is mitigated by a per survivor

processing, where the past history of each survivor

is used in a decision feedback scheme. The Whitened

Matched Filter (WMF) of [1] was adopted as a front-

end for the DDFSD in [2]. Recently, the benefits

offered by the Mean Square Whitened Matched Fil-

ter (MSWMF) have been pointed out in [3, 4, 5].

In the present paper, it is proposed to adopt the

MSWMF in a more general scheme, called General-

ized DDFSD (GDDFSD), where multiple survivors

are considered for each state [6]. Simulation results

show that the MSWMF-GDDFSD outperforms the

WMF-GDDFSD when a severe frequency selective

channel is considered.

II. SYSTEM MODEL

We consider the model of a binary uncoded data

sequence transmitted over a baseband linear chan-

nel corrupted by Additive White Gaussian Noise

(AWGN). The block diagram of the system is re-

ported in figure 1. In figure 1, ãk ∈ {+1,−1} is

the bit transmitted at time k and w(t) is AWGN

with two-sided power spectral density σ2. Let r(z) =
∑ν

i=−ν riz
−i be the z-transform of the impulse re-

sponse of the system from the source to the output

of the sampler (z−1 indicates the unit delay). The

trellis for MLSD has 2ν states, while in the DDFSD

the trellis has 2µ states, µ ≤ ν, and to each state a

Decision Feedback Equalizer (DFE) with ν − µ taps

is attached. With reference to figure 1, the branch

metric at time k in the reduced trellis of the DDFSD

is

bk(ak−µ, . . . , ak) = (xk −

µ
∑

j=0

djak−j

−
ν

∑

j=µ+1

dj âk−j(ak−µ, . . . , ak−1))
2, (1)

where âk−j(ak−µ, . . . , ak−1) is the estimate of the

bit transmitted at time k − j which is present in

the survivor that at time k − 1 visits the state

(ak−µ, . . . , ak−1). According to [6], the GDDFSD is

obtained by allowing M DFEs for each state. Hence

in the GDDFSD there are 2µ states and 2M transi-
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Figure 1: Channel and receiver block diagram

tions diverging from and merging in each state. At

each step in the trellis, the metrics of the 2M tran-

sitions that merge in each state are sorted, and the

sequences associated to the M lower metrics are se-

lected as survivors. The prefilter and d(z) are here-

after presented for the WMF and for the MSWMF.

A.Whitened Matched Filter

In the time discrete white Gaussian model of [1],

d(z) is obtained from the spectral factorization

r(z) = d(z)d(z−1) (2)

by taking for dWM (z) that d(z) that is causal and

minimum phase. The autocorrelation r(z) is factor-

izable if its Fourier transform

S(f) = r(ej2πf ), (3)

is nonnull over any measurable interval [7]. When

this condition is satisfied, the roots of dWM (z) are

on or inside the unit circle. Note that the case where

some of the roots of dWM (z) are on the unit circle,

that is when S(f) is null in some non measurable in-

terval, is a limiting case. When the roots of dWM (z)

are inside the unit circle, the prefilter is the noise

whitening filter

pWM (z) = d−1
WM (z

−1). (4)

When the roots of dWM (z) are on the unit circle,

the noise whitening filter does not exist, because

dWM (z
−1) is not invertible. However, the existence

of the WMF is still guaranteed [1].

B.Mean Square Whitened Matched Filter

In the MSWMF, d(z) is determined from the spec-

tral factorization

d(z)d(z−1) = r(z) + σ2, (5)

by taking for dMS(z) that d(z) that is causal and

minimum phase. Note that, for σ2 > 0, factor-

izability of r(z) + σ2 is guaranteed. Therefore, in

contrast to the WMF, here the case where S(f) (3)

is null in some interval is not a limiting case. Let

e(z) = x(z)− ã(z)dMS(z) be the error sequence. In

[7] it is shown that the prefilter that minimizes the

mean square error is

pMS(z) =
dMS(z)

r(z) + σ2
= d−1

MS(z
−1). (6)

When pMS(z) is used as a prefilter, the error se-

quence turns out to be white [7]. For this reason,

the front-end filter takes the name of mean-square

whitened matched filter. It has been proved in [3]

that when µ = ν the Viterbi detector based on the

MSWMF performs MLSD.

III. EXPERIMENTAL RESULTS

To obtain substantial difference between the

MSWMF-GDDFSD and the WMF-GDDFSD, a

severely distorted channel should be considered.

The channels studied in [8] are actually severe, in

the sense that they give the lower minimum dis-

tance for a fixed duration of the impulse response.

We focus on the channel with ν = 6. The z-

transform of the impulse response at the output

of the WMF, that is r(z)pWM (z) = dWM (z), is

dWM (z) = 0.176+0.316z
−1+0.476z−2+0.532z−3+

0.476z−4 + 0.316z−5 + 0.176z−6. The shape of the

impulse response, depicted in figure 2 together with

the spectrum r
(

ejω
)

, resembles a bell, a shape that

is often found in channels from the real world. Note

that this channel has three pairs of roots on the unit

circle, that is three spectral nulls. It is intuitive that

the effect of the spectral nulls is more severe for the

WMF, where the spectral nulls are treated as a lim-
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Figure 2: (a) Discrete time channel. (b) Spectrum.
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Figure 3: Performance of MLSD and of the

GDDFSD with the WMF and the MSWMF. M is

the number of survivors per state, and 2µ is the num-

ber of states

iting case. The error rate is evaluated by computer

simulation. In the simulations, the z-transform of

the sequence at the output of the WMF is xWM (z) =

dWM (z)ã(z)+w(z), where the variance of the white

noise is σ2. For the MSWMF, the polynomial

xMS(z) is xMS(z) = xWM (z)p
−1
WM (z)pMS(z) =

xWM (z)dWM (z
−1)d−1

MS(z
−1), the ex-

istence of d−1
MS(z

−1) being guaranteed for σ > 0.

The product dWM (z
−1)d−1

MS(z
−1) is truncated to

91 terms. The BER is measured by a random se-

quence of 2 · 106 data. Figure 3 reports the BER of

MLSD, MSWMF-GDDFSD, and WMF-GDDFSD,

versus Signal to Noise Ratio (SNR), SNR = r0/σ
2.

From the figure, it is apparent that the MSWMF

outperforms the WMF. Examining the results re-

ported in figure 3 for the MSWMF, one observes

that the MSWMF-GDDFSD with µ = 2, M = 2

outperforms the MSWMF-GDDFSD with µ = 3,

M = 1 (that is the pure DDFSD with 8 states),

and that its performance is close to the performance

achieved with µ = 4, M = 2. This observation sug-

gests that, when severe complexity reduction is nec-

essary, a well-balanced design of µ and M may offer

the best performance.

IV. CONCLUSIONS

The MSWMF is widely known and studied in the

theory of the DFE [7], and has been recently adopted

as a front-end for the DDFSD in [3, 4, 5]. In

the present paper, the MSWMF has been proposed

as a front end also for the GDDFSD. The results

show that the MSWMF-GDDFSD outperforms the

WMF-GDDFSD when a severe frequency selective

channel is considered. The results also suggest that,

in the design of the GDDFSD, a studied balance-

ment between the number of states and the number

of survivors may offer the best performance when

severe complexity reduction is necessary.
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